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I. Introduction.

It is a well-known fact that free vibrations of every so-called elastic
; body will gradually decay, on account of, for example, resistance of air,
: internal friction, plastic properties and so on. In actual conditions, on the
- other hand, the vibrating system is usually connected to other elastic systems
4 (generally very large compared with the system in question) by some
clamping or supporting method, and consequently the energy of vibration
will be transmitted to them through the junctions, which also gives rise to
‘ another source of decay. This sort of decay is the very one that the present
. author wishes to discuss in the following. On this standpoint of view,
, therefore, it is quite natural to assume that the vibrating body is perfectly
0 _elastic and that the decay of vibration arises only from the source just
.7 described The actual rate of decay will be approximately obt'ainedb by
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g
unless the mechanical and geometrical boundary conditions as well as the
geometrical form of the vibrating system are also quite simple. Thus the
possibility of success lies only in several pa‘rticular cases which are, how-
ever, in themselves, of fundamental importance and of practical interest.

The present writer deals with, as tﬁe first example, the case of torsional
vibration, in which a discal rotator is suspended by a wire, the latter, in
turn, being clampéd to another large elastic system, and he discusses the
rate of its decay from the above standpoint. This case has been frequently.
utilized as a method to measure the transverse coefficient of internal friction
of the material composing the wire, on the assumption that the amount of
energy flow Zin the form of diverging elastic waves) from the upper clamped
end is negligibly small. Therefore, if this” assumption should fail to hold,
the above method of measurement would be a nonsense. To verify the
legitimacy of the assumption on a theoretical ground is one of the chief
objects the present author aims at.

It remains here to add a notice that he dare not assert, judging from
the conclusions to be drawn from our investigation, some opinions relative
to the appropr\iatene\ss of the usual idea as well as the common notion of
the existence of the so-called internal viscosity in \solid materials.

_II. Fundamental Principles of fhe Theory.

When the rotator of our system installed in a vacuum chamber be
rotated th;ough an angle from its equilibrium position and then released,
it will execute, in general, a rotational vibration of quite approximately
simple harmoni¢ nature. ' The main part of this slight discrepancy be-
tween these two motions (i.e. the actual and the. simple harmonic) may
plausibly arise, as we have just pointed out above, from the very fact
that the external clamping system at the upper end of the wire is not rigid
in the strict sense but elastic, and therefore the clamping portion undergoes
a periodically variable elastic deformation in accordance with the torsional
vibration of the wire, which, in turn, plays the part of a source of diverging
-elastic ‘waves, thus causing the decay of the torsional vibration of our
system. The essential part of our investigation consists, therefore, in the
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calculation of the rate of energy flow in question. The present chapter is
.devoted to the general principles which enable us to reach this object.”

Now, in treating such a problem, it is inevitably necessary to assume
the boundary conditions at the junction between the wire and the external
clamping system as well ‘as the geometrical formi of the latter to bé‘ ex-
tremely simple, in order that we may put the calculation within our reach.
Thus we take the simplest case, in which the upper end of the wire is .°
ideally welded to the free surface of an semi-infinitely large elastic body,
. and a rigid discal rotator is suspended at the lower as in the adjacent
figure. :

Since there is the energy flow from the upper. junction, it is impossible
to take the vibration as exactly periodic ; bu:c considering the slightness of
the rate of energy flow in unit time, we can
assume it approximately to be so. Thus we
=are led to (he problem to calculate the energy
flow when the vibration is exactly periodic.
Such a manner of treatment seems, at first
sight, to be apparently paradoxical, because
the original problem to be solved is related :
to the fact that any free periodic vibration is
impossible owing to the energy flow into the

external system. A further review, however, convinces us of its legitimacy."

