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I. Introduction. 

It is a well-known fact that free vibrations of every so-called elastic 
body will gradually decay, on account of, for example, resistance of air, 

internal friction, plastic properties and S<? on. In actual conditions, on the 
other hand, the vibrating system is usually connected to other elastic systems 

(generally very large compared with the system in question) by some 
clamping or supporting method, and consequently the energy of vibraJion 

will be transmitted to them through the junctions, which al,so gives rise to 
another source of decay. This sort of decay is the very one that the present 

author wishes to discuss in the following. On this standpoint of view, 
therefore, it is quite natural to assume that the vibrating body is perfectly 

elastic and that the decay of vibration arises only from the source just 
described. The actual rate of decay · will be approximately obtained by 

summing up those characteristic to several different sources. 

We shall be far from success in carrying out the theoretical calculation 
of the decay even along the line of the above-mentioned simplification, 
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unless the mechanical and geometrical boundary conditions as well as the 

geometrical form of the vibrating system are also quite simple. Thus the 

possibilit¥ of success lies only in several particular cases which are, how-, I 
ever, in themselves, of fundamental importance and of practical interest. 

The present writer deals with, as the first example, the case of torsional 

vibration, in which a discal rotator is suspended by a wire, the latter, in 

turn, being clamped to another large elastic system, and he discusses the 

rate of its decay from the above standpoint. This case has been frequently 

utilized as a .,method to measure the transverse coefficient of internal friction 

of the material composing the wire, on the assumption that the· amount of 
I 

energy flow (in the form of diverging elastic waves) from the upper clamped 

end is negligibly small. Therefore, if this assumption should fail to hold, 

the above method of measurement would be a nonsense. To verify the 
legitimacy of the assumption on a theoretical ground · is one of the chief 

objects the present author aims at. 

It remains here to add a notice that he dare not assert, judging from 

the conclusions to be drawn from our investigation, some opinions relative 

to the appropi-:iaten~ss of the usual idea as well as the common notion of 

the existence of the so-called internal viscosity in solid materials. 

II. Fundamental Principles of the Theory. 

When the rotator of our system installed , in a vacuum chamber· be 

rotated through an angle from its equilibrium position and then released, 

it will execute, in general, a rotational vibration of quite approximately 

simple harmonic nature. The main part of this slight discrepancy be­

tween these two motions (i.e. the actual and the simple harmonic) may 

plausibly arise, as we have just p~nted out above, from the very fact 

that the external clamping system at the upper end of the wire is not rigid 

in the strict sense but elastic, and therefore the clamping portion undergoes 

a periodically variable elastic deformation in accordance with the torsional 

vibration of the wire, which, in turn, plays the part of a source of divergin_g 

elastic waves, thus causing the decay of the torsional vibrc_1tion of our 

;;ystem. The essential part of our investigation consists, therefore, in the 
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calculation of the rate of energy flow in question. The present chapter is 

. devoted to the general principles which enable us to reach this object. 

· Now, in treating such a problem, it is inevitably necessary to assume 

the boundary conditions at the junction between the wire and the external 

damping ~ystem as well · as the geometrical form of the latter to be ex­

tremely simple, in order that we may put the calculation within our reach. 

Thus we take the simplest case, in which the upper end of the wire is 

ideally welded to the free surface of an _semi-infinitely large elastic body, 

and a rigid disc~! rotator is suspended · at the lower as in the adjacent 

figure. 

Since there 1s the energy flow from the upper junction, it is impossible 
I 

to take the vibration as exactly periodic; but considering the slightness of 

the rate (?f energy flow in unit time, we can 

assume it approximately to be so. Thus we 

are led to fhe problem to ca'lculate the energy 
flow when the _vibration is exactly periodic. 

