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Abstract: The design of a Linear Quadratic (LQ) - Servo for trajectory tracking control of a 

Quadrotor is presented in this work. In this study, Newton's and Euler's laws are utilized to develop 
a mathematical model of how the movement of a Quadrotor is simulated. We get a linearized version 
of the model, so we can make a linear controller called LQ-Servo. The success of LQ-Servo control 
was tested in two scenarios, the first trajectory tracking at a circular position and the second with the 
position of the trajectory number ”8”. The simulation results show that the proposed LQ-Servo 
controller successfully overcame inertial disturbances when the UAV Bicopter performs trajectory 
tracking. Based on the results, it is evident that the LQ-Servo control can still maintain Quadrotor 
trajectory tracking with only a slight increase in RMSE when subjected to inertial disturbances. 
Finally, the SimMechanics are used to observe the Quadrotor's behavior under the proposed control 
strategies in virtual reality. 
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1.  Introduction  
Due to its maneuverability, the Quadrotor has gained 

popularity. Quadrotors, 6-DOF (Degrees of Freedom) 
UAVs, are perfect for search and rescue1–3), surveillance4–

6), and long-distance inspection7–9). A Quadrotor is a 
rotorcraft with four rotors as lift-producing propellers. 
Quadrotors use a variety of sensors to provide excellent 
stability and control, allowing them to move in tight 
spaces. Due to the thrust and moments generated by four 
rotors, Quadrotors can perform 6 DOF movements. 
However, controlling Quadrotors remains difficult in 
terms of reliability, precision, safety, and productivity.  

The Quadrotor is capable of linear movement in 
addition to its other motions, such as rotating. The axis of 
rotation of the Quadrotor is the point at which the roll, 
pitch, and yaw motions take place. Furthermore, 
translational motion is a movement resulting from 
rotational motion. This motion is comprised of both lateral 
and longitudinal motion. The three main stages of 
longitudinal motion are takeoff, hovering, and landing, 
whereas lateral motion consists of horizontal movement 
from one location to another (waypoint)10,11). Changes in 
the Quadrotor's angle of rotation allow for the possibility 
of lateral movement during hover if the Quadrotor can 
retain stability. Changes in roll angle will cause translation 
along the Y axis, whereas changes in pitch angle will 

cause translation along the X axis. Thus, lateral Quadrotor 
motions require an initial rotating motion. Therefore, 
Quadrotor trajectory tracking control is an essential topic 
for researchers. 

To get the greatest degree of maneuverability, a control 
system is essential. The flight control system can be 
divided into three main subcategories when seen from the 
perspective of the Quadrotor control approach. These 
categories are learning-based flight control, non-linear 
flight control, and linear flight control. Numerous 
articles12–21) have discussed linear flight control methods 
for Quadrotors. 

Several researchers have conducted research on 
trajectory tracking Quadrotor, such as on Abdelhay et al.22). 
A cascaded PID controller tracks the trajectory. The 
chosen model hovers at a linearized nonlinear model 
altitude. Additionally, the linear and nonlinear model 
responses are evaluated, and the PID controller for the 
nonlinear model is constructed and analyzed. 

The research in23) focuses on the simulation of a 
Quadrotor. A linear quadratic regulator-based optimum 
control is designed for the position and yaw control of the 
Quadrotor. The dynamics of a Quadrotor define its 
behavior in three-dimensional space. The created LQR-
based controller was applied to the longitudinal, lateral, 
and vertical locations of the Quadrotor, as well as its 
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orientation in the yaw direction.  

Elkhatem et al.24) mentioned that wind and other 
environmental disturbances can destabilize UAVs. LQR 
controllers eliminate state trajectory deviations with 
minimal control effort due to their great performance and 
resilience. An innovative method using the Quadrotor's 
state variables matrix and a preference factor 
automatically adjusts the weighting matrices in this paper. 
The designer penalizes or rewards a Quadrotor state to 
compensate for model perturbations. The proposed 
strategy for picking these matrices is tested for LQR and 
LQR with a PI controller. Both control solutions stabilized 
the Quadrotor with superior performance and robustness. 
The LQR-PI control system performed better in tracking 
than LQR alone. 

 Kuantama et al.25) utilized feedback linearization and 
LQR with a PID controller to stabilize Quadrotor attitude 
in the trajectory. The results demonstrate that variable 
weight adjustment on LQR and coefficients on PID 
generate better Quadrotor dynamic motion stability and 
performance. Overall, the modeling control method was 
able to reject disturbance, despite a little error in the output 
trajectory tracking.  

Accelerated computer-aided design (CAD) 
improvements in recent years have led to new paths in 
engineering system modeling, design, and process control. 
The CAD development program provides new 
opportunities for engineering students to test their 
thinking. CAD software has created more accurate 3D 
models than ever before. These models can be utilized to 
describe both simple and complex engineering systems. 
This method makes modeling easier because the designer 
no longer must make the equations of motion for the 
system. This stage has been carried out by several 
researchers, as seen in26–29).  

