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STRENGTH OF A SOLID CIRCULAR CYLINDER 
STRAINED BY LATERAL PRESSURE 

Akimasa ONO 

Professor Emeritus, Ji yushu Uni versity 

(Received Sept. 7, 1948)* 

1. Introduction 

Among various items of problems relating to high pressure technique, 

it was pointed out by P.W. Bridgman in the International Congress for 

Applied Mechanics at Zurich, 1926, and is also described in his work on 

" The Physics of High Pressure " , that a solid cylinder with free ends and 

acted on by the lateral fluid pressure is liable to rupture, usually in the 

middle part, when the pressure rises to a limit approximately t·qual ,in 

magnitude to the tensile str ngth of the material of cylinder ; this takes 

place, it is • said, ·as if a cylinqer is pulled apart by the axial forces acting 

at ends actually free from any traction ; the appe~rance of the fractured 

cylinder seems to be like an ordinary tensile specimen with or without 

local contraction according as the material- is ductile or brittle. This 

phenomenon, called the "pinching-off" effect, drew ;ittention of the atten­

dance at Zurich. But looking over the , literature, it reminds us that the 

above effect may probably be brought in the same category of problems as 

the t~nsile rupture of materials surrounded by a pressure medium, as had been 

investigated by the school of W. Voigt in Gottingen towards the end of the 

foregoing century and also by some others since then. If this be inadmis­

sible, the reason ought to come from the stress distribution being not 

identical. So taking the homogeneous stress-state a1 =0, az=a3= -p (P = a 

positive constant), as a standard, any deviation due to a particular surface 

condition should be made clear. 

* Delivered at the Monthly Meeting of the Research Institute, April 30, 1948. 
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In the present note the elastic calculation of stresses in a solid circufar 

cylinder with •infinite length strained by uniform pressure acting in a finite 

zone of the ·lateral surface, Figs. 1 and la, . will be performed to determine 
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Fig. 1 Fig. la 

the strength of a cylinder with particular attention to the tensile stress in 

the axial . direction. With regard to the present problem, it is to be re­

marked that an approximate method of the calculation based on energy 

principle is given in the book, ·' Drang un_d Zwang" by · A. and L. Foppl, 

2nd vol., 1928, p. 141, but the result of the calculation seems to be inap­

plicable for the present, owing to a great deviation from the exact calcula­

tion. Remembering that a method of the exact calcuation was formerly 

developed by L.N.G. Filan, Phil. Trans. Roy. S.oc., Ser. A, vol. 198, 1902, p. 
147, we find also in the above book an analysis of stresses made by in-

/ tegrating the differential equations of elastic displacements for a case of 

the pressure distributed practically in accordance with the inverse square 
I . 

law of the distance from the section, where the pressure attains its peak.; 

this pressure distribution is improper to the present case ; moreover, the 

~alculation shown there is limited to the stress near the boundary surface. 

2. General Formulae. 

The deduction and intergration of differential equations of the elastic 

displacements in a cylinder strained symrpetrically abeut its axis are fully 

explained in the above works by Filon and Foppl. Also in the author's 

book (in Jap.) on Mechanics of Materials (Zairyo Rikigaku) the basic 

formulae of this problem are ready for use ; so it will suffice for the present 

to not~ that the displacement components, u and w, in the radial and axial 

directions, respectively, or more definitely their derivatives, ow/or and 
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ou/oz, taken along the radial and axial directions, are bound to the equa­

tions of the same form 

(D2 + _!!___)
2 (~w ~) d= O. oz2 or ' oz 

32 0 1 where D2 = "..\ 2 + "' , and that the result of the integration can be ur or r 
represented in circular and Bessel functions; so it is also with the stress-

components. Thus, writing ]0 (ikr) = /0 (kr), i- 111 (ikr) = {1 (kr) , and leaving 

out unnecessary terms, 

11 z = A cos kz { 4( 1 - -~ ·) /0 \ kr) ·_ ( 1 + a.)[ 2( 2 - ~ ) 10 ( kr) + kr / 1 ( kr) j} , 

ar = A coskz { 4( 1 - ~)(11 ~~) -/0 (kr)) + (1 + a{ (1 - ;) /0 (kr) + kr / 1 (kr)]} , 

r;, = A cos kz { (l + o.)( 1-~) lo(kr)- 4( 1- ~y1
~;)}, 

r = Asink2{2(1- ~)(l-a)/1(kr)-(l+ri)kr/0 (kr)}, 

and ( 1 ) 

0 :;::a,,+a1 +az ~ -A2(1+ ~)(l+a)coskzlo(kr) . 

where nz , nr , rY, are the normal stresses in the axial, radial and tangential 

directions, and r is the shear stress causing the obliquity of the angle 

between the linear elements dr and dz; further A and k are arbit~ary 

constants.1
i The normal stresses shown above are even functions of both z. 

and r, while the shear stress is an odd function of the same. Here, the 

normal stresses being all symmetrical about the plane z = 0 , the expressions 

(1) suit the stress-state caused by the pressure distributed symmetrically 

about the said plane. Lastly, in order to make the shear stress vanish on 

the cylindEical surface. r = the radius a , the constant o. in (1) should be 

taken as 

(/. = 211(ka) - l 
m . 

Z(m- l) ka / 0 (ka) + /1 (ka) 

ka bemg simply denoted by y in the following. 

1> 'A ' is written for Q_
2 
~ A 1 of the author's book referred to. 
m-1 

( 2 ) 
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NO\v it is to ,be observed that the stress-component.~ have to satisfy 
the eciuations of equilibrium 

paz + 1 o(rr) 
oz r or 

· OT = o o(ra,,) -a,+r~ 
er 

= 0: l 
as mav be verified by substituting en and making use of the formulae. 

o Io(x) = 11 (x) 
ox 

. and o /1 ( x) = 1 (x) _ /1 ( x) . 
OX O 

· X 

( 3 ) 

As th shear stress disappears on the circular boundary. there is no 

surface traction in the axial direction; then the stress force on any cross 

section must vanish, as it is actually the case, for 

Caz rdr = A coskz.[ { 4( 1-~) r / 0(kr)-(l + 11)[ 2( 2- ~) r I0 (kr) + kr2 / 1 (kr) l}dr, 
' 

or with ka = y , 

.[a2 rdr = Acoskz 
2
:

2 

( 1-¾z){ 2/1 (.v! - (l + o){ 2(:- l) Ylo(Y)+ li(y) )} . 

in virtue of the relations 

jxln(x)dx = x/1 (x), 

f x 211(x)dx = x 21o(X)-2xl1(x). 

and the expression in { -} , becomes nought because of the expression (2) 

for r1. Thus, no axial stress-force being present on any doss-section. there 

is neither pull nor thrust acting on the cylinder: Accordingly, the stress 

components (1), more particularly '12 , may be considered to be solely due 

to the· normal traction on the circular boundary, provided that the cylinder 

is so long that no end effect exists (Saint-Venant's principle) at the part 

coming into consideration. - 1 

3. Preliminaries, Cosine-Distribution of Pressure. · 

Before going to investigate the stress-state in a long cylinder, as was 

specified in Art. 1, a survey may be made in a simple case taken for 
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reference, i.e. a cylinder with th·e length 21, Fig. 2, acted on by the pres­

sure varying in such a manner that the stress a,, at r = a is 

a ra = - Pi cos kz . 
As the length is finite, the end effect should be made 

possibly small ; this condition can be partially satisfied 

by taking 

kl= ;·. ( 5) 