Let us now take cylindrical coordinates 7, ¢, z, z-axis coinciding with
the axis of the wire as in the above figure, and assume all quantities to be:
independent of #. Let S,, Sj;,'S. be the components of elastic displacement
in the wire respectively, then we can assume S,=0=S, and as the simplest
form of S, an expression which contains a factor e#, where p is a positive -
constant and ¢ denotes the time variable. Thus the possible general exprés-
sion for S, can be written as®

Sg=§(cnei77xZ+D,,e—iTnz) Ji(A,7) eirt, 7”E~/%p2—2”2, ......... (1)
n=1 1

1 We can also start by assuming an damped oscillation and then proceed to calculate its
damping coefficient.
s> Love, The Mathematical Theory of Elasticity, p. 288.
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- where C, and D, are arbitrary constants; p; and g deno’te the density and

and the rigidity of the wire respectively ; J;(4, ») stands for Bessel function
of order unity and of the first kind; and if @ is the radius of the wire,
ak,'s are determined as not-negative numbers satisfying the following equa-
tion

%{}1 TR TR N SRt e it (2)

which represents the boundary condition that the side surface of the wire
is free from traction; in other words, @4, are not-negative zeros of Bessel
function of order- 2: J,(a4,)

Since 4,=0, J; (4, #) becomes identically zero, but in this case we must
take » instead of Ji(4,7), and therefore /(4 7) must be replaced by » when-
ever it appears in (1) and ‘other expressions derivable from it. In such a
state of affairs, we make a conventional rule that J/,(4,#) does not mean
ZEro but the simple functlon % which rule renders many expressions below
compact.

Next we have to express the possible form of the elastic displacement
S in the external body E. Let p, and ¢ be the density and the rigidity‘
of E respectively, and let f(4) represent an arbitrory function of a positive

~ parameter 4. Then the expression for §', can be written as

1/2

Jf())e'/”] 1 7) diein, ;—(f’sz 12) R W (3)

where the branch of the twa-valued function y should be taken in accordance
with the rule:
1‘; 7 <0, if 2<p,p?*/p, }
2), 1220, if E>p i

The legitimacy of this selection rule will immediétely follow,‘if we consider
the physical circumstance of affairs at infinity. ;
We have assumed the discal rotator to be rigid, and so its rotatory

' vibration can be expressed by

S"y=Ure, (U‘: GRS AT A e e T e S S L R

Such a simplification has not a substantial influence on the results to be
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obtained, but it reduces the tediousness of calculation considerably.

The boundary condisions on the plane z=0 are such that, at the junc-
tion between the wire and E, the elastic displacements and the shearing
stresses on both sides are equal, and the fpther portion of the surface is

free from traction. Thus we have - i i :
rf(l)fl(lr)da)=§‘,(c,,+0,,) Ji (A7), r<é, ........................ (63 iy
o [ SO OSB3 Co D) 1a T G 78, wevvrsiverien ()
jf(l)rjl(lr)dl=0 T b (8)

Moreover, the condition that the lower end of the w1re is clamped to the
rotator is given by the following two equations:
Ce—itil+ Dieitil={, |

Coe=iTnl+ Dygital=0, #I=2, [ 'wroeweeseseioess, {(9)
All the boundary conditions we have to condsider with regard to the wire
are thus exhausted by the above equations (2), (6), (7), (8) and 9),p
Now, accofding to Fourier-Bessel’s integral theorem,” if ¢(7), a function
of 7, satisfies Dirichlet’s conditions in a closed interval 0<<»< a, we have

[ | xegpce 18 pnde = (90r+ 0) 4 870}, 0<r<a,

z 7¢(+ 0), “r=0;
4 =%¢(a—0), r=a,
# ' =(), r>a. 2

Hence if we assume, from physical standpoint of view, that the right-hand
side of (7) is continuous in 0=<r< e and finite when »—a, both the conditions
(7) and (8) are satisfied, provxded that the form of the arbitrary functlon-
f(2) is given by

fyr= /‘lj KTSYCo—Dalruli NN, ... oy (10)

1 When we consider the vibration of the rotator, its equatlon of motion should be jtaken
as another condition.
«» Gray, Mathews, McRobert, Bessel Functions, pp. 96-97.

