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ON THE BUCKLING OF CURVED RECTANGULAR
PLATES WITH CLAMPED EDGES UNDER
UNIFORM SHEAR*

By

Sukeo KAWASHIMA,t Hiroichi OHIRATt

(Received March 20, 1951).

Abstract

The buckling of thin curved rectangular plate, with clamped edges and
with finite dimensions, under the action of shearing force has been investi-
gated in this paper. :

In practice, it is seen in thin walled structures with stringers and frames,
such as gas-tanks, wagons, motor-cars, etc. In these structures, we are some-
times enough if we take into account only the buckling of a surface element
bounded by stringers and frames. '

Using the energy method, and assuming the buckled form in suitable
trigonometric’ functions, the general solution has been obtained in com-
paratively simple form.

Numerical calculation of it has been shown in figures.

1. Introduction.

The object of the present paper is to obtain the buckling load of the
curved rectangular plate under uniform shearing force écting on its clamp-
ed edges

In practice, it is seen in thin walled structures with stringers and
frames. When the buckling of the skin of gas-tanks, wagons, motor-cars,
etc. is considered, we are sometimes enough if we take into account only

* Presented at the joint meeting of the Japan Soc. of Appl. Mech., and the Soc. of Appl.
Mech. of Kyushu University (Fukuoka), Dec. 10, 1949.
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the buckling of a surface element bounded by stringers and frames. In
this paper, as the boundaries were assumed to be clampéd, the results are
applied to the structures whose wall is fixed to the rigid stringers and
frames by welding or rivetting in practical problems.

Same problem was treated by T.E. Schunck in order to estimate the
safety wind-pressure for gas-tank. But, as he could not obtain the general
solution, he showed a method of successive approximation and obtained
the buckling load for one example.

D.M.A. Leggett treated the problem for the infinitely long, curved strip
(I = o) under the both boundary conditions, simply supported and clamped.
But, as he made some simplifications in problem by assuming that the
curvature is small, his results can be applied only for slightly curved
plates. '

A. Kromn solved the same problem with Leggett and his results are
applicable also to the largely curved plate with clamped edges. In practical
structures the ratio //b takes an arbitrary value, and when the results by
Leggett and Kromm cannot be applied, we have not been able to estimate
the buckling load. This paper gives more general solution than former
papers. '

On the rectangular flat plate, S. Timoshenko gave a solution for simply
supported one, and our result gives for clamped condition, too. '

2. Analysis.

[t is very difficult to obtain the exact solution from the differential
equation, therefore the energy method was used. Taking the coordinates
as in Fig. 1, and considering the limit of stability to be the initial state,
then the increase of strain energy by additional displacements is given by

I (ahi2 €y eg r ’
V= j [ J ({ axdex-}-j o, deﬁ-{—J rdr)(l—-i)rdzdﬁdx (O
olo)—m2\lo 0 0- 4

where
[: length of the plate in x-direction,
a: central angle of the curved plate,
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a., 05, ©: normal stresses in x~ and y-directions respectively and shear-

X ’

ing stress,
¢, €, r: normal strains in x- and y—
. . . x —
directions respectively and T /%
' N e = .
shearing strain, NS /-
. b AT
r. radius of curvature of the ,q‘:?:z«._‘:f‘i -
l—— ® - Vi
curved plate, 2 \\l<"ur // l
h: thickness of the curved plate. | \*4;}_ -t ﬂ'
When we consider the buckling in ! 2 Lz
. . . , . P2 =T /
elastic region, the ratio z/# can be neglected N E>’ [~ °‘/ .
: : : N sr
against 1 in usual structures. ~\‘ "
For convenience, we write as follows "
Fig. 1

Oy =0y t0s, 0,=0,+0p, T=711T
where the suffix 1 means the values at the limit of stability and the suffix 2
the variation of them respectively.

