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Abstract: Checking the surface of steel is still primarily done manually and visually in the 

industrial business. Because of the high number and surface area of steel, inspection is time-intensive 
and of poor quality. Machine learning may be used to detect steel surfaces automatically by training 
a model with a large amount of data, and the model findings can then be used to detect other steel 
surfaces. Automatic detection will undoubtedly save control time, save prices, and improve checking 
quality. This research uses the core architecture of UNet and five versions of EfficientNet (B0 to B4) 
as the backbone (encoder). In this research, we use three types of training processes: the first is binary 
classification to predict the presence of defects; the second is multi-label classification to predict the 
type of defect; and the third is image segmentation to determine the location of defects according to 
their type. The results of this research show that the EfficientNet-B0 version can generally provide 
the best measurement results. Except for measuring recall in the binary classification process, it turns 
out that EfficientNet-B4 is the best, and measuring dice loss in the segmentation process for defect-
4 turns out that EfficientNet-B2 gives the best results. Based on the accuracy value obtained from 
our study, it is still feasible to attempt employing a different type of architecture as a backbone (other 
than EfficientNet) to acquire even greater accuracy values in order to detect uncommon faults on the 
steel surface.  
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1.  Introduction 
Steel is a composite material that comprises numerous 

elements1), as opposed to iron, which only contains one 
element2). Some contain a mix of steel-related 
components such as iron, carbon, nickel, silicon, 
manganese, aluminium, and others3). Because the amount 
of this substance varies, the qualities of steel vary, and 
steel serves several functions in human life4). Steel is 
frequently utilised in building construction, home fences, 
and other applications due to its high strength and 
inexpensive manufacturing costs5). Steel is lighter than 
regular iron due to its carbon component6). Because of its 
aluminium content, steel is less prone to corrosion and 

more resistant to acids, and it is frequently utilised in the 
automobile industry7) (car engines and bodies, ships, and 
irplanes). Steel has a strong resistance to pressure8), yet it 
is stiff (non-flexible) and difficult to shape9). Steel 
fractures and cracks due to this rigidity feature10). It is vital 
to know the status of the steel surface against defects in 
order to prevent the cracking process11). Once defects have 
been identified, additional treatment can be carried out to 
prevent the chance of more significant cracks12). Because 
of the enormous surface area of steel that must be detected 
(the hull or body of the ship), visual and manual detection 
will take a long time, effort, and cost, and have a low 
quality of observation13). The current computer vision 
technology is capable of identifying defect types and 
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locating defect locations in steel surface images14). 

The procedure for categorising and locating defects was 
initially done manually15) by observing data in the form of 
pictures from the steel surface. Aside from the fact that 
this procedure cannot be applied to new types of problems, 
it also necessitates the use of skilled professionals. As 
machine learning technology has advanced, numerous 
neural network topologies with deeper layers, variations, 
and combinations have emerged as a continual endeavour 
to enhance accuracy16). The present deep learning 
technology has replaced human work that was previously 
performed manually with machine duties17). The 
combination of visual computing and the convolutional 
approach results in a new technology, CNN 
(Convolutional Neural Network), which can analyse 
images into small pieces to make obtaining the desired 
features easier18).  

Deep learning technology can not only do classification 
jobs but also discover (segmentation) defects on a steel 
surface by evaluating picture feature sections19). 
Furthermore, deep learning can detect other types of 
problems (new defects) that were not present throughout 
the machine learning training process20). The use of 
models that have been trained with huge amounts of data 
(transfer learning) speeds up the training process using 
other types of architectures 21) and results in improved 
classification accuracy22). Literature23) has performed 
location detection of fine steel surface defects using the 
UNet architecture, although this method requires a large 
number of pixel annotations, which are time-consuming 
and expensive 

In this research, we attempt to find the optimum model 
for categorising and estimating the location of defects 
using photographs of the steel surface as input data. The 
major architecture utilised for segmenting defects from 
the steel surface is UNet, which has shown good results in 
image segmentation24). We performed observations 
utilizing five variants of the EfficientNet architecture as 
the backbone and transferred learning data from ImageNet 
to select the best model. 