Grau et al.28) describe a CAD-based method for 
identifying Quadrotor parameters. A global linearized 
control model is proposed. These systems use an LTI 
controller and a linear control model around each 
operational point to construct the controller. Raheemah et 
al.27) designed a Quadrotor CAD with SolidWorks 
software and converted the CAD to MATLAB. 
Furthermore, the PID control is used to regulate the 
Quadrotor's attitude so that it can follow the trajectory of 
the conical helix. From the literature review, we can 
conclude that by converting Quadrotor CAD to MATLAB, 
several stages of research can be done, such as identifying 
the Quadrotor and designing the desired control system. 

Meanwhile, this paper's main contribution was to 
develop a simple Quadrotor model using SimMechanics 
simulation in MATLAB using a Simscape Multibody 
environment30). The CAD modelling results will provide 
almost accurate real-world system parameters, allowing 
us to continue with the control design. Then, using 
SimMechanics simulation in MATLAB, we solve the 
problem of Quadrotor trajectory tracking using full state 
feedback such as LQ-Servo for optimal control. The goal 

is to evaluate the controllers' performance in assuring 
good trajectory tracking on a circular trajectory and 
trajectory tracking of the number “8”. 

This paper's remaining sections are organized as 
follows: Section II covers the dynamics of Quadrotors and 
describes the design of the LQ-Servo linear controller. 
Numerous simulation results are presented in Section III 
to demonstrate the value and effectiveness of the proposed 
methodologies. Section IV concludes the paper with 
observations and future work recommendations. 

 
2.  Method 
2.1 Dynamics Modelling of a Quadrotor 

Quadrotor modeling can be observed on a frame of a 
Cartesian diagram with a three-dimensional axis (x, y, z). 
The Cartesian diagram frame is divided into two, namely 
the earth frame, which is not moving, and the Quadrotor 
body frame that moves rotation and translation as 
presented in Fig. 1.  Consider now a North-East-Down 
(NED) inertial frame fixed to earth and a body frame fixed 
to the Quadrotor. Linear position of Quadrotor (𝜎𝜎𝐸𝐸)  is 
determined from the vector coordinates between the origin 
body frame and the origin of the earth frame with respect 
to the earth frame. Quadrotor angular position (Θ𝐸𝐸)  is 
determined based on how the body frame is oriented in 
relation to the earth frame. Linear position and angular 
position are found in Eq. 1 – Eq. 2. Furthermore, the 
Quadrotor rotates on the axis (x, y, z) so that it can be 
expressed as a rotation matrix in Eq. 3. Roll, pitch, and 
yaw indicate the Quadrotor's Euler angles with denoted 
𝜙𝜙,𝜃𝜃 and 𝜓𝜓 respectively. 
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Fig. 1: Quadrotor reference frames 

𝜎𝜎𝐸𝐸 = [𝑥𝑥 𝑦𝑦 𝑧𝑧]𝑇𝑇 (1) 

Θ𝐸𝐸 = [𝜙𝜙 𝜃𝜃 𝜓𝜓]𝑇𝑇 (2) 

𝑅𝑅Θ = �
𝑐𝑐𝜃𝜃𝑐𝑐𝜓𝜓 𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 − 𝑐𝑐𝜙𝜙𝑠𝑠𝜓𝜓 𝑠𝑠𝜙𝜙𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓
𝑐𝑐𝜃𝜃𝑠𝑠𝜓𝜓 𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓+ 𝑐𝑐𝜙𝜙𝑐𝑐𝜓𝜓 −𝑠𝑠𝜙𝜙𝑐𝑐𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓
−𝑠𝑠𝜃𝜃 𝑠𝑠𝜙𝜙𝑐𝑐𝜃𝜃 𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃

� (3) 
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Quadrotor speed consists of linear velocity (�̇�𝑥 �̇�𝑦 �̇�𝑧) 

and angular velocity (�̇�𝜙 �̇�𝜃 �̇�𝜓) , so that when 
represented in the form of state space Quadrotor equations 
have 12 (twelve) states as in Eq. 4 – Eq. 5. 

𝑥𝑥1−6 = [𝑥𝑥 �̇�𝑥 𝑦𝑦 �̇�𝑦 𝑧𝑧 �̇�𝑧]𝑇𝑇 (4) 

𝑥𝑥7−12 = [𝜙𝜙 �̇�𝜙 𝜃𝜃 �̇�𝜃 𝜓𝜓 �̇�𝜓]𝑇𝑇 (5) 
Based on Fig. 1, the total lift (thrust) and moment of the 

Quadrotor can be obtained from the input u written in Eq. 
6 – Eq. 7. 

