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Abstract- The system reliability of a multi-spares repairable system with reneging under 
“N-Policy” is considered. There is a provision of warm and cold reserve units and single repairman. 
Spares are designed to have exponentially distributed life durations and restoration times. A set of 
differential-difference equations has been constructed in terms of state dependent letdown and 
restoration rates. The time dependent analysis has been provided to obtain the states probabilities and 
to determine ‘system reliability’ and ‘mean time to failure’. Laplace transform of the equations and 
the matrix technique is used to obtain the probabilities. The cost optimization is also presented. 
Optimal system parameters have been obtained using a heuristic approach. Various performance 
indices will be evaluated to explore the outcome of different strictures on the system reliability and 
‘mean time to failure’. 
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1. Introduction 

Due to various applications of machining system in 
many areas, including manufacturing system, production 
system, multi-programmed computer system15), time 
sharing-computer systems, communication system, and 
transportation system etc., reliability indices of such 
systems are very useful features16). For increasing the 
reliability of a machining system, the spare part support 
to the structure can be facilitated. Hot, cold, and warm 
are the three categories of reserves14). The letdown rate 
of hot reserve unit is equal to the letdown rate of 
operative unit, the letdown rate of cold reserve unit is 
zero and the letdown rate of warm reserve unit is 
non-zero or a lesser amount of than that of operative unit. 
Numerous academics have investigated the subject of 
repairable problem with standbys in different 
frameworks13). Authors worked on asynchronous policy 
machine repair problem under the guidance of 
multi-server and optimized machine repair model under 
the observation of two server with different service rates 
by using SOR technique18). In the relevant study server 
may breakdowns according to the Poisson process17). 
This sensitivity analysis is also illustrated to endorse the 
results obtained. MTTF, availability and reliability of 
machines where the server may take multiple vacations 
during the operation considered by the authors24). The 
multi-components queueing system and optimized cost 

function in various research paper and displayed results 
through numerical illustration in tabular form are carried 
out by the authors3-6).  

Due to complication in the time dependent analysis 
most of the work endeavored on machines maintenance 
with standbys is restricted to time independent solution. 
The concept of 'N-Policy' for general service queues, in 
which a server switches on only on the accumulation of 
N units in the system, is a cost-effective strategy because 
the server's time can be used for other tasks studied and 
optimal reliability, MTTF for a machining system where 
system may repair with the help of available spares and 
repair facility19). 

Analyzed a model subjected to multiple broken-down 
servers, repairable problem with M operative and S 
warm reserves units under N-policy strategy and 
removable repairman20). Studied line up model via 
working vacation21). The removable repairman turns on 
only when there are N units available for repair derived 
MTTSF and Reliability using Laplace Transform 
technique for a controllable reliable machining system10). 
They also obtained some important results for the model 
and validated their results through numerical illustrations. 
Discussion on transient single server Markovian model 
under the consideration of secondary task when there 
was no customer present for service26). Embedded 
Markov Chain technique has been used for the 
formulation of the mathematical equations. Sensitivity 
analysis has also taken place to the verification of the 
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analytical results. Investigated N policy’ waiting line 
model by using supplementary variable technique where 
the server stops the service on becoming the system 
empty and start service after the accumulation of N 
customers9). Investigated the topic of ‘admission control’ 
where customers arrive and join the system depend on 
customer availability12). In the rising scenario, a method 
for dimensioning the system is established8). Focused on 
real life problem by using discharge scenario of electric 
machines7). Considered unreliable system for minimizing 
the total cost by using simulation-based optimization 
approach1). Focused on green energy15). Analyzed a 
machining system by using matrix method22). Enhanced 
power transmission model by using numerical 
techniques23). Observed attributes and gave a model on 
Hexapod Robot25). 

In this investigation we demonstrate reliability and 
MTTF of repairable machines containing working units, 
cold reserve, and warm reserve spares in the process of 
‘N-policy’ strategy. Reneging is also a concept that is 
included. A job waiting in the queue for service may get 
impatient and renege from the system after some time 
without getting service. Our model is more practical in a 
real-time machining system because to the reneging. A 
differentiation is also prepared for the MTTF by taking 
dissimilar reserves sets. The cost function was created 
with the aim optimal cost’s function and spares. 

 

2.  Assumptions and Notation 

The section provides the subsequent notations for the 
mathematical construction of the model dealing with 
repairable system and the provision of mixed reserve 
units: 

Wa    Quantity of warm reserve units 

Co     Quantity of cold reserve units. 

Op    Quantity of operative units 

T    Overall quantity of components i.e.  

       T = Op+Wa+Co. 

λ(α)      Letdown rate of an operative (warm  
    reserve) unit 

λd     Degraded letdown rate when all reserves are    

       being depleted. 

µi     Repair rate of failed unit (i=0, 1, 2).  

αi    Reneging parameter (i=0,1,2).  
)t(P ,0 τ ‘Prob. of repairman’s turn off state with τ  

       (0 1−≤≤ Nτ ) failed unit at time t’. 
)t(P ,1 τ  ‘Prob. of repairman’s turn on state with τ               

       (1 T≤≤ τ ) failed units at time t’. 

f 0, τ(s) ‘Laplace transform function’ of )t(P ,0 τ . 

f 1, τ(s) ‘Laplace transform function’ of )t(P ,1 τ . 

 
3. The Model Descriptions 

M operative units are compulsory in the system for 
effective operation. If a functional part fails, is swapped 
with warm reserve part. If all warm reserve units are 
depleted, a cold reserve unit is substituted. The fruitless 
part is directly sent to repairman; if repairman is 
unavailable, the fruitless unit is placed on the waiting list. 
If there are less than Op operative units, the futile unit is 
returned to the operative group; otherwise, it is moved to 
the reserve group. The repairman repairs the futile units 
in order of their letdown i.e. according to FCFS. It is 
believed that operating and spare units will fail 
independently of one another. Operative unit and warm 
reserve unit lifetimes are exponentially distributed with 
rate λ and α, respectively. When all spare parts are 
utilized, the operational unit degrades and fails at a rate 
of λd (>λ).  

Depending on the presence of reserve units, the repair 
time has an exponential distribution with parameter µ0. If 
warm reserve unit is available to replace the failed unit, 
the letdown rate is assumed to be zero. When all warm 
units are used then failed units swapped by cold reserve 
unit if unfilled and the repairman repair the failed unit 
with faster rate µ1(>µ0). If all cold reserve units are used, 
the repair is completed at a quicker pace of µ2 (>µ1). 
When waiting in line, failing units may also renege 
exponentially with parameter α0, α1 and α2 respectively, 
depending upon whether warm reserves, cold reserves 
and no reserves are available to replace the units upon 
letdown. When a reserve unit is utilized in the system for 
procedure, its letdown and operative characteristics is 
similar as that of the operative unit. It is assumed that 
while a letdown unit is refurbished it becomes as good as 
new one. The transition from reserve to operating, and 
from repair to reserve, takes very little time. We consider 
machining system where the repairman turns according 
to N-policy and turns off as soon as repairman restores 
all failed units. 

 The state dependent letdown and restoration rates 
are given by 
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4. Transient State Equations 

The time dependent state equations constructing the 
mathematical structure are as follows: 

 

𝑑𝑑𝑃𝑃�0,0(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −λ(0)𝑃𝑃�0,0(𝑡𝑡) + μ(0)𝑃𝑃�1,1(t)           (3) 

𝑑𝑑𝑃𝑃�0,𝜏𝜏(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −λ(τ)𝑃𝑃�0,𝜏𝜏(𝑡𝑡) + λ(τ − 1)𝑃𝑃�0,𝜏𝜏−1(t)      (4) 

                                  1 ≤ τ ≤ N                  

 𝑑𝑑𝑃𝑃
�1,1(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −[λ(1) + µ(1)]𝑃𝑃�1,1(𝑡𝑡) + µ(2)𝑃𝑃�1,2(t)        (5) 

𝑑𝑑𝑃𝑃�1,𝜏𝜏(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −[λ(τ) + µ(𝜏𝜏)]𝑃𝑃�1,𝜏𝜏(𝑡𝑡) + λ(τ − 1)𝑃𝑃�1,𝜏𝜏−1(𝑡𝑡) 

+µ(τ + 1)𝑃𝑃�1,𝜏𝜏+1(t)                 2 ≤ τ ≤ (6)           

𝑑𝑑𝑃𝑃�1,𝑁𝑁(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −[λ(N) + µ(𝑁𝑁)]𝑃𝑃�1,𝑁𝑁(𝑡𝑡) + λ(N − 1)𝑃𝑃�1,𝑁𝑁−1(𝑡𝑡) 