 
2.  Related Work 

Initially, a visual machine algorithm was used to detect 
steel surfaces25). Starting with an image processing 
technique that accurately detects defects, a two-stage 
target detection algorithm widely used in face detection 
and defect detection26). Segmented steel surface defects 
using thresholds27). Using fuzzy theory to discover defects 
by changing the image's grey level28), with an accuracy of 
97% Surface defect feature extraction has typically been 
reliant on experience, which is subjective and inefficient. 
Deep learning makes it feasible to overcome these 
challenges by automatically detecting visual features29). 
Several studies have been undertaken on the identification 
of steel surfaces using CNN and deep learning approaches. 
Target identification of minor imperfections on the steel 
surface with an average accuracy of 75% utilising the 

enhanced Faster RCNN to rebuild the network structure30). 
Increasing productivity and cutting production costs by 
using deep learning algorithms to recognise and categorise 
steel sheets in smart factories (with 96% accuracy, 95% 
recall, and 97% precision31)). 

Classification for strip steel flaws using Mask-GAN 
and upgraded EfficientNet may overcome the problem of 
data scarcity in deep learning and correctly and effectively 
classify faults on the steel surface32). The TLU-NET 
framework, which was employed for steel surface 
identification, was able to enhance convergence and 
performance by 26% as training data dropped33). With a 
classification accuracy score of 100% and a segmentation 
F1-Score of 92%, the UNet and ResUNet architectures are 
employed to identify and discriminate the non-uniform 
product defect textures in the cartridge case34). Surface 
defects on military cartridges may be detected with 97% 
accuracy using DenseNet169 with data transmission and 
segmentation35). 

Wang et al. proposed a steel surface defect detection 
algorithm based on the improved YOLOv5 model, which 
enhances the model's feature extraction capability through 
one-shot aggregation36). A previous study proposed using 
a transfer learning-based U-Net framework for steel 
surface defect detection, comparing the performance of 
ResNet and DenseNet encoders with random initialization 
and pre-trained networks37). The research that has been 
carried out proposes a real-time steel surface defect 
detection technology based on the YOLO-v5 detection 
network, not UNET-based38). A previous study proposed a 
multi-task model for steel defect segmentation and 
severity estimation, but it did not mention the use of 
pretrained models39). 

 
3.  Methods 

The initial part of this work is binary classification, 
developing a classification model to predict the presence 
or absence of defects on steel surfaces40). The results of 
the initial stage for data that has defects are used as data 
for the second stage. The second stage is multi-label 
classification, developing a classification model for four 
types of steel surface defect classes37) (classes 1, 2, 3, and 
4). The next stage is to carry out a training process to 
estimate the location of defects (segmentation)41) that are 
within the threshold value range.   

For the classification training process (binary and 
multi-label) using EfficientNet42), and to obtain good 
results and speed up the training process, transfer learning 
(imagenet) is used. For the segmentation training process, 
the UNet architecture is used with EfficientNet as the 
backbone43). To compare the findings, five versions of the 
EfficientNet architecture44) (versions B0 to B4) were used. 
Before being used as input data, raw data must first go 
through several pre-processing steps to ensure it is ready 
and conforms to the input data format required for 
subsequent model training45). Many parameters must be 
determined to obtain accurate results46). To evaluate the 
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success of this method, the accuracy and losses of the 
training process must be measured47). In general, the 
stages of this research are illustrated in Figure 1. 

 
3.1. Dataset  

The dataset includes one csv file and two folders, each 
having steel surface pictures and photos displaying the 
shade (mask) of the fault site. The defect data in the csv 
file consists of 7,095 rows with three columns (ImageId, 
ClassId, and EncodedPixels) (Figure 2). ImageId is to 

show the name of the image identity, and the annotation is 
EncodedPixels, which is a set of pixel masks of the steel 
surface, including the faults. Each row indicates a single 
form of flaw in a picture. Figure 3 depicts the number of 
photos for each type of defect, with type 3 having the most 
(5,150) and type 2 having the fewest (247). The image 
name appears many times in the ImageId column, 
indicating that the picture has more than one type of defect. 
Figure 4 indicates that there are 6,239 photos with a single 
kind of flaw, 425 images with two types of faults, and only 
two images with three types of defects. 

