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Abstract: Human actions, when gauged through the lens of Human Activity Recognition 
(HAR), find numerous applications across healthcare, sports, and security sectors. Nonetheless, the 
intricacy of HAR becomes apparent when distinguishing akin actions poses a challenge. To tackle 
this issue, the present article introduces a pioneering method known as the Weighted Average 
Ensemble of Convolutional Neural Networks with Bayesian Optimization (WAECN-BO), which 
amalgamates five distinct Convolutional Neural Network (CNN) layer configurations. Notably, this 
method incorporates a fresh CNN layer designed to enable more intricate abstraction and optimizes 
its hyperparameters through Bayesian optimization. The evaluation of this method transpires on the 
UniMiB SHAR Database, a well-recognized benchmark dataset for HAR, focusing on actions with 
considerable resemblance. The findings reveal a remarkable accuracy rate of 99.98% across the 
entire dataset, surpassing established state-of-the-art approaches. Additionally, an analysis of the 
individual contributions made by each CNN layer configuration to the model's performance is 
conducted. This method, poised to enhance the accuracy of HAR systems across diverse domains, 
especially those dealing with actions that closely resemble each other, emerges as a promising 
advancement. 

 
Keywords: Accelerometer-based systems, Heterogeneous Parallel Ensemble Learning, Human 
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1.  Introduction 
In our everyday lives, humans engage in a variety of 

routine and essential tasks, such as cleaning, walking, 
and regular exercise. These tasks are essentially 
combinations of fundamental activities like standing, 
sitting, and bending. Human activity recognition, often 
referred to as HAR, involves equipping the body with 
numerous sensors to detect and monitor these daily 
activities. Recent years have witnessed the proliferation 
of pervasive sensing, primarily focused on extracting 
valuable insights from data collected by these ubiquitous 
sensors1). HAR has garnered significant interest from 
both industries and academia due to its potential to play a 
crucial role in a wide range of applications, including 
video surveillance2), healthcare3), context-aware 
computing4), multiplayer video games, 
Internet-connected appliances, and public-use 
surveillance cameras5). Broadly speaking, there are two 
main categories of HAR systems currently in use: 
accelerometer-based and computer vision-based systems. 
Wearable sensor systems comprise sensors like 
gyroscopes, accelerometers, magnetometers, among 

others. These foundational sensors, along with inertia, 
acoustic, and environmental sensors, contribute to a 
more comprehensive understanding of an individual's 
activities6,7). Figure 1.1 provides a comprehensive 
overview of accelerometer-based systems, spanning from 
data acquisition to data analysis. However, working with 
such data presents challenges, including inherent noise 
due to sensing modalities, issues with missing and 
erroneous sensor readings, data annotation, and 
imbalances in class distribution. 

Deep learning (DL) methods have attracted 
tremendous success in HAR with the ability to address 
the above challenges. A lot of complex and intuitive 
models exist in the state-of-the-art, and these methods 
have proven significant potential to overcome all crucial 
needs in feature engineering8,9). Convolutional Neural 
Netwoks (CNN) is conventionally used Strategies for 
Deep Neural Networks, in the HAR study. It analyzes 
data sequentially and also demonstrated the dual 
advantage of learning and representing the data 
effectively and efficiently10,11). The CNN networks work 
on fixed-size input, in contrast, the other models like 
Recurrent Neural Networks (RNN) flexibly adjust to the 
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change in the input size. Auto-encoders are adaptive, but 
they require extensive, expensive metadata annotation12). 
While it comes to temporal characteristics, CNN and 
LSTM both fall short, while the former has trouble with 
the latter13).  

In addition to these considerations, numerous 
unresolved issues persist in this field. Despite progress in 
sensor fusion techniques, the integration of data from 
multiple sensors and modalities to achieve accurate 
activity recognition remains a formidable challenge14). 
While there have been advancements in the development 
of real-time activity recognition models, the pursuit of 
low latency and high efficiency without compromising 
accuracy continues to be a research hurdle15). Real-time 
applications necessitate more efficient architectures and 
optimization techniques16–19). 

 

 
Fig.1.1: A Complete Process: Data Acquisition to Activity. 

 
The domain of activity recognition grapples with 

various sources of variability in human activities, 
encompassing inter-subject and intra-subject variations, 
as well as the challenge of dealing with ambiguous 
activities that share similar motion patterns5). Addressing 
these issues requires the development of robust models 
capable of discerning subtle differences and 
disambiguating activities with resemblances15). Despite 
strides in generalization techniques, the task of creating 
models with strong generalization capabilities across 
diverse individuals, environments, and sensor setups 
remains an ongoing research focus. Transfer learning 
approaches hold promise, but further exploration is 
essential to enhance their transferability and adaptability 

to different domains20). Another persistent challenge in 
human activity recognition revolves around imbalanced 
datasets. While techniques exist to manage imbalanced 
and scarce data, addressing this issue remains an active 
research area21). The development of effective methods 
to handle limited samples for rare activities and enhance 
recognition performance in such scenarios remains a 
pressing concern 22). 