Such a manner of treatment seems, at first 

sight, to be apparently paradoxical, because 

the original problem to be solved is related 

to the fact that any free periodic vibration is 

impossible owing to the energy flow into the 

external system. A fu.rther review, however, convinces us of its legitimacy.1 > 

Let us now take cylindrical coordinates r, tJ, z, z-axis coinciding with 

the axis of the wire as in the above figure, and assume all quantities to be 

independent of 0. Let -S,., S6, S2 be the components of elastic displacement 
• • • 

in the wire respectively, then we can assume S,. = 0 = S2 and as , the simplest 
form of S0 an expression which contains a factor eiPt, where p is a positi:7e · 

constant and t aenotes the time variable. 1hus the possible general expres­

sion for Sn can be written as 2l 

00 

So= ~(Cneir.,z+ Dne-irnz) ]1().nr) eifJt, 
11 -1 

-JP1p2 1 2 r11= - -,.") 
/Ii 

......... ( 1) 

1J We can also start by assuming an damped oscillation and then proceed to calculate its 
damping coefficient. 

i J Love, The Mathematical The9ry of Elasticity, p. 288. 
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where Cn and Dn are arbitrary constants ; p1 and µ 1 denote the density and 
f 

and the rigidity of the wire respectively; ] 1 (Jn r) stands for Bessel function 

of order unity and of the first kind ; and if a is the radius 'Of the wire, 

aJ,,'s are determined as not-negative numbers satisfying the following equa­

tion; 

which represents the boundary condition that the side surface of the wire 

is free from traction ; in other words, aJ..,, are not-negative zeros of Bessel 

function of order· 2: ] 2 (aJ,, ). . 

Since J1 =0; ]1 (,{1 r ) becomes identically zero, but in this case we must 

take r instead of ] 1 (J.. 1 r), and therefore ] 1 (J1 r) must be replaced by r when­

ever it appears in (1) and other expressions derivable from it. In such a 

state of affairs, we make a conventional rule that ] 1 (i.1 r) does not mean 

zero but the simple function r, which rule renders many expressions below 

compact. 

Next we have to express the possible form of the elastic displacement 

S10 in the external body E. Let p2 and µ2 be the density and the rigidity · 

of E respectively, and let f (i. ) represent an arbitrory function of _a positive 

parameter i.. Then the expression for S1 0 can be written as 
"' / • 112 

S'o =: I J(A ) eiTz !1 (Ar) dJ..eiPt, r ' ( ~p2_;..2) ' ···· ·· ... ! .. .. ..... .. ( 3) 

where the branch of the twa:valued function r should be taken in accordance 

with the rule : 

1'1 r < O, if il2< P2P2/1.12, 

2), L>O, if A2> P2P2//12• 
z 

}··········· ··· ········· .. ··•·· • .. ····· ·< 4 ) 

The legitimacy · of this selection rule will immediately follow, if we consider 

the physical circumstance of affairs at infinity. 

We have assumed the discal rotator to be rigid, and so its rotatory 

vibration can be expressed by 

.S"0=UreiPt1 (U: const.} ....... ....................................... :'.,-( 5 ) 

Such a simplification has not a substantial influence on the results to be 
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obtained, but it reduces the tediousness of calculation considerably. 

The J?oundary condisions on the plane z=0 are such that, at the June-., 
tion between the wire and E, the elastic displacements and the shearing 
stresses on both sides are equal, and the 'other portion of the surface is - -. 
free from traction. Thus we have I 

ff(A)/1(),r)dA)=~(Cn+Dn)/1(,lnr), r<a, ........................ (6) 

µ2J 00J())rl1 (Ar)d)::;!µ1f:lCn-D,.) r,.!1 ()n r). r<a, •··········:··· ( 7) 
0 11-l 

[f(A) rfr (Ar) d)=0, ,r>0. . ............................................ ( 8) 
' . 

Moreover, · the condition that the lower end of the wire is clamped to tpe 
rotator is given by the following two equations : 

C1e-ir1l+D1eir1l=U, 1 -
C -ir t+D ir l-0 >2 J ······· ............................. ( 9) ne " ne " - ' n_ ' . 

All the bound,ary conditions we have to condsider with regard to the wire 
are thus exhausted by the abov~ equations (2), (6), ('l), (8) and (9),1> 

Now, according to Fourier-Bessel's integral theorem,2> if <p(r), a function 
of r, satisfies Dirichlet's conditions in a closed .interval 0<r<a, we have 

rd).t).;<j(f)f1().f)J1(Ar)d$= ~ {<fi(r+0)+~(r-0)}, _ 0<r<a, 

1 
=z<I>( + 0), r=0, 

1 
=z<fi(a-0), r=a, 

' =0, 

Hence if we assume, from ·physical standpoint of view, that the right-hand 

side <;>f (7) is continuous in 0:<:r<a and finite when r--+a, both the conditions 

(7) and (8) are satisfied, provided that the ' form of the arbitrary function­
/( )) is given by 

J().)r= µrfa;.~[f(C,.-D,.)r,.J1(;.n$)]l1().$)df, ··············· (10) 
µ2Jo n~I 

1i When we consider the vibration of the rotator, its equation of motion should be J;aken 
as another condition. 