Then the normal stress az is zero at z= ± , l, , though 

the shear stress remains there. Next, to comply with 

the condition ( 4), we have from the first expression 

of (1) 

m 
_ 2 (m-1) Y lo(Y) + 11 (~) 

A - P, 2y(Iij(y)-fl(Y))-4(1- ~y;y) • y = ka 

With these constants the stresses at r = 0 and r = a are 

a = A coskz (y lo(y) -2) 
zO LI li(Y) ' 

a = a = - /2..! cos kz (L lo(Y) + 1-) 
ro to LI 2 Ji( y) m ' 

i-
-and 

where 

(7 = - Px cos kz I. (y) [2-y( lo(Y) - 11 (y) ·)] l 
za LI O l1(Y) Jo(y) ' 

a = _..h_ cos kz 2 [ lo(Y) + (1-1-) I!(y)] 
ta .J m m y l 

LI ____ yl.(y)(lo(Y) _ li(Y))-2( 1 _ __!_) l1(Y) . 
P 11 (y) lo(Y) m y 

Fig. 2 

These stresses are the principal stresses, as r ·= 0 for r = 0 and a . 
Now putting k = y/a in (5), the length-diameter ratio is 

l rr a- 2y · 

( 4) 

( 6) 

( 7) 

( 8) 

( 9) 

(10) 

For some assigned values ·of y and the corresponding ratios l/a, as are 

written in the first two columns of Table 1, the numericaJ values of the 

stresses and also of the stress-differences at the middle section z = 0 are 

shown in the ·same table. 
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Table l. Stresses at the middle section z = 0 

due to the pressure P1 cos kz . 

r=O r=a 

Y. I/a 11 ro/Pl t1zo/P1 ( a zo- 11 ro)/P1 . t1ta!P1 11 za/P1 ( 11 za- 11 ta)/P1 

0 00 -1 0 1 -1 0 1 

0.25 21r -0.998 0.012 1.010 -1.004 -0.012 0.992 

0.5 TC - 0.992 0.046 1.038 -1.014 -0.047 0.967 

0.75 2n/3 -0.980 0.098 1-078 -1.029 -0.103 0.926 

1 TC /2 - 0.960 0.162 1.122 -1.048 -0.177 0;87] 

2 n/4 - 0.774 0.387 1.161 -1.108 -0.539 0.569 

3 n/6 - 0.492 0.390 0.882 -1.091 -0.810 0.281 

4 1r/8 -0.264 0.266 0.530 -1.'030 -0.938 0.092 

I, 
We see in the table that azo 

is always positive and has a 

maximmrr at a point between 

rc/4 and rc/6 of l/a (cp. Fig. 
,.s J- '\ 

3), while aza is negative, and 

of the stress-differences~ az0 -a,,o ,, 
•. i ~ \ , and aza-ata , which are equal 

to twice the greatest shear 
q,~ i v~u \ rx . . · stresses at r = 0 and a , re-

spectively, · the former is 

4',2 I- I ....,,___, greater than the latter for all 

the values of l/a; these 

c- circumstances may be ref erred 
.,.. "" ,,,, 

Jr j-lC 7( 

.z to as a guide in the following 

Fig. 3 analysis. 

4. Uniform Pressure. 

No;w we have to consider the surface condition as signified by Fig. 1; 

then the radial stress a,,.0 at the surface should be made numerically equal 

to the uniform pressure intensity p in the part between z = + e and - s, 

while it is zero in the other parts, both positive and negative, extending to 
infinity, i.e. 
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a · = -P~ (" sin µy cos ny d 
ra 1[ Jo Y Y 1 

(11) 

where y = ka, µ = c/a and· n = z/a. 
The stress-state conforming to this condition can be built up by taking 

the coefficient A in (1) as a function of k, _putting dA in the place of A , 

such that 

dA = A' adk = .il'dy, 

' and integrating the elementary stress-components with respect to y from 

zero to infinity . Here, A' is 

A'= p 2 sinµy 2(m-l) Ylo(Y)+l1(Y) 

n y 2y(ll(y)-Jr(y))-4( I-~) 11;y) 
m 

(12) 

With this expression the stress-components at any point (r, z) can be found; 
particularly, for r = 0 

and for r = a 

aza = [A'cosny{4(1 -~)lo\Y)-(1'1 a)[2(2- ~)Io(Y)+yl1 (y)]}dy , 

u,. = J:,A'cosny{(l + a)(l-~)l,(y)~·4(1- ~)111) }dy , 

• &a = aro+ ata+ aza= - 2( 1 + J )( A' cosny(l + u.)fo(y)dy; 

r is zero both for r = 0 and r = a . 

(13) 

(14) 

Substituting the expressions (2) and (12) for u. and A', respectively, we 

have from (13) and (14) 
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·a
20 

= p ~ ( ~ sinµy 
1
cosny dy, 

7r Jo y 

ar
0 

= a,
0 

= -p..'!:..J
00 

~ sinµy cosny d 
rr o y Y, (15) 

0 
0 

= - p1:_ 2 (1 + 1-)J00 

__!_ sin PY cos ny d 
n m. o d ' y y' 

and 

a
2
a = -p 2 J00 

(£ sinp.y cosny d 
rr o y Y, 

a
1
a = -P- ~ smµy cos ny d 2 Joo • 

rr o y Y, (16) 

9a = -pl_ 2 (1 + L)f°° fo(Y) sipµy cosny d 
rr _ m Jo L1 y Y' 

where 

U = 1-(y lo(Y) -2) ~ = 1-(L lo(Y) +1-) 
L1 l1(Y) ' L1 2 l1(Y) m ' 

[ = Io ( y) [2 - y( Io ( y) - /1 ( y) )] SD = 2 /o( y) [1- + (1- l ) -~ 01_] 
· .d l1(Y) lo(Y) ,' .d m m Ylt(Y) 

l (17) 

and 

· J = ylo(Y)(lo(Y) ~ -l1(Y) )-2(1-_l)l1(Y) 
11 (Y) lo(Y) m y . 

(18) 

Take z = e for the present ; then the stresses at each end of the pres­

sure zone are 

a = p_J00 

~ sin 2 PY dy 
.zo 7! -0 y ' 

. l . 
aro = a,o = _.P_Joo ~ sin2µy dy 

7! 0 y ' 
(19) 

0 = - p 2 (1 +-!_)Jco !__ sin2µy d 
" 7r m o J y Y, 

and 
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a = _.P_J00 

lr sin2µy d 
w rr 

O 
y Y , 

a = _.P_J00 

~ sin2µy dy 
la 1'C O y , (20J 

0 = _p_ 2(1 +.l__)f°° lo(Y) sin2µy dy 
a 7r m Jo A y ' 

showing that these are one half the respective stresses to be caused at the 
centre (z = 0) of the pressure zone with a double range, i.e. 2e instead of 

e ; this is quite natural, as the latter stresses may be obtained by combining 

two equal systems with the semi-zone e placed side by side. More genera11y, 

the stresses belonging to two systems with equal or unequal . lengths of the 

pressure zone may be combined to find the resultant stress. 