~
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On the other hahd, the theorem of Dini’s expansions? teaches us

| rnanar= a5, 10, | }
. b 5 U T B e (11)
where A =2 j A Gr)dr| TGN G (T ()},

It is to be noted here that, as we have already remarked, in the terms
o
corresponding to m=1, Ji(4#) and Ji(4a) do mean » and « respectively, and
hence the series. (11) commences with term A, 7.

- Now we apply (10) and (11) to (6) and get

21
C +D azf’z{]l(;ma)}zz(c —-D ))’nj r]l(jmr)
‘ S IR/ C5T 7Y e R (12)

(9) and (12) const'itutera system of linear algebraic equations for infinite
number of unknowns, C,’s and D,’s. Therefore if these constants can be
determined from this system, our dynamical problem will be completely
solved. Unfortunately, it is hopelessly difficult, but we can, nevertheless,
proceed further in the calculation of energy flow without explicitely deter-
mining whole the unknown constants, as we shall see in Chap. III*

Since the triple integral in (12) is rather complicated we had better~
reduce it to a treatable torm. Changing the_order of integration and then
treating it in some usual way we have,

0 2 -
azfl(lma)jl(lna)jo ;'(/lfigz,ii;?lé P 2)dlEImm say,

or L =a2]1(:lma)]1'(x”a)|: = Zm y ;{]z(ia)}z "

Lt
$ 12,,);2_ . L’;E{;(‘“)} ] AT T e SR
L=&{J(%,a)} *é{%d ....................................... (14)
and in particular |
La=a(A ,.a)f Ag;“‘;z)}) S R LA el

» Wa;son, loc. cit., pp. 596-602.
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1 =a4j:L:§’)}fdz, ...................................................... (1b)

It is only [;; that is” of essential importance in the calculation of energy
flow, as we shall see also in Chap. III below.

Since y=(w*—2)2, where «’=p,p*/ps, I.,'s are continuous functions of
@ and moreover, as a slight examination shows, théy are expansible in
power series of @ (not of «?) in the neighbourhood of @=0, in other words
they are analytic functions of @ in the vicinity of the origin. By these
series we can evaluate [,,'s when o is fairly small. More powerful methods
which enable us to evaluate 1,,/s are given in the appéndix below, whereas
the; series forms are sufficient to arrive at our present object.

Now that the external clamping body E can be assumed as a conimon
metallic one having large value of rigidity, ”’EN/ Z—Z p becomes a small quan-
>

tity when the dfrequency p is not too large; for instance, if we take p,=10,
#,=102 (in C.G.S. units) and p=103, we get @=10"25. Thus we can eva-
luate I,,,,,‘approximately by expanding them in powers of @ and then taking.
their first two or three terms. The series expressions for I, save I, are

~

s A2 ;
Ln =0T @ T 357225+ 5 T+
: R (17)

2,

i Ty L S+ 3 T |+ 0@,

m#n, m, n*l,

L= —ia*{10,@)] Kon + Kot + 3 Kt | +0(), n1, .. (18)
i3 Y /

L=~ 0y T+ o + S |+ O@), n A (19)

where ],,,‘ and K,,, represenf the following expression respectively

fuo AT 1HREH

]mn._ a j‘o ——En(fz 52’”) d\., ................................................ (20)
TR B 1 ) RN

16 e L’_*—_En-z(é? =y e o e R T, (21)

.l 'y
iy © W VAN 2 AT TSR T R A o - S
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with ]2(":”)'_:0’ En>05 e, En=aln-
Thus it will suffice to evaluate the integrals:

vz & {IA5)} S g
e =f @y =l S

‘1 : g —=—le Bilo). BBV i D) a0c iirinss cuminivap wuthsadvsion saieishi (22)

i 2 “where v denotes even integers such that 2=v=—_4, and j is either 1 or 2.
Evaluation of I;; will be executed in another way.