:> Gray, Mathews, McRobert, Bessel Functions, pp. 96-97. 
.J 
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On the other hand, the theorem of Dini' s expansions1' teaches us 

......... (11~ 
where 

[f(,l)J1(J.r)d,l=,t1A,,J1(J.,,,r), ' l 
Am=2 t rf1(J.mr)dr[ f(J.)li( J.r)dJ./a~{J1(Ama)} 2, 

It is to be noted here that, as we have already remarked, in the terms 
/ 

corresponding to m= l, li(J.1r) and J1(J.1a) do mean r and a respectively, and 

hence the series (11) commences with term A 1 r. 

Now we · apply (10) and (11) to (6) and get 

2µ 00 
• Jo 

2 u;c1 )} 22J(C,,-D,,)r,, rf1(J.,,.r) a /12 1 ma n-] 0 

x J"":.!:_f1(J.r)J0 ff1V,l)Jr(J.~)dt dJ. d_r, ..................... (12) 
o r o 

(9) and (12) constitute a system of linear algebraic equations for infinite 

number of unknowns, C,,'s and D,,'s. Therefore if these constants can be 

determined from this system, ,our dynamical problem will be completely 

solved. Unfortunately, it is hopelessly difficult, but we can, nevertheless, 

proceed further in the calculation of eriergy flow without explicitely deter­

mining whole the unknown constants, as we shall see in . Chap. III.• 

Since the triple integral in (12) is rather complicated we had better ­

reduce it to a treatable· torm. Changing the order of integration and then 

treating it in some _usual way we have, 

2 J"° J.3{lz(J.a)}2 _ • 
aJi(J.ma)Ji(,l,,a) 0 r(,l2 _;.m2)(,l2 _;.,,2/,l=Jm,,, say, 

.. 
or 1 - 2T(). )J(J. )[ ).2m J""J.{Jz(,la)}2d). 

m11 - a J 1 ma I ,,a ,l2 m _ ,l2 n O r( ).2 _ ).2 m) ' 

,l2n J"",l{J/J.a)}2 ] + ;.2 _,i2 (,l2_,i2 ) dJ. , m=Fn, ..................... (13) 
n mor n 

_ 2 2J00 ,l3{Jz(J.a)}2 1,,n-a {Ji(J.,.a)} 0 r(J.2_;.2n)2 dJ., ....................................... (14) 

and in particular 

I _ 3T (J. ) f00 J.{Jz(,la)}2 di 
nl-aJI ,,a Jo r(J.2_).~,,) A, 

1i Wa~on, loc. cit., pp. 596-602. 

(15) 

/ 
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lu =a4roo {Jl.lf )}2 d.l, ············ ·········•································ (1 ) Jo r. 
It is only / 11 that is of essential importance in the calculation of energy 

flow, as we shall see also in Chap. III below. 

ince r=(w2-.l2) 1' 2, where (ll-=p2P2/µ 2, Imn's are continuous functions of 

w and moreover, as a slight examination shows, they are expansible in 

power series of w (not of w2) in the neighbourhood of 01=0, in other words 

they are analytic functions of w in the vicinitl7 of the · origin. By these 

series we can evaluate fm,.'s when 01 is fairly small. More powerful methods 

which enable us to evaluate Imn's are given in the appendix below, whereas 
' -

the seri_es forrris are sufficient to arrive at our present object. 