In the above .formulae we have, however, to observe the discontinuity 

existing at z = c , particulary on the surface r = a ; this point will be studied 

later on 

5. · Numeriq1l Calculation of S1!resses at an Axial Point. 

First~ to find the stresses at r = 0, the evaluation of the integrals was 

performed by dividing the range of y into two parts, , viz. from zero to Y1 

= 10 and from y 1 to infinity. In the first part, the numerical value of the inte· 

grand was · calculated for several values of y (0, 0.5: 1, 1.5, 2, 3, ... , 10) by 

the aid of the tables of Bessel and circular functions, and the quadrature 

was done by means of Simpson's rule. Table 2 shows the values of 1/'1, 

~and~ . 

Table 2. Values of 
1 

: %£ and ~ . '1 

1 
~ ~ y 

,d 
---

0 0.7692 u 1 

0.5 o.7452 0.0461 0.9918 

1 0,6758 0.1623 0.9597 

1.5 0.5698 0.2941 0.8879 

2 0.4466 0.3869 0.7141 

3 0.2286 o:3896 0.4919 
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0.1010 0.2658 0.2642 

5 i 0.o418 0.1503 0-1295 

6 I 0.0167 
I 

0.0766 0,0601 

7 I 0.0066 0.0367 0.0269 

8 I 0.0026 0.0169 0-0118 

9 

i 
0.0010 0-0075 u 0-0051 

10 0.0004 0.0033 0.0022 

In the second part beyond y1 = 10, the asymptotic expansfoms of Bessrl 

functions were used, viz. (cp. Jahnke und Emde, Funktionentafrln, p. 203) 

eY 
) __ ·Sa, 

/ 0 ( Y = 1 · 2 rry l1(Y) = l 

eY 
2~y S1, 

where 

S = 1 + C1 + C2 + ... 
O y y2 . ' 

and 

S1 = 1-41 - d2 - ... 
y y2 ' 

witn c1 = 0.125, c'2 = 0.0703125, ... , d1 = 0.375, d2 = 0.117187G, . . . . Then, we 

have approximately 

J= 
1
eY_(1-0.775) 

y 2rry y ' 

and with ,:i = 0.3 

~ = e-y y 1/ 2ity ( 1- o.}25) ' , 

~ =.e-.vyJ; y(l+ l.~75_). • 

These expressions give for y1 = 10, 1/J = 0.00039, ~( = 0.00332 and ~ 

= 0.00214, showing in comparison with the values in Table 2 that the 

' accuracy of th~ approximate ,calculation is quite sufficient for the present 

purpose. Thus, putting 

F(11, n; y) = sinµlcosny 
y 

we have from (15) 

(11 = : and n = ~ ) , 

'Y 00 l a,.= P ~ (J. ~ F(µ, 11; y)dy+ j C·'Y V 2iry ( 1- 0-:25 ) F(µ, 11 ;y)dy ,} , 
Y1 

I 
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(21) 

00 

+ t, e-',/ 2iry ( 1 + 0-:75) F(µ, n; y) dy}. 

Leaving out the factor F(11, n; y) , which is less than µ, for the moment, 

we have to calculate the integrals 

and 

in the first two expressions. The first integral may be reduced to the 

second, for by the partial integration 

Je-Y y! dy = -e-y yi+ ~ Je-Y y2 dy. 

Again, by the partial integration 

Jcv y½ dy = -CY y½ + }Je-y y ·-:½ dy. 

Substituting in the last integral y = t2 , 

Jcyy-½dy =2Jctidt. 

Accordingly, 
00 00 - l/Yl 
j e-.v y 2dy=e-Y1i/y1 +J _e-t~dt=e-Y1✓y1- +il2rr -j e-t 2 dt. 

Y1 r/J1 o 

For Y1 = 10, we have 
r/Tif -

[ ct 2 dt = ✓ rr 
\ 2 

very nearly, the difference being of the order 10- 5
; hence, with a sufficient 

degree of accuracy 
00 

J e-Y y¼ dy - e- 10 1110 = 0.00014, 
IO 
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and also 
00 • 

J e-~ y½ dy-- e -10 101/ To+ ~ x 0.00014 = 0.00165. 
10. . 

Thest' values might modify the last fi.gur·e (third decimal place) of the 

coefficients of p/rr in Table 3 ; however, neglecting- this order of magnitude, 

we omit the second integrals beyond Yi = 10 in the expressions of (21 ) ; 
then the stresses at each end of . the pressure zone, 211a in length, are 

calculated by putting 11 = n, a~ shown in the table. 

.· Here the values of a,,0 = 1110 were found as a,,0 = ~ (0 0 - az0 ). ~ The· table 

shows that (Jzo is positive; it is greatest when 11 is equal to some 0.3. 

Table 3. Stresses at r = 0 and z = c due to uniform pressure p 
acting in a zone with -the length 2/lfl . 

- µ·~--= I_ -

0n , 11 zn <1,-0=<110 I ,, zo 11 ro= 11 to 
. - ----·-

0.1 - 0.962p/rc 0.274p/rr - 0.6l8p/rr 0.087 p - 0.197 p 
0.3 - 2.365 0.433 - 1.399 0.138 - 0.445 

0,5 -2.963 0.250 -1.606 0.080 - 0.511 

0.7 -3.137 0.089 -1.613 0.028 - 0.513 

0.9 - 3.179 0.024 - 1.602 0.00~ - 0.510 

1.0 - 3.200 0.021 - 1.611 0.007 - 0.51 3 

Now taking two continuous · pressure zones, as signified by c and c', 

respectively, each with the same value of p, the resultant stress at the 

point of continuation is found by adding two stress systems; thus with re­

ference to (19) 

sin 2ke+ sin 2kc' ~ 2sink(c + c')cosk( c- e'). 

In this way we obtain the stress at the point z = e-c' measured from the 

centre of the combined zone with the total length J ~ 2 ( e + c') ; particularly. 

when e: = e', the point just refererred to coincides with the centre. Table 4 

shows the values of the stresses (Jzo and a,,0 and also of their difference, at 

some points of the zone with ; = 2a(p+ µ' ) = 2a, as can be readily found 
\ 

from the component stresses in Table 3 ; in the most tables following the 

figure in the third decimal is omitted. 
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Table 4. Stresses at some points of the zone with J = 2 a. 

Distance from centre O'zo O'ro dzo-drO 

0 0.16 p -1.02 p 1.18P 

0.4a 0.17 -0.96 1.13 

0.8a 0.10 -0.71 0.81 

I.Oa 0-01 -0.51 0.52 

Again , Table 5 gives the values of the stresses at the centre of a zone 
with the total length ) = 2a(µ+p')=411a, as were obtained from Table 3. 

Table 5. Stresses at the centre of a zone with 

the total length 4110 . 

Length of zonf' 
O' zO dy0=dtn 11 zo-O"ro A= 4µa 

o.4a 0.17 p - 0.39 p 0.56 p 
1.2 0.28 -0.89 1.17 

2.0 0.16 - 1.02 1.18 

2.8 • 0.06 -1.03 1.09 

3.6 0.02 - 1.02 1.04 

4.0 O.ol - 1.03 1.04 

It will be seen in the above table that the radial stress at the centre is 

approximately equal to the pressure applied at the surface, except when the 

length of the pressure zone is much smaller than the diameter of the cylinder: 

,. as to the axial stress, which is positive, there is a peak value at a certain 

Fig. 4 
/ 

. I 
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point of the length-diameter ratio, about J./2a = 0.6 say; cp. Fig. 4. So far, 

it' appears that the amount of tensile stress induced in the cylinder is given 

by azo, and further that the stress-difference found above is an important · 

item in estimating the shear strength. However, we have still · to ca1culate 

the stresses in the surface layer to compa,re with the above ones . 

. f • 
6. Stresses .in the Surface Laver. 

Next, to calculate the stresses (16) in a similar manner to the prec~dmg 

article, i.e. by numerical integration up to y 1 = 10 say, and then adding the 

remainder for higher values of y, we have approximately 

and 

Ci= 1+ 0.4. 
y ' 

'.!l = 0.6+ 1.94 
y 

10 .J(y) = 1+~ , for y> Y1 = 10 say. . y -

If we neglect the second term in each of these expressions, the stresses 

(16) are 

~ ~ . l 
11za = - 2: {L (~- l)F(µ, n; y) dy+ L F(µ, n; y)dy j , 

- 2P ( ,Y1 . ' C 00 • } 

rr,a - -rrl\ (:!>-0.6)F(µ,n,:)dy+0.6\ F(µ,n,y)dy , (22) 

fi 0 = - ~f 2(1+ ~)U) I,~) -1 )F(p, n ;y)dy+ ( F(t,, n ;y)dy}. 

Taking e.g. e = a and z = 0, i.e p. = l and n = 6, the values found from 

(22) are 

aza = -0.11 P and ata = - 1.06 p, 
which· give together with ara = -P 

(Jza+ (]ta+ (Jra = -2.17 P 
in coincidence with the value of 0 a directly obtained. Hence, also 

a2;-a10 = 0.95 p, 
a result smaller than t1zo-ar0 in Table 5. Further calculation for different 

values of c may be dispensed with, as aza is negative and I atal is not likely 

" so large that tYz0 -a10 surpasses tYzo-a,-o. 
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However, the stress at z = e attracts special attention because of the dis­

continuity of the surface condition at that point. Let the rectangular area 

with the height or= a(l-p) and small width 2a = 2a I 11,n I, · Fig. 5, re­

present the projection of a cylindrical 

element at z=e. Then a review of the 

condition of equilibrium in the axial 

direction with regard to this elementary 

part is necessary, since oa2 /oz and or/or 
are found to be infinite in the limit 

when o:~o and r~a; so the first equa­

tion of (3) is subject to a certain revi­

sion. The second equation of the same 

may be left as it is, every term in the 

equation being finite. 

Fig. 5, The stresses in the radial direc­
tion are left out for the sake of 
clearness. 

To comply with the condition stated above, we have to retain (or/or)dr 
as well as r in the first equation of equilibrium ; thus we write for the 

moment 

oaz ( dr) or 
32 r+ 2 +1:+3r(r+dr) = O. 

By making fJ~l in or=-= a(l-p), r+(or/or)dr is the shear stress at the 

surface, i.e. 

OT r+Tr dr = 0. 

Accordingly , -r and (pr /er) dr are of the same order of magnitude; as . they 

disappear from the equation of equilibrium, we . have by neglecting dr in 

comparison with r , 

(3a) 

This ·equation may be interpreted as a particular case of the first equation 

of (3 1
1 because the latter reduces to· this form, if we omit r/r, which is 

small as compared with I oa2 /02 I and I o,/orl. So the stresses a2 and r bound 

by ( 3 J are correct also at this particular point. Therefore, we pass on to 

find the values of a2 and r at and near the point z = e. Speaking more 

specifically, the distribution of the stresses just under the surface layer is 
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to be made clear because of the peculiarity of this point. This item of the 

subject will be reserved for the next article but one, where the equilibrium 

of stresses will be considered further in detail. 

In the expressions (22) we put first z = c· or n = p·. Then, since 
.,0 00 

2J F(µ, µ; y)dy= (' sin 2 µy dy = ~ , we have 
0 \ y 

(a~~),=_ (~ -l) sm 2µy dy _ p Pf 
Y1 . 

IT O y 2 ' 

(a,a), = - (~-0.6) sm 2µ~dy-0 ffp_ P f
Y1 . 

ITO y "2' 
(23) 

(8a)~ = _p 2(1+ l)JY1(lo(Y) -l)sin2µydy-f! 2(1+ -~-) 
IT m O LI_ y 2 m 

Next, we take a point just inside the pressure· zone and put z = e-a 

with a~o; then the first term in each expression of (22) - the integral with 

th~ finite limits - will_ be almost same as in (23), but the second term becomes 

twice as large as in the above formulae, as 
00 

2J F(µ,n;y)dy = rr, )¥hen n<µ . 
0 

Lastly, as to a point just outside the pressure zone, i.e. z = e + 0, the 

second term r disappears. 

To illustrate the above statement we take for example c = a or /1 = 1. 

Then, we find with y1 = 10 that 

(aza)c = 0, (a10 \ = -0.50 P, (00 )t = -1.00 P. 
As (ara)e = -0.5 p at this point, (a20)f; + (~10)e + (ara)e = - 1.00 P, coinciding 

' with ( 0 0 ), in the present degree of accuracy. The values of a2 ~ on both 

sides of the very point of the discontinuity are -p/2 just within and + p/2 
just without the zone, Fig. 6, while the values of a10 in inside and outside 

differ from ( a10 )e by + 0.3 P , respectirely, It is to be noted that the tensile 

stress at the point z = e + 0 is much greater than the greatest tensile stress, 

as may be found in Table 5. But the tensile stress stated above refers to 
a particular case when µ = 1 ; so the value . of the said stress in a more 

general case comes into question. 
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1 

Before going, however, into the calculation for a series of values of µ, 

as will be carried out in the next article, a remark concerni'ng (22) seems 

to be wanted for the present. In the ex-

pressions given there, 1/y is neglected in com­

parison with unity; so it is desirable to see 

the effect, if any, ,of this secondary term left 

out. Now if we suppose to retain this term, 

an additional term made free from a constant 
00 

factor is 2J F(µ~n;y) dy, which may be 
Y1 

written as 
00 

· f sin(µ+n)y d +J sin(µ-;-n)y dy. J y2 y y 
Y1 Y1 

Putting t = (11+n)y and r; = (µ+n)Y1 in the 

first integral, it becomes 
00 

(p+n) J si~t dt' 
1/ 

or a(ter partial integration 
00 

(ti+ n) [ si;1 +.J, c~st dt] 

Fig. 6 

In a similar manner the second integral may be transformed by putting 

f=; lµ-nly and r;= lµ-nlY1, as 
00 00 

± _2 f s_i~ t dt = ± L[ sin 7J + J cost at] 
Y1J r; t Y1 r; rr t 

according as µ_s,n. 