 
Fig. 1: Flowchart of the Research Model 

 

 
Fig. 2: File datasets 
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Fig. 3: Defect type distribution 

 
Fig. 4: Defect distribution 

 
3.2. Pre-Processing Data   

After comprehending the raw dataset, the next step is to prepare the data for use in the subsequent modelling 
phase. A data rotation (pivoting) technique is required to 
turn the raw data into data that may be known for the 
number of flaws in each ImageId. The output of the data 
pivoting procedure is shown in Figure 5, where the 
ImageId column includes data with unique values. 

Columns 'Defect_1', 'Defect_2', 'Defect_3', and 
'Defect_e4' reflect annotation features for classes 1, 2, 3, 
and 4, respectively. After pivoting the data into 12,568 
rows (Figure 5). 

 
Fig. 5: Result of pivoting data 

 
3.3. UNet 

In general, the UNet architecture is divided into two 
parts: the encoder and the decoder in the left and right 
locations, respectively (Figure 6). The picture is initially 
broken into smaller pieces (pixels) with similar features. 
The encoder receives input data in the form of a picture, 
and in order to facilitate the training process and get input 
images of varying dimensions, the encoder reduces the 
dimensions of the image in phases. More comprehensive 
informational characteristics will be sought at each level 
of dimension reduction. While the decoder section is 
useful for gathering all of the information collected by the 
encoder in the form of segmentation output. 

In this work, we utilise four convolutional blocks, each 
of which increases the number of features by twofold over 
the previous step. Convolution, relu, and max-pooling 
routines are used at the start of the encoder process to 
increase the number of features to 64. A skip connection 
is a connecting path to the decoder that exists at each stage 
of the encoder process. The encoder process follows the 
same procedures as the encoder stage, but without the 
max-pooling phase. In contrast to the encoder, which 
performs down sampling, each stage in the decoder will 
do up sampling such that the number of features equals the 
number of features in the input data picture. The activation 
function used in the decoder is sigmoid to obtain 
segmented image results. 

 

 
Fig. 6: UNet Architecture 
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3.4. EfficientNet architecture   

EfficientNet is a neural network model in the deep 
learning category because of its thick layer. Many deep 
learning architectures are broadening48) or multiplying  
the layers in an effort to increase accuracy, making the 
training process heavier and requiring more processing 
time. In contrast to other architectures, EfficientNet 
increases its capabilities effectively and efficiently 49) by 
using a balanced architecture basis and transfer learning 
dataset when adding layers. This gives EfficientNet a 
more dependable network resolution. Transfer learning 
can be used to deal with small amounts of input and speed 
up the model's convergence during training. EfficientNet 
versions b0 through b4 are used in this study as the 
foundation of the primary architecture, which is UNet. To 
determine which version has the highest accuracy value, 
these five versions are compared.  

The EfficientNet design is a MobConv layer stack 
(mobile convolution blocks). Each convolution sub-block 
in the MobConv block has a convolution network, batch 
normalisation, and Swish activation function (Figure 7). 
The Swish activation function is used because it has 
several advantages that allow neural networks to learn 

more complex relationships between input and output data. 
This helps the neural network understand and extract more 
abstract features from the image. Swish has a better ability 
to overcome the vanishing gradient problem, which often 
arises in deep networks. Computational efficiency makes 
Swish very suitable for devices that have limited resources.     

The picture input will be augmented using Conv (1x1) 
for the first time to obtain a large amount of feature 
information. Finally, to boost performance even more, 
choose Conv (3x3) or 5x5. A normalising batch is added 
to each subblock to compress the features and execute 
feature excitation procedures on each channel. The 
SWISH activation function is used to calculate the weight 
difference. 

Figure 8 depicts the architecture version B0, with the 
image input performing a Conv (3x3) operation for the 
first time, followed by 16 MobConv modules. Conv (1x1), 
pooling, FC (completely connected), and softmax 
activation function make up the last layer. Table 1 lists 
architectures with versions B1, B2, B3, and B4. Table 1 
lists the number of channels in Sandler's50) EfficientNet 
architecture, which consists of many convolutional 
mobile subblocks (MobCon). 