Now that the external clamping body E can be assumed as a common 

metallic one having large valne of rigidity, (o_JP2 p becomes a small quan-
' ' µ2 

tity when the frequency P is not too large; for instance, if we take p2= 10, 

p2=1012 (in C.G.S. units) and P=103, we get 01=10-2·5• Thus we can ·eva­

luate Imn approximately by expanding them in powers of w and then taking 

their first two or three terms. The series expressions for Im,. save / 11 a~e 

. lmn=ia2J1(.lma)J1Una)[)2n,l~2m Umo+ ~ fm2w2+ 1 fm4w4) } ,,, 

(17) 
+ ,12 ~ ,12 CJ.,o + ~ f n2 W2 + 43 f n4w4)] + 0( w 5), 

m t1 

m'#n, m, n#l, 

where fm and Kmn represent the following expression respectively 

(21) 
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with f 2(fn)=0, f n> O, i.e, ~n=a).n• 

Thus it will suffice to evaluate the integrals: 

=lim 10(,), say; 0 (, )#0, ................................ ....... (22) 
~~ ; ~ 

where I-' denotes even integers such that 2>1-'>-4, and /3 is either 1 or 2. 

Evaluation of / 11 will be executed in another way. 

Let us now express {Jlf)}2 in /0(,) by a Neumann's integral and then 

change ' the order of integration, then we get after a slight calculation 

r(2- f1+1) + 1)J" +; 2 1F2(() ; /3+ 5- 1-' , '9- 3 + 1-'; -r2 sin82) 
,. 2r(/3+3-I-' ~ l C 2 2 

I 

x (sin 8)2/.-v- 1d8, .. ... .... , ...... ... (23)1> 

where the =F signs in the last equation should. be ta~en according as the 
imaginary part of , , say .fs(,), is positive or negave ; and 1Fz( ) stands for 

the function defined in the following . way : 

v (p • p • p • z)- ~ (P1)n zn ·(p) _ I'(p + n) 
., 1.c· 2 1, 2, 3, = L..Jn' (p) (P ) , n= I'(p) · 

11 - 0 • 2 11 3 11 

The first term in the right-hand side of (23) seems to have two different 
, 

limiting values when , tends fn. But, according to (22), this is impossible, 

unless these two limiting values coincide to zero. In fact, the term in 

question has {J/,)}2 or Ji(,) as its factor according as /9 =1 or 2, and so it 
· tends to zero with ,-.f 11• Thus we get 

1i Watson, loc. cit., p. 434. 
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J~(f,.)=( ~ )0+{~ . (-)kI'(fi+k) · . , 

k-O k ! r(,1 + 5-;-))-+;- k) r(11-3;)) + k) 

(2k+2[1-µ-2)!! t 2k (24) 
x (2k+2f)-v-1)!!~"' ·························"··· 

(2m)! ! =2m(2m-2)(2m-4) ..................... 2, 

(2m+ 1)! ! =(2m+ 1)(2m-l)(~m-3) ............ 1. 

Next let us consider 111• By the definition of 111 

l l - ·Joo {li(a1t)}2 dA- · 1· Joo {li(a1t)}2d1t Qe{k) < O 
a4 l1 - -z o A(A2-w2y12 - -i 1~ o A{A~+ (ik)2}112' "5 . . 

35 

Expressing {h(aA)} 2 by a Neumann's integral as before and changing the 

order of integration, we get 

or 

Joo {fz(aA)} 2 dA- l [" dfJJOO Jl2aA sinO) dl-
0 ;p2+(ik)2}112 -nJo o A{1t2+(ik)2}112 , 

_ ( 4 16 ,:u.2 i 3k3 - ) 
-a 15rr + 315rru-w-96 a + ······ 

Expressions necessary for the evaluation of Im,.'s when w is ·small have • 

thus been obtained. 

III. Calculation of the Rate of Dissipation of Energy. 
, ' 

Let us divide the expression for S0 in (1) into its real and imaginary 

· parts and denote them as 

, S0=(Vi+iVz)(cospt+isin~t), } 
S1==1R(S0)= Vi cos pt- Vi sm Pt, 
S2=~(S0)= Vzcospt+ Vi sin pt. 

·········:·········•• '••·········· (26) 

Next we consider a torsional vibration of the wire represented . by S1 or S2• 
' £ 

The energy fl.ow into E during one period T is equal to the amount of 

• 1> Watson, loc. cit., p. 434. 

, , 
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work ·done by the wire against E during the sam~ interval of time. Hence 

if we denote the latter quantity by <»1 or 6)2, according as the mode of 

vibration is S1 or S2, then we have 

• 
-2-2 fa (Vo Vi voVz) d .. - " µ1 2~ - 1-s-- r r, .......... ................... . 