Let us now express {/,(£)}? in I}(r) by a Neumann’s integral and then
change the order of integration, then we get after a slight calculation

N
vy 1 (7 o= 572 sinf)
=] a0 T‘n?ﬁz‘""*

(s ”+1) r{g—o_r+1
____i(:Fi:.)ws—Z@ ( 2 (13 2 2 )
(s .

3 jlz«;(“+5 ”;5 s sinio)sinw df

: 1"(2—,3+y +1
+1 »+1j Ffp; 84257, 8322,
2r(ﬂ X

|

— 72 smﬁz)

% (sin BY8-*-1d0,......... Gt (23))

where the F signs in the last equation should be taken according as the
imaginary part of z, say (z), is positive or negave; and JF5( ) stands for
the function defined in the following-way :

b pi by D=3 éé‘)),,"(ps) g e r%)n).

The first term in the right-hand side of (23) seems to have two different
limiting values when r tends ¢,. But, aécording to (22), this is impossible,
unless these two limiting values coincide to zero. In fact, the term in
question has {/7)}? or J{z) as its factor according as f=1 or 2, and so it
w ‘tends to zero with r—%,. Thus we get

-

1 Watson, loc. cit., p. 434,
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T BT S
R i s r(a )

(2k+2B—v=2)!1 . ,,

e AR (24)
where (2m) ! =2m(2m—2) 2 —4)...ceevuerrrnennn. 4R '
and @Cm+D!=2m+1)2m—-1)2m—3) ............ 112

Next let us consider [;;. By the definition of I,

1 A)}2 )} 2dA

*Inz S lj‘ —————-———({‘IZ(a(D)Z})UZdA— —l I;RJA l{{—‘)gz_(*_a( )k})z} 172 ,\s"(k)<0.

Expressing {.(¢4)}* by a Neumann’s integral as before and changing the
~order of integration, we get '

r 2 C0) Sy s I J(2alsing) Ju2aksind) .,
1{12+(zk)2}1/2 1{12_'_( k)Z}I/Z
RSyl e [ Paipe 28 e
=\—1 B —-a>) :
: Sr+2)rt(r+4)! & 7 il Y
0 °(27+1)P(r+ ,2_)1*(7 1y
41516 i ,
a(lsﬂ R L ) E ) ’
_or qu_ias(ié 3%27[‘22(02 9_6a3a)3+ ------ ), ........... erhene (25)

‘Expressions necessary for the evaluation of I,,’s when ® is small have
thus been obtained.

IL Calculation of the Rate of Dissipation of Energy.

Let us divide the expression for S, in (1) into its real and imaginary

S,,—(V1+ iV,)(cos pt+isin pt),

=R(Sy)=V, cos pt— stmpt SRS aniseivainbatins S B (26)
4 sz=d (Sy)=V,cos pt+ Visinpt. ) : 1
f“ Next we consider a torsional vibration of the wire represented- by S; or S..

&

The energy flow into E during one period 7' is equal to’ the amount of

" ;) Watson, loc. cit., p. 434.
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work done by the wire against E during the same interval of time. Hence
if we denote the latter quantity by ©, or ., accordmg as the mode of
vibration is S; or S,, then we have

[T () (53, v
=2 j (Vza V1 %%)z.-o,r (7 e S A O ......... (27)

In the similar way

&,=®=O®, say.
\

—— —_— *‘- . / e A8
. Let C,, D, and 7; denote the conjugate complex quantities of C,, D, and 7, .

respectively, then ; 5

(- v88), {8,

~ % [ (Gt DT S T Cou Do SO} | - (28)
On the other hand, there exists an orthogonal relation :
| G Rndr=0, (mzn),
Applylng these equations to (27) we get
&= @RS 74 Cu+ DN Co— D) i)},

