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STRENGTH OF A SOLID CIRCULAR CYLINDER
STRAINED BY LATERAL PRESSURE

By

Akimasa ONO
Pyofessor Emeritus, Kyushu University

(Received Sept. 7, 1948)*

1. Introduction

3

& |
Among various items of problems relating to high pressure technique,

it was pointed out by P.W. Bridgman in the International Congress for
Applied Mechanics at Zirich, 1926, and is also described in his work on
“The Physics of High Pressure ”, that a solid cylihder with free ends and
acted on by the lateral fluid pressure is liable to-rupture, usually in the
middle part, when the pressure rises to a limit approximately equal in
magnitude to the tensile strgngth of the material of cylinder; this takes
place, it is said, as if a cylinder is pulled apart by the axial forces act'ing
at ends actually free from any traction; the appearance of the fractured
cylinder seems to be like’ an ordinary tensile specimen with or without
local contraction according as the material- is ductile or brittle. This
phenomenon, called the * pinching-off ” effect, drew attention of the atten-
dance at Zurich. But looking over the ‘literature, it reminds us that the
above effect may probably be brought in the same category of problems as
the tensile rupture of materials surrounded by a pressure medium, as had been
investigated by the school of W. Voigt in Gottingen towards the end of the
foregoing century and also by some others since then. If this be inadmis-
sible, the reason' ought to come from the stress distribution being not
~ identical. So taking the homogeneous stress-state 7,=0, o,=a;=—p (p=a
positive constant), as a standard, any deviation due to a particular surface
condition should be made clear.

* Delivered at the Monthly Meeting of the Research Institute, April 30, 1948.
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In the present note the elastic calculation of stresses in a solid circular
cylinder with “infinite length strained by uniform pressure acting in a finite
zone of thelateral surface, Figs. 1 and la, will be performed to determine

i |
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Fig. 1 Fig. 1la

the strength of a cylinder with particular attention to the tensile stress in
the axial .direction.. With regard to the present problem, it is to be fe-
marked that an approximate method of the calculation based on energy
principle is. given in the book, “Drang und Zwang” by A. and L. Foppl,
2nd vol., 1928, p. 141, but the result ;of the calculation seems to be inap-
plicable for the present, owing to a great deviation from the exact calcula-
tion. Remembering that a method of the e)fact calcuation was formerly
developed by L.N.G. Filon, Phil. Trans. Roy. Soc., Ser. A, vol. 198, 1902, p.
147, we find also in the above book an anaiysis of stresses made by in-
tegrating the differential equations of elastic displacements for a case of
the pressure distributed practically i/n accordance with the inverse square
law of the distance from the section, where the pressure attains its peak ;
this pressure distribution is improper to the present case; moreover, the
calculation shown there is limited to the stress near the boundary surface.

2. General Formulae.

The deduction and intergration . of differential “cquations of the elastic
displacements in a cylinder strained symmetrically abeut its axis are fully
explained in the above works by Filon and Foppl. Also in the authot’s
book (in Jap.) on Mechanics of Materials (Zairyo Rikigaku) the basic
formulae of this problem are ready for use; so it will suffice for the present
to note that the displacement components, # and w, in the radial, and axial
directions, 'respectively, or more definitely their derivatives, ow/0r and
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ou/dz, taken along the radial and axial directions, are bound to the equa-
tions of the same form

5,08 N (o 8u),
<D+8—22><B;>’aiz i
22 o 1

where D? = e gx sl and that the result of the integration can be

represented in circular and Bessel functions; so it is also with the stress-
components. Thus, writing /,(ik») = L,(kv), "' Ji(tkr) = I;(k»), and leaving
out unnecessary terms,

A g {4<1 —7117) bo(lr)=(1+ a)[Z(Z;—%)IO (kr)+ Ry I, (kr)J} y
= A oY) 1o ]

o= Acoste |1+ 1= ) 1er— 41~ G},

L - [ s 1 o R - a
& Asmkzlz(l m)(l -a) I (k) = (1 + )kr],,(kr)},
and { < (1)

G it —A2(1+nl¢) (14 9) coske I,(k) .
where o,, o, , 0, are the norr'nal stresses in the axial, radial ahd tangential
directions, and z is the shear stress causing the obliquity of the angle
between the linear elements dr and dz; further A and k& are arbitrary
constants.” The normal stresses shown above are even functions of both 2
and 7, while the shear stress is an odd function of the same. Here, the
normal stresses being all symmetrical about the plane z =0, the expressions
(1) suit the stress-state caused by the pressure distributed symmetrically
about the said plane. Lastly, in’order to make the shear stress vanish on
the cylindtical surface, »=the radius @, the constant « in (1) should be
taken as ;
21, (ka)

m )

ka being simply denoted by y in the following.

£ (2)

g =

) ‘A" is written for & "

2 m—1

Ay of the author’s book referred to.
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) ¢
Now it is to \be observed that the stress-components have to satisfy

the equations of equilibrium

,agz, ,]L a(]’f) — O
0z r or :
j ()
a_(ga”) a,+7r i S it

‘as may be verified by substituting (1), and making use of the formulae,

Bl 2 e

ol(x) I (x)
and élx =T (%)——=

As the shear stress disappears on the c1rcular boundary, there is no
surface traction in the axial direction; then the stress force on any cross-
section must vanish, as it is actually the case, for

j:azrdr = Acoskzr{ (1—— —)rlo ky)— (1+a[ ( —yln)rln(kr)Jrkrzll(kr)]}dr
. or with ka =y, :
r” rdr = Acoske % 22 (1- ek~ A+ o b+ EO) )]

in virtue of the relations
jx L (dx = %L(x),

{lel(x‘)dx = x2,(x)—2x1,(x)

and the expression in { }. becomes nought because of the expression (2)
for «. Thus, no axial stress-force being present on any cross-section, there
is neither pull nor thrust acting on the cylinder. Accordingly, the stress
components (1), more particularly #,, may be considered to be solely due
to the normal traction on the circular boundary, provided that the cylinder
is so long that no end effect exists (Saint-Venant’s principle) at the part

coming into consideration. -

3. Preliminaries, Cosine-Distribution of Pressure."

Before going to investigate the stress-state in a long cylinder, as was
specified in Art. 1, a survey may be made in a simple case taken for
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reference, i.e. a cylinder with the length 27, Fig. 2, acted on by the pres-
sure varying in such a manner that the stress 7, at » —ais

a,, = —pcoskz. (4)
As the length is finite, the end effect should be made
possibly small ; this condition can be partially satisfied

; }
. by taking 241
F. y g . 1/1 f £ e
g (5) Al o
Then the normal stress o, is zero at z=+1, though T 1}} x
the shear stress remains there. Next, to comply with i
the condition (4), we have from the first expression Fig. 2
of (1) 1

ST L)+ L)

(B0 -Ke)-4(1- L)L

With. these constants the stresses at » = 0 and » = ¢ are

A=p V= ka: (6)

e, L(y) _
ik :,i coskz(y I 2)‘, e
ok s L b AN '
= O Al coskz(2 1.0y +m)’

-and

i a —-—-—P s Io(y)__l_(_J_’)_

o dl cos kz I,(y) [2 y( AC) I;(y) )] i
Oia = —% cos kz 2[—————1"751”) +(1——511—)—L~—1‘;y.) ]z |

where . i
Sy E (y)(lo(y) o Il(y))_z(l_}‘) Li(y) (9)

sl T AT REY L e

These stresses are the principal stresses, as r=0 for =0 and a.
Now putting & = y/a in (5), the length-diameter ratio is

Sk | (10)

For some assigned values of y and the corresponding ratios //a, as are
written in the first two columns of Table 1, the numerical values of the
stresses and also of the stress-differences at the middle section z=0 are
shown in the same table. :
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.

Table 1-.> Stresses at the middle section z = 0

due to the pressure p,cos kz. ;
r=0 r=a
i A lla % p0lPy 7 20/P4 (220—,0)/P4 Stalb % zalDy (Oza— %)/
0 s =il 0 1 -1 0 1
0:25 PEE —0.9984 0.012 : 1.010 —1.004 —0.012 0.992
0.5 n —0.992 0.046 1.038 -1.014 —0.047 0.967
0.75 2n/3 —0.980 0.098 1.078 —1.029 —0.103 0.926
1 7[2 —0.960 0.162 1.122 . —1.048 -0.177 0:.871
2 /4 —0.774 0.387 1.161 —1.108 —0.539 0.569
3 /6 —0.492 0.390 0.882 —-1.091 S =0.810 0.281
4 7 /8 —0.264 0.266 0.530 —1.030 —0.938 0.092

We see in the table that o,

is always positive and has a
maximunr at a point between

/4 and 7/6 of l/a (cp. Fig.

3), while o,, is negative, and

of the stress-differences, 7,,—a,,
’ and o¢,,—a,,, which are equal
to twice the greatest shear
stressés at. =0 and a, re-
spectively, - the former is
greater than the latter for all

the wvalues of //a; , these

[4 .
t e ; : : circumstances may be referred
4 xx w 3 25 r o s >
5% % 2 3 to as a guide in the following
Fig. 3 : analysis. :
4. Uniform Pressure.
- Now we have to consider the surface condition as signified by Fig. 1;

then the radial stress »,, at the surface should be made numerically equal
to the uniform pressure intensity p in the part between z= +¢ and —¢,
while it is zero in the other parts, both positive and negative, extending to
infinity, i.e. '
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2 (“sinpycosn
Oy = —p U_ﬁyy_ydy : (11)

where y = ka, ¢ = ¢/a and n = z/a. ;
The stress-state conforming to this condition can be built up by taking
the coefficient A in (1) as a function of %, putting dA in the place of A,

such that
dA = A'adk = A'dy,
]
and integrating the elementary stress-components with respect to y from

zero to infinity. Here, A’ is

m
2 sm;ty mylo(y)+11(Y)
Y o(li-n)-1(1— B2

With this expression the stress- components at any point (#,2z) can be found ;

P (12)

-

particularly, for » = 0

o

G,y = j‘u A’ cos ny{4(] ——1-) 201+ u)(2—l)}dy :

g B j:A’cos ;w{(l + a)(l——’%)—Z(l“;)}dy» (13)

Oy = 20,,+ 0, = —-2(1+%)s A’ cosny(l+a)dy;
§ 0

and for'r = a

Oy, = j‘:A’ COS 11y{4(] - %)I,,(y)— (1+ a)[Z(Z—%—)Io(y) +yI, (y)]}dy :

(9“ = Oyt 0t 0,= _2(1 +1’}l)jo A’COS"y(1+a)Io(y)dy;

r is zere both for » =0 and » = a. ,
Substituting the expressions (2) and (12) for « and A’, respectively, we,
have from (13) and (14)
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o =p£§ 9 §Ew__y,095_nxdy’

E]

S j sm;uyycosnyd (15)
Q“ 2 _p% ,(1+ )j %’ smyyycosnyd :
and |
=5 —p% J:@ sin/zyycosny dy.
s —p%j_':s S‘L"yfi’s—”y dy,” ¥ e (16)
.= —p 2 2(1s 1)[ B0 sinmyconnyy,
where
3 080 o= M5 i) e
e PN (B4, o= 2L (-0 |
~and :
SRR GO

Take z = ¢ for the present; then the stresses at each end of the pres-
sure zone are

oz,,=g_f uﬂly&fidy,

00 = 0p = — L[ 9 302D gy, (19)

T

riatiad v 1)j' 1 sin2gy

and
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S
ll

§ ¢ Sin2/ sm2/ty &

?4

P gj Slnzf‘yd ~ (20)

9.,.= —% (1+ )L L(y) smy2/ty dy .

showing that these are one half the respective stresses to be caused at the
centre (z = 0) of the pressure zone with a double range, i.e. 2¢' instead of
¢ ; this is quite natural, as the latter stresses may be obtained by combining
two equal systems with the semi-zone ¢ placed side by side. More generally,
the stresses belonging to two systems with equal or unequal lengths of the
pressure zone may be combined to find the resultant stress.

In the above formulae we have, however, to observe the discontinuity
* existing at z = ¢, particulary on the surface » = @; this point will be studied

later on.

5. - Numerical Calculation of Stresses at an Axial Point.

First, to find the stresses at » = 0, the evaluation of the integrals was
performed by dividing the range of y into two parts, viz. from zero to y;
= 10 and. from ¥, to infinity. In the first part, the numerical value of the inte-
grand was calculated for several values of y (0, 0.5, 1, 1.5, 2, 3, ..., 10) by
‘the aid of the tables of Bessel and - circular functions, and the quadrature
was done by means of Simpson’s rule. Table 2 shows the values of 1/4,
A and B . g

L

Table 2. Values of ‘11 , %A and B.

1
y 3 A B 2
|
0 b % 107692 0 1
SaE 0.7452 00461 0.9918
1 0.6758 0.1623 0.9597
15 0.5698 0.2941 0.8879

2 0.4466 0.3869 0.7741
: 0.2286 0:3896 0.4919
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; 0.1010 0.2658 0.2642

4

5 0.0418 0.1503 0.1295

6 0.0167 0.0766 0.0601

7 0.0066 0.0367 0.0269

& ] 0.0026 0.0169 0.0118

Ty 0.0010 00075 - ¥ 0.0051
1074 0.0004 0.0033 - 0.0022

| X

In the second part beyond y, = 10, the asymptotic expansiens of Bessel
functions were used, viz. (cp. Jahnke und Emde, Funktionentafeln, p. 203)

I )___—ey-_s 1()._,,,,5?‘,,
oY) = V 2ay 1y = omy o1
where
s;=1+;1+£?2+_
and A
R e e g
.8 AR R :

with ¢'=10.125; ¢ = 0.0703325, ;.. , dy = 0.375; d, = 0.1171875,..... THen, we
have approximately : '

_,,___v/_ey‘(l_o.z)%) ,

. 1 e
.and with s 0.3

s ewy,/»z_,—;;(l— 0.725) :

e T )

These expressions give for y, = 1(), 1/4 = 0.00039, A = 0.00332 and B
=0.00214, showing in comparison with the values in Table 2 that the
accuracy of the approximate calculation is quite sufficient for the present

\

purpose. Thus, putting \

F(p,n;y) = it oo ; (/1 =% and n=7% ) ;
y a a

we have from (15)
b2} iy

: !
O =D %{f %F(,u,n;y)dy+j e"”yv/27fy(1 0725)Fuu n; y)dyj ; l
T 0 »” y
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-
N

2 N
G0 = 01 = “‘p‘&‘{‘ %F(/”n;y)dy,
Yo

'+j e‘“y~/2 (1+1875)F//:n;‘y')dy}.

8, = —b 22(1+1~){_[01F(’-"-’j’?i”vdy

(21)

e /

+jyle—y,/7f <1+ 2 775) F(p,n;y) dy} i

Leaving out the factor F(x¢, n; ;¥), which is less than ¢, for the momenf
we have to calculate the integrals N

oo

[ e’ y*:f dy and S e’ y'} dy
s | ¥

in the first two expressions. The first integral may be reduced to the
second, for by the partial integration

jé'y yidy= —eryis %je'-" yidy.
Again, by the partial integration ‘

je‘-” vidy = —evyty %-je“y ytay.
Substituting in the last integral y = #?,

je‘y y‘*dy = Zje'“ dt.

Accordingly,
oo i o * e 7 /.;]_
j e’ y‘i’dy = e Y1y/ +j _e‘fzdt =e Ny N +K§£—j e t*dt.
¥ V¥ L

For y; = 10, we have
1 ’]ﬁ

: -t = —]/;
Le dt 5

very nearly, the difference being of the order 10~°; hence, with a sufficient
degree of accuracy ;

=

j ey dy = e7"1/10 = 0.00014,
10



20 / Akimasa Ono

and also

oo

[ e v} dy = ¢110,/10+ g % 0.00014 = 0.00165. |

Y10
These values might modify the last figure (third decimal place) of the
coefficients of p/z in Table '3 ; howeyer, neglecting this order of magnitude,
we omit the second integrals beyond y, = 10 in the expressions of (21);
then the stresses at each end of -the pressure zone, 2pra in length, are
calculated by putting 7 = n, as shown in the table.

’ 1 :
* Here the values of s,, = 5,, were found as s,,= > (Py—a,,). The table
shows that s, is positive ; it is greatest when y is equal to some 0.3,

Table 3. Stresses at » = 0 and z = ¢ due to uniform pressure p\
acting in a zone with the length 2ya.

'A"Z"% 8, %20 Fyo=0 o T2 Ty0=0¢
e Rt TR St (Geet
01 |  —0962p/x 0274p/r  —0.618p/n 0.087 p —0.197 p
03 |  —2365 0.433 —1.399 0138 ' —0445
05 | —2963 0250 /  —1.606 0.080 —0.511
07 | -3137 0.089 ~1613 0.028 ~0513
09 | —3179 0.024 i 1 S 0.008 —~0.510
10 .| 7 .—~3200 0.021 =167 0.007 —0513

Now taking two continuous’pressure zones, as signified by ¢ and ¢,
respectively, each with the same value of p, the resultant stress at the
point of continuation is found by adding two stress systems; thus with re-
ference to (19)

sin 2ke+sin 2k’ = 2sink(c+¢')cosk(e—¢’).

In this way we obtain the stress at the point z = ¢—¢’ measured from the
centre of the combined zone with the total length 2 = 2(e+¢’); particularly,
when e¢=¢/, the point just refererred to coincides with the centre. Table 4
shows the values of the stresses 7, and a,, and also of their difference, at
some points of the zone with 4= 2e(x+ /') = 2a, as can be readily found
from the component stresses in Table 3; in the most tables following the
figure in the third decimal is omitted. :

L
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Table 4. Stresses at some points of the zone with 4 = 2a.

Distance from centre 750 Ty 00— 050
0 016 $ —-1.02 p 118 p
04a 0.17 —0.96 113
0.8a 0.10 —0.71 i 0.81
1.0a 0.01 —0.51 | 0.52

Again, Table 5 gives the values of the stresses at the centre of a zone
with the total length 2 = 2a(py+p/)=4pa, as were obtained from Table 3.

Table 5. Stresses at the centre of a zone with
the total length 4pa . -

Len%til 4(;lf(1 zpne 720 =0 70— 90
/
04da 0.17 p —-0.39 p 0.56 p
1.2 0.28 —0.89 Y7
2.0 : 0.16 -1.02 1.18
28 o 0.06 —-1.03 1.09
3.6 0.02 —1.02 1.04
4.0 0.01 —-1.03 1.04 ’ a4

It will be seen in the above table that the radial stress at the centre is
approximately equal to the pressure applied at the surface, except when the
length of the pressure zone is much smaller than the diameter of the cylinder ;
as to the axial stress, which is positive, there is a peak value at a certain

1.9
0.8 f‘e‘zo ~bro, -6t
ki

06

04 L
620

02

>4 s ¥ 7o 1l i
0 0.2 0.6 X 1o 1.4 1.8 2.0

FY i

Fig. 4
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point of the length-diameter ratio, about 4/2a = 0.6 say; cp. Fig. 4. So far,
it appears that the amount of tensile stress induced in the cylinder is given
by 7,,, and further that the stress-difference found above is an important
item in estimating the shear strength. However, we have still to calculate
the stresses in the surface layer to compare with the above ones.

4 ®

6. Stresses in the Surface Laver.

Next, to calculate the stresses (16) in a similar manner to the preceding
article, i.e. by numerical integration up to y; = 10 say, and then adding the
remainder for higher Values of v, we have approximately

c=1+24 =06+ 1M
and : v :
N !‘ﬁ_’é’l=1+_0-i, for ¥y =y, =10 say.
y :
If we neglect the second term in each of these expressions, the stresses
(16) are e
2 n . s ]
oLy ——“_,-—U (,6—1)F(ﬂ,n;y)dy+s F(#,n;y)dyj,
0 0
T :’f’{j (D-0.6)F(pt,n; y)dy+06j Fle,n;pdy |, (22)
0
0, = 21’ 2(1+ 1)“ <£’(L)—1)F(ﬂ,n;y)dy+j F(p, n;y)dy}‘

m 4 “
Taking eg. e =a and z2=0, ie p=1 and » =0, the values found from
(22) are

6,,=—011p and o,= —1.06p,
which- give together with s,, = —p

Teat Orat 0,0 = =217 p
in coincidence with the value of @, directly obtained., Hence, also
T—0y=095p,

a result smaller than ¢,—o0,,.in Table 5. Further calculation for different
values of ¢ may +be dispensed with, as a,, is negative and |4,/ is not likely
so large that s,,—a,, surpasses rr},,—rr,,, ?
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However, the stress at z = ¢ attracts special attention because of the dis--

continuity of the surface condition at that point. Let the rectangular area
with the height 07 = a(1—p) and small width 2« = 2a|px—n|, Fig. 5, re-
present the projection of a cylindrical
element at z=e¢. Then a review of the

cc.)ndlt.lon (?t equilibrium .1n the axial (6:e)e T i (6rads i
direction with regard to this elementary = sescens e % o

% 4 ¥ 4 4 koo gt/ ("“f)
part is necessary, since 0s,/0z and ©or/or S O

P e 20- Lh-1]
are found to be infinite in the limit 5 j_ﬂ/ #

when ¢—0 and 7—a ;" so the first equa- | A
tion of (3) is subject to a certain revi- Fig. 5. The stresses in the radial direc-

3 : tion are left out for the sake of
ston. The second equation of the same clearness.

may be left as it is, every term in the
equation being finite.

To comply with the condition stated above, we have to retain (or/o%)dr
as well as ¢ in the first equation of equilibrium ; thus we write for the
moment '

dr) or A
8z 7+ 5 +r+-5;—(r+dr) =0 |
By making p—1.in 67 = a(1—p), ©+(37/0r)dr is the shear stress at the

&

surface, i.e.

P
adr

Accordingly, r and (97/0#)dr are of the'same order of magnitude; as they
disappear from the equation of equilibrium, we have by neglecting dr» in
comparison with #», :

da, Gr o 4
5 +~a;—0. : : (3a)

This equation may be interpreted as a particular case of the first equation

(81, because the latter reduces to this form, if we omit z/», which is
small as compared with|ds,/0z| and |oz/07|. So the stresses ¢, and ¢ bound
by (3) are correct also at this particular point. Therefore, we pass on to

find the values of a, and = at and near the point z = <. Speaking more

specifically, the distribution of the stresses just under the surface layer is
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to be made clear because of the peculiarity of this point. This item of the
subject will be reserved for the next article but one, where the equilibrium
of stresses will be considered further in detail.

. In the expressions (22) we put first z=¢ or »n = ¢. Then, since

o0

Zj F(;t,,u;y)dy=]‘ smyZpy dy =", we have
o ;

0 2
(az;,');—_——-,.j € - )Si“f"ydyfg
(a,‘,f)—. = —g'(:l(@—o.ﬁ)ﬂr%x dy_Q_G;_p_ ; (23)
8. =2 2(1+mi)jo ( E:y) 1\Sm2#ydy bofis 1)

y

Next, we take a point just inside the pressure’zone and put z = ¢—«
with «—0; then the first term in each expression of (22) — the integral with
the finite limits — will be almost same as in (23), but the second term becomes

twice as large as in the above formulae, as
2[ F(u,m;y)dy ==, wheh n<p.
0

Lastly, as to. a point just outside the pressure zone, ie. z = ¢+0, the
second term J disappears.

To 1llustrate the above statement we take for example ¢ = a or # = 1.
Then, we find with y, = '10 that .

85 (O)e =0, (1) = —0.50p, (8,). = —1.00p.
As (9,,). = —0.5p at this point, (0.)c+(¢u)e+ (9,4)e = —1.00p, coinciding
“with (6,). in the present degree of accuracy. The values of a,, on both
sides of the very point of the discontinuity are —p/2 just within and +p/2
just without the zone, Fig. 6, while the values of ¢,, in inside and outside
differ from (o,,). by ¥0.3p, respectirely, It is to be noted that the tensile
stress at the point z = ¢+ 0 is much greater than the greatest tensile stress,
.as may be found in Table 5. But the tensile stress stated above refers to
a particular case when ¢ = 1; so the value of the said stress in a more
general case comes into question. | ¥ :
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Before going, however, inta the calculation for a series of values of .,

“as will be carried out in the next article, a remark concerning (22) seems

to be wanted for the present. In the ex-

pressions given there, 1/y is neglected in com- ) (6;a)£ Fed
parison with unity; so it is desirable to see
the effect, if any, of this secbndary term left P
out. Now if we suppose to retain this term, 10

an additional term made free from a constant

factor is 2§ F_(,u,yn,ﬁy) dy, which may be

written as v ( 6}0) Ex o’

% si +n 5 si —n)y
j ; lr}_(_/;z n)y dy+[ ‘“(/;2 )Y gy .
N N :
Putting ¢ = (x+#n)y and 7 = (g+#)y, in the

Fig. 6

first integral, it becomes

(wtm) | SElar,
7
or after partial integration

(,,+n)[ siny +,j cos? dt] : ;
7 5. b

In a similar manner the second integral may be transformed by putting

t=|p—n|y and 7= |p—mn|y, as

i_r/j sint g, i7/[sir17/ +j cost? dt]
Iy t ' N i 7 t

according as p=mn. :
In the first case, where it may be assumed that 7 = (#+n)y, > 1,

o
j cost dtg_sinr, o :
t BA

7
therefore, the expression in the square brackets vanishes. As to the second
case, where 4 = |—n|y, tends to zero,

j cos ¢ diie s

Z

%

2)  Jahnke-Emde, Funktionentafeln, ond ed., p. 78.
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Iny being the Euler’s constant. Hence, in the limit

Lim '//X 2lof =~-Limylny = 0.
7=0 t 7=0

7

Thus, there is practically no appreciable error due to the omission of the
secondary term; the extent of the actual error will be considered in the
calculation of 7,

7. Values of the Tensile Stress at Ends of the Pressure Zone.

In (22)

1= 3[4 8) - )

Accordingly,

40— )= 1-4) ) -
s A DA -]

Pl = 2w G B-36)1

Taking simply the first term only in the last expression, we have in the

case when n = ¢,

841 ' o1

2§ CF(p,m;9)dy = - j ysin2mydy .
: o 4(1+m)J,
; 1

With e .37,

\
N

2§ CF(p,n;y)dy =

: i ; 52(2 sm2uy1 2py,c08 2 1y,) .

If # is small as compared with unity, “this becomes approximately equal to
213/15.6 , while it diminishes as p#! for large values of .

Next, the following integral may be also considered in two extreme
cases, viz. for small values of #
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N 1o A 3
j. 2F(//.,/t;y)dy=y §m2_/‘3’dy:2,1yl_M,,

g SLiicy 3x3!
and for large values of
P1 .
. ¥ T 21y sin 2 /1y,
2F(p, p;y)dy = = —COS<lt _ =L
J2rmmin - 5= S2 2m)

Thus, according as p is very small or large, the second expression of

(22) may be written és

7

= Law(1 ___)—{ZS:ZF(/A: "; y)dy

or

ne= 2o~ (27 (512 15‘“2“”‘ (52 y,)y‘cosz"y‘]
- -ﬁ-rz F(¢, n;y)ady.
0

In either case the first term on the right side is positive, and peirticularly

when # = #+0 and > 1, we have by the latter expression

/

(‘aza)cé-ﬂg % y (24)

coinciding practically with what was found for the cﬁse whgn = 1 g

The gap between the - above extreme cases may be filled by the strgss
calculalted for some moderate values of ,u as shown in Table 6. The last
figure of the stress values is the result slightly 'modiﬁed by the term left
out in (22); taking the second term in the approximate expression of € for

large values of y into account, the term under question is

oo

—»{)— 0.4[ ~S£y%f—xdy or p 0/{2 g%iﬂ approximately.
W 55 i

The correction due to this cause was found to be equal.to two units or
less in the third decimal place. The table shows that the value of (7,,):.0
1S approximately equal to 0.5p, if ¢# is not very small as compared with

~ unity.
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L

- Table 6. The tensile stress (o,,).,, acting at just outside
(z =¢+0) of the pressure zone.

! f“—"%' (02a)+0
0.2 | 0.245 p
0.4 0.402
0.6 0.472
0.8 0.497
1.0 0.505

8. The Stress-Distribution in the Vicinity of
the Point of Discontinuity.

In continuation of the condition of equilibrium considered in Art. 6, we
have the gradient of o, for dz just without the boundary z = ¢,

e = Lim| ()= ) | -

A similar expression can-be written for dz just within the boundary. On

the other hand (Br/er)dr = —r, r'being the shear stress in a laver just
under the surface; hence by (3a)
Lim [ ((0)ca— (@,)c-)pr— 207 | = 0. (25)
a=0, ar=00L.

- This equation may be directly established by observing the equilibrium of
the stress forces acting on an elementa‘ry part of the cylinder. Here it is
necessary to pay attention to the variation of the stresses even in a very
small area, as they can not be considered as uniform; so we have to take
the mean values such that v

a E+a

;za67=5 a,rdr and 2u?=5 rdz. (26)
The expressions for », and r are by (1), (2) and (12)
=00 2[ Flur,niy) lb Doy F2 ey,
Ll sm/lysm ny [Iz(,vy) L g s (fy)] ‘
. p,[jo R )| G 2\ ay, 4R

where py = kr, p being equal to #/a. From (27)
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a o 1

f o, rdr = —p 33’350 F(p,n; ) I"(Ay )Adyjp [ (7072;)— — ﬁ’ﬁ) L(py)+ panE’;y))] pdp.

Pa

As

j o(pY)dp = -~Il(ﬂy)

and
: o2 1ewdo = & 1om)— 2 Loy)
the integral for p becomes
¥ 1
I (py) _ > Li(py)
dp = p=L —p? :
H ]”” "0 R0

Thus, by the first expression of (26)

a,0r = Lj o, rdy
a

Pa

Giae j Fle,n; 9y o) [{, L(py) _nzjow)]dy, (29)

4 Léy)y. . [ Lty)
Again, calculating the second expression of (26), we have since ny=Fkz,
e+a

j sin kzdz = —%cosk(e+a')+ : cos k (—a)

b

e=a

d
= —%cos (,U+ —~) y+- cos(/z— ) y.
5 a

Accordingly,
' A in °°Sln,’lyCOS ,U+ 9 7 X
% ( ) L[ L) . Liey
Q01 = = — 0 1 0
29 f_”’z R J T3 i Y ) L A ) Jos
°°sm/zycos y
2a ) L(y) | Li(py) L(p) \
+ dy . (30)
e y e ne ”uy)]y :

The above calculation shows that when p tends to unity, -
(7)era®¥ = (3,)e-q Or—2a = 0
for any relative values of « and (1—p)a, confirming the validity of (25).
Now to find the stresses acting on the surface of the elementary part
under consideration, we have first for ¢, the integral
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O MO BUAEL Sl Y, )]
LF(J"’H"WVT—[Z y(II(y) 'nI,,(py')) dy .

Writing this in the form
571 i
[ ek

: 0 21
and expanding /,(py) and I,(py) in the first integral such that
Lpy)=L(y—1—py) = L,(y)— (l—n)yll(y)
Li(oy)=L(y—1—=py) = L(»)—A—p)(yI(y)—1(3)),
we obtain ;
Ly 2=5(F2)—p B | = s 2-y(3% - L) |-21—p)3tit5)
+ terms of higher powers of (1—p).

"As p is very near unity, the product of (1—p) and a finite integral is
small ; so it is with the second term on the right side. ‘Therefore, we have
approximately

r] = jyl(i F(/i,‘n,;y)dy
0

0
: /
or

[y, =[m¢F(.;,' n;y)dy— E Flp, n;y)dy .
e 1 vy

AL

Next, we expand the integrand of the second integral [v in the form
. JY g

|

{ﬂ(f'y_’ [‘ AN <]O(y) I](Py ] Q.(,],nji[ .‘” l g 1
0 e L() ’10(,,y)> i3 T + terms of :

The integral is now approximately

0

),

F(p, n;y)e""-"’-”’[l.-(] — {lv)y] dy,

in which we have

)

j F(p,n;y)e?7dy = [ F(r,n;y)e"""Vdy

Y1 0

X 2
-—[ F(g, n;y‘)[l— (1—p)y |d_v
o | :

L 1j SIN(E+R)Y a-ny g,
2 ¥
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: N
1 snE=n)y oo gy (' Fu i)
= 2J0 r dy jo F(u, n;y)dy

B2
+(1—/')J F(p,n;y)ydy .

0

Assuming that z==n and leaving out the last term, we see that

oo

s F(p,n; 3)e """ dy
Y1

BJ

if A pEn R of p—n - ;

= “tan ‘(————)+ =t A )——j F(pnyn; y)dy .
2 1—p 2 ( R A

The other part of the above integral, viz. j F(u,n;y)e="" ydy is
finite ; so the product ( l—u)‘ may be neglected. Thu% if o is near umty,
the resu]t of the integration is

j F(}u’ ,l;y),AI,"J [2_y< o(y) Li(py) :Idy
0 i

Ly) "I

o0

:j ¢ F(n, n;y)’dy—j F(#,n;y>dy+ltanji("i:f)+itan'l(—”_—f) :

0 0 2 1

o

Therefore, with a,, = —p%[ € F(p,n;y)dy and Lim tan”‘(‘{ﬁ")———rrg/ :

Jo ‘ p=1 I—p
i Ao e e :
T, "‘ aza +P ‘;jo F(/‘y n»y)dy 2 n’tan‘ 1__‘0 % X (31) A
This gives, when we put ¢,, = +p/2 according as n=y, |
S ey ( n—/l) . '
- tan o (32)

If (1—p)is far smaller than |n—p|, ¢, tenls to + p/2 according as ng,u;
as was just assumed.

To find the value of 7 for.n = pg4+e¢ and p—1, the integral in (28) is

- also divided in_ two parts:

e = 2

et

In the first integral we write

Lipy) _, L(ey) _ L(y) LY.
R A ")[2 y(l(y) Io<y>]

1
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correctly to the first degree of (1—p); so the first integral diminishes with
(1=p), and it may be neglected.
‘ As to the second integral for a large value of y, we have
I e 11— 0.375
I"(y)[ 11(({3;) e I<(p33’)))] Vv 2y 1/,oP 40 oy ) ?
Substituting this expressmn as well as the approximate expression for 4,
and neglecting the term 1/y,

2 1- ‘"I sinyysinny.e“"”’3' dy . (33)
L 1/ P I

e p

Writing here
2sinpysinny = cos(u#—n)y—cos(p+n)y,

o

I
< _ e”""[(1—p)cos(#—n)y—(p#—mn)sin(z—n)y]
‘ (I=pP+(p—n)
— a similar term with (#+#») instead of (¢—mn).

When (1—p)<1and |#—n| < 1, we obtain by neglecting terms of higher

powers of (1—p) and (/z-n)
1—
z p 7 (1= fg)z+?/)j—n)2 G

r is thus stationary at # = #, and it is equal to p/7, so long as (l 2)==0;
further it diminishes rapidly with |#—#n| in both directions. In the surface

e-u—m,v[cos(,u-—n)y—COS(/l+ n)y de

i

layer p = 1,7 is really zero, whereas the above expression becomes indeter-
minate when # = ¢, showing that (1—p) can be made as small as we
please but not equal to zero, i.e., there is a rapid fall of the stress between
these two close layers, as was already stated.

So far we have considered the .stresses ¢, and 7; as for the other two
stresses ¢, and o,, which run as

S ,ng(ﬂ,n;y)l' L(y)
kel AR

L 2[ Flu,m)[ m—2 (o () o m=1\L(p)
g p 2| TR B gy (s 42 E9) gy,

=i (0 i o

2
oy ~m YT.(y)

I(y) m / oy
(35)
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7

a similar procedure to the foregoing analysis leads to the following expres-

sions.

|

g ifn—pg\_»p
g,= = tan (I—P) 5 < l

C ammsess[Lae ()l

In the latter expression 4;,, stands for the value of @, at the surface, and

and (36!

the positive or negative sign before unity should be taken according as / is
greater or less than n. If we put 7,,=—0.50pF0.3p, as was found for =1
(Art. 6), then :

i b»ggtan“(’lz:g)—()ﬁ()#

Having found all the stresses, we have now to determine the greatest
tensile stress and stress-difference. 'O_ne of the principal stresses being o,
the other two can be calculated by combining. o,-, 6, and v. However, the
greatest tensile stress is found to be given simply by (0.4)e:a = p/2.

Lastly, to find the stress-difference /(s,—a, ?-+47%, we have by (32) and
(36) o,—a,=p/2, and maxr=p/r by (34); so the difference is equal to
0.81 p. The part played by o, seems to be less marked.

9. Concentrated Load.

In the foregoing calculation 2pe means the force acting inh the area 2¢.1;
SO we put

Y
/ B—2%e oy Sdhe /Z. 1;3

Then, making ¢ diminish and tend to zero, _%___‘E‘ L__)__Y__
P becomes’ a concentrated load per unit o; 8
length of the circumference of the cross- S T

section at z=0, Fig. 7. If ¢ or # be taken so
small that singy=py, then writing 2p "_,aﬂa
0 (E5).

e
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e e
T, = 55‘5- A cosnydy ,

oo

i 0n :
EL Bcosnydy , (37)

Opo =Wy =

kAo 2(1+_1_)§ oSNy 4,
na mil, ' 4

where %, B and 4 are glven in (17) and (18
To compute the 1ntegrals numerically, we proceed as before by separatmg
each integral into two parts and applying the approximate expressions for

%, B and 4 for large values of y beyond y,. Particularly, when z or n=0,

oy i %j:l~)1dv+ %E v“ym/m(l——o'lgi)dy,
CHRES —{;—j'u %dy——j "y/— (1+ )d | | (38)
i e Y E Ao e -,

Taking y,=10, the second term in each ekpre’ssion of (38) was found to
contribute a significant figure in the third decimal place, as

= P 14944 0.004),
Ta - ;

T2

)

0,0 = 0 = — 2 (3.223+0.002),

i —71’5(4.952+0.001).

o

| Thus, we obtain
M e L g i

ma ;

o= 0n=—3205L — 10 (39)

Lees s Ay B
Ta a
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The expressions (37) afford the means of calculating the stresses Adue-
to uniform pressure. The stress at z=na caused by P acting at z=0 is
equal to the stress at z=0 du«; to the same load at z; therefore, putting

P=pdz = padn, p constant,
and integrating the stress for a given pressure zone, from #, to #,, the
stresses at z=90 are

1y %
g = ﬁj 'dnj ‘Iléos nydy,
: 4 7y 0’ 2
| S ae (40)
ol =l = —%J‘ dnj Bcosnydy .
", 0 -

The qgadrature of the integrals [10 A cos ny dy‘ and jm B cos ny dy was
made by taking several values of y Bgtween the limits; t}ge remaining parts
of the integrals beyond y;=10 might modify the last figure in Table 7;
this degree of accuracy can not be claimed in the present computation.
But the figure in the table may be used to know approximately the stress
distribution under the concentrated load P at various points of the axis or
to calculate the stresses (40) under the distributed load. The stresses given
in Tables 3 to 5, Art. 5, can be obtained in this way.

Table 7. Values of yo U cos ny dy and [;0 B cosnydy .
0 s

| \

n 1 gw‘ll cos ny dy j m% cos ny dy e S‘UQI cos ny dy gm% cos ny dy
| 0 0 | 0 0
9| 1.498 28208 - A P ] ~0.509 —0.143
015 1.398 —3.121 1.2 —0.407 0.001
0.2 1.133 —2.836 1.4 —0.274 0.037
0.3 0.765 —2.422 16 | —0.159 0.024
0.4 0.372 —1951 « | 18 —0.062 S RO b
0.5 0.022 L1488 I 200 " 0.024 —0.050
0.6 —0.243 —1.073 | SN D 0.083 ~0.064

(1 3. Faiga —0.500 —0.473 I

»

10. Deformation of a Cylinder.

The radial contraction of a cylinder particularly at the middle section
of the pressure zone may- be found to see the effect of the localized action

i
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©of pressure as compared with the uniform deformation caused by the pres-
sure acting all over the surface. The radial displacement u corresponding
to the stress system (1) is generally

?u = é(l—%)—%cos kz[mmfﬂ
where G is the modulus of rigidity. Replacing A by dA=A’adk=A’dy,
and substituting 1+« and A’ from (2) and (12), respectively, the displace-

A+ krkkn)—Lkn) | 4 1)

ment at r=a is

R P = T

For a large value of y it can be shown that

y (fg((g 1) ='y+0.25.
‘ If we write this expression simply equal to vy and further neglect the con-
stant term 2(1-1/m)=1.4, a part of the integral in (42) becomes for n=0

oo

sin 1y
j o | N .
B2 ¥

approximately, if y,> 1. Accordingly, the radial contraction at the median
. -
section is given by

-t oD ! il sm/ty
el F?(l__”)g (43)

: " A -5

Putting 1/m=0.3, the yalues of the contraction are as shown in Table 8.

Table 8. Radial contraction at:the median section.

u:% 0.2 0.6 1.0 1.4 1.8 §2.0
]
— L | 0.463 g 0.675 0.727 0.708 0.702 0.707
|

When o, =0, the radial contraction of a long solid cylinder deformed
uniformly by. the pressure is equal to —u,/a=(1—1/m)p/E =0.7p/E. The
contraction given in the table is first much smaller than this wvalue: it
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q . . . . ;
rises with 7 to a maximum and then decreases a little to take a value,
which is nearly same as the uniform contraction.

11. Strength of Cylinder.

The greatest tensile stress o,, at »=0, Table 5, is equal to 0.28p; this A
stress is probably near a maximum value, as may be seen in Fig. 4. On
the other hand, the greatest stress-difference in the same table is O,0—0,0
=1.18 . Besides, in the‘ surface layer »=a, there acts the greatest tensile
stress equal to 0.5p at each end of the pressure zone extending to a length
at least comparable with the diameter of the cylinder. Thus, if we put
aside any secondary effect and take simply the greatest tensile stress or
the greatest shear stress as the’determining factor of the strength, the
critical condition for the start of yielding or breaking according to the case
will be reached under a certain assumption concerning the length-diameter
ratio, when the fluid pressure is raised so high that one of the following
equations is satisfied : v

(1) 0.28p or 0.50 p = K; —— tensile fracture,

(2). Li8p =2l
where K, is the tensile stfength and K denotes the breaking or the elastic
sfrength in shear, according as the material is brittle or ductile. The
stress 0.5p acts at a point; it is not likely to be so dominant.

yielding or shear-fracture,

Comparing these equations, (2) will be first satisfied in iron and steel,

for even if we take 0.50p in (1) for the moment, as the concurrent stréss,

K. 1.18
=2 <2x050 =l

: the ratio of the yield point and the tensilestrength being less than unity ;
so ductile materials will yield at p=2K;/1.18=1.69 K;, causing the local
contraction of the cross-sectional area; this may accompany the tensile
action of the pressure acting on the curved surface of the specimen. Here
it is interesting to note that 1.69 times yield point is not far from the
tensile strength in steels. In brittle materials with a small amount of
plastic deformation, shear-fracture instead of yielding comes naturally into
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consideration'; in this case too the rupture by tensile stress does not precede.
if the shear strength is within the limit of the above inequality.