 

 
Fig. 7: Mobile Convolution Blocks (MobConv)  

Fig. 8: EfficientNetB0 architecture 
 

Table 1. Series of channels from 5 variants of EfficientNet 
Subblock B0 B1 B2 B3 B4 
Con3x3 32 32 32 40 48 
MobCon1, k3x3 16 16 16 24 24 
MobCon1, k3x3 24 24 24 32 32 
MobCon1, k3x3 40 40 48 48 56 
MobCon1, k3x3 80 80 88 96 112 
MobCon1, k3x3 112 112 120 136 160 
MobCon1, k3x3 192 192 208 232 272 
MobCon1, k3x3 320 320 352 384 448 
Conv1x1+Pool+FC 1280 1280 1408 1536 1792 
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3.5. Threshold 

The regional profiles on the defect mask containing the 
steel surface appear to be indistinguishable between the 
different classes. Although the type 1 defect appears to 
have many small-sized regions, the image of the type 4 
defect has many medium-sized regions. Type 3 defects 
appear to also contain several medium-sized regions. 

Meanwhile, images of type 2 and type 3 defects appear to 
have some of the same regional characteristics (Figure 9). 
There is a lot of overlap in regional ranges. The minimum 
areas for each type of defect can be seen closer to each 
other. Meanwhile, the maximums are mostly different. We 
can use the minimum and maximum area values in the 
training images to test the image defect prediction 
threshold.

 

 
Fig. 9: Distribution of the number of images against the area of defects for types Defect_1, Defect_2, Defect_3, and Defect_4. 

 
Based on the area range for each defect, we will 

determine a prediction threshold to filter outliers. For 
example, some of the predicted masks only have 4 pixels 
that have a value of 1. Such images will reduce the model's 
performance in the final metric. To determine the 
threshold value, we will use data between the 2nd 
percentile and the 98th percentile, namely: for defect_1, it 
is between 500 and 15500; for defect_2, it is between 700 
and 10000; for defect_3, it is between 1100 and 160000; 
and for defect_4, it is between 2800 and 127000. 

 
3.6. Evaluation Metrics 

There are several measuring tools that we use to 
evaluate classification results (binary and multi-label 
classification): 
• Binary Cross-Entropy (BCE): this metric measures 

the extent to which the probabilities given by the 
model correspond to the actual class. For each 
sample in the dataset, the model produces a 
probability expressed as p(y|x), where y is the 
actual class and x is the input feature. Binary cross-
entropy measures how close the probability 
generated by the model is to the actual class (0 for 
the negative class and 1 for the positive class). The 
formula is: 

𝐵𝐵𝐵𝐵𝐵𝐵 = −∑(𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) + (1 − 𝑦𝑦)
∗ 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑝𝑝))                                 (1) 

where y is the actual label (0 or 1), and p is the 
probability generated by the model. A lower binary 
cross-entropy value indicates that the model is 
better at modelling the true class probability 
distribution. 

• Accuracy: the accuracy metric measures the 
proportion of correct predictions from the model in 
the total predictions. The way to calculate accuracy 
is as follows: 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) 

/ (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)                (2) 
In the context of classification, “Number of 
Correct Predictions” refers to the number of 
samples correctly predicted in terms of class labels, 
while “Total Predictions” is the total number of 
samples evaluated. 

• Precision measures the proportion of correct 
positive predictions (true positives) from the total 
positive predictions that have been made. This 
metric provides information about the extent to 
which your model can avoid classifying negatives 
as positives. The precision formula is as follows: 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) / (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

+ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)                     (3) 
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Here, “true positives” is the number of positive 
cases correctly predicted by the model, and “false 
positives” is the number of negative cases 
incorrectly predicted as positive by the model. 

• Recall measures the proportion of positive classes 
that are predicted correctly (true positives) from 
the total positive classes that actually exist. This 
metric provides an idea of the extent to which your 
model is able to identify all true positive cases. The 
formula for calculating recall is as follows:  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) / (𝑇𝑇𝑟𝑟𝑢𝑢𝑢𝑢 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)                                                            (4)  

• F1_score is the harmonic mean of precision and 
recall and measures how well your model can 
achieve a balance between precision and recall. F1-
Score is calculated using the following formula: 

 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 ∗  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) /
 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)                                                        (5) 

 
For segmentation measuring tools, use:  
• Dice loss is the loss function used during 

segmentation model training. The goal is to 
minimise the difference between model predictions 
and masks (ground truth) that correspond to 
segmentation accuracy. Dice loss is calculated 
using the following formula: 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  1 −  (2 ∗  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) / (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 

+  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖)                             (6) 
where "intersection" is the area where the model 
predictions and the ground truth mask meet. 
"Union" is the total area of both model predictions 
and the ground truth mask. "Smoothing" is a small 
value added to the denominator to avoid dividing 
by zero. 