O uz uz z-0 

In the similar way 

@2=@1=@, say. 
I 

(27) 

Let e"' Dn and ,:, denote the conjugate complex quantities of en, D,, and r,, 
respectively, then 

( TT a Vi TTaYz) _ D,{(v ·v:) (av1_ -oVi) l 
y 2a:z- y 1rz z~O - ,S 1 + z 2 z~O ai ta:z z-o1 

' = -:Jt [ {tf en+ Dn)Ji(J,,r)} {,,,~r,,.(Cm-Dm)Ji(Jmr)}] ... (28) 

On the other hand, there exists an orthogonal relation : 

J: rfi(J,,.r)J1(J,,r)dr=0, (m#n), 

Applying these equations to (27) we get 

@~ -rr2a2µ1:R~rnCe,, + D,,)(C,.-15,,)U1(J,,a)}, 
n~l 

Now equation (12) can be rewritten as 

(e,,+D,.)(C,.-Dn)r,,a2 {J1(J,,a)}2= 2hrn(C,,-D,,)"'f (e,,.-D,,.)r,,,l,,.n, 
µ2 m-1 

This leads the last expression of ·@ to the form 

= = 
Utilizing the relation l,,,n=lnm and denoting by ~'~' the summation of all 

m,n=l 

terms save those for which m=n, we finally get 

(30) 

/' 
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As we have pointed out in the preceding chapter, w is, in general, a 
' ' -

small quantity. Hence if we neglect small quantities of higher order than 
I 

w3, it is easily seen, from the formulae (17)~(25), that Im,.'s save lu become 

purely imaginary quantities, and consequently they h3:ve no contribution to 

the right-hand side of (30). That is to say, in this degree of approximation, 

the only substantial term in (30) is the very ooe having the factor - 916 a8a13 

which appears in the third term of the formula for 111 (see (25)). It must 

be noted that in the above discussion we have tacitly assumed that the 

magnitudes of (Cn-Dn)r,. are, at the highest, of the order of (C1-D1)r1, 

·which can be permitted from a physical standpoint of view. We thus get 

2 2 
@ · -4~~

2 
lrl(C1-D1)2 ja3w3 ............................................ (31) 

This formula enables us, if only two constants C1 and D1 are known', to 

evaluate the amount of the rate of energy flow in one period of the vibra-
" tion, without having any further knowledge concerning all the unknown con-

stants C,. and Dn. The exact determination of C1 and D1 depends, of course, 

upon the solution of the system of equations (2) and (12), which is practic­

ally impossible. But luckily, we have a short cut leading to our object, if 

we satisfy ourselves with some approximations, by considering provisionally 

as if the clamping body E were perfect!,Y rigid, not elastic. In this way 

we have approximately 

Hence (31) gives 

C1-D1· .2C1= _iU z · 
SID r1 

ri,==JP1 P, ···············~·············· (32) µl . 

If r1l is fairly small (this is the case, for instance, when the material of the 

wir~ is a common meta.I and l is of the order 1 m., provided p is not too 

larger than 102), we can take r1l in place of sin rrl and hence obtain-

(33) 

' 
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IV. Damping Coefficient. 

At this stage of our investigation we can reach the object stated in 
Chap. I and IL We have considered in the foregoing discussions pro­

visionally as if the free vibration of our dynamical system were exactly 

periodic, although it can not be so in the strict sense. This assumption 

implies that our system perfofms, in fact, a certain _forced vibration produced 
by a suitable periodically varying moment of force applied to the discal 

rotator, thus supplying just the same amount of energy that will compensate 

the energy flow from_ the upper junction. -Therefore, if we let our system 
~lone, there will be a natural dal!lping of its 'free vibration ' (let its £re-· 

quency be p) originated ·by the energy flow which is approximately equal 

to that corresponding to the above mentioned periodic 'forced vibration' 
with the same period p, provided that the damping is not too great. In 

the free vibration the frequency p can take only definite values instead of 

arbitrary ones. We determine them by considering the equation of motion 
of the rotator: 

rca4 
21r1µ1 =P2 tan ril, ....................................... ., ............. (34) 

where I is the moment of inertia of the rotator 'about its axis 6£ rotation. 