In this problem o, = g5 = 0, therefore
1o (h/2 1 1 a (hf2
V= J j I flrrdzdﬁdx+~5jj [ (Outet+ sy + Tor) rdzdldx . (2)
0J0) —n/2 oJo)—np2
Before the buckling of the plate, the shearing force acting uniformly
along the plate-edges distributes in the interior of the plate uniformly.
If we denote with V,, the shearing force in y-direction per unit length
of the section of the plate perpendicular to x-axis, then 7; = N,,/h. More-
over, if we assume that the additional stresses remain within the limit of

elasticity, the relations between stresses and strains are

Opp = T—? <€x+y£0)

Op = 1£:yz (g5 +ve,) (3)
Y =_E 7

2 2(1+v)

where E: Young’s modulus, v: Poisson’s ratio.
Therefore, substituting (3) in (2), we obtain
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N I {a{h/2
V= 174 J J rrdzdfdx
oJo)—nj2

ot [ Jie - o e,

/2
If the strain components ¢,, ¢, and y are expressed by the components
of displacement wu, v, and w (#, v, and w denote the -, y-, and z-com-
ponents of the displacement in the middle plane of the plate),
7T =n+n"—220
&y = €12, ®)

gy = &2~ 2ZYp

where
S | ov , 1 dvfov ) law(aw )
n= sty S a}(aﬁ W)t e\ )
1 % . Ou _ .
wo= (G5t agr) "=k BT ©)
e =1 %0 w _.,1_<a_v ?iev_)
2Ty 00 Ty M 007

r, i1s very small compared with z;, therefore, / in the second term of
(4) can be neglected.

In order to use the principle of virtual work, considering the total
potential energy @, the work done by the external force cancels with strain
energy by 7, therefore, @ can be expressed by the second order terms of
displacements and of their derivertives as follows:

= %r J:[(el +e,P—2(1— u)(slez-— —)]rdﬂdx

0
D a l a
5 [(xx+za) _2(1_’))<Xxxa Lo )]m’ﬂdx+ Nyl | r'rdbdx  (7)
2 0Jo
where
_ Eh _Em
K=" D=1

When the plate exceeds the limit of stability, there occur the additional
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stresses. Accordingly, the first term of (7) expresses the work by the
additional stresses and the strains of the middle surface. The second term
expresses the work by the additional stresses and the bending of the plate,
and the third the difference of the work by the initial stress and the strain
of the middle surface and the work by the external force.

Now, we must assume the solution suitably. Kromm obtained the
solution by infinite series of trigonometric functions. Schunck assumed the
solution to be expressed’ by f(x)~¢(y), and firstly gave some. suitable ex-
pression only for f(x) so as to satisfy the boundary conditions at x = const.
Substituting it in the differential equation about y derived from 0Q =0, he
obtained the corresponding expression for ¢(y). Of which the first approxi-
mation is the ¢(y) which contains the minimum value of N,,. Where N,,
are determined from the boundary conditions for ¢(y) at y = const.
Substituting the ¢(y) in the differential equation about x derived from
0Q = 0, he obtained the second approximation of f{x) in the same way.
He repeated the above process successively to the desired degree of ap-
proximation. But, their calculations are very troublsome. If the expression
of the solution is suitable, the calculation will not be so complex. Observ-
ing the buckling of plates and shells bx‘l shearing force, we know that the
waves occur in oblique direction and approximately in parallel each other.
Therefore, considering the boundary conditions (clamped), we choose the

displacements as follows.

" u = Acos (mrrﬁ—nrr Q«) sin?7% .sin? 7t
l o l 174
v = Bcos (mr % —nx _Q) sin? 7% .sin?xl (8)
) o Jj a

w = Csin (mrc%—nrr -g—) sin? ﬂ%-sinz n-%
We can see that the displacements (8) are approximately those of the
actually buckled curved plate: the expression of w means that the nodal
lines occur in the direction which makes the angle tan™ —’%{]:tan"(%’f / m—l—)

with x-axis and that the number of waves is m/2 in a-direction and #/2
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in -O-direction. sihgn—? and sinzn% means respectively that the displace-
ments and the inclinations at the boundaries vanish.