• Dice_coefficient is an evaluation metric used to 
measure the extent to which the segmentation 
model matches the ground truth mask. This is a 
measurement of segmentation accuracy. The dice 
coefficient is calculated using the following 
formula: 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  (2 ∗  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) / (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 

+  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖)                             (7) 
where "intersection" and "union" are the same as 
described above. "Smoothing" is a small value 
added to avoid dividing by zero. The dice 
coefficient is used to calculate the degree of 
similarity51) by comparing the pixels in the two 
pictures (predicted and ground truth) (Figure 10). 
The dice coefficient value ranges between 0 and 1. 
The closer the dice coefficient value is to 1 (one), 
the better it is for assessing loss (zero). 

 
Fig. 10: Illustration Dice Coefficient 

4.  Results and discussion 

The resulting dataset after the merger and pivot 
processes is 12,568 rows. Before the training process is 
carried out, the dataset will be split into test_set 10% 
(1,257 rows) and train_valid 90% (11,311 rows), then the 
train_valid data will be split again into train set 80% 
(9,048 rows) and validation set 20% (2,263 rows). Due to 
the limited number of pages, the evaluation results in 
graphical form are only displayed for one model, namely 
EfficientNet-B0. This graph is grouped into 3 evaluation 
results, namely figure 11 for a collection of graphs of 
evaluation results from the binary classification process 
using 5 measuring tools (binary crossentropy, accuracy, 
f1_score, precision, and recall). Figure 12 is a collection 
of graphs of evaluation results from multi-label 
classification using the same five measuring tools as 
binary classification. Meanwhile, Figure 13 is a collection 
of graphs resulting from the evaluation of the 
segmentation process using two measuring tools (dice loss 
and dice coefficient). 

The evaluation results in numerical form will be 
displayed in each table in full, starting from table 2 to table 
6 for the respective training processes using EfficientNet-
B0, EfficientNet-B1, EfficientNet-B2, EfficientNet-B3, 
and EfficientNet-B4. Each table contains measurement 
values using five measuring tools for binary classification 
and multi-label classification and two measuring tools for 
segmentation evaluation. Measurements were carried out 
using three types of data: train data, validation data, and 
test data. Because the large number of observations made 
show many evaluation results, the best measurement value 
is the smallest evaluation value for BCE and dice loss and 
the largest measurement value for other measurements. 
The results of selecting the best value are collected in 
Table 7, which looks simpler and easier to conclude.    

Each measuring instrument has advantages and 
disadvantages; the use of more than one measuring 
instrument is highly recommended so that a comparative 
analysis can be carried out to obtain the best results. Table 
7 is the best evaluation result of all the observations made 
in this research. It can be seen that for all measurements, 
the Eff-B0 architecture can provide the best results for all 
processes (binary classification, multi-label classification, 
and segmentation). There are only two measurements that 
show differences, namely Eff-B4 for measuring recall in 
the binary classification process and Eff-B2 for measuring 
dice loss in the defect-4 segmentation process. 
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Fig. 11: Graph of binary classification evaluation results for the EfficientNet-B0 model 
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Fig. 12: Graph of multi-label classification evaluation results for the EfficientNet-B0 model 
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Fig. 13: Graph of image segmentation evaluation results for the EfficientNet-B0 model 
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Table 2. Evaluation results for the EfficientNet-B0 model  

 Metric Evaluation score 
Train Validation Test 

B
in

ar
y 

  
cl

as
si

fic
at

io
n binary_crossentropy 0.178447 0.265499 0.250437 

acc 0.934240 0.912506 0.917263 
f1_score 0.933116 0.909538 0.912092 
precision 0.970758 0.953391 0.965039 
recall 0.905879 0.880826 0.875233 