𝑢𝑢 = [𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4]𝑇𝑇 (6) 

𝑢𝑢1 = 𝐾𝐾𝑐𝑐(Ω1 + Ω2 + Ω3 + Ω4) 

𝑢𝑢2 = 𝐾𝐾𝑐𝑐(−Ω2 + Ω4) 

𝑢𝑢3 = 𝐾𝐾𝑐𝑐(Ω1 + Ω3) 

𝑢𝑢4 = 𝐾𝐾𝑚𝑚(Ω1 − Ω2 + Ω3 − Ω4) 

(7) 

𝐾𝐾𝑐𝑐 and 𝐾𝐾𝑚𝑚  are aerodynamic force constants and 
moment constants31). Ω𝑖𝑖  is the rotational speed of the rotor 

to i from Quadrotor. A Quadrotor's dynamic motion has 
two subsystems: the rotating subsystem; which includes 
roll (𝜙𝜙) , pitch (𝜃𝜃) , and yaw(𝜓𝜓) and the translational 
subsystems; altitude and position x and y. Based on the 
Newton-Euler equation we get the translation motion 
equation in Eq. 8.  

𝐹𝐹𝐺𝐺 − 𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 = 𝑚𝑚�̇�𝑣 +  𝜔𝜔 × 𝑚𝑚𝑣𝑣 (8) 
With 𝐹𝐹𝐺𝐺  is gravity, 𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡  is a rotation matrix of 

vertical thrust ([0 0 𝑢𝑢1]𝑇𝑇), m is the Quadrotor mass, 
𝑣𝑣 = [�̇�𝑥 �̇�𝑦 �̇�𝑧]𝑇𝑇 represents the linear velocity of the 
Quadrotor, �̇�𝑣 = [�̈�𝑥 �̈�𝑦 �̈�𝑧]𝑇𝑇 is Quadrotor's linear 
acceleration and 𝜔𝜔 = [�̇�𝜙 �̇�𝜃 �̇�𝜓]𝑇𝑇 represents the 
angular velocity of the Quadrotor. So, Eq. 8 becomes Eq. 
9. 

�
0
0
𝑚𝑚𝑚𝑚

� − 𝑅𝑅Θ�
0
0
𝑢𝑢1
� = 𝑚𝑚��

�̈�𝑥
�̈�𝑦
�̈�𝑧
� + �

�̇�𝜙
�̇�𝜃
�̇�𝜓
� × �

�̇�𝑥
�̇�𝑦
�̇�𝑧
�� (9) 

If Eq. 3 is substituted into Eq. 9, then it is obtained Eq. 10. 
 

�
�̈�𝑥
�̈�𝑦
�̈�𝑧
� =

1
𝑚𝑚
��

0
0
𝑚𝑚𝑚𝑚

� − �
𝑐𝑐𝜃𝜃𝑐𝑐𝜓𝜓 𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 − 𝑐𝑐𝜙𝜙𝑠𝑠𝜓𝜓 𝑠𝑠𝜙𝜙𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓
𝑐𝑐𝜃𝜃𝑠𝑠𝜓𝜓 𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑐𝑐𝜓𝜓 −𝑠𝑠𝜙𝜙𝑐𝑐𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓
−𝑠𝑠𝜃𝜃 𝑠𝑠𝜙𝜙𝑐𝑐𝜃𝜃 𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃

� �
0
0
𝑢𝑢1
�� − �

�̇�𝜙
�̇�𝜃
�̇�𝜓
� × �

�̇�𝑥
�̇�𝑦
�̇�𝑧
� (10) 

Next, if assumed 𝑣𝑣 = [�̇�𝑥 �̇�𝑦 �̇�𝑧]𝑇𝑇  and 𝜔𝜔 =
[�̇�𝜙 �̇�𝜃 �̇�𝜓]𝑇𝑇  equal to zero, so we get the linear 
acceleration of Quadrotor (�̇�𝑣) in Eq. 11 – Eq. 13. 

�̈�𝑥 = −
1
𝑚𝑚

(𝑠𝑠𝜙𝜙𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓)𝑢𝑢1 (11) 

�̈�𝑦 = −
1
𝑚𝑚

(−𝑠𝑠𝜙𝜙𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓)𝑢𝑢1 (12) 

�̈�𝑧 = 𝑚𝑚 −
1
𝑚𝑚

(𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃)𝑢𝑢1 (13) 

For Quadrotor rotations in Newton-Euler equations can 
be written as Eq. 14. 𝑀𝑀𝐵𝐵 is the moment acting on the 
Quadrotor and can be obtained from the Eq. 15 where 
𝑢𝑢2,𝑢𝑢3,𝑢𝑢4 are the torque of the roll (𝜙𝜙), pitch (𝜃𝜃), and 
yaw(𝜓𝜓). And 𝐽𝐽 is the Quadrotor diagonal inertia matrix 
presented in Eq. 16. 

𝑀𝑀𝐵𝐵 = 𝐽𝐽𝜔𝜔 + 𝜔𝜔 × 𝐽𝐽𝜔𝜔̇  (14) 

𝑀𝑀𝐵𝐵 = �
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4
� (15) 

𝐽𝐽 = �
𝐼𝐼𝑥𝑥𝑥𝑥 0 0
0 𝐼𝐼𝑦𝑦𝑦𝑦 0
0 0 𝐼𝐼𝑧𝑧𝑧𝑧

� (16) 

By substituting Eq. 15 – Eq. 16 into Eq. 14, we get Eq. 
17. The x-axis has a moment of inertia denoted by 𝐼𝐼𝑥𝑥𝑥𝑥, the 
y-axis has a moment of inertia denoted by 𝐼𝐼𝑦𝑦𝑦𝑦, and the z-

axis has a moment of inertia denoted by 𝐼𝐼𝑧𝑧𝑧𝑧. Based on Eq. 
17, it is obtained Eq. 18. 