In the first case, where it may be assumed· that 71 = (µ+ n)Y1 }> 1, 
00 

J cost dt-- _ ·sinr; ; 2> 

1/ t - "1 

therefore, the expression in the square brackets vanishes. As to the second 

case, where ·7j = I 11-n IY1 tends to zero, 

( cos t dt l . . 2i J -t- = - nrr;, 
">; 

2> Jahnke-Emde, Funktionentafeln, 2nd ed., p. 78. 
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In r being the Euler's constant. · Hence., in the limit 
00 

Lim 1 l cots t dt = - Lim 1l In 'l = 0 . 
~=O J~ · ~=0 

Thus, there is prac.tically no appreciable error due to. the omission of the 

secondary term ; the extent of the actual error will be considPred in the 

calculation of <!za. 

7. Values of the Tensile Stress at Ends of the Pressure Zone. 

In (22) 

( 
y )2 1 (y )4 fo(Y) = 1+ 2 +4 2 + ··· , 

. y [ 1 ( y )
2 

1 ( y )4 J l1(Y)= - l+ - - + - - + ... · 2 2 2 12 2 . 

Accordingly, 

Y [Jo ( Y) _ 11 ( Y) ] _ l _ 1 ( y )
2 + 5 ( y )

4 + 
2 l1(Y) lo(Y) 2 2 12 2 

:!__ = y[Io(Y) _ l1(Y)]-2(1-l__) l1(Y) = (1+1-)[1 - l(-1')
2
] 

lo(Y) 11 (Y) lo(Y) m Ylo (y) m 2 2 ' 

(£ = lo(Y) [ 2-y( lo(Y) _ l1 (y) )] = m (-Y-)2 [i-1- (L)2
] • 

J /1 ( Y) Io ( Y) 1 + m 2 3 2 
I 

Taking simply the first term only in the last expression, we have in the 

case when n = µ , 

~ r~ 2L 0:F(µ, n;y)dy = 4 (l:m)Jo ysin2µydy. 

With~ = 0.3, 
I 

fY1 • 1 ·_ . 
2\ 0:F(p, n;y)dy_= 5_2(2µ) 2 (sm2P-Y1-2P-Y1Cos211Yi). 

If p is small as compared with unity, .. thi's becomes approximately equal to 

2pYJ/15.6, while it diminishes as 11- - 1 for large values of p. 

Next, the following integral may be also considered in two extreme 

cases, viz. for small values of µ 
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f Y1 JY1 . 2 (2 )3 
\ 2F(11,f1;y)dy = 

0 
smy 11Y dy = 2ftY1- 3 ~Y:3! 

and for large values of /' 

sin 2fJ.Jr 
(2µyl)2 

27 

Thus, according as fl 1s very small or large, the second expression of 

(22) may be written as 
00 

aza= ~2f1y1(1- 1Y5t6 )-~J 2F(µ,n;y)dy 
/( . • ,, • 0 ' 

or 

co 

_p_j 2F(µ, n;y)dy. 
7[ 0 

In either case the first term on the right side is positive, and particularly 

when n = 11 + 0 and f1 ► 1 , we have by the latter expression 

(24) 

coinciding practically with what was found £or the case when fl = 1. 

The gap between the· above extreme cases may be filled by the stress . 
calculated for some moderate values of f-1, as shown in Table 6. The last 

figure of the stress values is the result - slightly modified by the term left 

out in (22) ~ taking the seconq term in the approximate · expression of C£ for 

large values of y into account, the term under question is 
00 

_ ~ o.4f sin ~PY dy 
" · Yi y 

or _ _p 01_ cos 2µYi approximately. · 
;r /1 y ~ . 

The correction due to this cause was found to be equal to two units or 
\ 

less in the third decimal place. The table shows that the value of ( a211 )<+o 

is approximately equal to 0.5 p , if fl is not very small as compared with 

unity. 
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Table 6. The tensile stress (aza\+o acting at just outside 

(z = e+O) of the pressure zone. 

µ'-' i 

I (dzah+o 
a 

0.2 0.245 p 
0-4 {).402 

0.6 0-472 

0.8 0.497 

1.0 0,505 

8. The Stress- Distribution _in the Vicinity o 

the Point of Discontinuity. 

In continuation of the condition of equilibrium cons1den:d in Art . 6, we 

have t11e gradient of az for dz just without the boundary z = E , 

0
;; = ~~1;1 [(<az)ua-(az)e:)/o.] . 

A similar expression can , be written for dz just within the boundary. On 

the other hand (01:/or) dr = -1:, 1: being the shear stress in a layer just 

under the surface ; hence by (3 a) 

Lim, [((az)e: +-a - (az)~-a)or- 2 o.,] = 0. 
a-o. or-0 . 

(25) 

. This equation may be directly established by· observing the equilibrium of 
I • 

the stress forces acting on an elementary part of the cylinder. Here it is 

necessary to pay attention to the variation of the stresses even in a very 

small area, as they can not be considered as uni~orm ; so we have to take 

the mean values such that 
a e:+a 

-;;z aar = I '(1z rdr and 
a-or 

2,.1.; = J ,dz. 
e:-a. 

(26) 

The expressions for az and , are by (1), (2) and (12) 
I 

00 

(Tz = -f! : J F(p, n;y) fo(~1Y) [2-y( lo(Y) -p Ji(PY) )] q,y ~ (27) 
" 0 j 11 (y) . In (py) 

00 

, = p ?._J sinpysinny Io(Y)[ lr(PY) -p {o(PY) ]dy, (28) 
rr O J 11 ( y) Io ( y) 

where f'Y = kr, p being equal to r/a. From (27) 
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a oo 1 

f d 2a
2 

[ F( . )Io(Y)d [ [( 2 y )1 ( ) l1(py)] d J p: z ri r = -P 77 \ µ, n, Y - LI_- Y J p _ lo ( y) - 11 ( y) o PY + PY lo ( y) P P · 

As 

and 

the integral for p becomes 

] pdp = P 11 (py) 
l1(Y) 

Thus, by the first expr.ession of (26) 

00 

P2 lo (py) 
lo (y) . 

= -pl!!._ [ F(p., n; y) lo(Y) [P 11 (py) -p2 lo(PY) ] dy . (29) 
rr J0 LI . 11 (y) / 0 (y) 

Again, calculating the second expression of (26), we have since ny= kz, 
a+a 

J 
. 1 . 1 · 

sin kz dz = - k cos k ( e + a) + k- cos k ( e - a) 
i-a 

Accordingly, 

. ( (J.) · c+a OO smµycos µ+ - y 
2ar = f rdz = -p 2a J _ _ ____ _ a_ lo(Y)[l1(py) 

e-a n: o Y LI l1(Y) 
P lo (py) ]dy , 

lo(Y) 

+ P 2a ( sin µycos (µ-f )y l,(y) [ li(py) -p Io (py) ]dy. (30) 
rr JO Y :.1 I 1 ( Y) lo ( Y) 

The above calculation shows that when p tends to unity, · 

(az)HaBr-(az)e-aor-2o.r = 0 

for any relative values of (J. and (1- p) a, confirming the validity of (25). 