M
ul

ti-
la

be
l 

cl
as

si
fic

at
io

n binary_crossentropy 0.155322 0.206799 0.192802 
acc 0.878725 0.860000 0.868066 
f1_score 0.903832 0.874959 0.895421 
precision 0.906790 0.868914 0.906721 
recall 0.902535 0.883114 0.885870 

Im
ag

e 
se

gm
en

ta
tio

n Defect-1 dice_lost 0.241853 0.370989 0.397452 
dice_coef 0.758147 0.629011 0.602548 

Defect-2 dice_lost 0.178259 0.390348 0.419159 
dice_coef 0.821741 0.609652 0.580841 

Defect-3 dice_lost 0.263068 0.311629 0.328843 
dice_coef 0.736931 0.688371 0.671156 

Defect-4 dice_lost 0.214004 0.282338 0.254890 
dice_coef 0.807605 0.717663 0.745110 

 
Table 3. Evaluation results for the EfficientNet-B1 model 

 Metric Evaluation score 
Train Validation Test 

B
in

ar
y 

  
cl

as
si

fic
at

io
n binary_crossentropy 0.788510 0.907279 0.801463 

acc 0.785477 0.763146 0.785203 
f1_score 0.756128 0.735602 0.742382 
precision 0.887375 0.876266 0.894966 
recall 0.679889 0.651853 0.653129 

M
ul

ti-
la

be
l 

cl
as

si
fic

at
io

n binary_crossentropy 0.240653 0.264186 0.252189 
acc 0.834341 0.820833 0.826087 
f1_score 0.840779 0.824454 0.837668 
precision 0.837435 0.817425 0.843749 
recall 0.846818 0.833748 0.834382 

Im
ag

e 
se

gm
en

ta
tio

n Defect-1 dice_lost 0.373972 0.396631 0.402671 
dice_coef 0.626028 0.603369 0.597329 

Defect-2 dice_lost 0.360009 0.539270 0.453084 
dice_coef 0.639991 0.460730 0.546916 

Defect-3 dice_lost 0.308332 0.331337 0.338015 
dice_coef 0.691668 0.668663 0.661985 

Defect-4 dice_lost 0.273183 0.295402 0.317423 
dice_coef 0.726816 0.704598 0.682578 

 
Table 4. Evaluation results for the EfficientNet-B2 model 

 Metric Evaluation score 
Train Validation Test 

B
in

ar
y 

  
cl

as
si

fic
at

io
n binary_crossentropy 0.541636 0.565283 0.539540 
acc 0.806919 0.790102 0.796340 
f1_score 0.831168 0.815828 0.821966 
precision 0.755907 0.738654 0.403072 
recall 0.943803 0.932571 0.936905 

M
ul

ti-
la

be
l 

cl
as

si
fic

i
 binary_crossentropy 0.305657 0.304111 0.295493 

acc 0.764951 0.761667 0.755622 
f1_score 0.768916 0.768373 0.769678 
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precision 0.790763 0.786341 0.797085 
recall 0.750545 0.753532 0.746478 

Im
ag

e 
se

gm
en

ta
tio

n Defect-1 dice_lost 0.373497 0.4147 0.419832 
dice_coef 0.626502 0.5853 0.580168 

Defect-2 dice_lost 0.285572 0.370037 0.401043 
dice_coef 0.714428 0.629963 0.598957 

Defect-3 dice_lost 0.335688 0.352584 0.369652 
dice_coef 0.664313 0.647416 0.630348 

Defect-4 dice_lost 0.192395 0.26306 0.237202 
dice_coef 0.785996 0.73694 0.762798 

 
Table 5. Evaluation results for the EfficientNet-B3 model 

 Metric Evaluation score 
Train Validation Test 

B
in

ar
y 

  
cl

as
si

fic
at

io
n binary_crossentropy 0.332500 0.348610 0.351250 

acc 0.840628 0.836058 0.824185 
f1_score 0.820040 0.818294 0.789258 
precision 0.947515 0.935388 0.932504 
recall 0.736186 0.742428 0.698171 

M
ul

ti-
la

be
l 

cl
as

si
fic

at
io

n binary_crossentropy 0.251697 0.274614 0.251900 
acc 0.813294 0.810000 0.802099 
f1_score 0.845255 0.832750 0.840432 
precision 0.845516 0.825251 0.847375 
recall 0.847249 0.841944 0.835377 

Im
ag

e 
se

gm
en

ta
tio

n Defect-1 dice_lost 0.368514 0.415835 0.428514 
dice_coef 0.631486 0.584166 0.571486 

Defect-2 dice_lost 0.269074 0.404454 0.745908 
dice_coef 0.730926 0.595546 0.596928 

Defect-3 dice_lost 0.340644 0.357973 0.380009 
dice_coef 0.659355 0.642027 0.619991 

Defect-4 dice_lost 0.283830 0.283830 0.246677 
dice_coef 0.716170 0.716170 0.753323 

 
Table 6. Evaluation results for the EfficientNet-B4 model 

 Metric Evaluation score 
Train Validation Test 

B
in

ar
y 

  
cl

as
si

fic
at

io
n binary_crossentropy 0.346099 0.363001 0.332109 

acc 0.847922 0.839152 0.841687 
f1_score 0.863654 0.856155 0.854614 
precision 0.796479 0.784471 0.799043 
recall 0.959294 0.958249 0.936440 

72
M

ul
ti-

la
be

l 
cl

as
si

fic
at

io
n binary_crossentropy 0.275177 0.274807 0.256699 

acc 0.714107 0.710833 0.743628 
f1_score 0.730746 0.725928 0.753428 
precision 0.754317 0.746032 0.773512 
recall 0.710991 0.709270 0.735849 

Im
ag

e 
se

gm
en

ta
tio

n Defect-1 dice_lost 0.378674 0.408794 0.448929 
dice_coef 0.621326 0.591206 0.551071 

Defect-2 dice_lost 0.347912 0.413195 0.391237 
dice_coef 0.652088 0.586805 0.608763 

Defect-3 dice_lost 0.360699 0.380269 0.394802 
dice_coef 0.639301 0.619731 0.605198 

Defect-4 dice_lost 0.235969 0.272217 0.240393 
dice_coef 0.764031 0.727783 0.759607 
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Table 7. Evaluation results with the best measurement values 

 Metric Evaluation score Eff Train Validation Test 
B

in
ar

y 
  

cl
as

si
fic

at
i-o

n binary_crossentropy 0.178447 0.265499 0.250437 B0 
acc 0.934240 0.912506 0.917263 B0 
f1_score 0.933116 0.909538 0.912092 B0 
precision 0.970758 0.953391 0.965039 B0 
recall 0.959294 0.958249 0.936440 B4 

M
ul

ti-
la

be
l 

cl
as

si
fic

at
io

n binary_crossentropy 0.155322 0.206799 0.192802 B0 
acc 0.878725 0.860000 0.868066 B0 
f1_score 0.903832 0.874959 0.895421 B0 
precision 0.906790 0.868914 0.906721 B0 
recall 0.902535 0.883114 0.885870 B0 

Im
ag

e 
se

gm
en

ta
tio

n Defect-1 dice_lost 0.241853 0.370989 0.397452 B0 
dice_coef 0.758147 0.629011 0.602548 B0 

Defect-2 dice_lost 0.178259 0.390348 0.419159 B0 
dice_coef 0.821741 0.609652 0.580841 B0 

Defect-3 dice_lost 0.263068 0.311629 0.328843 B0 
dice_coef 0.736931 0.688371 0.671156 B0 

Defect-4 dice_lost 0.192395 0.26306 0.237202 B2 
dice_coef 0.807605 0.717663 0.745110 B0 

 
5.  Conclusion 

In this study, we use 5 versions of the EfficientNet 
architecture (B0, B1, B2, B3, and B4) in the binary 
classification and multi-label classification processes. 
And for the segmentation process, using UNet as the main 
architecture, and for the backbone (encoder), using 5 
versions of EfficientNet The results of this research show 
that the EfficientNet-B0 version can generally provide the 
best measurement results. Except for measuring recall in 
the binary classification process, EfficientNet-B4 is the 
best, and measuring dice loss in the segmentation process 
for defect-4 turns out that EfficientNet-B2 gives the best 
results. For future studies, we would like to test another 
form of encoder (other than EfficientNet) to obtain even 
better accuracy values in order to generalise uncommon 
flaws.      
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