+µ(𝑁𝑁 + 1)𝑃𝑃�1,𝑁𝑁+1(𝑡𝑡) + λ(N − 1)𝑃𝑃�0,𝑁𝑁−1(𝑡𝑡)           (7) 

𝑑𝑑𝑃𝑃�1,𝜏𝜏(𝑡𝑡)
𝑑𝑑𝑡𝑡

− [λ(τ) + µ(𝜏𝜏)]𝑃𝑃�1,𝑁𝑁(𝑡𝑡) + λ(N − 1)𝑃𝑃�1,𝑁𝑁−1(𝑡𝑡) 

+µ(𝑁𝑁 + 1)𝑃𝑃�1,𝑁𝑁+1(𝑡𝑡) + λ(N − 1)𝑃𝑃�0,𝑁𝑁−1(𝑡𝑡)       (8) 

1TN),t(P)]1(

)t(P)1()t(P)]()([
dt

)t(d

1,1

1,1,1
,1

−≤τ≤+τµ+

−τλ+τµ+τλ−=
Ρ

+τ

−ττ
τ

(9)  

𝑑𝑑𝑃𝑃�1,𝑇𝑇(𝑡𝑡)
𝑑𝑑𝑡𝑡

= λ(T − 1)𝑃𝑃�1,𝑇𝑇−1(𝑡𝑡) − μ(T)𝑃𝑃�1,𝑇𝑇(t)            (9a) 

Denote the Laplace transform of probabilities by 

Θ0,𝜏𝜏(𝑠𝑠) = ∫ 𝑒𝑒−𝑠𝑠𝑡𝑡∞
0 𝑃𝑃�0,𝜏𝜏(𝑡𝑡)𝑑𝑑𝑡𝑡  𝜏𝜏 = 0, 1, … .𝑁𝑁 − 1     (10a) 

 
and 
 

  Θ1,𝜏𝜏(𝑠𝑠) = ∫ 𝑒𝑒−𝑠𝑠𝑡𝑡∞
0 𝑃𝑃�1,𝜏𝜏(𝑡𝑡)𝑑𝑑𝑡𝑡  𝜏𝜏 = 0, 1, … .𝑁𝑁 − 1  (10b) 

Since initially all units are good, the initial conditions 
are given by  

)T,.....2,1(;0)0(P

)1N,.....2,1(;0)0(P;1)0(P

,1

,00,0

=τ=

−=τ==

τ

τ

                         (11) 
We get the following equations by taking the Laplace 

transform of eq. 3 to eq. 9a and substituting the values 
of λ(τ) and µ(τ).  
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5. The Analysis 

We can be write eq. 12 to eq. 20 in the matrix form as 
          G(s) F(s)   = )0(P     (21) 
where   
F(s) = [ Θ 0,0(s), Θ 0,1(s),…., Θ 0,N-1(s), Θ 1,1(s),.          
     Θ 1,N-1(s), Θ 1,N(s), Θ 1,N+1(s),…., Θ 1,T(s)], (22) 
F(0) = [ 0,0(0), 0,1(0),…., 0,N-1(0), 1,1(0),….,    
      1,N-1(0), 1,N(0), 1,N+1(0),…., 1,T(0)],  (23) 
Here G(s) is an (N+T) × (N+T) matrix.  

Using Cramer's rule, eq. 23 can be solved and we get an  
obvious expression for )(,1 sTΘ  as  

                      
)s(G

)s(G
)s( TN

T,1
+=Θ           (24) 

where G(s)  and (s)G TN+  respectively are the 

determinants of matrix G(s), and matrix found by 

swapping the (N+T) th column of G(s) by the initial 
vector  

)0(P = [1, 0,... ,0]T 

It is obvious that the root of 0)s(G =  is s = 0. 

Substituting s= β− , we obtain 
              G ( β− ) = A β− I             (25) 
where A = G (0) is an (N+T) ×  (N+T) matrix and I is 

the identity matrix. Using eq. 25 in eq. 19, we obtain  
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       G ( β− ) F(s) = A β− I F(s)   = F (0)    (26) 
Let i321 d....,.,.........d,d,d  i 0≠  be the i real distinct 

eigen values of the matrix [A β− I]. By setting its 
determinant to zero, one may determine the eigenvalue dk 

ik ≤≤1 . Let ( )d,d)........(d,d(),d,d( jiji2i2i1i1i ++++++  
be the j pairs of conjugate complex eigen values. 