�
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4
� = �

𝐼𝐼𝑥𝑥𝑥𝑥 0 0
0 𝐼𝐼𝑦𝑦𝑦𝑦 0
0 0 𝐼𝐼𝑧𝑧𝑧𝑧

� �
�̈�𝜙
�̈�𝜃
�̈�𝜓
�

+ �
�̇�𝜙
�̇�𝜃
�̇�𝜓
� �
𝐼𝐼𝑥𝑥𝑥𝑥 0 0
0 𝐼𝐼𝑦𝑦𝑦𝑦 0
0 0 𝐼𝐼𝑧𝑧𝑧𝑧

� �
�̇�𝜙
�̇�𝜃
�̇�𝜓
� 

(17) 

�
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4
� = �

𝐼𝐼𝑥𝑥𝑥𝑥�̈�𝜙 + �𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑦𝑦𝑦𝑦� �̇�𝜃�̇�𝜓
𝐼𝐼𝑦𝑦𝑦𝑦�̈�𝜃 + (𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑧𝑧𝑧𝑧) �̇�𝜙�̇�𝜓 
𝐼𝐼𝑧𝑧𝑧𝑧�̈�𝜓 + �𝐼𝐼𝑦𝑦𝑦𝑦 − 𝐼𝐼𝑥𝑥𝑥𝑥� �̇�𝜙�̇�𝜃

� (18) 

Thus, the angular acceleration of the Quadrotor (�̇�𝜔) in 
Eq. 19 – Eq. 21. 

�̈�𝜙 =
𝑢𝑢2 + �𝐼𝐼𝑦𝑦𝑦𝑦 − 𝐼𝐼𝑧𝑧𝑧𝑧��̇�𝜃�̇�𝜓

𝐼𝐼𝑥𝑥𝑥𝑥
 (19) 

�̈�𝜃 =
𝑢𝑢3 + (𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥)�̇�𝜙�̇�𝜓

𝐼𝐼𝑦𝑦𝑦𝑦
 (20) 

�̈�𝜓 =
𝑢𝑢4 + �𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑦𝑦𝑦𝑦��̇�𝜙�̇�𝜃

𝐼𝐼𝑧𝑧𝑧𝑧
 (21) 

The state space representation of a Quadrotor can be 
expressed as in Eq. 22, after being rearranged according 
to the state order in Eq. 4 – Eq. 5. 
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�̇�𝑥1 = �̇�𝑥 = 𝑥𝑥2 

�̇�𝑥2 = �̈�𝑥 = −
1
𝑚𝑚�𝑠𝑠𝜙𝜙𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓�𝑢𝑢1 

�̇�𝑥3 = �̇�𝑦 = 𝑥𝑥4 

�̇�𝑥4 = �̈�𝑦 = −
1
𝑚𝑚�−𝑠𝑠𝜙𝜙𝑐𝑐𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓�𝑢𝑢1 

�̇�𝑥5 = �̇�𝑧 = 𝑥𝑥6 

�̇�𝑥6 = �̈�𝑧 = 𝑚𝑚 −
1
𝑚𝑚�𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃�𝑢𝑢1 

�̇�𝑥7 = �̇�𝜙 = 𝑥𝑥8 

�̇�𝑥8 = �̈�𝜙 =
𝑢𝑢2 + �𝐼𝐼𝑦𝑦𝑦𝑦 − 𝐼𝐼𝑧𝑧𝑧𝑧��̇�𝜃�̇�𝜓

𝐼𝐼𝑥𝑥𝑥𝑥
 

�̇�𝑥9 = �̇�𝜃 = 𝑥𝑥10 

�̇�𝑥10 = �̈�𝜃 =
𝑢𝑢3 + (𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥)�̇�𝜙�̇�𝜓

𝐼𝐼𝑦𝑦𝑦𝑦
 

�̇�𝑥11 = �̇�𝜓 = 𝑥𝑥12 

�̇�𝑥12 = �̈�𝜓 =
𝑢𝑢4 + �𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑦𝑦𝑦𝑦��̇�𝜙�̇�𝜃

𝐼𝐼𝑧𝑧𝑧𝑧
 

(22) 

 
2.2 Linearization 

To develop a linear controller, the nonlinear model 
expressed by Eq. 22 must be linearized about an 
operational point. We can simplify our analysis by 
applying the following approximations if we assume the 
Quadrotor is in a hovering state in Eq. 23. The yaw angle 
(𝜓𝜓) is ignored for simplicity's sake. This means that the 
pitch angle (𝜃𝜃) will control the 𝑥𝑥 position, while the roll 
angle (𝜙𝜙) will control the 𝑦𝑦 position. 

