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A METHOD OF APPROXIMATE· INTEGRATION OF THE 
LAMINAR BOUNDARY LAYER EQUATION1> 

By 

Hikoji YAMADA 

From Vol. 4 No. 3. Vol. 5 No. 2. 

~ 1. General equations.-Here we attempt to improve the degree of 
approximation of the Karman-Pohlhansen's solution of the laminar boundary 

layer equation. The principle of our method has already been given.2> 

The velocity distribution u in Y·direction normal to the boundary sur­

face is approximated by a polynomial, whose coefficients are functions of x, 

distance along the boundary surface, and then introducing the thickness 
a(x) of the boundary layer, it becomes 

(1) 

where u1 (x) is the velocity parallel to the boundary at the outer edge of 

the boundary layer. Some of the coefficients are determined by the bound­

ary conditions 

l (2) 

J 

the others and o (x) must be determined so as (1) to satisfy the equation of 

the two-dimensional boundary layer in steady state : 

ou ou ~Y ou , o2u tl(u; x y)=u----- --dy-u1 u1 -v--=0 ' ox oy ox oy2 
0 

(3) 

as well as possible, where u{ = dui/dx. 
We employ for this purpose the "moment-equations " 2> 

J:t1(u;_x, 7i)T)"dr; = 0, n = 0, 1, ...... , N-l, (4) 

the number N of which is the same as the unknown functions. By this 

1J A short account of papers (in Japanese) reported in this REPORTS, Vol. 4, No. 3 {1948), 
pp. 27-42, VoL 5, No. 2 (1949), pp. 1-10. 

z; On a method of approximate solution of differential equations (in Japanese), in this REPORTS, 
Vol. 3, No. 3, pp. 29-35 (1947). A short account in English is given in the present volume. 



88 H.YAMADA 

process the differential expression Ll. instead of being identically zero through 
the boundary layer, becomes zero in y (0, o) N times at least, these zero­

points being distributed uniformly in a certain meaning. 

If, moreover, we require J = 0 at the both ends of the layer, (2) has 

to be supplemented by two further conditions : 

( 02u) =-u1• u/02 (02u) =0 (2') 
oi 11-0 I) ' oi 11-1 ' 

and accordingly either the degree of the polynomial is to be increased by 

two or the number of the moment-equations (4) decreased by two. When 

the polynomial is of fourth degree (2) and (2') determine all the coefficients 

but one, i.e. o, so that the. first moment-equation only is to be used. This 

first moment-equation is nothing but the momentum equation of v. Karman, 

and this method of approximate integration reduces to that of Pohlhausen. 

As the increase in number of moment-equations introduces much more 
increasing labor in numerical calculations here we content ourselves with 

the formulae for a polynomial of sixth degree. Conditions (2) and (2') 

determine the polynomial of the form 

u/u1 =f = F(r;) + wG (r;) + IJH(r;)+ <pK (r;), (5) 

F("tj) = 2r;-2r;3+r;4; G(r;) = r;-3i+3r;3-r;4; \ 

H(r;) = -r;+6r;3-87j4+3"fj5 ; K(r;) = -r;+5r;3-5r;4+r;6 ;f 
(5') 

where IJ, <p and 
01 = ui'o2/61) (6) 

are functions of x, to be determined by the moment-equations. (u is one 

sixth of the Pohlhausen's well-known parameter /\. Be noted that the 
condition of separation is 

2+w-t?-<p = 0. (7) 

Introducing (5), (5') into J and making the moment-equations ( 4), we arrive, 

after some labor of numerical calculations, at the final expressions : 

( An +a )o>'+b iJ'+c m'+(~+B) ui' -A ui" = (') (8) 
(I} II n 11 T 6W n 1f1 11 tti' ' . 

(n = 0, 1, 2). 

Here are A,,, B,, quadratic, . a,., b,., c,., d,, linear with regard to the vari­
ables <o, {J and <p, their coefficients as given in Table 1 (a) and 1 (b); dash 
denotes the differentiation with regard to x. 
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Table 1 (a) 

abs. (L) ,J Ip 

w2 ,J2 <p2 

w,J • ,J<p 1/JW 

0.0587302 -0.0031746 0.0126984 0.0146465 

Ao -0.0019841 -0.0075036 -0.0085193 

0.0075396 -0.0159813 0.0079725 

0.0306746 -0.0040079 0.0130665 0:0149532 

A, -0.0012202 -0.0052057 -0.0060265 

0.0049893 .,.-0.0111986 0.0053482 

0.0180303 -0.0032829 0.0106312 0.0122335 

A2 -0.0007594 -0.0035588 -0.0041875 

0.0032828 -0.0077198 0.0035582 

0.5349206 -0.0626985 0.1507937 0.1657288 

Bo -0.0079365 -0.0300144 -0.0340772 

0.0301588 -0.0639253 0.0318901 

0.1676984 -0.0310317 0.0822657 0.0919554 

B1 -0.0036309 -0.0158227 -0.0183660 

0.0149569 -0.0340798 0.0160356 

0.0768976 -0.0176047 0.0500503 0.0566959 

B, -0.0019517 -0.0093820 -0.0110778 

0.0085137 -0.0203848 0-0092309 

Table 1 (b) 

abs. (L) ,J <p 

ao -0.0063492 -0.0079365 0.0150793 0.0159451 

ll1 -0.0016270 -0.0036309 0.0078573 0.0084868 

a2 -0.0003102 -0.0019517 0.0046464 0.0051059 

bo 0.0253969 0.0150795 -0.0300144 -o.0319626 

b1 0.0103607 0.0070955 -0.0158227 -0.0171718 

b2 0.0047691 0.0038673 -0.0093820 -0.0103425 

Co 0.0292930 0.0159450 -0.0319627 -0.0340772 

C1 0.0124279 0.0075487 -0.0169080 -0.0183660 

C2 0.0059579 0.0041250 -0.0100423 -0.0110778 

do -2.0000000 -1.0000000 1.0000000 1.0000000 

d1 -1.0000000 . 

d2 -0.6000000 0.1000000 -0.2000000 -0.2142857 
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The system of ordinary simultaneous differential equations of the first 
order (8), then, replaces the boundary layer equation approximately. When 

we take tp == (} = 0 Pohlhausen's equation _follows. His approximation have 
since been well discussed and its utility established except in certain cases, . ' 

so we- can hope that our refinement of his method can secure the utility 
in these exceptional cases. 

In fact in the following examples, although two moment-equations only 

have been used, we see the results remarkably improved. 

§ 2. Examples of application.-Several examples have been calculated 

and discussed in the original, but in this short report their principal results 

shall be mentioned quite briefly. 

(i) Homologous flow. The homologous flow being defined by the con• 

dition that u/u1 is a function of r; with coefficients independent of x, it 

follows from (5) that <u, 8, cp in this case must be constant with regard to . 
x, and then from (8) 

dn B 
U1Ui" _ 6w+ n m-l 
ut'2 -- A" - m (n = 0, 1, 2), (9) 

where m is a constant with regard to x and n. We see from (9) that the 

homologous flow can exist only when the outer flow distribution is a power 

or a exponential function of x, and that the calculation of flow pattern is 

reduced to the solution of simulataneous algebraic equations. 

(a) When u 1 = u.x-0.0905 the flow pattern is that of just separating.3> 

By means of the first two equations (n = 0, 1) of (9), the approximate value 

of the exponent is -0.0915 (when tp = 0, i.e. polynomial of fifth degree is 

assumed) or -0.0907 (when ,'J = 0, i.e. polynomial of sixth degree wh1ch 

lacks the fifth degree term is used). The value -0.1000 of the Pohlhausen's 

method is much improved by our one step. The value by the Howarth's 
. . 

method 4> is -0.0938. 

· (b) The Blasius solution of the uniform flow along a flat plate is well 

known. Our results which assume the fifth degree polynomial (cp = 0; 

3 > D. R. Hartree: On an equation occuring in Falkmer and Skan's approximate treatment 
of the equations of the boundary layer. Proc. Camb. Phil. Soc. 33 (1937). _ 

4> L. Howarth: On the solution of the laminar boundary layer equations. Proc. Roy. Soc. 
London (A). 164 (1938). 
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n = 0, l) are given in the following Table 2, in comparison with the 

Blasius' and Pohlhausen's values, where , 0, 01 being the skin friction and 

the displacement thickness (for the last colume see § 3). 

Table 2 

[Blasius] [Pohlhausen] [ q,=O; 11=0, l] [ q,=J.81'17; ] 
11=0, 1 

j 111 . n 
. 

5.8356 5.5524 
l'X 

5.2382 

j}l1X -~ 0.3321 0.3427 0.3358 
II p 1112 

0.3368 

✓-U1 , 1.7208 1.7507 1.7410 -·01 
l'X 

1.7630 

(c) As an example of accelerating flow the case u1 = u.x was taken 

up. The first two equations of (9) has no real root in either case of r = 0 

or 8 = 0. Instead of taking in, then, the third equation (n = 2) we adopted 

the expedient which takes cp or tJ. in as a controlling parameter. The 

results are as in the following Table 3, where [y"(O)]u is a coefficient 

defined by Hartree 3> in connection with the skin friction. 

Table 3 

liJ 2.0000 1.8950 1.8000 1.6000 

v [Hartree] I -2.1579 -2.0761 -2.0199 -1.9906 [Pohlhansen] 

qi 1.8914 1.8147 1.7657 1.7601 

[y'l(0)]u 1.2326 
I 

1.2316 1.2326 1.2337 1.2363 1.196 

In all these examples velocity distributions calculated are quite similar 

to the correct ones, and we can judge the improvement of the approxima­

tion by the step adopted. 

(ii) Lineary retarding flow.-Another example of the known accurate 

calculations is the boundary layer of linearly retarding outer flow,4J i.e. 

We content ourselves with the first step of our approximation, and (8) 

gives 
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· (n = 0, 1), j. 

cp == 0, ~ .. = A,.+ a,.'", ,B,. = ~" + B,. w, . 
(11) 

0..04 006- UI 010 0,11 

Fig. 1 

where dashes denote the differentia­
tion with regard to f. The leading 
edge condition is cu = 0, and then 
jrom (11) ,J =0.13563, w' = -5.1518, 

/}' = 2.1750. With these initial values 
(11) were integrated step by step by 

the Runge-Kutta's method, the re­

sults as given in Fig. 1. At the 
separation point -cu+ fJ is 2, which 

occurred at f; = 0.11925, where also 
d,ojd;, d8/d; became infinite; these 

properties coinciding well with the 

Howarth's results. Velocity profiles 

coincide also, but all the details 
must be omitted here except the 

following comparison table (Table 
4). 

(iii) Schubauer's elliptic cylinder.-In the preceding examples we have 

seen that the approximation [cp = 0; n = 0, l] is sufficient for ordinary 
purposes, so also the elliptic cylinder of Schubauer 6> was tried in this 

approximation. Inserting cp == 0 in (8) and changing the variable w in 

ui'( (C = lP/6v), we have the convenient form 

__ (' = _!_ ,Bo b1-~1 bo + ui'' r:,2 ao b1-a1 ba 
U1 ~ob1-~1bo · ~fob1-~1bo' 

(12) 
-{)' r:. = _!__ 2fo ~1- i{i ,Bo + U II r:,2 ~o a1- ~1 llo 

- U1 ~lo b1 - ~!1 ho 1 - ~o b1 - ~l1 bo 

The used outer flow is as in Table 5, and the results as given 

5> G. B. Schubauer: Air flow in a separating laminar boundary layer, N.A.C.A., Tech. Rep., 
No. 527 (1935). 
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Table 4 

~ 
✓v- (au) 

a1ao~ • By y~O I J:1--. 01 

[Howarth] I [q,=0; n=0, 1] 
·--- I [Howarth] I [q>=0; n=0, 1] 

r 

0.00 00 00 0.000 0.0000 

0.05 1.011 1.0257 0.447 0.4542 

0.10 0.315 0.3215 0.794 0.8126 

Sp. Pt. 0.000 0.0000 1.110 1.1352 

in that table and . in Fig. 2: In these I denotes the case where our 

approximation is connected to that of Pohlhausen at the pressure 

minimum x = 1.30 (where w = 0, · i'J = 0; 02/v = 23.3 sec.), II the case 

where the connection was done ·at x = 0.5 in the accelerating region 

Table 5 

.x UJ ui' tti'' (I) (II) 
l!) -,J. l!) f) 

0.5 1.215 0.353 -1.52 0.3800 0.00000 
0.55 1.231 0.287 -1.15 

0.6 1.244 0.233 -0.915 0.3336 -0.08171 
0.65 1.254 0.191 -0.750 

0.7 1.262 0.155 -0.620 0.2743 -0.08171 
0.8 1.274 0.1094 -0.420 

0.9 1.282 0.0734 -0.285 0.1791 -0.05434 
1.0 1.288 0.0449 --0.215 

1.1 1.292 0.0240 -0.180 0.0754 -0.01448 
1.2 1.295 0.0089 -0.175 

1.3 1.295 -0.0054 -0.210 0.0000 0.0000 -0.0211 0.00987 
1.4 1.294 -0.0240 -0.255 

1.5 1.290 -0.0500 -0.260 -0.2180 0.0229 -0.2394 0.01319 
1.6 1.284 -0.0750 -0.255 

1.7 1.275 -0.1000 -0.220 -0.5448 0.0821 -0.5890 0.06985 
1.8 1.264 -0.119 -0.140 

1.9 1.252 -0.126 -0.005 -0.8745 0.2819 -0.9408 0.2777 
2.0 1.240 -0.116 -0.170 

-----~- -

2.1 1.230 -0.096 -0.260 -0.8283 0.6245 -0.9050 0.6758 
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(where w = 0.380, 0 = 0). In both 

the cases separation does not reached, 

contrary to the Howarth's or to the 

Karman-Millikan's approximation, and 

above all, to the experimental result. 