Note there are one zero and i+2j=N+T-1 non-zero 
eigen values. Also 

( ) ( ){ }







+++








+= ∏∏

=
++++

=

j

1k
kikikiki

2
i

1k
k ddsddsdss)s(G        (27) 

We find an obvious formula of )(sG TN +
 by building 

a sequence of tri-diagonal matrices and applying their 

properties.  

                 )s(d)s(G 1N

1T

0k
kTN −

−

=
+ ∆








= ∏               (28) 

where )(1 sN −∆  is a matrix given as follows: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑠𝑠 + 𝜆𝜆1 + 𝜇𝜇0 −𝛷𝛷1 0 . . . . . . 0 0 0

−𝜆𝜆1 𝑠𝑠 + 𝜆𝜆1 + 𝛷𝛷1 −𝛷𝛷2 . . . . . . 0 0 0
0 −𝜆𝜆2 𝑠𝑠 + 𝜆𝜆2 + 𝛷𝛷2 . . . . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . −𝛷𝛷𝑁𝑁−1 0 0
0 0 0 . . . . . . 𝑠𝑠 + 𝜆𝜆𝑁𝑁 + 𝛷𝛷𝑁𝑁−1 −𝛷𝛷𝑁𝑁 0
0 0 0 . . . . . . −𝜆𝜆𝑁𝑁 𝑠𝑠 + 𝜆𝜆𝑁𝑁+1 + 𝛷𝛷𝑁𝑁 −𝛷𝛷𝑁𝑁+1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(29) 
Where 0i0i α+µ=Φ  

The recursive approach is employed to obtain
)(1 sN −∆ . Consuming eq. 27 and eq. 28 in eq. 24, we 

acquire 
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Here hl (l =0,1, 2... i) is given by 
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Also from eq. 34, we obtain 
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Here αi and βi denote real and imaginary faction of 
complex eigen value of di+l then the inverse Laplace 

transform of eq. 30 is 

∑∑
=

α−α−

=

−








β

α−
+β++=

j

1l
l

t

l

lll
l

t
l

i

1l

td
l0T,1 )tsin(e

v
fg

)tcos(edeah)t(P l1l

      (34) 

Here h0, hl, dl, gl, αl, and βl are all real numbers.   

Since in long run the system will be in failed state, we 

have     1)t(Plim T,1t
=

∞→
 

 

6. Some Performance Measures 

The reliability function is obtained using  
              R1(t) = 1- )t(P T.1              (35) 

where )t(P T,1 denotes probability of failed units on or 

before time t. P1, T (t) is determined by eq. 34. 

Let R1
* (s) symbolizes the ‘Laplace Transform’ of R1 (t), 

so that 

∫
∞

−=
0

1
st

1 dt)t(Re (s) *R  

Since        (s) *Rlimdt)t(R 10s
0

1 →

∞

=∫                        (36) 

(MTTF) is obtained by 
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MTTF = ∑∑∫
= ++=

∞

+=
j

1k kiki

k
j

1k k

k

0
1 dd

g
d
hdt)t(R

      (37) 
Here hk and gk can be obtained using eq. 32 and eq. 33, 

one-to-one. 
 

7. Numerical Illustration 

This segment provides the impact of variation of 
various parameters on performance indices. For this 
purpose, we develop the computation procedure in 
MATLAB to evaluate the performance of the model. 
Numerical outcomes are shortened in tables 1-3. 

In table 1, we fix M=7, α=0.13, α0=0.4, α1=α0, α2=1.5α0, 
μ0=1.2, μ1=1.3, μ2=1.4, and compute the value of MTSF 
by changing the letdown rate (λ) of working parts and the 
quantity of reserve units S and Y. It is noticed that the 
MTSF changes with respected to λ as per the expected in 
real time system.  

