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ON THE CRITICAL T,RACTIVE FORCES1> 

By 

Michinori KURIHARA and Toichiro TSUBAKI 

From Vol. 4. No. 3. 

Abstract. The existing tractive-force formulas are various. Taking 

into account the effects of turbulence all the available experimental results 

are analyzed and a definite curve is obtained by plotting T 0jp gli(p-p0 ) 

(inversely proportionai to the turbulence factor) against k(T0/p0 )½/{3v, where 

To is the critical tractive force, k and p are mean diameter and density of 
the grains, p0 and v are density and kinematic viscosity of the fluid, g is 

the :acceleration of gravity, and {3 is a .parameter allowing for the non­

uniformity of the grains (Fig. 2). For practical use a similar curve is 

obtained (Fig. 3) and .a set of simple empirical formulas (dimensionally 

correct) is suggested (equation (3.4)). In either curve there is found a 

distinct minimum at about ·ktro/p0)½/fiv = 25 or k ~ 1 mm for usual sand 

grains, which corresponds to a maximum of the turbulence factor. 

It is pointed out that the occurrence of the maximum of turbulence 
factor is attributed to a ·synchronizing phenomenon between the grain size 

. and. scale of turbulence. Taking into account the fluctuations of pressure 

gradient and using a simple turbulence model the forces acting on the 

grains are estimated. The theoretical results agree well with the experi­

mental results. 

§ 1. Introduction. So far as the hydraulic engineer is concerned, the 

movement of bed-load material in artificial and natural watercourses is of 

. great importance. If the bed-load material consist of particles, they share 

forces due to shearing stress of the fluid at the bottom i.e. tractive force, 

with one another. When the tractive force exceeds a certain critical 

value particles begin to move. It has long been known that the critical 

tractive force depends· alone upon grain characteristics. However the ex-

1J From "On the Critical Tractive Forces" (in Japanese), M. Kurihara and T. Tsubaki, Rep. 
Res. Inst. Fluid Engng., Kyushu Univ. 4 (1948) 1-26, being retouched in some points. 
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perimental results show considerable scattering and the proposed empirical 

formulas are various. Much of the discrepancy is undoubtedly due. to the 
complexity of the problem. 

Now many efforts have been made to inquire i) the physical mechanism 

underlying the critical tractive force and ii) the effects of the non-uniformity 

of grains, regarding as dominant causes of scattering of measured points. 

But it is clear that the first is essential and the manifoldness of the ex­

isting empirical forumlas seems to be preferable as an important key for 

exploration. 

The purpose of the present paper is to re-examine the whole problem 

and to inquire mainly the physical mechanism of tractive force apart from 

the question of non-uniformity. 

I. Empirical Formulas 

§ 2. The existing empirical forumlas and the point in question. In a 

channel flow with given characteristics the critical tractive force T0 must 

be determined solely by ·density, mean diameter, shape, porosity, arrange­

ment and size frequency distribution of grains setting apart the question 

of the criterion for movement. 

Research workers have attempted to analyse the observational data 

considering T 0 as a function of density p' ( = p-p0 , where p, Po are density 

of grains and of fluid), mean diameter k and a parameter which allows for 

non-uniformity of the other characters of grains. The existing empirical 

formulas are as follows lJ: 

i) Schoklitsch tractive-force formula: 

To = C1 V p1 gf V , 
where g is the acceleration of gr~vity, V the volume of a grain, f a 

form factor being 1 for spherical grains and c a constant (the same in 

followings). 

ii) Krey tractive-force formula : 

o T. Sakai, "Critical Tractive Forces for the gravels of River Bed," J. Civ. Engng. Soc. Japan, 
31 (1946) 1. Y. L. Chang, "Laboratory Investigation of Fluid Traction and Transportation," 
Amer. Soc. Civ. Engng. 63 (1937) 1701. Trans. Amer. Geophy. Union, Eighteenth ·annual meeting 
(1937) 456. 
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'o = Cz p'g k. (2.2) 

The fonriula is based on tests with· sands practically uniform in size. 

iii) Kramer tractive-force formula : 

p~k ) 'o = C:i 1r:r ' (2.3 

in which M is the "uniformity-modulus " related to size-frequency distribu­

tion of grains and being unit for uniform grain sand. 

iv) U.S. Waterways Experiment Station tractive-force formula: 

(2.4) 

the basis of which is the data Kramer used plus the results of tests with 

eight mixtures conducted in the Experiment Station. 

v) Indri tractive-force formula: 

r - ✓z p'g lz + b o ·- ,, M , 

where a, b are constant being different according to kz l mm. 

vi) Aki and Sato t_ractive-force formula: 

'o = Ca p'g kl, 

where A is a parameter related to size-frequency. 

vii) