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IN'rRODUCTION 

When pressure is suddenly applied at the bottom of the liquid column 

which was initially in equilibrium in a small tube maintained vertically 

over the reservoir, the column will ascend immediately to its final height 

where new state of equilibrium will be established. This process is the 

essential feature of a liquid-manometer which is put to use to measure the 

pressure in water ; the time taken for the liquid column to reach its final 

position is called usually "the time-lag of the manometer." 

In the paper which follows investigations will be made m two parts : 

in Part I the problem will be reduced to a very simplified one and the 

theoretical computations will be compared with the experiment. In Part 

II another set of experiments will be described in which time-lags were 

measured for each of the six glasswares which can be regarded as the 

model-manometers of different dimensions. These results will be discussed 

with a view to find the main factors determining the motion of the liquid 

column and to give a standard for constructing a manometer of the least 

time-lag as possible. 
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At' the beginning of these studies the authors' plan was to develop the 

theory of Part I so as to cover the phenomena experienced in the tests of 

Part II. But to do so, we realized in the course of our study, we had to 

make much closer examinations of the instability of flow (the break-down 

of laminar motion) in every part of the arrangements of various pipes, 

which, however, has been found impossible by means of our equipments 

available at present. And so Part I will appear somewhat independent of 

the subsequent descriptions. 

PART I 

§ 1-ST A TEMENT OF THE PROBLEM 

A small tube, A (radius a), is mounted vertically over the larger one, 

B (radius a', length l'), in the equipment shown schematically in Figure 1. 

C 
(Const. Head) 

E 
(Cock) 

D 

-Z;h,--:-z=Aa=h,+hc 
(the Final Position 

of the Meniscus) 

-Z=-ho 
(the I7td~al Posd<on 

of tht! Mentscus) 
Z = 0 ____,,_ , 

Fig. 1 
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The former is the manometer in which the motion· of the meniscus can be 

measured, while the latter serves as a conduit which supplies the mano­

meter with the liquid from the constant head, C. The origin of the 

z-axis is taken at the bottom of A and z is measured vertically upwards. 

If we denote by h the, height of the meniscus at time t above z = 0, h 

is a function of t only. 

Initially the meniscus of the water has been kept low at z = h0 being 

pressed down by breath blown through D. E, a cock, was closed when the 

desired low level had be,en obtained. At time t = 0 the cock is suddenly 

plucked out, thus the pressure over the meniscus being released it begins 

to ascend instantly. Our problem is to follow the motion of the meniscus. 

~ 2. EXPERIMENT 

EQUIPMENTS 

(i) Glasswares: After two glass-tubes A and B (see Figure 1 of the 

preceding section) were welded together ai: z = 0 the in1;1er radius ?f the 

manometer-tube A was measured at intervals of about 5 cm. along its 

length by filling mercury. The result is shown in Table I below. 

Table I 

z; I 6.5 10 I 15 20 25 

00 J 
:'l5 

I 
i 

a; 
I 

0.1252 0.1253 
I 

0.1249 0.1246 0.1240 0.1243 0.1246 

I I 
Zj 45 50 55 60 65 70 75 

I 
I 

a; 0.1246 0.1253 0.1251 0.1251 0.1249 I 0.1244 0.1231 

------- -- - --- --- - -

z; : the ordinate of the middle point of the mercury filled in the tube 
(measured from z=O in cm.). 

a; : the radius in cm., being the average value of it in the neighbourhood 
of z=z;. 

40 

0.t244 

mean 

0.12465 

The mean radius throughout the tube A , which will be used in the 

sebsequent numerical calculation, was obtained from the following formula: 
1 1 N 1 ----c--~~=-~-

(a mean)4 N f='i af ' 
(2.1) 
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where N is the total number of the samples (N = 15). In the experiment 

the tube A was fixed vertically upright adjusted with a suspended weight. 

As will be seen from the theoretical .discussions later, the radius of the 
pipe is a very important factor that determines the nature of the piotion of 
the liquid column, therefore much care has been ta1'en in its measurement. 
In fact, the parameter with which the frictional resistance on the wall can 
be expressed varies inversely as the fourth power of the inner radius, cf. 
(3.16). This is the reason why the formula (2.1) was adopted. 

(ii) Water Tank: To obtain the desired head-difference a large wooden 

vessel of rectangular section was used. As its 1:lectional area was about 

400 cm2., i.e. roughly 104 times of that of the manometer-tube, the level of the 

water in the tank· could be regarded as practically co.nstant during the 

motion. This tank has a tubular outlet of brass near the bottom, which is 

illustrated in Figure 2. The actual views of these equipments are shown 

in Plates I, II, and III at the end of this paper. 

A 

B I 

Vflul--tv,_ 

" ~\>~ Fig. 2 

(iii) Liquid: We used water in the experiments of Part I and of 

Part II and care was taken to remove small air bubbles in the· water, 

because they frequently adhere on the wall of a small pipe thus possibly 

make the condition of flow completely different. 
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METHOD OF MEASUREMENTS 

In order to trace the motion of the meniscus we took a 16 mm. motion­
picture of the ascending liquid column. The essential points of our method 
are as follows : 

(i) Illumination: The manometer-tube was illuminated from one side 

by an intense sheet of light through a vertical narrow slit (about 2 mm. 

(0)' .) 
I I I 

,.-

CctnC1.u. 
I' 

i ii! 

I I 
,, 
I-

Fig. 3 Shi e Id __,,, 

wide) and the camera was fixed at the- tniddle height of the initial and the final 
positions of the meniscus · (see Figure 3).<1> Then, because the lower part 

of the glass;tube which was filled with water became less reflective than 
the upper part filled with air, we couhl -distinguish the instantaneous posi­

tions of the meniscus by the contrast of brightness on the negative film. 