 
1.1 Motivation 

Detecting highly correlated human activities within 
human activity recognition (HAR) systems has posed an 
enduring challenge. Previous research has acknowledged 
the intricacies of accurately discerning and 
distinguishing closely related activities. In the realm of 
video-based human activity detection, the challenge lies 
in the fact that subtle distinctions between activities can 
result in misclassifications23). Likewise, the imperative of 
employing feature selection techniques becomes 
apparent to enhance the recognition of these closely 
intertwined activities24). Surmounting these hurdles 
necessitates innovative approaches capable of effectively 
optimizing ensemble learning models employed in HAR 
systems. These primary challenges stem from 
overlapping features and data variations, with existing 
methods struggling to capture the nuanced disparities 
between these activities. Reducing data has implications 
for human activity recognition via wearable 
technology25), with similar26) ramifications observed in 
activity transition mining. The presence of inherent 
uncertainties and variations within highly correlated 
human activities presents a substantial impediment to 
accurate recognition. Existing deep learning models, 
such as CNN-GRU architectures27), may grapple with 
encapsulating the complexities and subtle differences 
among activities. To address this limitation, ensemble 
learning methods have displayed promise in bolstering 
recognition accuracy. Nonetheless, enhancing the 
efficiency of HAR structures can be achieved by 
incorporating Bayesian optimization into the entire 
ensemble learning framework. As previously mentioned, 
prevailing accelerometer-based HAR systems confront 
challenges encompassing noise, missing and erroneous 
sensor readings, data annotation, and imbalanced class 
distributions. Deep learning techniques, including CNN 
and RNN, exhibit promise but also exhibit constraints in 
effectively capturing temporal and spatial features. To 
mitigate the limitations of individual models and elevate 
the performance of HAR systems, ensemble learning has 
surfaced as a promising avenue. Ensemble learning 
amalgamates multiple machine learning algorithms, 
capitalizing on their strengths and offsetting their 
weaknesses28). In the context of HAR, ensemble methods 
offer distinct advantages over standalone models. By 
extracting features from multiple models and 
amalgamating them, ensemble methods attain a more 
holistic comprehension of activity data, culminating in 
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enhanced recognition accuracy and resilience.Moreover, 
ensemble learning furnishes a more steadfast solution for 
managing noisy and heterogeneous characteristic data, 
inherent to HAR. The diverse array of models employed 
in ensembling can capture various facets of the data, 
rendering them effective in addressing both linear and 
non-linear characteristics. Additionally, ensemble 
methods aid in mitigating the intricacies and 
uncertainties associated with deep learning models29). By 
amalgamating the predictive outcomes of multiple 
models, ensemble learning diminishes the risk of 
overfitting and augments generalization performance. It 
offers a more dependable and robust solution by 
amalgamating the individual strengths of each model. 
The contributions of present paper are following: 

1. The highly correlated human actions are detected 
with the proposed Weighted Average Ensemble of 
Convolutional Neural Networks with Bayesian 
Optimization (WAECN-BO).  

2.The proposed model implements heterogeneous 
Stacked Ensemble Methods with the Bagging technique 
and cross-validation for considerable enhancements in 
the orchestrated results. The different models included in 
the Stacked Ensemble model consisting of three CNN 
model layers, they provide very high accuracy with 
automatic detection of important features without any or 
minimal human invention. Also, CNN has the ability to 
share the weights. This reduces the training and 
computational complexity of the designed model.  

3.With the integration along with the Bayesian 
Optimisation, enables adaptive learning and dynamic 
adjustment of the ensemble weights based on the 
characteristics of the highly correlated activities are 
facilitated. 

The paper continues with a brief overview of the 
associated research in HAR ensemble technique in 
Section 2, a discussion of the suggested structure and the 
intended architecture in Section 3, an examination of the 
laboratory environment and the different settings for 
assessment and a comparison of the model's efficacy 
compared to the current state of the field in Section 4, 
and finally, a summary and recommendations for further 
research in Section 5. 

 
2. Related Work 

The state-of-the-art related to HAR is extensive. There 
are various ways in which the existing rich literature can 
be securitized. In this work, the author mainly focuses on 
the study of various ensemble-based models. These can 
be mainly classified into two board categories: 
ML-based and DL-based ensembles. The brief literature 
survey on the various methods in ML-based is tabulated 

in Table. I while for DL are listed in Table. II. In the case 
of ML-based ensembles, simple supervised methods are 
combined to get the model. As in30), the authors have 
combined ten classifiers to design  Adaboost. The work 
proposed in14), has basically designed a weighted 
majority voting ensemble method of the classifier. The 
accuracy achieved 90% for only the accelerometer data 
for 10 users. The individual training of these classifiers is 
done for small datasets and also only for signal data. This 
limits its universal applicability and generality. Similar 
work is proposed in31), cascade ensemble learning 
concept is developed combining Extremely Gradient 
Boosting Trees (XGBoost), Random Forest, and 
Extremely Randomized Trees. Most of these 
conventional methods heavily depend on hand-crafted 
feature mining followed by various data mining 
techniques for classification. The work done in32) has 
collected data from three sources wireless sensor data 
mining, human activity recognition utilizing cellphones, 
and Kaggle. Followed by the pre-processing steps. The 
authors have employed different statistical methods like 
short-time Fourier transform, and t-Distributed 
Stochastic Neighbor Embedding techniques. Then, 
handcrafted method is employed to get the critical 
features using the hybrid coyote Jaya optimization 
(HCJO). The three classifiers-a support vector machine 
(SVM), a deep neural network (DNN), and a fuzzy 
classifier-are used in this meta-heuristic-based ensemble 
learning method for classification.  

 The next category of the methods employed is the 
DL-based ensemble. The scope of methods creeps in to 
remove the feature extraction manually and try to 
automate the system for better efficiency and analysis. 
Howsoever, the DL methods mainly employ the CNN or 
LSTM structure of the design. As the training and time 
complexity of the architecture adopted is already too 
much, authors refrain from themselves with small and 
concentrated sensor datasets. As in33) only 32) activities 
are sorted to be analyzed while in34) the sample test is 
only 8 subjects. Through this study, one can analyze that 
there are many methods developed previously on 
machine learning-based ensembles. But, the ensemble 
used was mostly the majority voting system. This voting 
scheme does not assume prior knowledge about the 
problem at hand or the classifiers used. 

While in the case DL-based approach, the model is 
tested on small datasets, also the training and testing time 
required is high. Hyperparameter tuning is also an 
unanswered issue. With this, the author proposes to build 
a model lighter on the hyper-parameters and an ensemble 
model that can provide appreciable results in a small 
dataset without any bias.  
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Table I: ML-Based Ensembles

 
Table. II:  DL-Based Ensembles 

Year Dataset Model Feature 
Extraction 
Domain (Time 
/Frequency) 

Ensemble 
Approach 

Accuracy  Remark  

202133)  MHEALTH,  
Self collected 

CNN-LSTM,  
CNN-GRU 

T Hybrid deep 
Learning Model 

99.3% 7 walking data using 
IMU sensor for 50 
subjects Needs for 
layers in the ensemble 
for better accuracy. 

202236)  Self Collected Data ResNet18, 
ResNet50, 
ResNet101 

T ReliefF 99.92% Millions parameters 
should be optimized 

202221) 
 

UCI-HAR  
UCI-WIDSM  
OPPORTUNITY 

CNN, GRU T/F DNN 81.7%  
Difficult in real time 
application  

202234)  Photoplethysmography 
(PPG) 
Electrocardiogram (ECG) 

Resnet50V2, 
MobileNetV2, 
Xception 

T DNN 97% 8 subjects  

202237) 
 

UCI HAR Fuzzified deep 
convolutional 
neural network 
(FDCNN) 

T Fuzzy 
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 

97.98% Mini-batch size hyper 
parameter selection 

202213) 
 

HASC 
UCI Smartphone 
WISDM ,UniMiB  
SHAR  PAMAP2  

VGG T Group Ensemble 
(GE) 

97% Accuracy depends on 
hyperparameter tuning 

202238) 
 

Self MHEALTH 
USC-HADWHARF 
OPPORTUNITY 

Fussed 
CNN-LSTM  
ResNet-50 

T Fuzzy-Ensemble 
Approach 

96.52%  Refined fine tune is 
required of 
Hyper-parameters 

Year Dataset Model Feature Extraction 
Domain  

(Time /Frequency) 

Ensemble 
Approach 

Accuracy Remark 

201830) 
 

REALDISP Random Forests , Support 
Vector Machines , Naive 
Bayes, K- Nearest 
Neighbors , ANN , C4.5 
Decision Tree 

- Adaboost 99.98% To achieve better 
accuracy large 
dataset is required. 

201814) 
 

Smartphone 
Collected 

DT, Linear Regression 
(LR),Multilayer 
Perceptron (MLP), 
K-NN 

T/F Weighted 
Majority 
Voting 

90% A limited set of 
activities are tested 
only the 
accelerometer and 
gyroscope of a 
smartphone only by 
10 subjects. 

201935) 
 

MHELTH/ 
USCHAD 

LR,SVM,MLP,K-NN,RF
,NB 

T/F Majority 
Voting 

94% 
/86% 

The approach 
combine the basic 
ML algroithms. 

201931) 
 

- XGBoost, 
RDT,Softmax 
Regression 

T Majority 
Voting 

96.04% Only triaxial 
accelerometer and 
gyroscope data are 
tested. 

202132) 
 

Smartphone 
Collected, 

Wireless sensor 
Kaggle 

SVM, DL, Fuzzy System T wireless 
body area 
network 

90%, 
91% 
92% 

It helps to extract 
significant and 
robust features. 
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3. Proposed Model  
3.1 System Model 

Deep learning has revolutionized various domains, 
including activity recognition. The CNN_DenseNet 
(Activities Recognition Dense Network) previously 
proposed by the author addresses the challenge of 
accurately distinguishing similar activities and optimally 
tuning hyperparameters through Bayesian optimization 
and SMOTE for data augmentation. In this article, an 
enhanced version of the CNN_DenseNet model22) using 
heterogeneous Stacked Ensemble Methods with the 
Bagging technique and cross-validation is presented. Our 
approach leverages the strengths of multiple layered 
CNN models to achieve improved accuracy and 
automatic detection of important features, while 
minimizing human intervention. Specifically, the focus 
of this work is on the Weighted Model Averaging form of 
Ensemble convolutional network (WAECN), which 
allows for efficient integration of diverse models by 
assigning weights based on their performance. Weighted 

bagging technique in the proposed ensemble network 
reduces the sensitivity of the models to the stochasticity 
of the training process. The proposed model for 𝑐𝑐 class 
recognition employing a weighted ensemble of the four 
models is depicted as a schematic representation in 
Figure 3.1. The input signal is fed to the respective 
interconnected CNN layers and then their weighted 
average is accordingly computed and fed as an input to 
the fully connected layer. Each CNN classifier initialized 

with seed value 𝑖𝑖  and utilizing action bank features 
(AB) as input is denoted as 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 . Additionally, 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖′ 
stands for the CNN classification algorithm trained with 
input characteristics from the supplementary action bank 
(𝐴𝐴𝐴𝐴′). 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  and 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖′  are considered as part of the 
weighted ensemble of models with the same initial 
weights in order to calculate the effectiveness of the 
combined model 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖′, that streamlines the explanation 
and evaluation of the suggested model.  