But here we are reminded of the 

fact that the exact solution of the 

poundary layer equation is not always 

conform to the experiment near the 

separation point. 

(iv) Hiemeiiz's circular cylinder. 

-,--Between the well known Blasius­

Hiemenz solution and the Gortler's 

numerical solution 6 > of· a circular 

Fig. 2 
cylinder there is a discrepancy in 
the velocity distribution near the 

separation point. Our approximation [So = 0; n = 0, 1] connected to that 

of Pohlhausen at the point of pressure minimum conformed to the Gortler's, 

contrary to our expectations. as is seen 

from Fig. 3. Our separation point 80.5° 

is also near to his value 80° rather than 

82° of Hiemenz, and also of Pohlhausen's. 

The fact that our improved values of 

Pohlhausen's results lie on the side of 

Gortler's will stand by the Gortler's 

solution. 

§ 3. Singular points of general equa• 

tions etc.-It is well known that when 

the singular points o> = 2.00,-2.96 (i.e. 

I\= 12,-17.76) of the Pohlhausen's cal­

culation lie in the integration interval 

%. , .. t 

Al 

.. 

.. 

Fig 3. 

his approximation breaks down. Now in our calculation [So= 0; n = 0, 1] 

ijJ H. Gortler: Z.A.M.M., Vol. 19 (1939), pp. 129-140. 
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the variables are two and singularities make their appearance as lines in 
the a,, 8-plane. From ( 12) these lines are defined by 

(13) 

whose solutions are given in Table 6 and inscribed in Fig. 4 as the lines 

(w', cp' = oo ). 

In the same figure is inscribed the separation line, which expresses 

the condition of separation (7), and the point. Tg.-Ent. which expresses· the 

Table 6 

,J llJ1 Wz llJ3 

2.5 1.156 11.987 -7.025 

2.25 0.768 11.004 -7.649 

2.0 0.416 10.002 -8.300 

1.75 0.066 9.004 -8.951 

1.5 -0.276 8.000 -9.608 

1.25 -0.620 7.000 -10.264 

1.0 -0.963 6.005 -10.924 

0.75 -1.302 5.001 -11.583 

0.5 -1.640 4.003 -12.245 

0.25 -1.973 3.000 -12.910 

0.0 -2.306 1.999 -13.575 

-0.25 -2.643 1.001 -14.240 

-0.5 -2.978 0.003 -14.908 

-0.75 -3.308 -0.998 -15.577 

-1.0 -3.638 -1.998 -16.247 

-1.25 -3.966 -2.999 -16.917 

condition of tangential entrance of main flow (w = 0, 1'l = 0.13563). At the 

pressure minimum, where the connection to the Pohlhausen's being intended, 

w = 0, il = 0 and from this point on to the separation there is no singula­
rity to disturb the integration of the equation. One branch of singularity 
curves which lies near the separation line seems to coincide with it, if the 

approximation were further advanced, and then, when integration curve 

reaches it beforehand of the separation line, this point of encounter may 

be taken as an approximate position of separation point. 

The dotted lines in Fig. 4 are several integration curves which have 

been obtained in the precedings. Their forms differ considerably from 

each other and we can see the reason why Pohlhausen's approximation, 
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which forces every solution to lie on the w-axis, fails sometimes. Howarth's 

method, which uses his fundamental solution asthe basis of the approxima­
tion, can be interpreted from our point of view as forcing every solution 

-~.:. Jcst.-Pt.> 
""'"" 

Fig. 4 

on the line " Howarth " in Fig. 4. 

Our· method itself forces all the solu­

tions on the CtJ, 8~plane, or, in other 

words, to the fifth degree polynomials, 

but the region of its applicability has 

considerably been enlarged. 

For the application of the method 

from up to the stagnation point, the 

stagnation condition in necessary. ' At 

this point u1 = 0, and then from (12), 

as this point must not be a singular 

point of them, 

5Bo = 581 = 0. (14) 
(14) are due to determine values of 

CtJ, 8 of the stagnation point, but these 

are the very equations in § 2 (c) and 

have no real solution. That is, the 

approximation [cp=O; n = 0, 1] fails 

to be that. Leaving cp as a parameter, as there, (14) specify a certain 

space curve in the cv, 8, cp-space, which does not intersect with the (I}, {}. 

plane but does intersect with certain· planes parallel to it. Table 3 is 

nothing but the examples of the coordinates of these intersection points; 
the projections of these points to the CtJ, 8-plane are inscribed in Fig. 4. 

With a certain value cp0 of cp the approximation [cp ='Po; n = 0, 1] can 

be used from the forward stagnation point to ~he separation point throughly, 

provided that the singular lines do not disturb the integration. For a trial 

'Po = 1.8147 was assumed, and the results are as given in Fig. 5, all the 

numericals being here omitted. The selection of 'Po happaned to be a .little 

too small, resulting in one branch of singular line very near to the stagna­

tion point. However. this example is sufficient to indicate the existence of 

the one . with desired properties. The degree of approximation also seems 
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to be preserved. For example, the 

exponent of §2 (a) is --0.0901, and 

for a plate edgewise placed in 

uniform flow it is as seen in the 

last colume of Table 2, according 

to the approximation [f = 1.8147; 

n = Q, IJ. 
In all the foregoings the degrees 

of approximation were estimated 

by comparison with known exact 

solutions. Applying the method to 

a new problem, such comparison 

fails, and the need of estimation is 

for this very case. However, such 

an estimation of our method is 

difficult, as in usual cases. In Fig. 5 

2.0 

aj 

t 

1D 
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general, we may regard the solutions satisfying the boundary conditions 

sufficiently well, so that the deviations of J (u; x, y) from identical zero 

can haply be a certain index for the degree of approximation. As a standard 

example we took the Howarth's case (§ 2 (ii)), and with our solution, which 

agreed well with the Howarth's one, the following table (Table 7) is con­

structed. f = 0.08 is an ordinary point in the retarding part, and t = 0.U9 

the representative of points just before the separation. 

One of the neglected terms in the boundary layer equation is also 

estimated with the same solution, and compared with J in the last colume 

of Table 7. In there R is the Raynolds' number defined by oa2/a1 v, and 

the Reynolds' number refe'red to the displacement thickness u1 <>i/v is, in 

this case, almost equal to 1 / R. Some laborious calculations of the estima­

tion are here completely omitted. The second derivative of an approximate 

solution is haply too rough to take it for the representative of the deviations 

of the boundary layer equation itself from the Navier-Stokes'. But it in· 

dicates that, an approximate solution of the boundary layer equation is not 

always that of the Navier-Stokes', especially near the separation point of 
a flow with moderate Reynolds' number, so that the separation point which 
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the former gives is not expected to fall on the experimental one. 

This well-known deviation cannot be avoided even when the experimental 

pressure distribution p (x, t) be used; the neglection of J..1 o2u/oi2- have serious 

effect, which indicates that the flow state near the separation point is 

affected as well by the upstream state as the downstream state, this latter 
influence being not covered by the adoption of actual pressure distribution. 

Table 7 

~=0.08 I ~ =0.119 

1 fJ/J fJ2u 

I 
1 fJP fJ2u I 11 211 

r; -Tax )) /jy2 J -Tax )) fJyZ J 
I )) vx2 

0.0 -0.920 0.920 0.000 -0.881 0.881 0.00\1 0.000 X 104 X R- I 

0.1 ,:, 0.591 0.151 /,, 0.806 0.024 -2.450 

0.2 /,, 0.324 0.166 /,, 0.614 0.065 -4.53:3 

0.3 /,, -0.041 0.057 /,, 0.348 0.077 -5-984 

0.4 /,, -0.397 -0.121 /,, 0.049 0.020 -6.651 

0.5 // -0.702 -0.273 /,, -0.238 -0.085 -6.492 

0.6 // -0.913 -0.303 /,, -0.470 -0.181 -5.582 

0.7 /,, -0.990 -0.157 /,, -0.606 -0.152 --Ul1 
0.8 ,, -0.891 0.110 /,, -0.602 0.006 -2.386 

0.9 /,, -0.576 0.295 /,, -0.414 0.177 -0.834 

1.0 -0.920 0.000 0.000 -0'881 0.000 0.000 0.000 

N.B. All the numericals are to be multiplied by a factor a0a1; R=a02/a 1 l/. 

(14 Apr. 1950) 




