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Abstract: Agriculture is a key employment in several countries throughout the globe. AI is 
increasingly becoming a part of agriculture industry as traditional methods are insufficient to supply 
the massive survival needs of millions of people. AI, in form of machine learning and deep learning, 
is capable of providing a number of strategies that assist in the creation of more healthy seeds. This 
paper discusses significance of machine learning and deep learning that growers can use to gain 
access to increasingly sophisticated data and analytical tools, allowing them to make better decisions, 
improve efficiencies, and reduce wastes in food and bio-fuel production while minimizing negative 
environmental impacts. On the basis of critical parameters like temperature, rainfall, humidity, soil 
type, soil characteristics etc., ML and DL operate as recommenders and advise farmers to take the 
right action. Numerous AI applications in agriculture are addressed, with an emphasis on yield 
prediction. The article offers a comprehensive review of a variety of ML, DL and hybrid 
methodologies for correctly forecasting agricultural outputs that will promote the nation's economic 
growth. 

 
Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Agriculture, Crop Yield 

Prediction. 

1. Introduction  
Agriculture has been the foundation of practically all 

ancient civilizations for the sole purpose of ensuring their 
survival. Agriculture is now a $2.4 trillion global business 
that is one of the most important contributors to the 
growth of developing countries1). Agriculture has a 
paramount significance in world’s economy. The 
agriculture sector will be under more strain due to endless 
progression in human population. Precision farming and 
agri-technology/digital agriculture2) are growing as 
modern scientific domains that make use of data-intensive 
methods to boost productivity in agricultural while 
lowering the impacts on environment3). Agriculture, on 
the other hand, is prone to a variety of issues, the majority 
of which are highly unpredictable in nature, such as a lack 
of rain, floods, and blight, to mention a few. For the 
reasons stated, Artificial Intelligence must be introduced 
into the agricultural area in order to leverage statistical 
brilliance to give better harvests at reduced costs4). In this 
vein, we propose a number of precision agriculture 
frameworks. Machine learning (ML) and deep learning 
(DL)5)-81) have evolved with technologies of big data, 
Internet of Things, and highly efficient computing to 
unravel, measure, and comprehend data-intensive 

processes in agricultural operations. 
 

2. Article Organization  
We give a complete examination of AI's importance in 

agriculture in this paper. The role of agriculture in a 
country's GDP is examined in detail in Section I. Some of 
the abbreviations will be revisited several times 
throughout the text that are described in Section III. 
Section IV delves into various application of artificial 
intelligence in agriculture. Section V focuses on the 
significance of machine learning and deep learning in crop 
yield prediction. The theory and technical parts of AI have 
been concluded at the very last. 

 
3. AI Applications in Agriculture  
3.1 Farm Harvesting Robots  

Robots are being created that can handle bulk 
harvesting with more accuracy and speed, allowing the 
fruit to reach your kitchen table faster. These kinds of tools 
boost the productivity and reduces the crop waste from the 
field6). 
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3.2 Smart Chemical Spraying 

Using computer vision and artificial intelligence, 
various companies have built robots that tracks and spray 
the weeds accurately7). By using these robots, approx. 80-
85% chemicals are able to be removed that are sprayed on 
the crops, thereby and herbicides can be reduced up to 
90%. These are called AI sprayers that can drastically 
lessen the proportion of pesticides being utilized in fields. 
This overall process improves agricultural productivity 
and also reduces cost. 
 
3.3 Species Management 

3.3.1 Identification of Species 
A latest architecture8) called leaf vein architecture is 

being used that provides more precise and efficient results. 
It holds the information about the leaf features, instead of 
the typical human tendency to compare leaf color and 
shape to classify plants. 