 
Table 1. MTTS by varying λ, S and Y 

λ 
MTTSF 

S=2,Y=2 S=3,Y=2 S=2,Y=3 S=4,Y=3 S=3,Y=4 

0.5 2470.27 388.77 380.37 51.69 49.59 

0.6 779.80 135.74 134.14 22.07 21.52 

0.7 319.96 61.73 61.30 12.14 11.94 

0.8 157.59 33.61 33.46 7.84 7.74 

0.9 88.60 20.77 20.71 5.60 5.54 

1 54.99 14.08 14.04 4.29 4.25 

1.1 36.82 10.21 10.19 3.45 3.42 

1.2 26.16 7.80 7.79 2.87 2.85 

1.3 19.48 6.20 6.19 2.45 2.43 

 
In table 2, we fix λ=1, α=0.13, α0=0.4, α1=α0, α2=1.5α0, 

μ0=1.2, μ1=1.3, μ2=1.4, and compute the value of MTTSF 
by varying the quantity of functioning units (M) and the 
quantity of reserve units S and Y. It is noted that the 
MTSF declines with the inclines in M, S and Y. 

 
Table 2. MTTSF by varying M, S and Y 

M 
MTTSF 

S=2,Y=2 S=3,Y=2 S=2,Y=3 S=4,Y=3 S=3,Y=4 

8 13.93 6.49 6.47 3.00 2.98 

10 3.88 2.78 2.77 1.86 1.84 

12 2.10 1.73 1.73 1.34 1.33 

14 1.44 1.26 1.26 1.05 1.05 

16 1.10 1.00 0.99 0.87 0.86 

18 0.89 0.82 0.82 0.74 0.73 

20 0.75 0.70 0.70 0.64 0.64 

22 0.65 0.62 0.61 0.57 0.57 

24 0.57 0.55 0.55 0.51 0.51 

 
In table 3, we fix M=7, λ =1, α=0.13, α1=α0, α2=1.5α0, 

μ0=1.2, μ1=1.3, μ2=1.4, and evaluate the value of MTSF 
by changing the reneging constraint (α0) and quantity of 
reserve units S and Y. It is seen that the MTSF increases 
with the increase in α0. 

The effect of variation in different parameters can be 
easily visualized from the graph shown in figures 1-3. 

 
Table 3. MTTSF by varying α0, S and Y 

α0 
  MTTSF   

S=2,Y=2 S=3,Y=2 S=2,Y=3 S=4,Y=3 S=3,Y=4 

0.1 8.48 4.04 4.03 2.30 2.28 

0.2 15.50 5.85 5.83 2.75 2.73 

0.3 29.21 8.91 8.89 3.38 3.35 

0.4 54.99 14.08 14.04 4.29 4.25 

0.5 101.72 22.64 22.57 5.61 5.55 

0.6 183.38 36.58 36.42 7.53 7.44 

0.7 321.37 58.84 58.46 10.33 10.17 

0.8 547.51 93.65 92.82 14.39 14.10 

0.9 907.87 147.04 145.32 20.24 19.73 

 
By fixing parameters M=7, Y=2, S=3, α=0.3, α0=0.4, 

α1=1.2α0, α2=1.5α0, μ0=1.2, μ1=1.3, μ2=1.4, the influence 
of letdown rate λ of working parts on system availability 
is depicted and noted that the system availability declines 
with the inclines in λ and t in figure 1. Again fixing λ=0.5, 
Y=2, S=3, α=0.3, α0=0.4, α1=1.2α0, α2=1.5α0, μ0=1.2, 
μ1=1.3, μ2=1.4, we explore, the consequence of the 
quantity of operative units M on system availability in 
figure 2. It is seen that the system availability declines 
with the incline in M. Finally, by fixing M=7, λ=0.5, Y=2, 
S=3, α=0.3, α1=1.2α0, α2=1.5α0, μ0=1.2, μ1=1.3, μ2=1.4, 
we examine the influence of reneging parameter α0 on 
system availability in figure 3 and noted that the system 
availability decline with the incline in α0 and t. 

Overall, we conclude that the MTTSF declines with 
the incline in λ, M, S, Y and inclines with the incline in 
α0. Further-more, availability declines as t, λ, M and α0 

incline. 
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Fig. 1: Effect of failure rate λ of operating Units  

on system availability  
 

 
Fig. 2: Effect of number of operating units M 

on the system availability 
 

 
Fig. 3: Effect of reneging parameter α0 on system 

Availability 
 

8. Conclusion 

N-Policy repairable system with mixed components is 
studied by employing matrix method. The transient 
solution is obtained for the probability of the system states, 
which is further used to get the MTTF. The providing of 
mixed spares upkeep in the system may be helpful in 
upgrading the ‘system reliability’ as commonly observed 
in machining environment of electronics, computer 
communication and production systems. 
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