Substituting (8) in (7), and assuming m and # to be any integer, we
can easily perform the integrations about x and #, and we obtain

Q= i M{[A (b-ale)-aB e+ Blar (1) e—alle

K 2 12 K
Be(L)fer S (Bewh ST+ 5 (A1)
+ea(L)i] ©
where |

a= 67’}111—}7
= (3m?+4) ,@2 —g‘”_ (3n2+4)

c= -3(1—2‘”—)—mn—}1;— |

d= +4) s+ (Bnt+4)

e= 2(1—v)(37n2+4)ﬂ2 +(3n"+4)

f =3n (10)
g = {(2-@(3m2+4)_;§ + (3 12)}n

h= 67;1%

i = (Bm*+24m?+ 16)— + -m(3mZ+ 4)(312 + 4) 7 +(3nt+ 2412 + 16)

1
J —3vmﬂ
31
=3

According to the principle of virtual work, the condition 6@ =0 must



On the Buckling of Curved Rectangular Plates Under Uniform Shear 45

be satisfied. In this case, this condition is satisfied when

2Q Q _ ., 2@ _
34 =0 w5 =0 =0 (11)

Therefore, substituting (9) in (11), we obtain

12) Beo+ c(-)J =0

orn{ar (8 emalr}-o( £ )fr 2(LYenle) —o
A(L)i (Lo (4 Yiene) “2’

refa( )+ (7)) =0

The coefficient of B and that of C in the second equation of (12) can

A(b-

be simplified by the neglection of small terms with (h/7? and (h/b) re-
spectively, as they are small compared with the other terms.

Performing above simplification, and eliminating A, B and C from (12)
we obtain the following equation to determine the buckling load

boaly (%)
e a-alp -G =0 w
i G o) +32(3) i

Expanding (13), we obtain

RN COR A S

Ty
-t
+ { (;”;)2@ 2¢hj + 2bfh—3ab — 3ad +ajt+af?)

Ny

—%;—(%)za(lwd)i+ac?—a]m1}T
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+{(2) ety 3¢+ 3bd ~df ~bf) + T (2 (— i+ bai)) = 0. (19

Substituting the given dimensions of the curved plate in the above equa-
tion and choosing suitable values for m and #, we obtain some solutions for
N,,. The buckling load is the smallest one of them. But this equation is
too complicated to search out the minimum value of N,, by several com-
bination of m and n. Therefore, under the following consideration, we
simplify (14). For the first step, we consider the flat plate (» = o). In this
case, b/mr = 0. Therefore, (14) becomes

~_3]\/':#3’_"-[2___]_1_22' 2( ]Nxz
2 () +{52(4) v af(f)
_ﬁf_h _ Nxv_m_sz' o .
{54 Yato+dyi—ac+aba [N Z (2 Y~ ci+ban = 0. (15)
In the coefficient of N,/K, the terms with the 1nﬁn1te51mal factor (h/b)
can be neglected against the other terms.

While, even the maximum shearing stress in usual materlals is very
small compared with E/(1—»?), and especially in the elastic region, N, /K

= / 1 _Lf : is very small magnitude. Therefore, in (15), the first and the
second terms can be neglected.

As the result of above simplification, we obtain the buckling load of
the flat plate in a very simple form as follows.

S ICE

Now, on the curved plate, the similar neglection of the first and the
second terms of (14) can be performed.

In the equation, moreover, we neglect the terms with the infinitesimal
factor (h/b)* and the terms with (b/zr)?, as they are considered to be com-
paratively small, by the estimation of the values of m and » obtained from
the numerical calculation of (16) for given f# on the flat plate. Then it
" becomes

Vo= G Cr )+ R (5)1 on

Substituting (10) in (17), the general expression for the shearing buckl-
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ing load of the curved rectangular plate with clamped edges is obtained as
- follows.