3.3.2 Breeding of Species 
This application is most useful as it is both sensible and 

unexpected, because harvest forecasting is taken into 
consideration at some point later. For some particular 
genes that impact the performance of nutrient content, 
water consumption, flavor, nutrient consumption, disease 
resistance, climate change adaptation and picking up of 
species is a time-consuming process. Deep learning9) 
algorithms, for example, assess crop performance in a 
variety of conditions and develop new features as a result 
of the data. They can use this information to create a 
probability model that predicts which genes produces 
plants more frequently.  
 
3.4 Crop Management 

3.4.1 Crop Excellence 
Crop quality traits may be accurately detected and 

classified, which can raise product prices and reduce 
waste. Machines, in compared to human specialists, can 
employ seemingly useless data and linkages to uncover 
new attributes that contribute to the overall quality of 
crops10). 

3.4.2 Prediction of Yield 
Yield estimation is the most important matter of 

discussion in agriculture, which encompasses mapping of 
yield & prediction, demand matching, supply and 
management of crops11)-14). On the basis of historical data, 
state of art techniques can also be used along with 
computer vision. 

3.4.3 Detection of weeds  
Weeds are the greatest serious hazard to crop yield, 

aside from diseases. The most difficult aspect of weed 
control is detecting and distinguishing them from crops. 

ML techniques15) and computer vision can enhance the 
weed identification and discrimination at a minimal cost. 

3.4.4 Detecting Diseases   
Spraying insecticides equally across the cropping area 

is the most widely used technique of disease prevention. 
This strategy requires the use of enormous quantities of 
pesticides to be effective, which comes with a significant 
financial and environmental cost. Agrochemicals are 
sprayed at specified times, locations, and to specific plants 
using ML as part of a broader precision agriculture 
strategy16). 
 

3.5 Field Conditions Management 

3.5.1 Management of Water 
The hydrological, climatological, and agronomic 

factors are all affected by agriculture's water management. 
So far, the most developed machine learning based 
applications are related to regular evapotranspiration 
estimation, which allows more flexible irrigation system 
to use. Daily point temperature prediction aids in 
identifying the weather conditions, evaporation, and 
evapotranspiration to be expected17). 

 
3.5.2 Management of Soil 

For agricultural scientists, soil is a diverse source of 
natural resources. Its temperature alone can reveal 
information about the impacts of climate fluctuations. ML 
approaches18) seeks for temperature, soil moisture, and 
evaporation processes to understand the ecosystem 
statistics and their impact on agriculture. 
 
3.6 Livestock Management 

3.6.1 Animal Protection 
In today's society, livestock is increasingly recognized 

as animals who are sad and tired of their farm lifestyles, 
rather of simply as food carriers. Chewing signals can be 
linked to the need for food changes, and animal behavior 
classifiers can identify how stressed an animal is by 
looking at their movement patterns, which include 
walking, eating and hydrating etc19). 
 
3.6.2 Livestock Management 

Machine learning application, like crop management, 
enables precise prediction and farming parameters 
estimation for maximizing the effectiveness of animal 
production systems20). For an instance, weight estimation 
systems can forecast coming weights some days before 
slaughter. It permits the farmers to change environment 
and meals accordingly. 

 
3.6.3 Farmer’s Little Assistant  

A farmer always needs help for sorting through all of 
the options of crop management so that he can make a 
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final selection. Companies are now concentrating their 
efforts on developing specialized chatbots that can talk 
with farmers and help them with essential statistics and 
data analysis to aid them21). Chatbots of farmers needs to 
be more intelligent than that of consumers i.e. such as 
Alexa because these chatbots will be able to provide data, 
analyze it, and consult farmers on challenging situations. 
 

4.  Machine Learning and Deep Learning in 
Crop Yield Prediction  
Machine learning (ML) and Deep Learning 

(DL) techniques are widely employed in many fields, such 
as supermarkets for evaluating customer behaviour based 
on past purchases and for forecasting the typical 
smartphone usage time. Additionally, machine learning 22) 
is used continuously and globally. ML is extremely 
important in agriculture because there are so many 
different algorithms to use. ML is being used everywhere 
nowadays even in Agritourism for Sustainable 
Agriculture. 