 
𝑢𝑢1 ≃ 𝑚𝑚𝑚𝑚 

𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≃ 𝜙𝜙 → 𝜙𝜙 ≃ 0, cos(𝜙𝜙) ≃ 1 

𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) ≃ 𝜃𝜃 → 𝜃𝜃 ≃ 0, cos(𝜃𝜃) ≃ 1 

𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓) ≃ 0 → cos(𝜓𝜓) = �1 − sin2(𝜓𝜓) = 1 

(23) 

 
Using these approximations, Eq. 22 can now be written 

under the linear form in Eq. 24. It is possible to write Eq. 
24 in the following state space as in Eq. 25. 

 
2.3 LQ-Servo Scheme 

Using full state feedback control, we can ensure that all 
eigenvalues of the closed-loop system lie in the left half of 
the complex plane. This is accomplished by stabilizing a 
particular system. Consider a dynamic linear system 
described by the form �̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢 in the state space. 
By utilizing the full state feedback, which represents a 

linear combination of the state variables, that is 𝑢𝑢 =
−𝐾𝐾𝑥𝑥 in order for the closed-loop system, which is given 
Eq. 26. 

�̇�𝑥 = (𝐴𝐴 − 𝐵𝐵𝐾𝐾)𝑥𝑥 
𝑦𝑦 = 𝐶𝐶𝑥𝑥 

(26) 

One type of full-state feedback optimal control is the 
linear quadratic regulator (LQR). The optimality criterion 
for LQR is specified by the cost function in Eq. 27. Matrix 
Q and Matrix R indicate the cost of each state x and control 
input u for a linear state space system. Calculating the 
control inputs that will yield the lowest possible value of 
cost function J is referenced in Eq. 28. The continuous 
Ricatti equation has a solution of P, as in Eq. 29. 

𝐽𝐽 = � [𝑥𝑥(𝑡𝑡)𝑇𝑇𝑄𝑄𝑥𝑥(𝑡𝑡) + 𝑢𝑢(𝑡𝑡)𝑅𝑅𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑡𝑡
∞

0
 (27) 

𝑢𝑢∗ = −𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 = −𝑅𝑅−1𝐵𝐵𝑇𝑇𝑃𝑃𝑥𝑥 (28) 

𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴 + 𝑄𝑄 − 𝑃𝑃𝐵𝐵𝑅𝑅−1𝐵𝐵𝑇𝑇𝑃𝑃 = 0 (29) 
The LQR controller performs well in regulation tasks. 

Nonetheless, it cannot guarantee the tracking of dynamic 
references. This is due to the controller's lack of integral 
actions. Figure 2 shows a LQ-Servo formulation of the 
control problem. We found �̇�𝑥𝑁𝑁 = 𝑒𝑒 = 𝑟𝑟 − 𝐶𝐶𝑥𝑥  from the 
LQ-Servo controller and augmented the state equations, 
yielding in Eq. 30. Finally, the reference for the control 
input 𝑢𝑢∗  is calculated using the extended system state 
representation in Eq. 31. 

 

� �̇�𝑥�̇�𝑥𝑁𝑁
� = � 𝐴𝐴 0

−𝐶𝐶 0�
𝑥𝑥
𝑥𝑥𝑁𝑁 + �𝐵𝐵0� 𝑢𝑢 + �01� 𝑟𝑟 

𝑦𝑦 = [𝐶𝐶 0] �
𝑥𝑥
𝑥𝑥𝑁𝑁� 

(30) 

�̇�𝑥1 = �̇�𝑥 = 𝑥𝑥2 
�̇�𝑥2 = �̈�𝑥 = −𝑚𝑚𝜃𝜃 
�̇�𝑥3 = �̇�𝑦 = 𝑥𝑥4 
�̇�𝑥4 = �̈�𝑦 = +𝑚𝑚𝜙𝜙 
�̇�𝑥5 = �̇�𝑧 = 𝑥𝑥6 

�̇�𝑥6 = �̈�𝑧 = 𝑚𝑚 −
𝑢𝑢1
𝑚𝑚

 

�̇�𝑥7 = �̇�𝜙 = 𝑥𝑥8 

�̇�𝑥8 = �̈�𝜙 =
𝑢𝑢2
𝐼𝐼𝑥𝑥𝑥𝑥

 

�̇�𝑥9 = �̇�𝜃 = 𝑥𝑥10 

�̇�𝑥10 = �̈�𝜃 =
𝑢𝑢3
𝐼𝐼𝑦𝑦𝑦𝑦

 

�̇�𝑥11 = �̇�𝜓 = 𝑥𝑥12 

(24) 
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�̇�𝑥12 = �̈�𝜓 =
𝑢𝑢4
𝐼𝐼𝑧𝑧𝑧𝑧

 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −𝑚𝑚 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝑚𝑚 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
𝑚𝑚

0 0 0

0 0 0 0

0
1
𝐼𝐼𝑥𝑥𝑥𝑥

0 0

0 0 0 0

0 0
1
𝐼𝐼𝑦𝑦𝑦𝑦

0

0 0 0 0

0 0 0
1
𝐼𝐼𝑧𝑧𝑧𝑧⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝐷𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(25) 