Now equation (12) can be rewritten éts

\

(Ca+D,)(C,—D,Yr @ { Ji(2,a)} 2= "lr,.(c D,,>2(c =D, il

m=

This leads the last expressi‘on of & to the form

P 27;211 R SVl Con— DX Co— D)

m, n=1

Utilizing the relation I,,,,,= .m and denoting by E’Z’ the summation of all

m, n=1

terms save those for which m=n, we ﬁnally get

{

&= anlul lel ﬁ{Tan(C Dm)((- i ")} " H(I”'”)

m, n=1

2 2’;&2] 17,4C,— D")zy L i (b g, (30)
2 n A
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As we have pointed out in the preceding chapter, « is, in general, a
small quantity. Hencé if we neglect small quantities of —higher order than
o’ it is easily seen, from the formulae (17)~(25), that I,,’s save I:l become
purely imaginary quantities, and consequently they have no contribution to
the right-hand side of (30).‘ That is to say, in this degree of approximation,
the only substantial term in (30) is the very ame having the factor —91_6 a'o*
which appears in the third term of the formula for [; (see (25)). It must
be noted that in the above discussion we have tacitly assumed that the.
magnitudes of (C,—D,)r, are, at the highest, of the order of (C,—D))r,
‘which can be permitted from a physical stancfpoint of view. We thus get

6 =r 2 "1 w(q o5 N[ S SRR W REntien o) e S o) (31)

This formula enables us, if only two constants C, and D, are known, td
evaluate the arnount of the rate of enérgy flow in one period of -the vibra-
tion, without havmg any further knowledge concerning all the unknown con-
stants C, and D,. The exact determination of C, and D, depends, of course,
upon the solution of the system of equations (2) and (12), which is practic-
ally impossible. But luckily, we have a short cut leading to our object, if .
we satisfy ourselves with some approximations, by considering provisionally
as if the clamping body E were perfectly rigid, not elastic. In this way
we have approximately a8

! c-p=26=

Hence (31) gives

=t Ua Yapt ( P23

48 M sinfrl

#2) 9, 7IE~/;Zp, ............... Kt RRE (32)

If . is fairly small (this is the case, for instance, when the material of the
wire is 2 common meta] and / is of the order 1 m., provided p is not too
larger than 10%), we can take 74/ in place of sin 7,/ and hencel obtain-

y

rrzpleza (.02 32 . ; :
T /12) P A R A P (33)
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IV. Damping Coeflicient.

At this stage of our investigation we can reach the object stated in

! Chap. I and II. We have considered in the foregoing discussions pro-'

visionally as if the free vibration of our dynamical system were exactly
periodic, although it can not be so in the strict sense. This assumption

implies that our system perfofms, in fact, a certain forced vibration produced

- by a suitable periodically varying moment of force applied to the discal”

rotator, thus supplying just the same amount of energy that will compensate
the energy flow from the upper junction. Therefore, if we let our system

s 'alone, there will be a natural damping of its ‘free vibration’ (let its fre-

quency be p) originated by the energy flow which is approximately equal
to that corresponding to the above mentioned periodic ‘forced vibration’
with the same period p, provided that the damping is not too great. In
the free vibration the frequency p can take only definite values instead of
arbitrary ones. We determine them by considering the equation of motion
of the rotator :

2

4 g ;
‘725%71/‘1=p2 tanrll, .”.““'“"”“"“.““T ............ A D PN (34)

where 7 is the moment of inertia of the rotator ‘about its axis of rofation.
If 7./ is fairly small, this reduces to

'_ﬂazlll - 3
PR+ oo (35)

From (32) and (33) combined with (34) and (35) respectively we can calcu-

late approximately the rate: of energy dissipation when our dynamical system
is performing its free vibration.