4.1 Selection Criteria of Crop Yield Prediction 

Crop yield forecasting is a major source of worry for 
the world's food production. By making wise import and 
export decisions and depending on reliable forecasts, 
national food security is ensured. For finer variations, seed 
firms must estimate the performance of current mixed 
breeds in various environments. Growers use yield 
prediction's benefits for improved management and wiser 
financial choices. 

The most challenging problem in precision farming23) 
is predicting crop production, which has led to the 
development and validation of numerous models to date. 
Crop yield prediction requires the use of a variety of 
datasets because it depends on a number of variables, 
including weather, soil characteristics, fertilizer use, and 
seed type. That's why, Crop yield forecast24) must be seen 
as a series of phases rather than a simple assignment. 
There are several crop yield prediction models that the 
farmer can use to determine the advantageous and 
desirable output, but a finer achievement is still valuable. 
Multiple uncertainties plague the farming industry, 
making it difficult for farmers to choose when to plan 
which crop because market prices often change regularly. 
As a result, some significant concerns occur. Furthermore, 
crops used to be damaged by harmful climatic conditions 
due to global warming25). 

Floods, groundwater, insufficient soil fertility, single 
crop failure owing to climatic variance, and a number of 
other issues all have a negative impact on farmers. 
Depending on certain geographic, climatic, financial, and 
organic elements, crop yield may be regarded as the most 
important component in agricultural financial terms. 

Depending on the locality and climatic conditions, the 
community advises the farmers to behave spiritedly in 
order to increase agricultural yield. 

 
4.2 Machine Learning based Crop Yield Prediction 

Machine learning is a part of AI that emphasizes on 
using data and several algorithms to imitate how human 
beings learn for a significant improvement in accuracy 
over time26). ML approaches permit various software 
applications to strengthen their prediction accuracy and 
are used to forecast new output values. Machine learning 
isn't some far-fetched notion. It is already being used by 
businesses across a variety of industries to enhance 
creativity and improve operational efficiency. 

 

Fig. 1: AI, ML and DL 
 

Machine learning is a learning process that aims to 
teach a computer how to complete a task through 
"experience" (training data). Data is made up of instances 
in machine learning. Some features/variables (a set of 
attributes) describe a specific instance. Numeric features 
or ordinal/nominal/binary measures can also be employed. 
To evaluate the performance of machine learning models, 
a performance metric is utilized that improves with 
experience. The performance of ML models and 
algorithms is calculated using a variety of statistical and 
mathematical methods. The integration of the Machine-
learning based on the prosumer’s EMS to address the 
uncertainty problem in the prosumer are explored. 

When the learning process is finished, we can use the 
trained model in order to categorize, forecast, or cluster 
data. The classification of diverse sets of crop pictures 
using ML and computer vision is investigated in order to 
assess crop quality and production. By recognising 
reproductive trends, diagnosing eating disorders, and 
anticipating the behaviour of cattle using information 
from collar sensors, this technique can be used to increase 
livestock output27). 
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Table 1: Various Machine Learning models in Crop Yield Prediction 

Authors Year Description Model Used  Findings 

Seireg et al.28)  2022 Wild Blueberry Yield 

prediction using Ensemble 

ML techniques  

LGBM, GBR, 

XGBoost 

The best performance was demonstrated by 

SR, which outperformed CR and had the 

highest R-square (0.984) and RMSE 

(179.898). 

Rasheed et 

al.29)  

2021 National crop production 

planning by using a 

decision support 

framework  

Decision aiding 

tool 

2 case studies are used to address crop 

planning concerns and profit maximization: 

one involves a single farm with several 

fields, and the other involves many fields on 

multiple farms in various climatic zones. 