If r1l is fairly small, this reduces to 

z_,____rra2p.1 • P---c 211 · .......... ... ..................................................... (35) 

From (32) and (33) combined with (34) and (35) respectively we can ·calcu­

late approximately the rate of energy dissipation when our dynamical system 

is performing its free vibration. 
N:ow let us consider a fairly long (but not too long) interval of time 

and the vibration of the rotator during this interval. Let the angle of rota­

tion of the rotator at an instant t measured from its equilibrium position 
be 0, then we can express it, in general, with a good degree of approxima­
tion, by the form 

where U and ). are constants independent of t From this we con easily 

calculate the kinetic energy of the rotator and see clearly that its maximum 
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values occur regularly at constant time interval of 2 rr/ p, taking mono ton-
. ~ 

ously decreasing values. If we construct the difference between two suc-

cessive maxima and denote the logarithmic decrement of the vibration by 

D, then 

When the' mass of the wire is small compared with that of the rotator 

(this case is rather common than otherwise),. it is quite legitimate to assume 

that the amount of dissipation of our system during one quasi-period be 

approximately equal to the above value. Furthermore, this value must be 

. equal to @, because we assumed that the decay of vibration arises from . 
energy flow @. Thus we get 

D__:_~ a41/AA(P2 )3/2 p4 ,l = Dp/rr 
· 24 l sin 2ril 112 ' ' 

.. ~· ............................ ... . 
'· 

(36) 

and if ril is fairly small 

.............. , ............. ~ ............ (37) 

As can be easily seen from (36) or (37, D and ,l are, in general, very 

small quantities : for instance, their values calculated in the case when 

11i=,u2=1012, p1=Pi=10 (in C.G.S. Units) are given in the table below, 

1), a=l0- 1, 1=102, P=lO; ,i_ ·6.6x10-21, D. ·2.1x10- 21 , 

2), a=l, l=5x10, P=l02 ; k ·1.3x10-12, D· .4.lxl0-14, 

3), a=lO, l=2xl0, P=l03 ; ,l_ ·3.2x10-4, D. ·1.0x10-\ 

We conclude from these results that the decay of torsional vibration of a 

wire-and-rotator system, considered as having its source in the energy flow 

from its-clamped portion, as compared with those due to other different 

sources, is very small and can be neglected with safety. 

V. Summary. 

Problt!ms concerning the decay of vibration of an elastic systerp fixed 

at some portions -of its boundary are much complicated, partly because of 
' . 

the variety of sources of the decay and partly due to manifold geometrical 
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and mechanical boundary conditions of the system. Therefore satisfactorily 

theoretical treatments of such p~oblems are hopelessly difficult without pre­

scribing some limitations to these circumstance?. 

The present writer takes the energy flow into the external system due 

to the propagation of elastic waves originated at the ' junction as a source 

of the decay, and he discusses theoretically the problem in the case of the 

torsional vibration of a perfectly elastic wire ideally clamped at its upper 

end to a semi-infinitely large elastic body and clamped to a rigid rotator 
' . 

at the lower. The results obtained show that the decay due to the above 

cause is exceedingly feeble and can be neglected compared with other sorts 

of decay. This con.clusion has hithert~ been believed to be true by every 

one without any reliable reasoning, but we have got now a theoretical 

verification: Thus the constant of logarithmic decrement of the torsional 

vibration (its decay is assµmed to be due to the above cause only) can be 

written as 

D=c= 11: a4i/ P1A ( P2)312 p4 Ti'==JP1 p. 
· 24 µ2sin 2rrl µ2 ' th 

where pi, A, a and l denote the density, the rigidity, the radius and the 

length of the wire respectively ; p2 and, µ2 represent the density and the 

rigidity of the external semi-infinite elastic body respectively; and p is the 

. frequency of the vibration in 21r units of time. 

It rrl is fairly small, D can be reduced to a still simpler form: 

D . . ;8 ~: ~4( :J12 p3_ 

It is to be repeatedly noted that these results have been obtained 

theoretically on several artificial assumptions, and therefore in other cases 

further appropriate mathematical treatments will be necessary, and the con­

clusions may be somewhat different from ours. The present author wishes 

to discuss these cases in the near future. 

In conclusion the author wishes to express his cordial thanks to Prof. 