Now let us consider a fairly long (but not too long) interval of time
and the vibration of the rotator during this interval. Let the angle of rota-
tion of the rotator at an instant / measured from its equilibrium position
be 0, then we can express it, in general, with a good degree of approxima-
tion, by the form

-

6 =Ue* cos pt,
,where U and Z are constants independent of # From this we con easily
calculate the kinetic energy of the rotator and see clearly that its maximum
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values occur regularly at constant time interval of 27/p, taking monoton-
. \

ously decreasing values. If we construct the difference between two suc-

cessive maxima and denote the logarithmic decrement of the vibration by

D, then

A %[(%?)j;%‘(gg)z,_%]':’ 97l U2 pi=2] U p2 s Age Y

When the mass of the wire is small compared with that of the rotator
(this case is rather common than otherwise), it is quite legitimate to assume
that the amount of dissipation Qf our system during one quasi-period be

‘approximately equal to the above value. Furthermore, this value must be
.equal to O, because we assumed that the decay of vibration arises from |,

energy flow &.) Thus we get

_-5_0_41/{’1/‘1 P2 o 05 ¢ .
D.._Z_4 i) ﬂz) P, A=Dp/x, e (36)
and if ry/ is fairly small
4 /2%
D#fs%%(ﬁ) o sT M e e o e (37)

 As can be easily seen from (36) or (37, D and 4 are, in general, very
small quantities : for instance, their values calculated in the case when
t=p=10%, p;=p,=10 (in' C.G:S. Units) are given in the table below,

10 eSS p=10; +=6.6%10"%, D=21x107%,

2), a=1, I1=5x10, p=10; +=13x107%, D=4.1x407%,

3). nia=T0 =2 i =l e R R e el 0 S 00
We conclude from these results that the decay of torsional vibration of a
wire-and-rotator system, considered as having its source in the energy flow
from its clamped portion, as compared with those due to other different
sources, is very small and can be neglected with safety.

V. Summary.

Problems concerning the decay of vibration of an elastic system fixed

" at some portions “of its boundary are much complicated, partly because of
. the variety of sources of the decay and partly due to manifold geometrical
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\
.

: : : .
and mechanical boundary conditions of the system. Therefore satisfactorily -+
theoretical treatments of such problems are hopelessly difficult without pre- i
scribing some limitations to these cifcumstances,

The present writer takes the energy flow into the external system due
to the propagation of elastic waves originated at the junction as a source
of the decay, and he discusses theoretically the problem in the case of the
torsional vibration of a perfectly elastic wire ideally clamped at its upper
end to a semi-infinitely large elastic body and clamped to a rigid rotator
at the lower. Thelresults obtained show that the decay due to the above
cause is exceedingly feeble and can be neglected compared with other sorts-
of decay. This conclusion has hitherto been believed to be true by every
one without any reliable reasoning, but we have got now a theoretical
verification. Thus the constant of logarithmic decrement of the torsional
vibration (its decay is assumed to be due to the above cause only) can-be
written as '

s 3/2 :
Dog CYRR L o remf 2,
where gy, 14, @ and ! denote the density, the rigidity, the radius and the
length of the wire respectively; p, and g, represent the density and the
rigidity of the external semi-infinite elastic body respectively; and p is the
.frequency of the vibration in 27 units of time.

it 7l is faifly small, D can be reduced to a still simpler form:

ot LB Py g
D=ggmi\p)

!

It is to be repeatedly noted that these results have been obtained
theoretically on several artificial assumptions, and therefore in other cases
further appropriate mathematical treatments will be necessary, and the con-
clusions may be somewhat different from ours. The present author wishes

to discuss these cases in the near future.

In conclusion the author wishes to express his cordial thanks to Prof.
Yamada of t_he Research Institute for Fluid Engineering  for his "kind and
valuable advices. @
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IV. Appéndix (evaluation of the integral I,.,) \

In Chap. II we have considered only the case in which the parameter
w is small and hence I,,,/s are expansible in powers of ®, giving some ap-

- proximate values of them. The power series method is surely an easy-going

and a powerful one, but since it involves two power series having respec-
tively 4,, and 4,, as their radii of convergence, when |w| approaches to these
values the convergence of the series becomes very slow, and moreover,
when || surpases them the original power series must be replaced by other
appropriate expressions (for eicample series of negative pow‘ers). This hcir-
cumstance of affairs is very troublesome and incovenient in evaluating I;,’s
for arbitrary range of |w|. Here we shall take another way.