_ Dz 1 4 2 1,204, 2 1
Ny = B [{(3_m + 2+ 16) 2o+ S G+ 4) (308 + 4)

E

+(3n4+24n2+16)} +.36. (_) {1—

1—v
2

L 2 21 el o1
+4) iz + (3# +_4)}u2m {(3m + 4)‘32 +
I
31 2
—3(1+ v)vmznzég
S I vy mzn"’;f”

- 2
2 +4)}n

+ )L 32+ 4 }{(37112 a4y L ; I=vigey 4)}

¥ 7

(18)

The second term of this expression is the term depending on the
curvature. )

‘When the dimensions of a plate are given, the actual buckling load is
the minimum value of N,, calculated by suitable substitution of m and 7.
The results obtained by the numerical calculation of (18) for » = 0.3 are
shown in Fig. 2 and Fig. 3.

When b/zr is larger than 1, the error will become greater. Hence, in
these cases, the buckling load should be obtained from (14). '

3. Comparison and Consideration of the Results.

a) /b = finite:

In this case, the data are only Timoshenko’s (for the flat plate with
simply supported edges) and Schunck’s (for the same problem with this
paper, but it shows only a numerical example on a plate of special size
shown below). Their results are compared with the authors’ in Fig. 2.

Schunck obtained the following result for the curved plate (¥ =20 m,
b=5m,/=15m, 2= 05cm).

N,, = 158 kg/cm, m = 6.25, n = 1.15.

From the authors’ formula, it is
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N,, = 164 kg/cm, m = 6, n = 1.

The authors’ value is larger by only 494 than Schunck’s.
b) /b = infinite:

In this case, the data for clamped edges are Southwell's (for flat plate),
Wagner’s (experimental formula), and Leggett’s. While, those for simply
supported edges are Southwell’s (for flat plate), Leggett’s and Kromm’s.
Their results are shown in Fig. 2 and 3 with the authors’. For the flat
plate, the buckling load obtained by the authors is larger by about 79 than
that of Southwell’'s. The reasons will be as follows: In order to be
able to perform the numerical calculation with comparatively little labour

%,
R -
\\ % 4 1.
\— Nig= & B
A\ ‘ Vgl
NN -
\ V=03
L\ O d] d ]
100
Schunchk (fxed) |
¥ -
-, peo
| E_,
10 |-Timashenfe (sinpy supported) \\ AL _
P =y
Ir =0 \\ Smtkwc”(fx)“)-.) #-0, foc
Southweli (Singly supported)
B -
Frali
Y 07 63 0463 1o 37UHS T p %

Fig. 2.

the authors represented the displacements not with infinite series but with
one term respectively. Accordingly, there exist restrictions that the nodal
lines are linear and the number of waves is integral.

On the curved plate, the result of this paper agrees with that of Leggett
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for small value of 6*hr (for the small curvature). But, in Leggett’s result
there occurs the effect of his assumption that the curvature is small, as

Kromm

stated on the simply supported case in his _paper, for the large
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value of b?/hr. Accordingly the authors’ result become smaller than that
of Leggett. It is reasonable. As the numerical calculation of Leggett had
been performed only in the region b*/hr = 0 to b*/hr = 15, the authors ex-
tended his curve with more numerical calculation.

On the experimental formula by Wagner there is no detail explanation
of his treatise in our hands, and the numerical value of the coefficient in
his formula seems to take some different values. We can not know the
applicable region of his results. Accordingly it is impossible to discuss our
result with his.

4. Conclusions.

The buckling of curved rectangular plates with clamped edges under
uniform shear was found in comparatively little labour. Its result is also
available for flat plates.

Acknowledgment: The authors are grateful to the Education Depertment
for the grant to this study.
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