B ∑ ∫.dt C

A

∑
Bu x x y

Ax

u

+
++

+

r

-K

∫.dt Ke
e Nx

∑
r

+
−

 
Fig. 2: Block diagram for LQ-Servo scheme

𝑢𝑢∗ = −𝐾𝐾𝑥𝑥 + 𝐾𝐾𝑒𝑒𝑥𝑥𝑁𝑁 = −[𝐾𝐾 𝐾𝐾𝑒𝑒] �
𝑥𝑥
𝑥𝑥𝑁𝑁� 

(31) 

 
2.4 Trajectory Tracking Control of Quadrotor 

The purpose of the control system is for the Quadrotor 
to follow a specified trajectory established by a trajectory 
planner to develop an adequate flight plan. Quadrotor 
control can also be accomplished with multi loops as well 

as a PID controller, as shown in Fig. 3. The loop is 
composed of two loops: one for rotational motion (inner 
loop) and one for translational motion (outer loop). The 
inner loop control rotates the Quadrotor. The rotating 
motion system must settle quickly to support the 
translational motion system as an outside loop. 

The outer loop controls Quadrotor translational motion. 
Position control has tracking issues. The translational 
motion system must follow a reference signal and handle 
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interruptions. The control input u1 is designed to control the 
Quadrotor's altitude. The control inputs u2, u3, and u4 are 
used to control the Quadrotor's attitude. 

 

 
Fig. 3: Block diagram for multi loops control of Quadrotor 

 
2.5 SimMechanics (Simscape Multibody™) 

Simscape MultibodyTM (formerly SimMechanicsTM) is a 
3D mechanical system simulation environment that 
includes mechanical of robots. This software models a 
system by arranging its mechanical model rather than a 
mathematical model and demonstrates it visually, saving 
the designer time and effort in identifying a mathematical 
model of the system. 

SimMechanics offers unique solver technology for 
simulating multibody mechanical systems. SimMechanics 
can import a CAD system model, including mass, inertia, 
joints, constraints, and 3D geometry. The following 
diagram illustrates how to load a CAD model into 
SimMechanics: First, download SimMechanics Link® and 
create an account. Second, Create an XML file based on 
the CAD model. Third, import the XML file into 
SimMechanics (Simscape MultibodyTM). 

 

CAD Software XML file
(Import with “smimport()”)

Simscape Multibody

Full 
Assembly Parts

 
Fig. 4: Block diagram for converting CAD model into 

SimMechanics 
 

In this paper, we design a Quadrotor CAD design using 
Autodesk Inventor Student version. Once we get the XML 
file of the Quadrotor CAD then we can get the Simulink 
block which represents the Quadrotor dynamics with 
apply PID control as shown in Fig. 5. From this Simulink 
we can apply the suiteable control design. Figure 6 shown 
the Quadrotor already used in SimMeachanics.  

 
Fig. 5: Simulink of PID controller and Quadrotor dynamics models from CAD into SimMechanics 

 
Fig. 6: SimMechanics Quadrotor results
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3.  Simulation Results and Discussion 

To validate the effectiveness of the proposed control, a 
simulation is presented in MATLAB using Simulink and 
SimMechanics. Table 1 shows the Quadrotor parameters 
for simulations. Initial testing was carried out by observing 
the response of the Quadrotor in hovering conditions, with 
an assigned altitude, 𝑧𝑧𝑑𝑑  of 2 meters. When employing an 
LQ-Servo control, the parameters of the Q Matrix and R 
Matrix significantly influence the feedback gain, K. 
During the initial stage of determining the Q Matrix and R 
Matrix parameters, the tuning process for Q and R 
weightings is performed using the values 𝑄𝑄 = 𝐶𝐶𝑇𝑇𝐶𝐶 and 
[𝑒𝑒𝑦𝑦𝑒𝑒(4) ∗ 0.001].  Subsequently, by adjusting the 
weighting matrix Q, variations in the feedback gain K can 
be obtained, for gain Ke (integral action) is tuned by 

experimental fine-tuning process. This research presents 
five variants in the weighting matrix Q values, as indicated 
in Table 2. 

 
Table 1. Simulation parameters 

Parameter Symbols Value Unit 

Mass Quadrotor 𝑚𝑚 1.3 𝐾𝐾𝑚𝑚 

Gravitational 𝑚𝑚 9.81 𝑚𝑚/𝑠𝑠2 

The x-axis moment of inertia 𝐼𝐼𝑥𝑥𝑥𝑥 0.0081 𝐾𝐾𝑚𝑚.𝑚𝑚2 

The y-axis moment of inertia 𝐼𝐼𝑦𝑦𝑦𝑦 0.0081 𝐾𝐾𝑚𝑚.𝑚𝑚2 

The z-axis moment of inertia 𝐼𝐼𝑧𝑧𝑧𝑧 0.0142 𝐾𝐾𝑚𝑚.𝑚𝑚2 

 