Then, the combined models' results are used to assess 
the ensemble model's efficacy. To make predictions, 
CNN classifiers undergo training to produce binary 
decoded outputs, where 𝑎𝑎1  represents the predicted 
class index and 0 represents all other classes. By using 
the highest possible value function as the weighted 
ensemble function, the model selects the outputs 𝑓𝑓𝑗𝑗 that 
have a confidence value close to 1  (i.e., accurate 
predictions). For the purpose of calculating the expected 
class label of the ensemble model, the results of the 
fusion functions 𝑓𝑓1, 𝑓𝑓2, . . . , 𝑓𝑓𝑐𝑐  are considered as binary 
decoded results.  

 By assigning higher weights to more accurate or 
reliable models, the ensemble can achieve better overall 
performance. The strategy is to train multiple models 
with the same architecture and dataset, but with different 
number of layers, initial weights or random seeds, and 
then averages their different abstraction features. This 
reduces the sensitivity of the models to the stochasticity 
of the training process. 

 

 
Fig. 3.1: CNN Dense Network Architecture Complete with Cross-Validated Stacked Ensemble 
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To mathematically formulate the ensembling of deep 

learning networks, the following definitions are needed 
in accordance to figure 3.2: 

The base models: These are the individual 
convolutional neural network models that are trained on 
the data and make predictions. They can be denoted as 
𝑜𝑜𝑖𝑖(𝑥𝑥), where 𝑖𝑖 is the index of the model and 𝑥𝑥 is the 
input. 

Network model: Network can be perceived as the 
assembly of the base models forming multiple layers 
each generating its own convoluted prediction 𝑜𝑜𝑖𝑖(𝑥𝑥) 
which are then ensembled according to the combination 
function. 

The ensemble approach is a more complex system that 
takes into account the forecasts of individual base 
models. whereas 𝑥𝑥  represents a certain input, it can 
be written as 𝑓𝑓𝑗𝑗(𝑥𝑥). 

The combination function: This is the function that 
determines methodology to combine the predictions of 
the base models. It can be denoted as 𝑓𝑓𝑗𝑗(𝑥𝑥),  where this 
is a function that maps from ℝ𝑛𝑛 𝑡𝑡𝑜𝑜 ℝ𝑛𝑛 (for regression) 
or {0, 1} (for classification). This work has suggested the 
bagging as the weighted average to ensemble the 
outcome from the different convolutional networks. 
 

 
Fig. 3.2: Architectural basics of the WAECN-BO 

 
To formulate the Weighted Model Averaging ensemble 

(WAE), a heterogeneous Stacked Ensemble has been 
considered with 4 CNN model layers. Each layer 
represents a distinct base model denoted as 𝑜𝑜𝑖𝑖(𝑥𝑥), 
where 𝑖𝑖 is the index of the model and 𝑥𝑥 is the input. 
The ensemble modelled prediction, denoted as 𝑓𝑓𝑗𝑗(𝑥𝑥), 
combines the predictions of the base models using 
weighted averaging. Depending on the type of 
ensembling method, the combination function can be 
different. The proposed Weighted Model Averaging can 
be mathematically expressed as: For bagging, 𝑓𝑓𝑗𝑗(𝑥𝑥)can 
be a weighted mean expressed as: 
 

𝑓𝑓𝑗𝑗(𝑥𝑥)  =   ∑ 𝑤𝑤𝑖𝑖  𝑜𝑜𝑖𝑖(𝑥𝑥)4
{𝑖𝑖=1}        (3.1) 

where 𝑤𝑤𝑖𝑖  are non-zero, additive weights. The ensemble 
has four different baseline models. The values of 𝑤𝑤𝑖𝑖  
show how much emphasis is placed on the forecasting 
abilities for every base model. However, the final 
optimal prediction op is calculated as: 
 

𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑝𝑝 𝑖𝑖𝑓𝑓 ∀𝑗𝑗 ∈ [1, 𝑐𝑐], 𝑓𝑓𝑝𝑝 ≥ 𝑓𝑓𝑗𝑗           (3.2) 
 

To ensemble the features from the last layer and 
classify closely related human activities in deep learning, 
the presented approach involves training each base 
model individually. Each base model is trained using a 
specific architecture and hyperparameters, allowing them 
to capture distinct representations of the input data. After 
training the base models, the features are extracted from 
the last layer of each model. These features capture 
high-level representations that are informative for 
classifying human activities. By ensembling the features 
from the last layer, the strengths of each base model are 
effectively leveraged to improve the overall 
classification performance for closely related human 
activities. 

Further, a crucial aspect that contributes to the unique 
performance of Weighted Model Averaging form of 
Ensemble convolutional network with Bayesian 
Optimization (WAECN-BO) is the utilization of 
powerful Bayesian optimization technique for 
fine-tuning the hyperparameters. This technique helps to 
efficiently search the vast hyperparameter space by 
combining prior knowledge and observes results. By 
leveraging Bayesian optimization, the presented model 
identifies the most promising hyperparameter 
configurations, leading to improved performance and 
robustness. This optimization process is particularly 
effective for the four stacked grouped CNN layers in our 
model, allowing them to extract and leverage meaningful 
features from the input data. This method not solely 
improves the offered model's efficacy but additionally 
cuts down on tedious experimentation and failure 
procedures. The integration of Bayesian optimization in 
previously published CNN_DenseNet [31] architecture 
enables to achievement superior accuracy and 
generalization in activity recognition tasks. 

 
3.2 Proposed Ensembled Network: WAECN-BO 

A key contribution of the presented work is the 
introduction of distinct CNN layers that enable more 
complex abstraction of features from the input data. This 
approach enhances the model's ability to capture intricate 
patterns and representations, leading to more accurate 
action recognition. Bayesian optimization shows an 
important place in optimizing the hyperparameters of the 
respective layer, allowing them to adapt and learn from 
the data effectively. By combining the strengths of 
ensemble learning, multiple CNN layer arrangements, 
and Bayesian optimization, our model achieves 
exceptional accuracy and robustness in human action 
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classification tasks. 

In order to decrease the size of extracted features and 
increase their stability, the convolutional layers for 
feature extraction are supported by the ReLU layers and 
are then followed by max-pooling layers. After the 
extracted features have been integrated by the fully 
connected layers, the network model is completed by 
adding an output layer that averages the weighted models 
to convey a categorical distribution of the different 
operations. 

  
3.2.1 Architecture of the Ensembled model 

To understand the structure of the involved 
convolutional neural network (CNN) model, it comprises 
of several layers that are arranged sequentially to form 
the network. Each layer performs specific operations on 
the input data to extract features and transform them. To 
further reflect upon the details of this approach, Fig 3.3 
illustrates the intricacies of each distinct network model 
involved in the process. 

 
Fig. 3.3: Intricacies of the respective Network models.

As shown in the figure, each model in the presented 
approach utilizes an `imageInputLayer` to define the 
input dimensions of the network as equal number of 
rows and columns through a single channel. Then a 
`convolution2dLayer` convolves the input with a set of 
learned filters to extract local features. Following this, a 
`batchNormalizationLayer` normalizes the activations of 
the previous layer, which helps in improving the training 
process and generalization. There’s a `reluLayer` which 
applies the Rectified Linear Unit (ReLU) activation 
function element-wise to introduce non-linearity to the 
network. The `dropoutLayer` randomly sets a fraction of 
the input elements to zero during training. It helps in 
preventing overfitting by introducing some level of 
regularization. Finally, the `maxPooling2dLayer` reduces 
the spatial dimensions of the previous layer's output, 
which helps in minimizing the computational complexity 
and providing translation invariance. 

In this method, CNN serves as a foundational layer in 
all involved network models, executing an inner product 
functioning among local filters and the data from input to 
produce the appropriate dimension of the convolutional 
output matrix while employing input-space regional 
filters for extraction of features. The result will be 
composed of (𝐶𝐶 −𝑚𝑚 + 1) units if the input is a layer 
with 𝐶𝐶 units and the next layer is a convolutional layer 
with a filter of size 𝑚𝑚 . After breaking down every 
network model into its component parts, the 
convolutional layer's output features are as follows: 

 
𝑥𝑥𝑖𝑖
𝑙𝑙,𝑗𝑗 = 𝒈𝒈(∑ 𝑤𝑤𝑚𝑚

𝑗𝑗𝑥𝑥𝑖𝑖+𝑚𝑚−1
𝑙𝑙−1,𝑗𝑗𝑚𝑚

𝑚𝑚=1 + 𝑏𝑏𝑗𝑗)      (3.3) 
 

where 𝑥𝑥𝑖𝑖(𝑙𝑙,𝑗𝑗) is the result of the jth feature map on the 
ith unit of the lth convolutional layer, 𝑤𝑤𝑚𝑚(𝑗𝑗)  is the 
convolutional kernel matrix, and 𝑏𝑏(𝑗𝑗) is the bias of the 
jth convolutional feature map. The resultant feature map 
from the layer before it is convoluted with the weights, 
and then the sum of that and the bias is calculated. The 
activation function 𝑔𝑔(. . . ) is then used to execute the 
non linear mapping.As an activation function, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() is 
used in the proposed model. The initial hidden section of 
the first local filter, for instance, can be computed as for 
the first network model depicted in Fig 3.1.  
𝑥𝑥1
1,1 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑤𝑤11𝑥𝑥1

0,1 + 𝑤𝑤21𝑥𝑥2
0,1 + 𝑤𝑤31𝑥𝑥3

0,1 + 𝑏𝑏1  (3.4) 
 

The outcomes for the upper layers can be derived by 
extrapolating these computations. The activity 
recognition issue is also tackled by the proposed model 
via the Max-pooling tactics. After features have been 
identified in the convolutional layer of the algorithm, the 
max-pooling layer can shrink the size of the extracted 
features and strengthen certain characteristics with no 
ruining the information's internal connections. In CNN, 
the activation function of the max-pooling layer is 
denoted as 

𝑥𝑥𝑖𝑖
𝑙𝑙,𝑗𝑗 = max

𝑟𝑟
𝑖𝑖,𝑗𝑗=1�𝑥𝑥𝑖𝑖,𝑗𝑗�    (3.5) 
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In this case, the dimension of the pooling kernel, r, 

determines the location of the final output, 𝑥𝑥𝑖𝑖(𝑙𝑙,𝑗𝑗) 
Features retrieved in the convolutional layer are 
partitioned into subsets in the max-poling layer. In each 
breakdown, the highest possible values are displayed. 

The aforementioned layers are typically repeated 
several times throughout the network architecture, each 
time with tweaked parameters and an increased amount 
of convolutional filters. Overlaying layers follow, with 
′𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝐶𝐶𝑜𝑜𝑓𝑓𝑓𝑓𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑟𝑟𝑟𝑟1 connecting all the neurons 
from the preceding layer to the current layer in the same 
way that a conventional neural network would. The 
′𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝐶𝐶𝑜𝑜𝑓𝑓𝑓𝑓𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑟𝑟𝑟𝑟2′ is the network's final output 
layer, which comes after it. By employing the activation 
function (softmax), the ′𝑠𝑠𝑜𝑜𝑓𝑓𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥𝑓𝑓𝑎𝑎𝑓𝑓𝑟𝑟𝑟𝑟′ converts the 
result of the preceding layer into a distribution of 
probability of the classes. Last but not least, the 
′𝑐𝑐𝑟𝑟𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑟𝑟𝑟𝑟′ makes the ultimate classification 
using the softmax layer's calculated probabilities. The 
accuracy of its predictions is evaluated in relation to the 
true labels via the cross-entropy loss function.  

 
Algorithm 1: Stacking with 5-fold cross-validation 

Input: Training Data : 𝑇𝑇𝐷𝐷 = 𝐴𝐴𝑖𝑖  ∈
(𝐴𝐴𝐴𝐴𝐴𝐴17,𝐴𝐴𝐴𝐴𝐴𝐴8,𝐴𝐴𝐴𝐴𝐴𝐴9), K=5, 𝕎𝕎 = {𝕎𝕎1, … …𝕎𝕎4} 

Output: An ensemble Classifier 𝐻𝐻𝑖𝑖  and Ensembled 
Output 𝑂𝑂 

Repeat for each classifier 𝐻𝐻𝑖𝑖  ∈ (1,5) 

Step 1:  Train the classifier 𝐻𝐻𝑖𝑖  for the adopted 
cross-validation 

Randomly split 𝑇𝑇𝐷𝐷 into 5 equal-size subsets: 𝑇𝑇𝐷𝐷 =
{𝑇𝑇1, … . .𝑇𝑇5} 

For i=1: 𝑇𝑇𝐷𝐷  

Step 1.1 Learn the classifier 𝐻𝐻𝑖𝑖  

Step 1.2 Construct the data set for training the 
classifier 𝐻𝐻𝑖𝑖+1 

End For 

Step 2: 𝐻𝐻𝑖𝑖 = ∑𝐻𝐻𝑇𝑇𝐷𝐷 

The weighted average value of the model for each 
action  𝑂𝑂 = ∑ 𝕎𝕎𝐻𝐻𝑖𝑖4

𝑖𝑖=1  

The complete steps of the designed ensemble model 
are presented in Algorithm.1, which is aimed at creating 
an ensemble classifier and generating an ensembled 

output. This is achieved by multiplying the weights 𝑊𝑊𝐻𝐻𝑖𝑖  
by the corresponding classifier outputs and summing the 
results over i from 1 to 4. The data UniMiB SHAR 
Database is divided into three basic bifurcations. Each 
classifier 𝐻𝐻𝑖𝑖  is trained and tested on the different chunks 
of the data (𝑇𝑇𝐷𝐷). The final detection of the activity is 
based on the weighted average output of each classifier. 
This algorithm leverages input training data and a set of 
classifiers to achieve this goal through a systematic 
process. It starts by considering the input training data, 
denoted as 𝑇𝑇𝐷𝐷 , which consists of three datasets. 
Additionally, 𝐾𝐾  is set to 5, representing the desired 
number of folds for cross-validation. A set of weights, 
𝑊𝑊 = {𝑊𝑊1, … …𝑊𝑊4} , is provided to account for the 
importance of individual classifiers. For each classifier 
𝐻𝐻𝑖𝑖  in the range of 1 to 5, the training data 𝑇𝑇𝐷𝐷  is 
randomly split into 5 equal-size subsets as 𝑇𝑇𝐷𝐷 =
{𝑇𝑇1, … . .𝑇𝑇5}.For each subset 𝑇𝑇𝑖𝑖  in 𝑇𝑇𝐷𝐷, the classifier 𝐻𝐻𝑖𝑖  
is trained using the data from subset 𝑇𝑇𝑖𝑖 . The data set for 
training the next classifier, 𝐻𝐻𝑖𝑖+1,  is constructed by 
combining the predictions of the previous classifiers 𝐻𝐻1 
to 𝐻𝐻𝑖𝑖 . The ensemble classifier 𝐻𝐻𝑖𝑖  is obtained by 
summing the individual classifiers' outputs for each 
action, represented as 𝐻𝐻𝑇𝑇𝐷𝐷. The predicted final action is 
the one with the high 𝑂𝑂 , for the given set of sensor 
inputs to the network. The method designed is tested and 
verified. 
 
3.2.2 Integration of Bayesian Optimization 

WAECN-BO 
To direct the hunt for optimal arrangements, Bayesian 

Optimization uses a probabilistic surrogate model 
(typically a Gaussian Process) in conjunction with an 
acquisition function. The process involves iteratively 
sampling configurations, evaluating their performance, 
updating the surrogate model, and selecting the next 
configuration based on the acquisition function. In our 
model, a set of hyperparameters can be denoted as 𝐻𝐻. 
The objective is to determine the value of ℎ∗ , the 
optimum hyperparameter, by which the objective 
function, 𝑜𝑜𝑖𝑖(ℎ) , can be minimized. Bayesian 
Optimization formulates this as a surrogate model, 
𝑜𝑜(𝑓𝑓|𝑋𝑋,𝐻𝐻), where y represents the observed performance 
and 𝑋𝑋 denotes the hyperparameter configurations. The 
surrogate model captures the uncertainty in the 
relationship between hyperparameters and performance 
by modeling the joint distribution 𝑜𝑜(𝑓𝑓,𝑋𝑋 | 𝐻𝐻) . It is 
implemented using a Gaussian Process (GP), which 
provides a flexible and principled framework for 
Bayesian inference. 