Now to find the stresses acting on the surface of the elementary part 

under consideration, we have first for az the integral 
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00 

J F(p,n;y) 1o(PY) [2-y(1o(Yl_,J1(PY)_)]dy . 
o ,;J - 11 (y) lo (py) 

Writing this in the form 

r+ 
0 

00 

J ' 
Yi 

and expanding 10 (py) and 11 (t>Y) in the first integral such that 

fo(PY)=1o(Y-1-py) = la(Y)-(1-p)y11(Y), 

li(py)=11(Y-l-py) = l1(Y)-(l-p)(yfo(y)-l1(Y)), 

we obtain 

l (f)')[z-y(lo(Y} _ 0 l1(PY) )] = l (y)[2 -y(1o(Y) _ 11_(:YJ)]-zn - t')Yl /y ) 
0 

· _ 11 ( Y ) 1 fo (PY) 0 
• _ /1 ( Y) fo ( Y) \ 

+ terms of higher powers of ( 1-11) • 

As p is very near unity, the product of (1-/,) and a finite integral is 
• I ' 

small ; so it is with the second term on the right side. Therefore, we have 

approximately 

or 

[Y1 JY1 J = J£F(p., n;y)dj! 
n o 

Y1 00 
• -'X' 

f = f f£F(p, n;y)dy-f F(/1, n;y)dy . 
• n • o • Y1 

1'1.Jcxt. we expand the integrand of the second integral , f"" in thP form 
• :V1 

I 
{o(t>Y) [2-y(lo(Y) -l, 11 (/JY) )] = e~:

1
-~[1-(1-,o)y-J+ terms ~f 1 . 

J _ 11 (y) l?(t>Y) 1/ p - Y 

Thr integral is nmv approximately 
oc 

I _ F(/1, n; y)e-(1 -: ll>v[1-(] --p)y] dy. 
J~ - . 

in which we have r F(t<, n;y)e-" -"'dy = ( F(!', n;y)e-" -"'•tfy 
., 'O .,1 

-('Fiµ, ,b1[1- (l-p).v:1tf,, 

=_! Joe, sin(p+n)y e-o-ll>vdy 
2 0 y 
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1 j'oo . ( ) j' Yi +
2 

-~n µy-n_:y_ e- <I-P)ydy- F(µ, n;y)dy 
0 0 

f 
Yi 

+(1-e) F(11, n;y)ydy. 
0 

Assuming that 11 =t-= n and leaving out the last term, we see that 
.x, 

J' F(11, n; y)e-<1 • P).vdy 
V1 

= 1 tan·-1(11+n)+ l tan -1(11-n)-J.YiF(p.,n;y)dy. 
2 I-p 2 l-p 0 

The other part of the above integral, viz. rF(,u,n;yJe-n-Plyydy is 

finite; so the product (1-,o) ('""' may be neglected. thus, if ,o is near unity, J Y1 
the result of the integration is 

"" 
Therefore, with aza = -PJ,__f 0:F(p,n;y)dy and Lim tan- 1

(
1
1
1 +n)= '

2
', 

7Z',O P-1 -(> 

oc 

(J' = a + P J,__ f F(,, n · y) dy - p__ - p_ tan - 1 ( µ - n ) 
z za ;r JO r, , 2 7T l - p (31) 

This gives, whf'n we put a20 = ±P/2 according as nS,p, 

<1z= Ptan- 1 (n-µ). (32) 
rr 1-p 

If (1-p) is far smaller than ln-µj, d2 tends to ±P/2 according as nS,µ, 

as was just assumed. 

To firid the value of r for. n = µ±a and ,o~I, the integral in (28, is 

also divided in two parts : 

( + 
0 

In the first integral we write 
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correctly to the first degree of ( 1- p) ; so the first integral diminishes with 
( 1 :... p) , and it may be neglected. 

As to the second integral for a large value of y , we have 

lo(y)[ l1(PY) -p lo(PY) J = ePY l-p (i 
. 11 (y) fo(Y) ,1 2ny 1/ p 

0.375 ) . 
PY 

Substituting this expression as well as the approximate expression for J, 

and neglecting the term· 1/y , 

Writing here 

00 

00 

r =PJ_ l-p f sinµysinny.e-(1-P)~dy. 
rr 1/ P J Y1 

2sinµysinny = cos(p-n)y-cos(p+n)y, 

J e-<!-P>y[ cos(µ-n)y-cos(µ+ n)y ]dy 
Y1 

_ c(l-P)y1[(l-p)cos(µ-n)y1-(µ-n)sin(µ-n)y 1] 

- (1-p)2+(µ-n) 2 -

- a similar term with (µ + n) instead of _(µ- n) . 

(33) 

When ( 1-p) < 1 and Iµ- n I ( 1 , we obtain by neglecting terms of higher 
powers of (1-p) and (µ-n), 

T = .P._ _ __,_(_1-_p'-'-)_2 ~ 
" ( 1-p )2 + (µ- n )2 

• 
(34) 

r is thus stationary at µ = n , and it is equal to pjrc , so long as (1- p )=t= 0 ; 

further it diminishes rapidly with I µ-n I in both directions. In the surface 

]ayer p = l , r is really zero, whereas the above expression becomes indeter­

minate when n = µ, showing that (1-p) can be made as small as we 

please but not equal to zero, i.e.,, there is a rapid fall of the stress between 

these two close layers, . as was already stated. 

So far we have considered the . stresses a2 and r; as for the other two 

stresses a,. and at , which run as 

a = PJ_Joo F(µ' n;y)[( lo(Y) +PY+~ m-l )11 (py)- (y lo(Y) + 1)Ia(PY) jdy' 
r rr O J p/1(Y) PY m l1(Y) 

00 

a= pJ_f F(1,1,n;y)[ m-2 l (py)-(ylo(Y)+ 2 m-l )11(py)jdy 
1 

n: 0 L1 . m O 11 ( y) m , PY ' 

(35) 

• 
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a similar procedure to the foregoing analysis leads to the following expres­

sions. 

and 

a -,,- t_tan-1 ( n-µ )-1-
rr 1-p 2 I 

a1 = a,.+ 0.3 p [; tan- 1
( ~=;) ± 1 J. j 

In the latter expression ata stands for the value of at at the surface, and 

the positive or negative sign before unity should be taken according as 11 is 

great r or less than n. If we put a10 = - 0.50 p =t= 0.3 P, as was found for µ = l 

(Art. 6), then 

a, = p 0-6 tan- 1 ( nl -µ )-o.50 P. 
7[ -p 

Having found all the stresses, we have now to determine the greatest 

tensile stress and stress-difference. ·one of the principal stresses being a,, 

the other two can be calculated by combining a2 • , a,. and r. However, the 

greatest tensile stress is found to be given simply by ( a20 )ua = P/2 . 
Lastly, to find the stress-difference 1/ (a2 -ar)2+4r2 , we have by (32) and 

(36) a2 -ar=P/2, and max r=p/rr by (34); so the difference is equal to 

0.81 p. The part played by a1 seems to be less marked. 

· 9. Concentrated Load. 

In the foregoing calculation 2pe means the force acting ih the are~ 2 e .1 ; 

so we put 

P = 2pe. or 
p . 

2P=-. 
µa. 