Three electric lamps of 250 watts were used as the light source; this lccal 
illumination brought about necessarily the rise of the temperature and hence 

the decrease of the kinematic viscosity (v) of the water where this is exposed 

to the light. In order to- know the value of _v as correctly as possible which 
is rather sensitive to slight changes_ of temperature, we fixed another test­
tube full of water in_ the light and measured the temperature in it (19.0°C.), 

(ll The horizontal distance between the camera and the manometer was about 1.5 m. 
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assuming that the temperature would rise by equal degrees in the test­

tube as in the manometer, because in the latter any direct measure­
. ment could be hardly possible. 

(ii) Determination of h: We magnified the negative film by a micro­

scopic comparator and referring to a scale attached preliminarily just behind 
the manometer we could determine the successive values of h. However, 
the facts is that owing to the finite time of exposure of the picture (esti­

mated to be about 0.016 sec.) the image of the meniscus was diffused with 

more or less breadth, especially where the velocity of ascent was the maxi­
mum, but by means of plausible. interpolation the final result was obtained 
with accuracy of about ± 1 mm. 

(iii) Time-Record: To complete the measurement it is necessary· on the 

other hand to determine the scale of the time-axis. For this purpose we 
filmed again a rotating disc driven with a constant speed by an A. C. (58.5 

cycles) synchronous motor. A strip of paper on this disc made a sectoral 
image on the film and the angle between the bisects of these sector-angles 

of the two consecutive pictures gave the corresponding time interval, Jt, while 

the time of exposure, Llt', could be estimated from the angle of a sector 

(see Plate IV). Thus we obtained 

Lit = 0.068_± 0.001 sec., 

.and Jt'= 0.016 sec . 
(average value of the 16 sets of the samples) 

.. 
Figure 4 shows schematically the mode of advance of the film in the 

camera. 'I'he results of two independent experiments are embodied by two 

sets of points in Figure 9 at the end of Part I.· 

Exposed. 

0.016 
sec. 1 

0.068sec. 

I 
I 

O. 0 S2 sec. To. 016 
1 sec. 

Fig. 4 
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§3-THEORY 

Denoting by w the velocity of the liquid along the z-axis, by p the 

pressure, p the density and v the kinematic vi~cosity, the equation of the 

laminar motion through A can be expressed in terms of the cylindrical co· 

ordinates (r, z, <j,) as follows: 

(3.1) 

where g is a constant of gravity (980 cm./sec.2) and an assumption has been 
made that w is a function of (r, t) and independent of (z, <j,). 

Let us consider next that p may be safely assumed to be independent of 

r and average the both hand sides of this equation over the cross-section 

of the tube, then we readily obtain 

dw0 = _ _!_ op _ _ 2~ 
dt p . oz g pa ' 

where 1 Ja wo(t) = - 2 w(r, t)2rrrdr, rra o 

and 

~0 being the traction cin the wall and µ=pv. Integrating the both hand 

sides of (3.2) with respect to z from zero to h (the meniscus at time t), we 
get· 

(3.3) 

where Pz-o and Pz-h are respectively the pressure at the bottom of the tube 
and that just below the meniscus (cf. Figure 1). If we take as the stan­

dard the atmospheric pressure equal to zero, then 

Pz-h = - pghc; (3.4) 

he denotes the rise of the liquid due to its capillarity, viz. 

h = 2acosa 
C pga ' 

where f1 is the surface tension of the liquid and r1. is the angle of contact 

between the surface of the liquid and the wall of the tube. It must be 

noticed in these expressions above that a, a and accordingly he have been 
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asspmed constant in the course of motion of the meniscus. This assump­
tion has been verified partly, of course not proved with certainty, in the 

experiment, for the meniscus was observed quite steady in motion. 

Our next step will be to estimate the value of Pz-o . If we put the 

constant head explained in § 1 (see Figure 1) equal to h1 , Pz=o can be con­
veniently written as follows : 

Pz-0 = pgh1-L1-Lv-La, (3.5) 

where Li, Lv, and L0 stand for the loss of pressure caused in the conduit 
by friction, velocity and acceleration respectively. Next we are going to 

discuss these factors separately. 

(i) Li: This is the loss due to friction on the wall of the conduit B. 
As is easily supposed from the fact that the velocity of the liquid is very small 
in B (in our experiment the average velocity was estimated less than 3 cm. 
sec.-1 at the maximum), this part of loss cannot be so great and ·we can 
evaluate it without making any serious error in the final result of the 

theory when we assume the Poiseuille's parabolic law for the flow pattern, 
neglecting the effect of the deviation of the velocity profile caused on the 

one hand by the unsteady character of the flow and on the other by the 

windings of the path. Then Li is given by the well-known formu1a 0 J 

L. _ 8µQl' 
1 - rra'~ ' 

where Q is the flux across the section of B while l' and a' are, its length 
and radius respectively, which, if we consider the continuity of the flux, 
can be readily express.ed in terms of a and Wo, viz. 

Q = rrtrw0 , 

8µa2z, 
Li= ,4 W1,. a 

therefore 

Or for convenience' sake we can put it into the form 

Li= pk' l'wo, 

where I (3.6) 

(ii) Lv : The liquid, in its passage through the conduit, suddenly 

acqufres the sensible velocity w0 when it enters A . A smaller part of 

OJ Goldstein, Modern Developments ii Fluid Dynamics, vol. I, p. 20 (1938). 

.;) 
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pressure, Lu, must be consumed in order to bring about this increase in 

velocity head. Ignoring for simplicity, however, other factors for the time 

being Bernoulli's theorem (which is perfectly correct for the steady flow of 

an inviscid fluid) suggests us it may be fairly reasonable to assume that 
this correction can be approximated by the quantity pwi/2, viz. 

L _ l , 2 
V - zPWo. (3.7) 

Before going further we have to _notice that another loss of pressure 

can be caused by the eddies generated at this point of discontinuity of 

cross-section (the so-called loss of contraction). l3ut in order to minimize it 

we welded beforehand two pieces of glass-tubes of different diameters (A 

and B) into one piece of fairly smooth contraction (see Plate II), and by this 
means, we hope, we could reduce it sufficiently to make it legitimate for us 

to proceed without t~king account of it in the following discussions. <1) 

(iii) La: At the beginning of the motion the liquid mass contained in 
B is accelerated from rest. Some work must be done on the liquid, thus 

again some loss, La, (or gain when retarded) takes place. In other words, 
a smaller portion of the mass of the liquid in the reservoir B acts as an addi­

tional mass to that ascending in A whose motion we are now computing. 
When we denote the average velocity of the liquid over the cross-section of B 

by w/ and assume it dependent of t only, then the force to accelerate the 
liquid in B amounts. to (mass) x (acceleration)= pna'2 l 1(dw0 / dt), so that per 
unit area it is pl' dwo / dt which we may regard as an approximate expression 

for La.·. Making use of continuity of the flux, this can be written 

(3.8) 

Finally when these three factors Li (3.6), Lv (3.7), and L0 (3.8) are 

together ~ubstituted in (3.5), Pz-o is readily found to be embodied in a some­

what lengthy form 

<11 According to a text-book of hydraulics, e.g. " Heat Transmission " by McAdams, p. 121 
(1933), to which reference was made by Brittin (cf. §5), the loss of contraction is generally 
expressed by some fraction of Pw02/2 and seems to be at most about fJw02/4 for an extreme 

· case of the sudden remarkable contraction of turbulent nature. In our experiment this 
loss must be much smaller because of the smooth change of cross-section and the laminar 
character of flow, so that our final results will not be affected to a great extent by the 
neglection of this correction. 
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_ f f pwl f a2 dwo ,' Pz-o- pgh1-pk l Wo--2--pl c12.ar· (3.9) 

Combining (3.4) and . (3.9), (3.3) can be w1jtten 

( ~+g· + 2T"o)h -gh -k' l'w - Wo2 . l' a2 dwo . (3.10) 
dt pa · 2 0 2 a12 dt ' 

where h is related to w0 by the equation 

dh 
~ = Wo, 

and h1 + he has been written h2 for brevity. However, when t tends to in-. . 

finity, w0 , dwo / dt and T"0 tend to zero and it follows from the above equation 

that 

h,_."" = h2, 
therefore h2 can be easily measured _ in the experiment. 

But in order to solve the equation (3.10) it is necessary here to assign 

a definite value for T0 which is left untouched so far; if we assume that the 

velocity profile in the tube A is always parabolic, then T0 is found to be 

equal to 4µ w0/a, therefore 

2~=k_.!!!!_ l . pa ,, dt ' 

8J.J (l) 

k,,=-2-· a 

(3.11) 

where· 

And if we define more generally 

(3.12) 

for any of the velocity profile, then (3.10) can be written 

_(h+l' :,:) !;~ + ~ (~)2 +(kh+k'l') lij; +g(h-h~) = 0, (3.13) 

which is a differential equation of the second order and represents the 

non-linear oscillation of the liquid column. 

Equation (3.13), however, can be transformed into more accessible forni 

by the following procedure; viz .. if we put 

cai The suffix p implies the Poiseuille's parabolic flow.pattern. 
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and change the independent variable from t to h , we obtain 

dfJ 2g(h2-h)+ 2(kh +k' l') y'O -II 
dh = h+l'(a2 / a' 2) 

(3.14) 

( - ; when ascending; + ; when descending). 

This is a differential equation of the first order and can be solved by means 
of a method of numerical integration far more easily than its· original form 

(3.13). The time t which is elapsed since the beginning of the motion of the 

meniscus till it attains to the height z = h can be found from the following 
formula: 

fh dh 
t = Jho Y fl · 

(3.15) 

The initial condition to which (3.14) is subject is that fJ = 0 at h = h0• The 
values of the constants included in the above equation are 

ho= 36.72 cm., 

a = 0.12465 cm., 

l' = 36.6 cm., 
v = 1.032 x 10-2 cm.2 / sec., 

h2 = 76.72 cm., 

a'= 0.669 cm. (mean value), 

k' = 0.006404 Sec.-1 , 

k,, = 5.314 sec. -1. 

When the velocity profile is parabolic k becomes naturally equal to k,, 

and is constant. But as is easily supposed, at the beginning of its motion 

the velocity profile of the liquid is much flatter than parabolic (Figure 5) and 

the value of -k defined above by (3.12) is possibly greater than k,,, and on 

the contrary when the flow is retarded k will become smaller than k,, (cf. 

Figure 11). Therefore in such a non-steady flow as ours, k must be a function 

of Wo( = dh / dt) and accordingly of h. In order to know whether this is 

the case or not and how far its effect is we make use of the theory pro­

posed recently by Professor Yamada of our Research Institute. It is a 

linearized theory on the ascent of liquid assuming that the deviation of the 

length of the liquid column from its mean value is so small th<}t the higher 

order of this quantity can be neglected in the course of its motion (and in 

the case of a U-tube in which the length of the liquid column is kept con-
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fa~~~%~~=~ 

. ------~2w­
---~ ,,,,.--:,,•,•,, .. ',,,, ~~' 

I . .i,liadAj ( (/Ja,,2u.t-0ea) 

2, a,,c,cde/2.£{.fed 

J 1ud-<1Adtzd 

Fig. 5 

stant it gives an exact solution of the problem). The details of this theory 

has been described by. himself in the present volume under the title " Note 

on the Liquid Motion in U-Tub_e "; the following is the resume of it. 

LINEARIZED THEORY 

Under the above assumption the rise of the liquid column· can be 

determined in terms of the two -non-dimensional parameters 

;.·= Lil- and r- = _!!:_ <l> 
ga4 a2 ' 

(3.16) -

where v is the kinematic viscosity of the liquid, t the time, a the radius 
of - the tube and L the length characteristic to the problem, e.g. the 

mean length of the liquid column. If A<0.0847 •·· the motion is of oscillatory 
nature,- while when ;. > 0.0847 ·:· it is not, but aperiodic. In our problem 

the change of the length of the liquid column is not so small as to permit 
neglecting the higher order and strictly· speaking it is beyond the limit of 

th~ linearized theory. But in order to adapt. the theory somehow in an 

<11 'I' is a non-dimensional time and 'I' 0 stands for the surface traction; they are utterly 
different. 
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admissible way for the present case, we take as the most reasonable value 

of L the length (h2 + h") / 2. Then A is found to be 0.02553 • • · , and the 

motion is of oscillatory type. h-ho, dh I dt and , 0 are given from the theory 

by the following formulae : 

h-ho = l+J_ f: J.jt e-jn2 -r: 

ll 3 n~i An ' 

(3.17) 

where 

e is the impressed head (assumed constant for simplicity and put equal to 

h2- h0), and j's are the roots of the equation 

l2U)-Aj4loU) = o, (3.18) 

where 10 and .12 denote the Bessel functions. The successive values of the 

roots corresponding to A = 0.02553.. are given in the table; when n>6 

they are identical to the zeros of lo with sufficient accuracy. 

Table II 

jl 2.041 + i 1.0821 j4 8.6521 

j2 2.041-il.0821 j5 11.7912 

j3 5.5051 j6 14.9309 

The roots of the equation (3.18). 

The values of t, h-h0 , dh / dt, , 0 and k are tabulated in Table III for 

various values of r and are reproduced in Figure 6. 

The abnormal value of k with an asterisk corresponds to the maximum 

or minimum of h : this was caused evidently by dividing a finite value of 

To by a very small value of dh I dt. It may appear quite absurd at first 

sight that in all the sequence of k only these two figures are negative while 

all others are positive. But it is not impossible, because near the maximum 

position of its asce11t the liquid may have a wavy velocity profile; it may 

have an upward motion on the whole (w0> O) while , 0 is negative and 

likewise possibly w0 <0 with , 0> 0, cf. Figure 7. We have not closely 
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0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.075 

0.10 

0.15 

0.20 

0.25 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

1.20 

1.40 

1.60 

1.80 

2.00 

2.50 

3.00 

4.00 

h-h0 (cm.) I 

0 

0.08 

0.27 

0.59 

0.97 

1.54 

5.00 

9.78 

15.18 

20.70 

24.34 

'.H.83 

40.79 

43.89 

44.78 

44.27 

,i::J.10 

41.80 

:-i9.97 

39.43 

39.61 

39.90 

40.05 

40.01 

39.99 

40.00 

J. OKABE & M. ORJI 

Table III 

dh , /" \ : /f ( V )2} I (lJ I -;:---11 1.cm. ~ec. 1 I , 0, 1 Pae ----,- 'i k(sec.- 1) 
' ____ I I l (l- _____ I_ --- I 

0 

8.898 

lii.561 

23.28 

29.69 

35.34 

47.42 

56.81 

68.84 

73.44 

72.35 

67.13 

49.60 

29.60 

12.411 

0.'.1720 

G.320 

8.673 

8.153 

3.777 

- 0.172(i3 

1.0193 

0.7631 

0.2243 

- ·0.09131 

0.01389 

- 0.0004324 

0 

4.217 

5.825 

6.968 

7.911 

8.655 

9.771 

10.981 

11.773 

11.590 

10.733 

9.440 

6.281 

3.231 

0.8788 

- 0.5970 

1.2829 

1.3913 

1.1600 

0.4215 

0.05624 

0.16645 

0.09908 

0.018845 

0.012393 

0.0018345 

0.00008806 

16.727 

12.414 

10.562 

9.404 

8.642 

7.272 

6.822 

6.036 

5.570 

5.236 

4.963 

4.469 

3.853 

2.499 

-56.65 * 

7.164 

5.662 

5.022 

3.938 

-11.498" 

5.761 

1.582 

2.9n5 

4.638 

4.660 

7.187 

0 

0.02 

0.03 

0.05 

CLOG 

0.08 

0.11 

(l.15 

0.23 

0.30 

0.45 

0.60 

0.75 

0.90 

1.05 

1.20 

l.3fi 

1.51 

2.11 

2.41 

2.71 

3.76 

4.52 

6.02 

examined whether this is the case or not in our present problem, but for con­

venience' sake this uncertainty has been removed from the subsequent com-

cu k can be calculated from (3.12). 
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putations. For in order to be able to make use of these data in the equa­
tion (3.14), we must re-tabulate k as a function of h. However, because the 
oscillatory motion represented by (3.14) and that approximated by the line­

arized theory are not necessarily of the same amplitude and phase, the 

existence of these abnormal values of k is very embarassing attended with 
danger of misleading the computation altogether. And on the other hand 

after the motion has been retarded, the variation of k will be scarcely important 

when multiplied by w0 into the form of , 0 = r1akw0 / 2 (the surface traction), 

so we take the following expedient: at the start of the motion while k is greater 

than· k,, we ?-dopt the value of k calculated from the linearized theory, but 

once after k becomes equal to k,, we use this constant value invariably 
during the rest of the motion. 

-lo ---
0 

1--------1$ 

/ ' 
______ ::-:-«..-=::Y~ Non-tfj,,,,emional Ti 'me : ?: = vt o.• 

o.s 1.0 1.5 2.0 

Fig. 6 
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Fig. 7 

§ 4-DISCUSSIONS 

(I) COMPARISO:r-.T WITH EXPERIMENT 

The results of the preceding calculations are embodied in Figures 

8 and 9 together with Table IV. In Figure 9 two sets of points 
' 

Table IV 

h-h0 (cm.) (J I dh/df.;,~/Q (cm./sec.) h-h0 (cm.) I (J I 
dh -
dt=✓ fJ (cm./sec.) 

0 0 0 29 3220.33 56.75 

0.5 796.51 28.22 33 1975.08 44.44 . 
1.0 1452.92 38.12 35 1399.18 37.41 

2.0 . 2560.10 50.60 37 878.62 29.64 

3.0 3488.19 59.06 39 434.97 20.86 

4.0 4257.28 65.25 41 101.94 10.10 

5.0 4880.10 69.86 41.8 14.41 3.80 

7.0 5752.63 75.85 41.99 0 0 

9.0 6287.62 79.29 41.69 7.52 - 2.74 

11 6589.51 81.18 41.39 9.59 - 3.10 
13 6679.91 81.73 41.09 9.12 - 3.02 

,17 6354.07 79.71 40.79 7.13 - 2,67 

21 5570.92 74.64 40.49 4.37 - 2.09 

25 4472.25 66.87 40.19 1.58 - 1.26 

The results of the numerical integration of the equation (3.14) (see Figure 8). 
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obtained from two independent experiments A and B are reproduced for 

ready comparison with the theory. In plotting the experimental points, 

however, it should be 11oticed that from the nature of the cinematographic 

method the origin of the time-axis, t = 0 (the instant of the start of the 

ascent), cannot be determined . exactly without any uncertainty. In other 

words, we can only assert that the beginning of the motion took place 

within 0.052 sec. (the mean time bc.-tween two consecutive exposures, cf. 

Figure 4) prior to the first frame of picture where the ascent of the liquid 

column was caught sensibly. But taking into consideration the fact that the 

features of both motions obtained theoretically and experimentally are quite 

similar, especially in its initial part where the tangents to these curves are 

all parallel, we adjusted the origins of the experimental curves so that these 

three curves may be coincident over the broad range of their earlier deve­

lopments.1) The considerable discrepancy between the theory and the ex­

periment in the later stage of the motion will be discussed in (III) of this 

section. 

(II) STABILITY OF FLOW 

Might not there happen an instability of flow, and the friction actually 

taking place, wasn't it of turbulent nature? So far we have not mentioned 

explicitly about the stability of flow and formulated the various equations 

upon the assumption of laminar motion. But we must notice here that 

if we pay attention to the mean motion exclusively, the fundamental equa­

tion (3.14) is no less valid when the motion is turbulent. However, when 

turbulence sets in, the numerical evaluation of , 0 and accordingly of k must 

be very different from those which were described in the preceding section. 

And on the contrary if we take an appropriate value for k , we can develop 

the same line of computation as before for the ascent of the liquid of turbu­

lent nature. 

In order to decide whether our assumption of laminar motion was 

legitimate or not, let us calculate the maximum Reynolds number attained 

c!J The origins of time were chosen at 0.040 sec. for A and 0.036 sec. for B prior to the first 
frame. They lie, of course, ,yithin the limit above-mentioned. The fact that the two 
experiments can be brought into almost complete coincidence seems to prove the legiti­
macy of this procedure. 
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in the tube A ; by numerical differentiation of the · experimental curve of 

Figuer 9 it is found that w0 was roughly 85 cm./sec. at its maximum, and 

accordingly 

Re _ W0maxX 2a _ 2 053 max- v - , . 

On the other hand it is well-known that the measured values of the critical 

Reynolds numbu when disturbances are introduced at the entry are round 

about 2,000 and further for no initial disturbances does the critical Reynolds 

number fall below about 2,000,<1> (or after PrandtJ,<2) "··· gibt es wie die 

verschfodensten Experimente gezeigt haben, einen unteren Grenzwert der 

kritischen Reynoldsschen Zahl, der ungefahr bei ur Iv= 1,000 oder etwas 

dariiber liegt. .. • " ii, is the mean velocity = w0 in our notation, r the radius 

= a.) Thus the value of our Re max lies just in the critical region and no 

definite conclusion can be drawn out about the stability ; besides we must 

notice that the above quoted data relate essentially to the steady state and in 

our case the flow is much acc~]erated. But perhaps we may safely conjecture 

that turbulence did not take place in our experiment, or even if it did, the 

period over which it could be maintained was quite short and passed without 

producing any serious consequences upon the general features of the motion. 

(III) ESTIMATION OF k 

When deriving the equation (3.14) we put, cf. (3.12), 

k . 2ro 
= pa(dh I dt) ' 

and remarked that k would become equal to kp = 8v / a2 = canst., if we 

assume that the velocity profile in the tube A is always parabolic during 

the motion. In fact when the radius is very small and the motion is very 

slow this simplification yields no discrepancy with the experiment (cf. e.g~ 

Brittin's paper cited in the supplementary note). But in our case the 

velocity of the ascending liquid column is not so small and the radius of 

the pipe which was 0.05 cm. or 0.01777 cm. in his computation is in our 

experiment about 0.12 cm. Therefore the estimation of the friction on the 

wall should be more precise. 

· (O Goldstein, op.· cit. vol, I, p. 71 (1938). 
<2l Prandtl-Tietjens, Aero-und Hydromechanik, Bd. II. S. 37 (1931). 
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'.Ve have not examined, however, how much difference can be re­

sulted in the final results between the simple assumption of the 

Poiseuille's flow pattern and the more exact computation based upon the line-

200.----.----------.-----~-----~ 

~1 I ,F k canst. 

(c~ 

150 

100 

50 - ----~-----+--------+--

Fig. 10 
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----------·- ..........L__ ------ I __ - ------~----

Q 20 40 60 

arized theory, but let us quote here another example_ :--it is an analysis 

of just the same kind of experiment (unpublished) only with different 

dimensions, viz. 

h0 = 15.7 cm., 

a = 0.1212 cm., 

v = 0.0lm2 cm.2/sec. (19°C.), 

kp = 5.62 sec. -1, 

h2 = 85.7 cm., 

a' = 0.445 cm., 

1' = 174 cm., 

k' = 0.0309 sec. -1 ; 

the parameter ,l, cf. (3.16), where L was taken equal to (h0 +h2)/2 as before 

is 0.02553 •:· . In Figure 10 ·the calculated values of dh / dt (cm./sec.) from 

both of these methods are shown. In this figure the curve denoted by (k: 
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canst.) refers to the Poiseuille's flow pattern and (k: varied) to the improved 

theory. We think the difference is of the same order in the previous example. 

Let us return to Figure 9. The considerable discrepancy between the 

theory and the experiment in the later stage of the motion, where is this 

to be ascribed? 

In the computations of ~ 3 we had to retabulate the values of li 

calculated preliminarily from the linearized theory as a function of h . But 

in the circumstances already stated, we took the expedient assumption 

illustrated by Figure 11. The transfer· from the improved value of k obtained 

from the linearized theory to the constant k,, took place at h-h0 • • 20 cm. 

and is indicated by the arrows in Figure 9. 