The key idea is to use Bayesian Optimization to 
automatically search for the optimal hyperparameter 
configuration for each individual model in the ensemble. 
The ensemble weight 𝑤𝑤𝑖𝑖  is determined based on the 
performance of each model during the Bayesian 
Optimization process. The higher the performance, the 
higher the weight assigned to the corresponding model. 
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The acquisition function guides the search towards 
configurations that are likely to improve the ensemble's 
overall performance. The mathematical formulation of 
the weighted model averaging process using Bayesian 
Optimization can be represented in equation 3.5 as 
follows: 

 
𝑤𝑤𝑖𝑖  =  𝜌𝜌 ∗  𝑟𝑟𝑥𝑥𝑜𝑜(−𝛽𝛽 ∗  𝑓𝑓𝑖𝑖)                (3.5) 

 
where 𝑓𝑓𝑖𝑖  is the performance of model 𝑖𝑖, and 𝜌𝜌 and 

𝛽𝛽  are hyperparameters that control the weighting 
scheme. The value of 𝜌𝜌 ensures that the weights sum up 
to one, while 𝛽𝛽 controls the sensitivity of the weights to 
the performance. The optimization process for BO in 
WAECN-BO involves initializing the surrogate model 
𝑜𝑜(𝑓𝑓|𝑋𝑋,𝐻𝐻)  using an initial set of hyperparameter 
configurations. A new configuration ℎ is generated by 
selecting the upcoming point to considering using the 
acquisition function. For training and evaluating the 
model with hyperparameters ℎ, the surrogate model has 
to be consistently updated with the new observations 
(ℎ, 𝑓𝑓)  and the weights 𝑤𝑤𝑖𝑖  of the ensemble models 
using the performance 𝑓𝑓𝑖𝑖 . By iteratively optimizing the 
ensemble weights and hyperparameters, the BO in 
WAECN-BO framework effectively explores the 
hyperparameter space and learns an ensemble of models 
that collectively achieves superior performance.   
 
4. Results and Discussion  

UniMiB SHAR Database: There are several datasets 
available to the public, especially for fall detection 
techniques. This work primarily focuses on sensor-based 
datasets from wearable sensors. Five sensors were 
employed, consisting two through phones and 3 wearable 
sensors that were attached to various body areas. The 
UniMiB SHAR dataset comprises of movement traces 

from both falls and typical ADL activity. Public access to 
the raw data, which is free of gravitational constant 
influence and noise (such as EMG noise), is provided20). 
Because it only includes accelerator data, the UniMiB 
SHAR dataset was gathered from a real-time 
environment with little power consumption. The lack of 
null values in the UniMiB SHAR dataset balances the 
data. This database contains test data from the 19 objects' 
everyday activities. For data collected, only 
accelerometer observations were employed from data 
collection via Smartphone and sensor nodesse's 30 
individuals do 11771 activities. Everyone ranged in age 
from 18 to 60. It includes 17 actions, nine of which are 
normal and eight of which are important (like falling). 
 
Simulation Background: The proposed and other 
similar clustering algorithms are simulated in Windows-8 
(64-bit) using MATLAB version R2012a on an Intel 
core(TM) i7 processor 2.40 GHz Central Processing Unit 
(CPU) with 8 Gigabyte (GB) of inbuilt Random Access 
Memory (RAM). 
 

Discussion: Since the data is a 1-D signal by 
definition, it must be converted before being sent to the 
network. The network receives an input in the form of a 
1×453×1. There are 96 batch normalizing layers in a 
convolution layer. The classifier is assessed using the 
5-fold cross-validation method. The three types of 
training that are used are daily activities only (AF17), all 
activity courses (AF8), and fall activities (AF8) (AF9) 
The correlation plot between the AF8 is plotted before 
the 5-fold and after application on the model designed in 
Figure 4.1 and Figure 4.2 respectively. The classification 
accuracy achieved for cases like falling forward and 
backwards being too identical is still nearly 100% 
distinguished.  

 
Table. III Board Classification of the various schemes in the UniMiB SHAR dataset. 

 

Action Class Proportion (%) Action Class Proportion 
(%) 

Falling Forward 4.49 Standing Up from sitting 1.30 
 Left 4.54  Up from Lying 1.83 
 Right 4.34  Down 1.70 
Backwards Falling 4.47 Common Walking 14.77 
 Sitting Chair 3.69  Running 16.86 
 Protection 

Strategies 
4.11  Jumping 6.34 

 Hitting Obstacle 5.62 Going Up 7.82 
Syncope  4.36  Down 11.25 
   Lying and Standing Down 2.51 
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Fig. 4.1: Correlation plot for basic 8 activities for the Ensemble Model. (It includes Falling, Backwards and Syncope ) 

 

Fig. 4.2: Correlation plot for basic 8 activities for the alone CH4. (It includes Falling, Backwards and Syncope) 
 

Table.IV Overall results of an individual action set.  
HAR SUB 

SET 
ACTIONS 

Casilari, 
E.et.al   
SVM 
(24) 

Casilari, 
E.et.al 
KNN 
 (24) 

Casilari, E.et.al 
Random forest 

(24) 

Frédéric 
Li.et .al 

(25) 

Designed Method 

Ensemble 

     With 
(CN4) 

 

A1: AF-17 78.75 82.86 81.48 93.4 97.98 99.98 

A2: AF-9 83.1 87.77 88.41 98.40 99.98 99.99 

A3: AF-8 75.63 79.1 78.6 89.9 97.2 98.2 
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Figure.4.3: The accuracy of each model incorporated in the Stacked Ensemble. 

 

 
Figure.4.4: The loss of each model incorporated in the Ensemble (Stacked). 

 
Tabel.IV compares the total accuracy of every 

sequence of actions to the current state of the art 
techniques. The model designed is reported with the 
highest accuracy of individual models and the ensemble 
also. The understanding of techniques like KNN, SVM 
and the Random Forest (RF) is too basic for 
understanding the hidden pattern or structure of 
similarity. On the other hand, the work proposed in39)  
is an amalgamation of various different advanced 
techniques that have boosted classification accuracy. The 

proposed method with ensemble design outperforms with 
appreciable accuracy. Accuarcy of cascade model along 
with loss is also plotted for the AF8 activities. In Figure 
4.3, the model CN1 which is just a simple cascade of 
three blocks has a varying accuracy. While the model 
CN4 had continuously changing accuracy from 200-500 
iterations and then settles. Thus, the parameters take time 
to tune themselves. The same thing also gets validated 
from the loss in Figure 4.4, where CN1 has more spike in 
the loss at 700 iterations also.  