' Then, making e diminish and tend to zero, 

P becomes. a concentrated load per unit 

length of the circumference of the cross­

section at z=O, Fig. 7. If e orµ be taken so 

, ~all that sinµy=µy, then writing 2P =_f_ 
µa 

in (15), 

Fig 7 
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00 

a zO = l!_ r ~l cos ny dy ' 
rra J 0 

. . p foo 
aro = a,o = - - 53 cos ny dy , 

- rra o 

00 

0o == _ _£__ 2(1 + _l)f cos ny .dy ' -
rra m J

0 
L1 

where 2-C, ~ and J are given in (17) and (18). 

(37) 

To compute the integrals numerically, we proceed as before by separating 

each integral -into two parts . and applying the approximate expressions for 

i>1, ~ and J for large values of y beyond y 1 • Particularly, when z or n=O , 
Y1 ::,0 

azo = _f_ f ~dy + E___J e-Yy V 2rry( 1- 0.725 ) dy, 
rra Jo . rra Yi y 

Y1 00 
--

• P j , P J _ , j rr ( 1.875 ) a,. 0 =a10 =-- ~dy~- e _; y -
2

y l+-- dy, 
rra o r:a Yi . 1 

(38) 

• Yi 00 

@o = __ !!_2(1+_l)J dy -L2(1+_l)f e -Yl / 2r:y(l + -0J75)ay . 
rra m O _ L1 r:a m J Yi y , 

Taking y1 = 10, the second term in each expression 9f (3~) was found to 

contribute a significant figure in the third decimal place, as 

Thus, we obtain 

P · 
azo = - (1.494+ 0.004), 

r:a 

a,.o = ato = - __f__ (3.223 + 0.002), 
rra 

p 
80 = - - (4.952+0.001 ). na 

(J =: zo 
p p 

1.498 - = 0.477 -
r:a a ' 

a,,o = a,o = -3.225_f_ = -1.027 £_ 
IT{l a ) 

p p 
Oo = -4~953 - = -1.577 - . 

rra a 
j 

(39) 
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The expressions (37) afford the means of calculating the stresses du 

to uniform pressure. The stress at z=na caused by P acting at z=0 is 

equal to the stress at z=0 due to the same load at z; therefore, putting 

P = Pdz = P adn, p constant, 
and integrating the stress for a given · pressure zone, from n1 o n2 , the 

stresses at z= 0 are 

l (40) 

f
ro I rro 

The quadrature of the integrals . 
0 

21 cos ny dy and J
O 
~ cos ny d~ was 

made by taking several values of y between the limits ; the remaining parts 

of the integrals beyond y1 = 10 might modify the last figure in Table 7 ; 

this degree of accuracy can no~ be claimed in the present computation. 
But the figure in the table may be used to know approximately the stress 

distribution under the concentrated load P at various points of the axis or 

to calculate the stresses ( 40) under the distributed load. The stres~es given 

in Tables 3 to 5, Art. 5, can be obtained in this way. 

Jro fro Table 7. Values of ~ cos ny dy and ~ cos ny dy. 
0 . 0 

10 JO 10 10 
11 fo ~! cos ny dy io m cos nydy n j

0 
filcosnydy fo 18 cos ny dy 

0 1.498 -3.225 1.0 -0-509 -0.143 

0.1 1.398 -3.121 1.2 -0.407 0.001 

0.2 1.133 -2.836 1.4 -0.274 0.037 

0.3 0.765 -2.422 1.6 -0.159 \ 0.024 

o.4 0.372 -1.951 1.8 -0.062 -0.011 

0.5 0.022 -1.485 2.0 0.024 -0.050 

0.6 - 0.243 -1.073 2.2 0.083 -0.064 

0.8 -0.500 -0.473 

10. Deformation of a Cylinder. 

The radial contraction of a cylinder particularly at the middle section 
of .the pressure zone may. be found to see the effect of the localized action 
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of pressure as compared with the uniform deformation caused by the pres­

sure acting· all over the surface. The radial displacement u corresponding 

to the stress system (1) is generally 

u = t ( 1-~)!cos k{ •4-(:- l) (1 + r1.)kr lo(kr) - 11 (kr)] , I ( 41J 

wh~re G is the modulus of rigidity. Replacing A by dA = A' a dk=A' dy, 

_, and substituting 1 + a and A' from (2) and "(12), respectively, the displace­

ment at r= a is 

i:; = -t ;(1-~([;2-(_nty,t:1c)o~;y(1-=- ·1-)·] dy. (42) 
· ·IT(y) m 

For a large value of y it can be shown that 

y 2
( Hg?~ 1) = y+0.25. 

If we write this expression simply equal to y and further neglect the con­

stant term 2(1-=- 1/m) = 1.4, a part of the integral in ( 42) becomes for n = 0 
= 

J sin l1Y dy = o --2c-
Y1 ,y 

approximately, if Yi)> 1. Accordingly, the radial contraction at the median 

section is given by 

_ 1t0 _ p 4 1 sin /1Y ,. -· ~Yi 

a - E ,r(l-m') o Y[.Y'( 1MYL1 )-2(1- 1 )-]- dy . (43J 
lr(Y) m 

Putting 1/m=0.3, the values of the contraction are as shown in Table 8. 

Table 8. Radial contraction at · the median· section . 

. 
µ=!_ 

I 
0.2 0.6 1.0 1.4 1.8 t 2.0 

a 

- Ua I 
p 0.675 0.727 0.708 0.702 0.707 

a 
o.463 E 

When (Tz = 0, the radial contraction of a long solid cylinder deformed 

uniformly by the pressure is equal to -u0 /a=(1-1/m)P/E=0.7P/E. The 

contraction given in the table is first much smaller than this value; it 
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,. 
nses with 11 to a maximum and then decreases a little to take a value, 

which is nearly same as the uniform contraction. 

11. Strength of Cylinder. 

TJ, greatest tensile stress azo at r=O , Table 5, 1s equal to 0.28 p; this 

stress is probably near a maximum value, as may be seen in Fig. 4. On 

the other hand, the greatest stress-difference in the same table is t1z0 -<1rn 
~ 

= 1.18 p. Besides, in the surface layer r=a ., there acts the greatest tensile 

stress equal to 0.5 p at each end of the pressure zone extending to a length 

at least comparable with the diameter of the cylinder. Thus, if we put 
- \ 

aside any secondary effect and take simply the greatest tensile stress or 

the greatest shear stress as the determining factor of the strength, the 

critical condition for the start of yielding or breaking according to the case 

will be reached under a certain assumption concerning the length-diameter 

ratio, when the fluid pressure is raised so high that one of the following 

equations is satisfied : 

(1) 0.28 p or 0.50 P = K1 -- te~nsile fracture, 

( 2) 1.18 P = 2 K3 -- yielding or shear-fracture, 

where K1 is the tensile strength and K3 denotes the breaking or the elastic 

strength in shear, according as the material is brittle or ductile. The 

stress 0.5 P acts at a point; it is not likely to be so dominant. 