To evaluate the integrals I,,’s, it is sufficient to discuss the following
integral in the case when « and 8 are a complex number and a positive:
integer respectively, and @ and r are complex parameters such that J()<0

I(a, B; w, T)= j J“({A{Z(al))} dy, —5<R(A)<2B+1, .cccevrvinonnns (*1:)

where the branch of y=y/«?—7? should satisfy the condition :
lim arg /P—2 =%, in accordance with (4) in Chap. IL

The original mtegrals to be evaluated can be easily obtained by the process
J(@)—0 in lxm I, B; o, 7).

To begm Wlth, let us consider provisionally the case in which

' —4<R(a)<23—4. Utilizing the formula?

’

L a@n (= I(—s)[(2s45) (alys s
{Jad))?= 2%1,5_&‘5{ e 1‘(s+5)(7) St LS (2)

and changing the order of integration, we get

5y e [ TS 2s25)
Lo, v 2715 AT (s FIFI+5) X

X ( % )Zsj 7;;2}(“:;)6 dA ds,‘ ........... g ot RS (3)

1 Watson, loc. cit., p. 436.
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Lef us denote the second integral in this expression by K and discuss the
cases coyresponding to different values of j separately.
1) the case: f=1.
If - we differentiate K with respect to », we get a linear differential
equation for K. This immediately admit of integration and gives

b U L CE
g e W e )

In this result we ha‘{e to. choose the branches of two-valued functions so
that both arg,/?—«? and arg/22—x? tend to zero when we let R(z)—co
keeping (@) constant. We substitute (4) in (3) and change the order of
integration. Let us now consider in s-plane an integration path C consisting
of the part of the imaginary axis between the points +iR (R is a large
positive number) and a semicircle /7 lof radius R, having its centre at the
origin, on the right of the imaginary axis, the origin beiné made an interior
point of C by constructing a small indentation. Iffithe semicircle 1" is des-
cribed so that its shortest distances from the poles of theintegrands (i.e.,
S N L R SR e and s=r—1;f12;, where . r=0;1; 2, ....c. ) take the possibly
lar'geSt values, then all the integrals along 7 tend to zero when R—c, thus
leaving only those }aken along the 1mag1nary axis, and consequently, we
can eva]uate“them by summing up the re31dues of the integrands within C.
In this way we have

I, 1; 0, 7)= Wm (%)4 F(—z)‘ﬁ/”fm( ){](ar)2 s

a2 P
sm717 @ L

8 & (—yr(r+33%)

am’z“:’l‘(r— %) 1’(r+ 2—-;‘—) T'(r+4—%)

p o (SN 3)er [+ e
1/?1 ’2" - 1/72——x2
riil r+2+ )P(r+3)1 (r+5) 1o

B (ar)*r

ax .
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i e | (—)’1"\(7'+%) (r+—~>a2'
'/,“"?aﬁz"or! I"(r—%)l"(r+2—%—) F(r+4———)

2 er-H ] k
.XLI_/?szdx,' .............................. (5)

At this stage of development we can extend, by the principle of analytic
continuation, the temporary range‘of a to a wider one: —4<R(«)<3. Of
course, the poles at a=—2, 0,‘2 appearing in the right-hand side of (5) are
merely apparent. Let 7 in (5) tend to 4,, then, by the definition of 4,, the

first term becomes zero. Further, let us make use of the following formulae : :

w a W
a8 f{tsirdx ’/ 71') 2r+3+a (7’+2 +_2_)+_ q2r+3ra
N = e R o -o Bl W =
. . )