Pant et al.30)  2021 Use of statistical ML 

techniques for analyzing 

agricultural crop yield 

prediction 

GBR, DTR, 

RFR, SVR 

The decision tree regression model predicts 

agricultural yield with a maximum degree of 

accuracy of 96%. 

Raja et al.31)  2022 Use of various feature 

selection techniques and 

classifiers for predicting 

crop yield based of 

agriculture environment 

characteristics 

BORUTA, 

RFE, MRFE  

Comparing the ensemble technique to the 

current classification technique, it delivers 

greater prediction accuracy. 

Lontsi et al.32)  2022 A case study of West 

African countries for 

predicting crop yield using 

ML models 

DT, MLR, k-

NN, hyper-

parameter 

tuning + cross-

validation 

The decision tree performs well, with an R2 

of 95.3%, whereas the k-NN and logistic 

regression perform poorly, with R2 of 

93.15% and 89.78%, respectively. 

Abdelraouf et 

al.33)  

2022 Use of multi sensors 

remote sensing for 

predicting crop yields  

Remote 

Sensing 

Agricultural production is assessed using 

various methods: relied on determining the 

area of a particular crop from satellite 

images, evaluation of crop biophysical and 

biochemical parameters, estimating crop 

production using direct empirical statistical 

models. 

Pantazi et al.34)  2016 Prediction of wheat yield 

by using ML and advanced 

sensing techniques 

CP-ANN, XY-

fused Network, 

Supervised 

Kohonen 

Network 

High class accuracy increased to 83%, while 

medium class accuracy was determined to 

be 70%. The SKN model can be used to 

anticipate and categorise data into various 

27yield potential zones. 

Aghighi et al.35)  2018 Prediction of silage maize 

by using ML regression 

techniques for Time-

Series Images of Landsat 8 

OLI 

SVR, BRT, 

GPR, RFR 

BRT fared best in areas where its average R 

value exceeded 0.87. 

Mariammal et 

al.36)  

2021 Land suitability prediction 

for crops based on 

environmental and Soil 

characteristics by using 

MRFE & various 

k-NN, NB, DT, 

SVM 

Compared to other feature selection 

techniques, the MRFE technique performs 

well with 95% accuracy. 
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classifiers 

Kumar et al.37)  2021 Plant disease prediction 

based on soil sensors using 

ML and exploratory data 

analysis and 

ANN Adam optimizer minimizes the binary 

cross-entropy loss function by 0.15 more 

than RMS-prop optimizer while converging 

more quickly than RMS-prop at higher 

epochs. All the optimizers have fared better 

than Adam. 

Matteo et al.38)  2022 Incorporating CubeSat 

data into a crop model 

with early season 

prediction of within-field 

crop yield variability  

CubeSat-based 

LAI + APSIM 

With a significant correlation to 

measurements that were independently 

obtained, yield spatial variability was 

reasonably well reproduced (R2 = 0.73 and 

RMSE = 12%). 

Vlachopoulos 

et al.39)  

2022 Crop health status 

evaluation by using UAS 

Multispectral Imagery 

 

 

Multiple linear 

models, SVM, 

RF ANN 

With a mean absolute error of 0.67 and an 

average relative root mean square error of 

10.86%, random forests method was shown 

to be the best algorithm for GAI prediction. 

The average total accuracy is 94%. 

Birrell et al.40)  1996 Sensor comparisons and 

various techniques for 

crop yield mapping 

NA Yield maps were created using various 

Kriging techniques and other mapping 

approaches were compared. 

4.3 Deep Learning based Crop Yield Prediction 

Deep learning is a subdivision ML and can be said as a 
3-layer neural network41). The purpose of neural networks 
is to imitate the human brain activities by permitting it to 
"learn" from huge data. A single-layer neural network may 
generate the predictions that are close, that’s why some 
extra hidden layers can also be used to alter the accuracy.  

Deep learning neural networks (Artificial Neural 
Networks) take advantage of data inputs that are: weights 
and bias and try to emulate the brain of a person. These 
collaborate with each other in order to identify, categorize 
and characterize items precisely in the data. DNN are 
union of several layers of linked nodes, each of which 
refine and improve the categorization or prediction. Two 
methods of propagation exist: (1) Forward propagation- 
The advancement of computations through the network. 
DNN’s input & output layers are visible. The input layer 
accepts the data that needs to be for processed and while 
the output layer presents the concluded forecasts. 

 

 
Fig. 2: Deep Learning 

DNN are union of several layers of linked nodes, each  
of which refine and improve the categorization 

or prediction. Two methods of propagation exist: (1) 
Forward propagation- The advancement of 

computations through the network. DNN’s input & output 
layers are visible. The input layer accepts the data that 
needs to be for processed and while the output layer 
presents the concluded forecasts.  

A different method called Backpropagation (2) can also 
be used to train a model that utilizes the gradient descent 
technique in order to compute errors found in prediction 
and then moves in backward direction by passing the 
layers to modify the inputs of the function. Both the kind 
of propagation operates collectively to enable a neural 
network to make predictions and to resolve the errors. The 
algorithm’s accuracy keeps improving with time42). 
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Table 2: Various Deep Learning models in Crop Yield Prediction 

Authors Year Description Models Used Findings 

Kavita et al.43) 2023 

Estimate the crop output 

for five different crops in 

the Indian state of 

Rajasthan. 

SVM, Gradient 

Descent, LSTM, 

Lasso regression 

R2 Score - 0.963, RMSE - 

0.035 and MAE-0.0251.  

Kuradusenge et 

al.44) 
2023 

Prediction of Irish 

potatoes and Maize 

Random Forest, 

Polynomial 

Regression, and 

Support Vector 

Regressor 

Random Forest performed the 

best with R2 values of 0.875 

and 0.817. 

Elavarasan et al.45)  2020 

Prediction of crop yield 

with the use of deep 

reinforcement learning 

model 

RNN + DQN  Accurate prediction with a 

realistic 93.7 percent. 

Bose et al.46)  2016 

Use of spiking neural 

networks for estimating 

crop yield by analyzing 

image time series 

Gaussian Process 

Model 

Based on a nine-feature model, 

the method produced an 

average accuracy of 95.64%, 

an average prediction error of 

0.236 t/ha, and a correlation 

coefficient of 0.801. 

Saeed et al.47)  2019 

Prediction of crop yield 

using deep neural network 

DNN With a root-mean-square-error 

(RMSE) of 12% of the average 

yield and 50% of the standard 

deviation, the RMSE would be 

decreased to 11% of the 

average yield and 46% of the 

standard deviation. 

Sun et al.48)  2020 

Prediction of crop yield 

using multilevel deep 

learning network 

RNN+CNN, 

LSTM 

 

Achieved R2 value of 0.73 and 

RMSE of 1039.87 for 16 bins. 

Qiao et al.49)  2021 

Prediction of crop yield 

from multi-spectral and 

multi-temporal remotely 

sensed imagery using 

recurrent 3D-CNN 

3D CNN+RNN 

With regard to handling multi-

temporal multi-spectral data, 

SSTNN offers a lot of 

potential. can perform 

predictions more accurately 

than competing methods. 

Kalaiarasi et al.50)  2022 

Prediction of crop yield 

using multi-parametric 

multiple kernel deep 

neural network  

Multi-parametric 

DNN 

The trials are carried out to 

determine the effectiveness of 

the MMKDNN for five distinct 

kinds of crops. withstands the 

enormous volume of data with 

ease. 