 
Table 2. Response characteristics at altitude Quadrotor using LQ-Servo control 

Characteristics 

Q weighting matrix parameters 

1st 

𝑄𝑄 = 𝐶𝐶𝑇𝑇𝐶𝐶 

2nd 𝑄𝑄 = [𝑒𝑒𝑦𝑦𝑒𝑒(12) ∗

0.1] 

3rd 𝑄𝑄 = [𝑒𝑒𝑦𝑦𝑒𝑒(12) ∗

10] 

4th 𝑄𝑄 = [𝑒𝑒𝑦𝑦𝑒𝑒(12) ∗

300] 

5th 𝑄𝑄 = [𝑒𝑒𝑦𝑦𝑒𝑒(12) ∗

700] 

RiseTime (𝑠𝑠) 2.0138 1.0619 2.1381 2.1717  2.1696 

SettlingTime (𝑠𝑠) 3.8157 9.7043 3.8557 3.8699 3.8673 

SettlingMin 1.4725 0.7311 1.7024 1.7855 1.7919 

SettlingMax 1.6258 0.8206 1.8816 1.9782 1.9857 

Overshoot (%) 0.1095 1.3647 0.0227 0 0 

RMSE 0.6339 1.2574 0.5016 0.4722 0.4705 

Figure 7 presents the altitude response of the Quadrotor 
with variations in the Q Matrix weighting. From this 
altitude response graph, it is evident that the 5th Q Matrix 
weighting parameter produces the smallest root mean 
square error (RMSE) compared to the others and does not 
result in overshoot. 

 

 
Fig. 7: Altitude response when heading to position 𝑧𝑧𝑑𝑑  = 

2 with variations in the Q Matrix weighting 
 
As a comparison, a Quadrotor altitude control test was 

conducted using a PID controller as in Fig. 8. The PID 
parameters used were: 𝐾𝐾𝑝𝑝 = 3, 𝐾𝐾𝑖𝑖 = 0.02, and 𝐾𝐾𝑑𝑑 = 5, 
which were determined through experimental tuning. 
When applying PID control, the system has an overshoot 
of 11.67 %. Because the results of PID control produced 
with LQ-Servo generate a more appropriate response, the 
scenario of trajectory tracking with LQ-Servo control is 
investigated further in the next test. 

 

 
Fig. 8: Altitude response under PID control and LQ-Servo 

control 
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The second test involves providing trajectory tracking 
parameters. The Quadrotor had to follow the desired 
circular trajectory defined in Eq. 32. 

 

𝑥𝑥𝑑𝑑 = 1.4 𝑠𝑠𝑠𝑠𝑠𝑠(pi *𝑡𝑡) , 𝑦𝑦𝑑𝑑 = 1.4 𝑐𝑐𝑐𝑐𝑠𝑠(pi *𝑡𝑡) 

𝑧𝑧𝑑𝑑 = 2,𝜓𝜓𝑑𝑑 = 0 (32) 

By utilizing Q Matrix weighting parameters of 
[𝑒𝑒𝑦𝑦𝑒𝑒(12)  ×  700]  and R Matrix weighting of 
[𝑒𝑒𝑦𝑦𝑒𝑒(4)  ×  0.001], the resulting response in following the 
circular trajectory is presented in Fig. 9. 

 

 
Fig. 9: Circular trajectory response using LQ-Servo control 

 
Next, testing was conducted by introducing inertial 

disturbances into the Quadrotor dynamics system. This 
inertial disturbance takes the form of a payload that 
Quadrotor carries while following a given trajectory. It is 
assumed that the Quadrotor's payload is a solid cubic-
shaped piece filled with liquid as shown in Fig. 10 with the 
specifications in Table 3. And the payload does not affect 
the system's center of mass.  

 

 
Fig. 10: Models of payloads 

 
Table 3. Payload specifications 

Parameter Value Units 

Mass payload (𝑚𝑚𝑑𝑑) 0.2 𝐾𝐾𝑚𝑚 

Length (𝑑𝑑) 0.08 𝑚𝑚 

Width (𝑤𝑤) 0.08 𝑚𝑚 

Height (ℎ) 0.08 𝑚𝑚 

 
To facilitate the analysis, the inertial matrix is separated 

into two types: the inertial matrix at nominal conditions 
(𝐽𝐽0) according to Eq. 33 and the inertial matrix that results 
from the presence of payload (∆J). The value of ∆J is 
affected by the products’ mass, shape, and position of 
payload. The addition of the inertial matrix that appears 
due to the presence of payload referred to as the perturbed 
inertia matrix, allowing the inertial matrix to be written as 
Eq. 34. 

𝐽𝐽0 = �
𝐼𝐼𝑥𝑥𝑥𝑥 0 0
0 𝐼𝐼𝑦𝑦𝑦𝑦 0
0 0 𝐼𝐼𝑧𝑧𝑧𝑧

� (33) 

𝐽𝐽𝛿𝛿 = 𝐽𝐽0 + ∆𝐽𝐽 (34) 
Because the payload is in the form of blocks, the inertial 

disturbance matrix is a symmetric matrix with zero off-
diagonal elements as shown in Eq. 35 with the matrix 
elements described in Eq. 36. 