Comparing these equations, (2) will be first satisfied in iron and steel, 

for even if we take 0.50 p in (1) for the moment, as the concurrent stress, 

K3 < 1.18 _ l JS 
K1 2 X 0.5() - . ' 

the ratio of the yield point and the tensile• strength being less than unity ; 

so ductile materials will yield at P=2K3/l.18= 1.69 K3 , causing the local 

contraction of the cross-sectional area ; this may accompany the tensile 

action of the pressure acting on the curved surface of the specimen. Here 

it is interesting to note that 1.69 times yield point is not far from the 

tensile strength in steels. In brittle materials with a small amount of 

plastic deformation, shear-fracture instead of yielding comes naturally into 
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consideration ; in this case too the rupture by tensile stress does not precede. 

if the shear strength is within the limit of the above inequality. 

Although the above calculation is based on a rather particular value of 

the length-diameter ratio, the part played by the sheai· stress d9es not alter 

virtually in any . other cas.es; unless the said ratio is very small, as may be 

seen from the ralues of 11210 -a,,0 in Table 5. 

1;he stress-difference in the surface layer at the middle of a pressure 

zone is a little less than that in the centre. For example, in the case when 

the length-diameter ratio is equal to unity, this difference wa~ found to be 

0.95 /J . Hhwevcr, the elastic failure of the innermost part' causes necessarily 

the redistribution of stresses over the cross section-probably the decrease 

of the· axial stress in magnitude and the increase of the stress-difference. 
11 za -- 11ta · 

The distribution of pressure in the part of a cylinder contained in the 

stuffiing box for tightening pressure fluid is really unknown. But any 

dcyiation of the distribution from what was assumed in the present in­

vest igation will not be so important as to modify the view concerning the 

strength in the innermost part of a cylinder ; of course the stn:sses in the 

surface layer at ends of the pressure zone may thereby suffer a ceatain 

change. 

Now the inference that the rupture of ductile materials will be brought 

about first by yielding, is consistent with the fact observed by Bridgman. 

in respect to the amount of the pressure and the position of the breaking 

section. while the r~pture of brittle materials, e.g. glass or glass-hard steel1 

wanl1' explanation quite different from that of ductile materials, since the 
\' 

experiment shows that the rupture takes place on a clean surface coinciding 

with a cross-sectional plane-a fact which is inexplicable by supposing shear 

fracture. This kind of rupture comes obviously in the category of tensile 

fracture. 
Generally speaking, brittle materials, which do not yield, breaks bv 

tension or sheqr ; the possibility of -either kind of rupture depends on the 

relativ(' values of p in the equations : 

(la) xp =Ki·, 
(2a ) yp = 2K3, 
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where x and y stand for ·numerical constants, something like in (1) and (2), 

respectively. However, the value of K3 depends on the stress state. In the 

present case a2 is numerically much smaller than a,, and a1 • So we may 

practically replace (2a) by the condition for compressive strength, K2 say ; thus 

(2b) y'p = K2 • 

Really, the compressive strength is often taken as a standard in brittle 

materials, though its nature may not be always the ' same. From (laJ and 

(2b), we see that the fracture by the first condition precede~, if 

x > y' K1 
K2 

Putting y' = l , as may be approximately taken so in consideration of 

the above calculation, and K2/K1=9 to 18 for glass, we find that 

x> 0.11-- 0.056. 

These values are not, only far less than those given in (1) but also less 

than the values for a20 given in Table 5 except when the length of the 

pressure zone is much greater than the diameter. Bence, if we disregard 

the rupture at ends of the pressure zone because of the pressure distribu­

tion, besides the reason already mentioned, deviating from the assumed state, 

the rupture at the middle part is possible. But the . amount of pressur~ is, 

according to the theory, much higher than the tensile strength; there must 

be a cause or causes to be consi~ered to clarify the discrepancy. 

12. Concluding Remarks. 

As an incidental cause for tensile rupture, it may be supposed that there 

is uneven distribution of pressure round the cylinder-surface contained in 

the stuffing box; this 11?-ay give rise to a bending moment acting .on the 

cylinder. If the bending may really take part in rupture is not likely, 

however. For such an .effect, if any, is hardly constant in different cases. 

Next, minute flaws may originally exist in materials, and they may 

grow by the action of stress. So the penetration of pressure fluid into the 

flaws may occur; the stress-concentration at the bottom of a flaw will 

be increased ; further growth of flaws induces the axial force of the pres-
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sure coming into play. This view is, however, hypothetical for the present, 

as Bridgman states in his book that he found no effect indicating ordinary 

· liquids other than mercury being forced into steel to any slight extent, 

though tpere is an evidence speaking for it (Th. v. Karman's test op. marble 

and sand stone). 

A fundamental question is the effect of the . lateral compressive stress 

or stresses on the tensile strength in the axial direction. More generally, 

the part played by each principal stress in the tensile rupture should 
I 

be made clear. This subject has been studied, but so far as the in-

vestigation goes up to present, the effect of the lateral compression alone is 

not so great that the tensile rupture occurs at pressure equal to the tensile 
I 

strength, if the pressure fluid does not get into flaws. · ~ 

Lastly, ·the reference made in Art. 1 reminds us of the difference exist­

ing between the stresses found in the above calculation and those given by 

Foppl's approximate calculation. For example, the stresses at the centre of 

the middle section of the pressure zone with the length equal to t ht> dia­

meter of a cylinder are, according to Table 5, 

azo = 0.16 P and aro = ato = - l.02,P, 
whereas the said approximate calculation gives 

azo = 1.01 P find aro = ato = -1.55 P. 

Such a great discordance seems to originate from the basic assumption 

made for the approxima.te expressions of a2 and ar. Anyhow the comparison 

shows. that the approximate formulae mentioned above do not an~er the 

present purpose. 

Summing up the results of the above calculation, we . may conclude that · 

the strength of a cylinder acted by the fluid pressure on its curved surface 

is mainly conditioned by the greatest stress-difference, if the material is 

ductile_; the rupture starts probably with yielding,~ when the stress-difference 

reaches a certain limit depending on the nature of materials. 

The rupture of brittle materials under a similar action of . the pressure 

has been contemplated with reference to the critical conditions of tension 

and shear-eventually also of compression. Various causes contributing ta: 

the tensile rupture being considered, the question remains still open, if the 
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pressure necessary to bring about the rupture rriay be identified with the 

tensile strength of materials. 

As was stated, the tensile stress due to the abrupt transition of the 

pressure at ends of its zone can not claim to have much importance in 

the present problem, because the assumption made with regard to the 

pressure distribution is rather arbitrary, and the stress concentration is 

limited to a very single point. But the result given by thi calculation 

may serve as design data suggesting the occurrence of a similar effect 

in solid bodies in contact, such as bodies built up by shrinkage or force-fit. 

After all we see that the tensile stress found in the present analysis 

can not play a leading part in the rupture of a cylinder surrounded 

by pressure fluid. Practically, the "pinching-off" effect may be included 

in the same subject as the tensile rupture of materials in a pressure 
• medium - a problem known since the time of Voigt. The rupture of material 

in a stress-state, for example, a-1 =0, 112 =0-3= -P, wants further investigation. 

In conclusion I have to note my gratitude to Prof. M. Higuchi, who 

undertook an independent check on the numerical value of 0-20 for the case 

p=0.6 in his own way of calculation and found that 0-20 =0.27 p instead 

of 0.28 p - rather close for the present purpose. His task is valuable as 

the conclusion given here depends on the value of the tensile stress. 