Although the above calculation is based on a rather particular value of
the length-diarheter ratio, the part played by the shear stress does not alter
virtually in any other cases, unless the said ratio is very small, as may be
seen from the ralues of g,,—a,, in Table 5.

The stress-difference in the surface layer at the middle of a pressure
zone is a little less than that in the centre. For example, in the case when
the length-diameter ratio is equal to unity, this difference was found to be
0.95p. However, the elastic failure of the innermost part causes necessarily
the redistribution of stresses over the cross section—probably the decrease
of the axial stress in magnitude and the increase of the stress-difference

G20 %,

The distribution of pressuré in the part of a cylinder contained in the
stuffiing box for tightening pressure fluid is really unknown. But any
deviation of the distribution from what was assumed in the present in-
vestigation will not be so important as to modify the view concerning the
strength in the innermost part of a cylinder; of course the stresses in the
surface layer at ends of the pressure zone may thereby suffer a ceatain
change. :

Now the inference that the rupture of ductile materials will be brought
about first by yielding, is consistent with the fact observed by Bridgman.
in respect to the amount of the pressure and the position of the breaking
section, while the rupture of brittle materials, e.g. glass or glass-hard steel,
wants explanation quite different from that of ductile materials, since the
experiment shows that the rupture takes place on a clean surface coinciding
with a cross-sectional plane—a fact which is inexplicable by supposing shear
fracture. This kind of rupture comes obviously in the category of tensile
fracture.

Generally speaking, brittle materials, which do not yield, breaks by
tension or shear; the possibility of either kind of rupture depends on the
relative values of p in the equations :

(la) x =K,

(2a) = 2K,

“
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where x and y stand for numerical constants, something like in (1) and (2),
respectively.” However, the value of K; depends on the stress state. In the
present case g, is numerically much smaller than ¢, and ¢,. So we may
practically replace (2a) by the condition for compressive strength, K, say; thus
@2h) ¥ =gk

Really, the compressive strength is often taken as a standard in brittle
materials, though its nature may not be always the' same. From (la) and
(2b), we see that the fracture by the first condition precedes, if

RIS e
Sl oL
x>y £
Putting ¥’=1, as may be approximately taken so in consideration of
the above calculation, and K,/K,=9 to 18 for glass, we find that

x> 0.11 ~ 0.056.

These values are not only far less than those given in.(l) but also less
than the values for o, given in Table 5 except when the length of the
pressure zone is much greater than the diameter. Hence, if we disregard
the rupture at ends of the pressure zone because of the pressure distribu-
tion, besides the reason already mentioned, deviating from the assumed state,
the rupture at the middle part is possible. But the amount of pressure is,
according to the theory, much higher than the tensile strength; there must
be a cause or causes to be considered to clarify the discrepancy.

12. Concluding Remarks.

As an incidental cause for tensile rupture, it may be supposed that there
is uneven distribution of pressure round the cylinder-surface contained in
the stuffing box; this may give rise to a bending moment acting .on the
cylinder. If the bending may really take part in rupture is not likely,
. however. For such an effect, if any, is hardly constant in different cases.

Next, minute flaws may originally exist in materials, and they may
grow by the action of stress. So the penetration of pressure fluid into the
*flaws may occur; the stress-concentration at the bottom of a flaw will
be increased ; further growth of flaws induces the axial force of the pres-
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sure coming into play. This view is, however, hypothetical for the present,
as Bridgman states in his book that he found no effect indicating ordinafy
" liguids other than mercury being forced into steel to anv slight extent,
though there is an evidence speaking for it (Th. v. Karman’s tést on marble
and sand stone).

A fundamental question is the effect of the lateral compressive stress
or stresses on the tensile strength in the axial direction. More generally,
the part played by each principal stress in the tensile rupture should
be made clear. This subject has been studied, but so far as the in-
vestigation goes up to present, the effect of the lateral compression alone is
" not so great that the tensile rupture occurs at pressure eqqal to the tensile
strength, if the pressure fluid does not get into flaws. - “

Lastly, the reference made in Art. 1 reminds us of the difference exist-
. ing between. the stresses found in the above calculation and those given by
Foppl's approximate calculation. For example, the stresses at the centre of
the middle section of the pressure zone with the length equal to the dia-
meter of a cylinder are, according to Table 5,
7,=016p and o, ,=0,=—102p,

whereas the said approximate calculation gives

. 0,=101p .and  ag,,=9,=—155p.
Such a great discordance seems to originate from the basic assumption
made for the approximate expressions of ¢, and o, . Anyhow the comparison
shows that the approximate formulae mentioned above do not andlver the.
present purpose: ;

Summing up the results of the above calculation, we may conclude that-
the strength of a cylinder acted by the fluid pressure on its curved surface
is mainly conditioned by the greatest stress-difference, if the material is
ductile; the rupture starts probably with yielding,.wl:len the stress-difference
reaches a certain limit depending on the nature of materials.

The rupture of brittle materials under a similar action of the pressure
has been contemplated with reference to the critical conditions of tension
and shear—eventually also of compression. Various causes contributing tof
the tensile rupture being considered, the question remains still open, if the
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pressure necessary to bring about the rupture may be identified w1th the
tensile. strength of materials. :

As was stated, the tensile stress due to the abrupt transition of the
pressure at ends of its zene can not claim to have much importance in
the present problem, because the assumption' made with regard to the
pressure distribution is rather arbitrary, and the stress concentration is
limited to a very single point. But the result given by this- calculation
may serve as design data suggesting the occurrence of a similar effect
in solid bodies in contact, such as bodies built up by shrinkage or force-fit.

After all we see that the tensile stress found in the present analysis
can not play a leading part in the rupture of a cylinder surrounded
by pressure fluid. Practically, the “pinching-off” effect may be included
in the s‘ame subject as the tensile rupture of materials in a pressure
medium—a problem known since the time of Voigt. The rupture of material
in a stress-state, for example, ;=0 , 5,=0,= —p , wants further investigation.

In conclusion I have to note my gratitude to Prof. M. Higuchi, who
undertook an independent check on the numerical value of ¢, for the case
#=0.6 in his own way of calculatlon and found that ¢,=0.27p instead
of Q.28p—rather close for the present purpose. His task is valuable as
the conclusion given here depends on the value of the tensile stress.