∆𝐽𝐽 = �
∆𝐼𝐼𝑥𝑥𝑥𝑥 0 0

0 ∆𝐼𝐼𝑦𝑦𝑦𝑦 0
0 0 ∆𝐼𝐼𝑧𝑧𝑧𝑧

� (35) 

∆𝐼𝐼𝑥𝑥𝑥𝑥 =
𝑚𝑚𝑑𝑑

12
(𝑑𝑑2 + ℎ2) 

∆𝐼𝐼𝑦𝑦𝑦𝑦 =
𝑚𝑚𝑑𝑑

12
(𝑑𝑑2 + 𝑤𝑤2) 

∆𝐼𝐼𝑧𝑧𝑧𝑧 =
𝑚𝑚𝑑𝑑

12
(ℎ2 + 𝑤𝑤2) 

(36) 

Based on Eq. 24 and the payload mass and dimensions 
in Table 3, the Quadrotor inertial dynamics are as 
described in Table 4. 

 
Table 4. Quadrotor inertia after being given a payload 

Parameter 

Initial 

Inertia 

Payload 

Inertia 

Total 

(𝐽𝐽𝛿𝛿) Unit 

𝐼𝐼𝑥𝑥𝑥𝑥 1.16𝐸𝐸 − 04 2.13𝐸𝐸 − 04 3.29𝐸𝐸 − 04 𝐾𝐾𝑚𝑚.𝑚𝑚2 

𝐼𝐼𝑦𝑦𝑦𝑦  4.08𝐸𝐸 − 05 2.13𝐸𝐸 − 04 2.54𝐸𝐸 − 04 𝐾𝐾𝑚𝑚.𝑚𝑚2 

𝐼𝐼𝑧𝑧𝑧𝑧  1.056𝐸𝐸 − 04 2.13𝐸𝐸 − 04 3.18𝐸𝐸 − 04  𝐾𝐾𝑚𝑚.𝑚𝑚2 

 
Figure 10 shows the results of the response after being 

given an inertial disturbance for circle trajectory tracking. 
Table 5 presents the RMSE value when the UAV Bicopter 
follows a circular trajectory. 
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Table 5. RMSE value when following a circular trajectory 

tracking 

Position LQ-Servo 

LQ-Servo with 

inertial disturbance 

Position 𝑥𝑥 0.6447 0.6630 

Position 𝑦𝑦 0.5382 0.5426 

 
The next test is by providing trajectory parameters in the 

form of the number "8" using Eq. 37. Figure 11 shows the 
results of the response after being given an inertial 
disturbance for trajectory tracking of the number “8” and 
Table 6 presents the RMSE value. 

 

 
Fig. 10: Circular trajectory tracking response using LQ-Servo 

control with inertial disturbance  
 

 𝑥𝑥𝑑𝑑 = 𝑠𝑠𝑠𝑠𝑠𝑠(0.25pi *𝑡𝑡) , 𝑦𝑦𝑑𝑑 = 𝑠𝑠𝑠𝑠𝑠𝑠(0.5pi *𝑡𝑡) 

𝑧𝑧𝑑𝑑 = 2,𝜓𝜓𝑑𝑑 = 0 (37) 

 
Fig. 11: “8” trajectory tracking response using LQ-Servo 

control with inertial disturbance  

Table 6. RMSE value when following a "8" trajectory tracking 

Position LQ-Servo 

LQ-Servo with 

inertial disturbance 

Position 𝑥𝑥 0.7118 0.7395 

Position 𝑦𝑦  0.8189 0.9037 

 
From Table 5, it can be observed that with the presence 

of an inertial disturbance, the LQ-Servo controller 
experiences a significant increase in RMSE at position 𝑥𝑥 
and a slight increase in RMSE at position 𝑦𝑦. Similarly, in 
the case of following the trajectory of the number ‘8’. From 
Table 6, it is evident that the RMSE value for position 𝑥𝑥 
and position 𝑦𝑦 also increases in the presence of inertial 
disturbance. Based on the results of this test, it is evident 
that the LQ-Servo control can still maintain Quadrotor 
trajectory tracking with only a slight increase in RMSE 
when subjected to inertial disturbances. 

 
4.  Conclusion 

This study begins by applying Newton's and Euler's laws 
to Quadrotor dynamics. Subsequently, the model is 
linearized, resulting in the derivation of a linear controller 
known as the LQ-Servo. Simulation results of Quadrotor 
trajectory tracking using the LQ-Servo controller 
demonstrate the suppression of inertial interference, in the 
form of payload, during trajectory tracking. The success of 
LQ-Servo control was tested in two scenarios: the first 
involving trajectory tracking in a circular position, and the 
second involving trajectory tracking in the form of the 
number ‘8’. 

In conclusion, the proposed control strategies were 
implemented in SimMechanics to allow observation of the 
Quadrotor's behavior in virtual reality. Potential future 
work could involve enhancing a Quadrotor's utility by 
employing nonlinear control methodologies like adaptive 
feedback linearization and sliding mode control. 
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