 
Table V: Proposed Ensemble Comparison with other methods using UniMIB SHAR Dataset 

 
Traditional DL models for activity recognation served 

as the basis for the suggested architecture. Similarly, 
CNN, LSTM, BiLSTM, multilinear progression, and 
SVM were all used in Wan et al work15) to assess 

classification accuracy using the UNiMIB dataset. 
Author claims maximum overall accuracy (92.71%) 
comes from CNN model. Author's accuracy employing 

 Wan et al. 
(26) 

Challa et al. 
(27) 

Dua et al. 
(28) 

Ankalaki et 
al. (29) 

Tan et al. 
(30) 

Ensemble (proposed) 

Acc(%) 92.71 96.37 96.20 96.86 96.7 99.98 
Pre(%) 93.21 - - -  96.8 97.86 
R(%) 92.82 - - - 96.8 96.83 

F1-Score(%) 92.93 96.31 96.19 - 96.8 97.84 
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layered structure architecture was 7.6 percentage points 
higher than that attained with CNN15) .  

A hybrid CNN-BiLSTM deep learning model has been 
suggested16) due to the efficacy of CNN in obtaining 
features and choosing the features offered by the 
forgetting gate within BiLSTM when using backward 
and forward sequencing. In the proposed model, After 
every pair of convolutional neural network (CNN) layers 
is a dropout layer and a maximum pool layer. Using 
CNN layering, the BiLSTM network learned the traits of 
each of these three sub-branches. The ensemble 
architecture is made up of three different CNN forks with 
varying filter lengths. A total accuracy of 96.37% was 
obtained on the same dataset, which is 3.6% lower than 
what the model predicted. The linked studies in27) used 
several deep learning network architectures to address 
the underlying research problems. Each of the three 
recurrent routes in an arranged convolutional neural 
network (CNN) receives an additional two Gated 
Recurrent Unit (GRU) layers. Once the dropout layer has 
been applied, the features can be combined. The system 
that is suggested is 3.86 percentage points more precise 
than the existing one. 

A stack of deep learning layers of varying depths is 
used to categorize the signal properties as proposed in20). 
The paper used a conventional CNN method to 
categorize the signals as either stationary or active. Next, 
created and trained a modified ML in CNN (EML-CNN) 
algorithm that can account for both stationary and 
moving objects. Using an ensemble learning strategy, 
Tan et al.21) propose a CNN ensemble with a GRU 
(Gated Recurrent Unit) layered model that incorporates 
time-frequency features that have not been processed at 
the fully linked layer. The UNiMIB SHAR dataset is 
broken down into six different types of actions: sitting, 
standing, lying down, ascending and descending stairs, 
and walking. The accuracy that Tan et al. achieved for 
the six everyday tasks that they categorised was 96.8%, 
while the network that they proposed in the study 
achieved an accuracy of 99.98% across the board. 

Table.V provides a comparison of the present 
state-of-the-art methods. Recall, precision, and F1 score 
are used to assess the dataset. The positive activity 
forecast with the highest degree of precision is called 
recall, while the positive prediction with the largest 
degree of recall is called precision. Due to the 
inequitable distribution of the data classes, the accuracy 
parameter may drive up classification costs. The 
F1-score, which demonstrates an optimal trade-off 
between recall and precision, is a useful metric here. 
Each of these 17 activities' findings can be found in their 
respective rows of the UniMiB SHAR results table. 
Because of the large number of imbalanced class 
samples in the UniMiB data, the ensemble has been 
praised for its high level of accuracy. 
  

5. Conclusion 
This paper presents an innovative approach, the 

Weighted Average Ensemble of Convolutional Neural 
Networks with Bayesian Optimization (WAECN-BO), to 
address the challenging task of distinguishing highly 
correlated actions in Human Activity Recognition (HAR). 
The incorporation of five distinct CNN layer 
configurations, including a novel CNN layer, enhances 
the model's ability to discern closely related actions 
through more intricate abstraction. The utilization of 
Bayesian optimization further refines the ensemble 
model, fostering adaptive learning and dynamic 
adjustment of weights, thereby increasing versatility in 
handling highly correlated activities. By adopting a 
heterogeneous Stacked Ensemble with the Bagging 
technique and cross-validation, the proposed approach 
significantly improves the model's performance. The 
integration of three CNN model layers within the 
Stacked Ensemble facilitates automatic feature detection 
with minimal human intervention. Additionally, the 
weight-sharing capability of CNN reduces training 
complexity, enhancing computational efficiency. The 
experimental evaluation on the UniMiB SHAR Dataset 
demonstrates the effectiveness of the proposed 
WAECN-BO method. The ensemble model, featuring 
four networks in parallel connection, achieves a 
remarkable accuracy rate of 99.98% across the entire 
dataset. This surpasses current best practices, 
highlighting the potential of WAECN-BO to enhance the 
accuracy of HAR systems, especially in scenarios 
involving similar actions. In essence, the WAECN-BO 
method introduces a robust and adaptive approach to 
HAR, showcasing superior accuracy and robust 
performance. The successful experimental outcomes 
underscore it’s potential for real-world applications, 
particularly in domains where distinguishing highly 
correlated actions is paramount. 
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