le \ 

\✓~le, caf=b&J fun,, 
\ / !,,,.,,,,,,c,,d tko ':f 

~~~ ,_____ ---,-~ 
: '~ j 

' ' 

Fig. 11 

If we compare these two curves, theoretical and experimental, bearing 

in mind the above reasons, w~ readily recognize that the discrepancy be­

tween them are chiefly due to the over-estimation of the value of le in the 

range of h greater than h0 + 20 cm. In order to improve the ag_reement 

some measures may be conceivable but we shall not enter into details. 

(IV) RELAXATION-TIME OF PRESSURE AFTER 
THE COCK IS PLUCKED OUT 

While the cock, E in Figure 1, is kept dosed and the meniscus of the 

water in the tube A remains low at z = h0 before the motion, the pressure 
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over the meniscus must be greater than the atmospheric pressure, Po, by 
the amount 

(4.1) 

When the cock is plucked out instantly, air discharges through the aperture. 

and ·the difference of pressure above-mentioned begins to dimin.ish until it 

becomes zero. Because this process will take a short but finite time, T, 

the preceding calculation of § 3 in which this relaxation-time was utterly 

CP 

V 

Fig. 12 

neglected may be modified to some 

extent. In the case of our experiment, 

however, T is found to be quite 

negligible in reality and the correc-

tion is not necessary out of the 

following considerations. 

Now as a model of discussion 

let us study the efflux of air from a 

vessel of volume V through a small 

opening of area S. Denoting by q the 

velocity of discharge, by p the pressure 

and by p the density of the air, the condition of conservation of mass giws 

_ dp = Spa q 
dt · V ' 

(4.2) 

where the suffix O indicates the corresponding quantities in the outer field 

of normal condition. Under the assumption of adiabatic change the pressure 

and the density are related in the following way : 
p = xpr, (4.3) 

where x = p0/p/ and r is the ratio of the specific heats of air, i.e. r = c,,/c,,. 
Combining ( 4.2) with ( 4.3) and putting a = l-r-1 , we ~ave 

- !a ~f = t p/-a. (4.4) 

On the other hand if we neglest the mqtion of the air in the vessel and 

assume among p, p and q Bernoulli's theorem of the steady state for each 

moment of efflux, then q is expressed by the formula 

(4.5) 
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Substituting (4.5) I\l (4.4), we obtain the differential equation 

dp a ,-a- a dt = fip VP -Po , (4.6) 

where ;1 = - _§.L p01-a( 2xi-a )} = const. (4.7) 
V If. 

But when p-p0 = Jp is very small compared with Po, (4.6) can be readily 

inttgratecl and the relaxation-time T stated above is found to be 
/ 2 o V -:--- 11. •. · . · ·· 

T = l_____ ___ l_(l__ - 1/ dpl - ~· -1/ (.Jpl)3 · 
Por S 3Po 

(4.8) 

The valuer, of the constants in the normal state of air are 

Po = 1.01 x 10" dyne/cm2., 

and {'0 = 1.3 x 10-3 gr./cm.3• 

Then the second te1 m of (4.8) can be neglected in comparison with the first 

one and we can write approximately 

T. · 3.6 x 10-s f 1 Jp~ (in C.G.S.). (4.9) 

In our cases as it is that V/S·.~ 10 cm. and h2-ho = 40 cm., ('1.9) gives 

T-. · 3.6 x 10-s x 10 x 1/980 x 40"'~"7.2 x 10-5 sec., 

which can be safely neglected in our approximation. 

~ 5-SUPPLEMENTARY NOTE 

In the course of our w(irk we were informed of the paper "Liquid 

Rise in a Capillary Tube" by E. W. Brittin (Journal of Applied Physics, 

vol. 17, No. 1, 1946 ). In this paper the rise of liquid under the action of 

surface tension (no pressure being impressed) is treated. By consideration 

of the change of momentum in the capillary tube the author derived the 

differential equation of motion of t_he meniscus which is naturally quite 

similar to our (3.13) and expressed its formal solution in terms of a Dirichlet 

series. UJ He showed a good agreement between the theory and the experi­

ment (carried out by Rense, 1944). We hope that our work, although very 

different from his in formulation, and !in~ of thought, can be successfully 

utilized in the above study as well. 

( 1 J According to the opinion of the present authors 2 ( dZ ) 2 in his equation (1), p. 38, /oc. 
. 1 ( lZ )" 4 d t · 

cit. should be 4 :ii , but in his numerical example no sensible error was caused be-

cause of very iuw speed of ascent of the liquid. 
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PART II 

~ 1-PURPOSES OF EXPERIMENT 

The theoretical treatment described in Part I is concerned mainly with 

a very simplified problem and in fact they have little bearing on the actual 

manometer. A typical construction of a manometer, e.g. that which is used 

in the model-ship experiments in water-tanks, 

,. 
'.,,•· ,.·, 

'-. 

"M a1J"wn,u t-er 

is shown in Figure 13 : an aperture is bored 

in the flank of a body, through which the 

external pressure prevailing at P is transmit­

ted to the manoneter, and by observing the 

motion of· the meniscus this pressure can be 

read at once. The purposes of our experi­

ment are to measure the time required for 

the meniscus to be settled in a new position 

of equilibrium when the manometer is set to 

work suddenly at any instant and to find out 

the factors which are most important in deter­

mining the motion of the liquid column. 

Fig. 13 
We have in contemplation an experiment 

in a water-tank, in which the distribution of 

pressure around a moving body must be 

measured with the least time-lag as possible. We were at first induced to 

the experiments of Part I and II by the idea that the measurements which 

will be described would enable us to decide the rough dimensions of the 

suitable manometers and to predict the time-lag accompanied. 

~ 2-METHOD AND APPARATUS 

The general plan of the experiment i~ essentially similar to that of 

Part I and can be summarized in the following items: 

I) Glasswares: With a view to reproduce the phenomena in the most 

simple way as possible we constructed six kinds of glasswares of different 

dimensions whose precise values are shown in Table V and Figure 14. 

The contractions (l) of three of these pipes are about 15 cm. long and in 
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the other three l. · 2 cm. (Plate V). The effect of the length of the 

aperture bored in the flank of a body upon the time-lag of a manometer 

was expected to manifest itself by examining these two extreme cases of 

l, while that of the different diameters would be made clear by varying 2a 

among 1, 2 and 3 mm. 

--3:· 2 a .?~ 
L 1 :J II' 1· 
I f I t I ---1' ,!,--· -t' 

Fig. 14 

II) Arrangement : The general arrangement of the pipes are shown 

schematically in Figure 15 together with the necessary dimensiom1 in Table 

VI. The contraction was set horizontally and the manometer vertically 

with sufficient accuracy for present purpose, and they were connected with 

a flexible rubber-tube as in the actual manometer. •1i The observed changes 

of the level of water stored in the wooden tank were retained under 1 mm. 

i.e. ¼% and ¼% of the impressed heads and were regarded negligible 

throughout the measurement. 

III) Measurements : In order to · trace the motion of the meniscus 

several auxiliary points were marked on the manometer and afte·r the cock 

was plucked out suddenly at t = 0, times were measured between various 

pairs of these marks with an ordinary stop-watch. After repeated measure­

ments from five to ten times for each interval, the results were averaged 
, 

to eliminate the casual errors. Interchanging the contractions among six 

of them whHe the other conditions were kept as constant as possible, 

we measured the motions of the meniscus and plotted them into the. h~t 

<IJ The radius of our manometer-tube was about 0.38 cm. and by far larger than the con­
traction. It was readily supposed, therefore, that the frictional resistance on the liquid would 
act chiefly at the aperture in contrast with the preceding experiment in which the flow 
was retarded by the manometer-tube itself (in fact this conjecture was verified in the 
later measurements and will be discussed in (ii) of § 3). But if we succeed to clarify 
other conditions now remaining ambiguous, we shall be able to compute the problem of 
Part II in a unified manner theoretically with the method developed in Part I by intro-

. ducing some necessary assumptions at the points of discontinuity of cross-section. 
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curves shown in Figures 16-21, in each of which the initial head impressed 

at t = 0 were 80- cm. (A) and 40.5 cm. (B). 

Test I 
No. 1 

No. 2 

No. 3 

No. 4 

No. 5 

No. 6 

-1 ,Ma 7U9-met er_ 
I 

I 

b z-~ 1_ ..,___ ___ ----'---'--' 

C&ntrach!9-n. 

Fig. 15 

Table V 

a(cm.) l(cm.) d(cm.) 
-----· -··----·----·--

0.168 1.95 0.45 

0.167 14.65 0.45 

0.10~ 2.13 0.445 

0.102 15.10 0.455 

0.051 2.02 0.425 

0.054 14.95 0.40 

Dimensions of the Glasswares (see Figure 14). 

These notations are independent of those of Part I. 

l1(cm.) 
----

11.8 

11.6 

11.45 

11.6 

11.7 

11.65 
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Table VI 

Test b(cm.) c(cm.) d(cm.) e(cm.) /(cm.) 

No. 1 52.0 10.0 25.6 32.5 23.0 

No. 2 66.3 10.0 37.9 34:9 22.:3 

No. 3 52.0 10.0 25.05 32.5 23.0 

No. 4 66.3 10.3 38.3 33.4 23.:~ 

No. 5 51.5 10.1 25.4 33.l u.o 

No. 6 66.3 10.0 38.4 35.6 23.0 

Characteristic Dimensions of Various Parts of Apparatus (see Figure 15). 
The mean radius of the manometer tube is 0.38 cm. 

~ 3-RESULTS AND DISCUSSIONS 

In order to clarify the nature of the motion of the water in a inanom<cter· 

tube, we tabulated in Table VII the values of some characteristic quantities 

observed or calculated therefrom : viz. the time-lag, the maximum velocity 

of ascent, the maximum Reynolds numbers attained (in the contraction and 

in the manometer) together with the types of motion. From these and the 

corresponding h~t curves (Figures 16-21) we can arrive at some qualita­

tive conclusi'ons which may be summarized as follows : 

0) The motion is of oscillatory or non-oscillatory nature according 

to the dimensions of the contraction. But the type of motion is not likely 

influenced sensibly, when the magnitude of the impressed pressure or the 

initial head difference, i.e. h2-ho= Jh, is reduced to about one half (from 

80 cm. to 40.5 cm.) under the otherwise same .conditions. 

(ii) The greater part of the frictional force acting towards retarding 

the motion is concentrated at the contraction. For by a slight change of 

its dimension there can be established an entirely different type of motion. 

We can notice further that the friction is far more influenced by the inner 

diameter of the aperture ( or contraction) than by its length. (I) There will 

exist, of course, certain limits within which this conclusion can hold, but 

since there may be few possibilities in water-tank experiments when an 

fl> Cf. the parameter ,\ .in ~ 3, Part I (p. 26). But it is open to doubt whether ,l can be as 
valid as ever in the case of turbulent flow without any modification in its form. 
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aperture is .. designed la,rger than 3 mm. in diameter or longer than 15 cm., 

we hope we can cover the region of practical use. 
(iii) The time-lag, on the other hand, varies roughly m proportion to 

✓ L1h in cases of larger contractions, viz. it . decreases in the ratio of 

about 1 / i/2. · 0. 7 when .dh is halved. The less validity of this simple 

relation for smaller contractions will be ascribed probably to the greater 

contribution of frictional resistance in the latter cases. 

(iv) · As is seen from Table VII, in almost all cases the maximum 

Reynolds number exceeded the critical value (ca. 2,000) for break-down of 

steady flow,<1> so that the flow must have become more or less turbulent at 

least for som~ period of the motion. But in view of both of the facts that 

Table VII 

Initial Mean Type* Time** Max. Velocity in Remax attained 

Test Head Temp. of Lag Manometer - in -- . , -· -i~. 
(cm.) (oC.) Motion (sec.) (cm./sec.) Contraction Manometer 

No. 1 A 80 26.8 0 7.0 110.4 22,000 9,600 
B 40.5 26.55 0 5.0 64.6 12,500 5,600 

No. 2 A 80 22.45 0 8.0 73.l 13,000 5,800 
B 40.5 23.45 0 6.0 55.6 10,000 4,500 

No. 3 A 80 23.15 0 7.5 22.5 6,600. 1,800 
B 40.5 23.3 0 5.0 21.3 6,300 1,700 

No. 4 A 80 22.55 N 11.2 20.8 6,100 1,650 
B 40.5 23.1 N 8.0 18.3 5,400 1,500 

No. 5 A 80 23.55 N 36.5 5.58 3,300 450 
B 40.5 24.75 N 28.0 3.55 2,200 300 

No. 6 A 80 23.95 N 102.0 3.57 2,100 300 
B 40.5 24.4 N 90.0 2.04 1,200 170 

* The signs O and N indicate the motion of the type oscillatory and non-oscillatory 
respectively. . 

*ff The time~lag was defin_ed 
(a) in the osciUatvry motion as the time from the start of the ascent till the 

amplitude has diminished practically negligible. 
(b) in the non-oscillatory, from the start. till the column attains to 99.5% of the 

final height. 

the observed motion was much accelerated and that the conduit was com­

posed of the tubes of various diameters and was liable to produce addi-

ci, Cf. the discussions in (ii) of ~ 4, Part I (p. 32). 
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tional disturbances at their junctions, we cannot decide here definitely 
whether or not this value (2,000) can be adopted in our problem without 

further investigations as really critical for the transition to turbulence. This 

uncertainty, as stated before in the Introduction of this paper, made it 
impossible for us to treat this problem mathematically. 

(v) But leaving the mathematical solution out of account for the time 

being, the results of the series of our experiments seem to teach us that 

the aperture of about 2 mm. in diameter will be the most suitable one for 
our future use in a water-tank. That is to say, the ascending motion is 

much retarded in smaller aperture, and on the contrary in larger one the 
time-lag increases again accompanied by the oscillatory tail of the motion. 

(vi) As mentioned before we measured the motion of the meniscus 
with an ordinary stop-watch. This measurement is of course somewhat 

less accurate than the cinematographic method in Part I, but the relative 
errors are found to lie within fairly small limits because the durations of · 

motions are considerably longer than in the previous experiment. 
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SUMMARY 

In Part I of this paper the theoretical treatment is developed for the 

ascent of the liquid column in the small tube when pressure is sudden­

ly applied at the bottom. Comparison with the experiment is described 

together with some supplementary discussions. 

Part II is devoted· to the explanation of the experiment carried out 

with a practical object in view to measure the time-lags of the manometers 

of various dimensions. 
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Plate I 

Plate III 

Plate II 

Plate I: General view of the ex­
perimental apparatus 

(see Figures 1 and 2). 

Plate II: The lower part of the 
manometer-tube, showing the 
contraction at z = 0 

(see Figure 1). 

Plate III : The stop-cock 
(sec Figure 1). 



Plate IV 

'Plate V 

Plate IV: An example of a sequence of time-record. In these four 
frames (1-4) the rotating disc completes about two revolutions 
(Part I, p. 20 ). 

Plate V: Test-tubes, No. 1 to No. 6 (see Figure 14 and Table V). 