Yamada of the Research Institute for Fluid Engineering for his •kind and 
valuable advices. 
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IV. Appendix (evaluation of the integral Imn ) 

In Chap. II we have considered only the case in which the parameter 

w is small and hence Imn's are expansible in powers of w, giving; some ap­

proximate values of them. The power series method is surely an easy-going 

and a powerful one, but since it involves two power series having respec­

tively i,,. and i,,. as their radii of convergence, when I w I approaches to these 

values the convergence of the series becomes very slow, and moreover, 

when I w I surpases them the original power series must be replaced by other 

appropriate expressions (for example series of negative powers). This cir­

cumstance of affairs is very troublesome and incovenient in evaluating Imn's 

for arbitrary range of I w I. Here we shall take another way. 

To evaluate the integrals l,,.n's, it is sufficient to discuss the following 

integral in the case when (i and p are a complex number and a positive 

integer respectively, and <u and -rare complex parameters such that ,s(w)< O 

and 1(-r)> 0 respectively. 

~ . _: fooJa{Ji(ai)}2 
f('J.,{1,w,-r) = Jo r(i2--r2)/1 dy, -5<ffi(a)<2/9+1, ............... (1) 

where the branch of r==1 I w2 - i 2 should satisfy the condition : 

lim arg 1/ ct>2-A2 = 1r2 , in accordance with (4) in Chap. II. 
A-+oo 

The original integrals to be evaluated can be easily obtained by the process 

,J'(w)-0 in Jim I(a, p; w, -r). 
r➔An 

To begin with, let us consider provisionally the case in which 

' -4< !R(a)< 2p-4. Utilizing the formula1> 

and changing the order of integration, we get 

I a 1. w -r = a" f00
; I'(-s)F(2s + 5) 

( ' 1 ' ' ) 25rriJ -oo;{I'(s+3)}2I'(s+5) 

1i Watson, Joe. cit., p. 436. 

I 

........ ,. ...... ~ .. ( 2) 
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Let us denote the second integral in this expression by K and discuss the 

cases corresponding to different values of° (1 separately. 

1) the case: (1= 1. 
If· we differentiate K with respect to llJ, we get a linear differential 

equation for K. This immediately admit of integration and gives 

ia+2s (a+ 5 ) ( a )Jco xa+3+2s ] + -- I' - - +s I' -1-- -s dx -i/rr 2 2 ✓,2-x2 ' 
0 

( 4) 

In this result · we have to choose the branches of two-valued functions so 
- ~ -~~ . . 

that both arg ✓ r 2-w2 and arg ✓ r-2.-x2 tend to zero when we let m(,)~co 

keeping .f<( w) constant. We substitute ( 4) in (3) and change the order of 
integration. Let us now consider in s-plane an integration path C consisting 

of the part of the imaginary axis between -the points ± iR .(R is a large 

positive number) and a semicircle I', !of radius R, having its centre at the 

origin, on t~e right of the imaginary axis, the origin being made an interior 
point of C by constructing a small indentation. If]the semicircle I' is des­

cribed so that its shortest distances from the poles of ihe1fategrands (i.e., 
- . a . 

s=O, 1, 2, ...... an~ s=r-1-2 , where r=rO_, 1, 2, ...... ) take the possibly 
largest values, then all the integrals along I' tend to zero when R~co, thus 

leaving on,ly those ;aken along the imaginar_r axis, and consequently, we 
can evaluate them by summing up the residues of, the integrands within C. 
In this way we have 

I 
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fw 
_x2r+ l 

x , v'-r2-xlx]. 
o a 

······························ ( 5) 

At this stage of development we can extend, by the principle · of analytic 

continuation, the temporary range ' of a to a wi~er one: -4<~(a)< 3. Of 

course, the poles at a= -2, 0, 2 appearing in the right-hand side of (5) are 

merely apparent. Let , in (5) tend to .l,., then, by the definition of .l,., the 

first term becomes zero. Further, let us make use of the following formulae: 

\
w x a+3+2r Irr r(r+ 2 + ; ) ·\w x2r+3+ a dx- 1 ;. 2r+3 +a _ _,__~---c- + ----..=== dx 
~""',12- _= x=2 - ---z ·~· r( 5 + a) . . ✓ ,l2 -x2 ' 