2r+1
-3 dx,

B s T :
sV A= / (r+ ) ”l/l,,z—xz

then the expression in the square bracket of (5) takes the form which is

composed of terms containing integrals of the form J: and those independ-

n

ent of w. Since the former tend to zero as 1/2,—«? when o tend to 4,, if
the latter did not vanish identically, the right-hand side of (5) would be-
come infinite when we first make 7 tend ‘to 4, and then o to 4,, ‘'which is
clearly inconsistent with the fact. Thus we get. ' '

L ey
Ke, 15 o, 4.)= s'mazmim[l ,20’,' p(,,+2+ )T (r+3)I'(r+5)

xa+3+2r

dx
iV 2=

x|’

G e
+a ’go I‘(r——z-)l“(r+2—-?) (r+4_%)]“1/-t—2~f;§dx], (6)

~ and in particular
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f
i . A 4 (— ) 2 o) y+4 g
: o (—)a &'
I 1 1; W, A, )= e a _[ S ~“——'—j e dx
4 ) Viji—d? 2 ri(r+4)! VAL =X

! : ! (s ; oo r a?r @ 2r+1
. ez e e
; 2 ))in 3
This last formula is the one that is essential in*our investigation. :
(6) and (7) hold good in the range —5<R(«)<'3, and the convergence of
their series is very rapid. In these formulae we can, of course, also take
o as real; that is to say, they hold whenever J(w)<<0. All integrals in (7)
are expressible in terms of elementary functions, but here we shall not
 write down them in detail.
2) the case: fp=2.
Consider first a narrower range of a: —\-2<:R(a)<3, {then

I(2, 2; o, )_Avv-l(a 1; o, ‘z') ..................... S aar ATy (8)

Next, we reform the right-hand side of (8) by the following formulae,

sahhwz“‘—w“/» @ +(p— nj VA—xldx

f . +(ﬁ—1)jw x4 2 _x%dx, p>1;

An &

[0} x d I e
———dx=T—/ 1 —?;
j(n/ 2—x? 2 4

5 3 3 -

r P LA

53 s
Jo (r’z—xz)3/2 _“{/_:_2_ (P l)j

)

dx= 1 -1 ;

w vx
S jdﬂ-ﬂﬂ? Va—a T

Since the result from the reformed expression of Ia, 2; w,7) to be obtained
when we make t tend to 4, is nothing else than the required integral, it
must be finite and determinate when ® tends to 4, Further, the terms

containing the integrals of the form L are in themselves finite and deter-



On the 'Decay of Vibration of an Elastic Body, etc. i 45

minate. Hence the sum of the remaining terms should élsq be so. But as
we can easily see from its form, this last conclusion is impossible, unless
it becomes identically zero. Such a manner of reasoning to utilize the
functional properties of I renders it_ possible to avoid troublesome and tedious
calculations and gives immediately

(= P2 r(re 3)

70,1 1"(1 +2 r) I'(r+3)['(r+5)

18

SR e & o

(o, 2; o, 4,)= an (4= PP I_z
”

2 \

Sin—

4

g 2 e
‘}n

VA, —x* .
F(7’+ 5) [“(7.;- )az,.
. P “2 :
bt & [(r+1———) I’(r+3———2-)l’(r+5-—r.2_)
b O g @P—x? ] b, :
. T \L,,;x 1/2”—2:96? % N AR SRS P (9)

This holds good, by dint of the principle of analytic continuation, even for

_ a wider range of «: —5<M(x)<5. The poles which appear when « is
even are, of course, merely apparent.
In particular :

” 4 >°° Z,
e o e
(8. Zriwsd ) 17— atyPR = (1’+4)' an 'I/A T2 dx

"

—iﬁ‘(% ( 3)(12,_, ] PO i dx] (10) -
=0 [( ) <7’+—;¢) ’1"5 VA= e

This is the expression we aim to obtain and holds for any range of ||
such that J(@)=<Q. The convergence of the above series is very rapid as

¥
in the case (1), and all integrals appear_ing in these formulae are expressible

~ in terms of elementary functions.

‘¢