Abbaszadeh et 

al.51)  
2022 

Prediction of crop yield 

using bayesian multi-

modeling of deep neural 

network 

BMA 

Predicts soybean crop yields 

more accurately and 

consistently than the 3DCNN 

and ConvLSTM networks. 
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Pang et al.52)  2020 Spectra and image-based 

prediction of Corn seeds 

using deep learning and 

hyperspectral imaging and 

rapid vitality estimation  

CNN, 

Hyperspectral 

Imaging  

On raw data, 1DCNN performs 

best, however 2DCNN 

performs with a faster 

convergence rate. 

Alebele et al.53)  2021 

Prediction of crop yield 

using combined Optical 

and SAR Imagery with 

Gaussian Kernel 

Regression 

Bayesian Linear 

Regression, 

Gaussian Kernel 

Regression 

In comparison to probabilistic 

Gaussian regression and 

Bayesian linear inference, 

Gaussian kernel regression 

performs better. The optical 

red edge differential 

vegetation index (RDVI1) (R2 

= 0.65, RMSE = 0.61 t/ha) 

improved forecast accuracy. 

Martínez et al.54)  2021 

Prediction of crop yield 

using interpretability With 

Gaussian processes 

Gaussian Process 

Model 

GP model uses a composite 

covariance to take different 

scales, non-stationary 

processes, and nonlinear 

processes into account and 

gives the ability to pinpoint 

climate extremes, anomalies, 

and their corresponding causes 

that affect crop productivity. 

Qiao et al.55)  2021 

Prediction of crop yield 

using 3D CNN and 

Multikernel Gaussian 

Process 

MKL 

Using a kernel-based approach, 

the probability distribution of 

the prediction outcomes is 

derived. The effectiveness of 

the suggested strategy is 

assessed using estimates of 

China's wheat yield. 

Sivanantham et 

al.56)  
2022 

Prediction of crop yield 

using quantile correlative 

deep feedforward 

multilayer perceptron  

Quantile 

regression 

In comparison to existing 

studies, the proposed technique 

increased prediction accuracy 

and precision by 6% and 9%, 

respectively, and decreased 

prediction time by 32%. 

Zhenwang et al.57)  2022 

Prediction of crop yield 

using multi-source satellite 

data across Northeast 

China 

Linear regression, 

ensemble model 

When satellite data and 

environmental data were 

combined, variability of maize, 

rice, and soybean yields was 

found to be 72%, 69%, and 

57%, respectively,  

Gupta et al.58)  2021 

Prediction of crop yield 

using big data depending 

upon weather conditions  

Map-reduce + K-

means 

Amalgamation of MapReduce 

and k-means clustering gives 

the mean produce for a group 

of crops.  

Liu et al.59)  2022 
Prediction of plant disease 

using IOT & ML 
MLR+IOT 

Implemented model 

demonstrates the disease's 

occurrence could have been 
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predicted with up to 91% 

accuracy from 2015 to 2019. 

Udutalapally et 

al.60)  
2021 

Prediction of crop yield, 

plant disease, crop 

selection and irrigation in 

Internet-of-Agro Things 

CNN 

The proposed plant disease 

prediction framework achieves 

an accuracy of 99.24%. 

4.4 Hybrid Methods 

In order to get best results, the machine learning and 
deep learning techniques are executed in order to predict 
the best crop production61). The current atmosphere, the 
soil along with its constituents i.e.the climatic and soil 
parameters are taken into consideration. Deep learning is  

used to achieve numerous successful calculations as it is 
used to get the best suitable crop in case a number of 
options available. By using this technique, crops are 
predicted accurately. The output collected after applying 
ML algorithms is further passed to deep learning 
algorithms.  

 
Table 3: Various Hybrid models in Crop Yield Prediction 

Authors Year Description Models used Findings 

Agarwal et 

al.62) 
2021 

Predicting crop yield by 

using ML and DL 

algorithms 

SVM, LSTM, 

RNN 

The model foresees the ideal crops.  Crop 

prediction is carried out utilizing SVM, LSTM, 

and RNN.  Attained accuracy is 97%. 