0 n r+ - - ' n • 2 AN 

l"' . lw 2r+l -:;:- I 2r + l x dx = v' " ). z,-+ i r . + x dx 
,1;.2_x2 . 2- n 1·( 3) 7;. 2_x2 ' 

0 " r+- , n 2 Atl 

then the expression in the square bracket of (5) takes the form which is 

composed of terms containing integrals of the form Jw and thos·e independ-
. __ - An 

ent of w. Since the forI]jer tend to zero as ii .l2n-<v2 when w tend' to .l,., if 

the latter did not vanish identically, the right-hand side of (5) would be­

.come infinite when we first make -r tend to J.n and then w to .lm · which is 

clearly inconsistent with the fact. Thus we get ... . 1 

. • • 4 00 ( - )r r(a + 5 + r) r(r + ~) 
/( 1 · , ) -z a [·a°" 2 2 a, ; 01, "n = ---I -- . t k..J 

Sina;'l ,lnZ-c;J, r-Or! r(r+2+ ~ )r(r+3)I'(r+5) 

+a-a-2t (-)rr(r+.f)r(r+~)a2,. j-w _ .x21+1 ~ dx] ( 6) 

r-0 r1r(r-;)r(r+2-;)r(r+4-;) A,.✓J.»2-x2 ' 

and in particular 
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, 

i oo (-)ra2r f,,, x 2r+l ] 
- a3~ '( 1 ) ( 7 ) ✓-~ dx , •.. ( 7 ) 

r O I r- - r r+ - l\n X 
2 2 .ln . 

This last formula is the one that is essential in •our investigation. 

(6) and (7) hold good in the range -S< ~(a)< 3, and the convergence of 

their series is very rapid. In these formulae we can, . of course, also take 
w as real; that is to say, they hold whenever ,S(w)<O. All integrals in (7) 

are expressible in terms of elementary functions, but here we shall not 
· write dow,n them in detail. 

• 

2) the case: 13= 2. • 

Consider first a narrower range of a: -2< ~(a)< 3, then 

1 a J(a, 2; <tJ, ,-)= 2, 0_J(o., l; w, , ), ..................•.....•.••..•..•..... ( 8) 

Next, we reform the right-hand side of (8) by the following formulae, 

f "" xfJ dx= -wfJ- l1/i2 -w2+(p-1/ol11 xt'-21/ ,2-xzdx 
jo i/-r3-x2 J 

+(P-l)r x"-2·11 , 2-x2 dx, P> l; 
A,. 

J"' xti-2 dx 
-(p-1) / .2 2 , P> l; 

An 1 -:--- X 

1 

, 

Since the result from the reformed expression of J(a, 2; <tJ, ,) to be obtained 

when we make , tend to An is nothing else than the required integral, it 

must be finite and determinate when · w tends to An• Further, the terms 

containing the integrals of the form f w are in themselves finite and deter• J A,, 
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minate. Hence the sum of the remaining terms should also be so. But as 
we can easily see from its form, this last conclusion is impossible, unless 

it becomes identically z~ro. Such a manner of reasoning to utilize' the 

functional properties of 1 renders it_ possible to avoid troublesome and tedious 

calculations and gives immediately 

...................... ( 9) 

This holds good, by dint of the principle of analytic continuation, even for 

,,, a wider range of r1. : - 5< ffi( a)<S. The poles which appear when a is 

even are, of course, merely apparent. 

-In particular 

a4 [·~(- )r(r+ 3) a2rJW x2r;4 lu2-x2 d. x· 
1(3,2;w,A,,)= A? 23/? k.J '( )' ✓ ( ,,~-cv) ~ r=O r. r+ 4 . An l.1/-X 2 

, • I ( 3) . r+ - a2r-3 f (J) 

00 2 . uJ, -..x2 ] - i2:( - )r -------"--~ x2r +I.---:--::::== dx (10) 
r=O r(r- ; ) r(r + ~) An i/ J.t,2-X

2 ~ 

This is the expression we aim to obtain and holds for any range of I w I 
such that 3( cv)<Q. The convergence of the above series is very rapid as 

in the case (1), and all integrals appearing in these formulae are expressible 

in terms of elementary f uhct · ons . 

• 

I 