Bodapati et 

al.63) 
2022 

Analyzing crop yields by 

using ML and DL 
CNN 

By adding neural networks as a tool, the CNN 

model outperforms the prior one. 

Mopideviet 

al.64) 
2022 

Predicting plant growth and 

crop yield by using ML and 

DL Algorithms 

CNN, LSTM 
Support Vector Regression and Random Forest 

Regression performed the best. 

Swarnakanthaet 

al.65) 
2022 

ML and Image Processing 

based decision making 

framework for precision 

agriculture 

Image 

processing 

Performed effectively for predicting yield, future 

market and intermediate buying selling prices, 

identifying pests and administering effective 

treatments, fertilizer plan and water delivery 

according to soil type. 

Bhansali et 

al.66) 
2022 

Predicting crop yield and 

disease detection 
DT, NB 

SVM or NN techniques are used to identify the 

type of disease. 

Nancy et al.67) 2022 

Image based plant disease 

detection along with 

classification using ML & 

DL 

Computer 

vision, image 

processing 

The technique makes it simpler to categorize crop 

disease images and anticipate illness. 

5.  Discussion  
In order to synthesise and extract the features and 

methods that have been utilised to estimate agricultural 
yields in research, a thorough evaluation of the literature 
is undertaken in this study68)-72). A few carefully chosen 
studies are examined, their methodologies are examined, 
and features are applied. The characteristics that are most 
frequently used include soil type, temperature, rainfall, 
and humidity. We came to the conclusion that Random 
Forests, Decision Trees, Neural Networks, and Deep 
Learning is the most often used machine learning 
algorithms after reviewing a number of machine learning   

Fig. 3: Article Distribution 
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literature. Additionally, CNN, DNN, and LSTM are the 

most often used deep learning techniques73)-75) in this 
research, with DNN coming in second. The literature 
review is conducted for several approaches used for crop 
prediction based on ML and DL and hybrid methods.   

Figure 3 shows the count of papers taken into 
consideration during the literature survey of 
aforementioned topic. Various kind of techniques are 
used for the prediction of crop yields in the articles 
surveyed. Figure 3 represents the distribution of 
various techniques. 

 

 
Fig. 4: Techniques used in surveyed articles 

 
6. Conclusion 

Cultivation has been metamorphosed with the use of 
technology as the time goes by. Also, the technological 
breakthroughs have had a number of effects on the 
agriculture industry. Artificial intelligence is entrenched 
on the assumption that it can define the human intelligence 
in a fashion that a computer can mimic it while performing 
several tasks (simple/complex both). Learning, thinking, 
and perception are all goals of artificial intelligence. 
Farming has become digital farming, thanks to the use of 
numerous sophisticated models (machine learning and 
deep learning methodology). By integrating ML with 
sensor data, systems for farm management are maturing 
into complete artificial intelligence systems, offering 
wealthy recommendations and perceptions for upcoming 
verdicts and actions with the eventual aim of enhancing 
the production. The study concluded various implications 
of machine learning and deep learning models to be more 
prevalent in the future for the creation of integrated and 
practical solutions with a lot of potential as advanced data 
analysis and image processing approaches.  

 
Nomenclature 

PA Precision Agriculture 
ML Machine Learning 
NB Naive Bayes 
DT Decision Tree 

RF Random Forest 
RFR Random Forest Regression 
MLR Multi-Linear Regression 
SVM Support Vector Machine 
SVR Support Vector Regression 
k-NN k-Nearest Neighbor 
DL Deep Learning 
ANN Artificial Neural Network 
RNN Recurrent Neural Network 
CNN Convolutional Neural Network 
DNN Deep Neural Network 
DQN Deep Q-Network 
LSTM Long Short-Term Memory 
RFE Recursive Feature Elimination 
MRFE Modified Recursive Feature Elimination 
BMA Bayesian Model Averaging 
MKL Multiple Kernel Learning 
IOT Internet of Things 
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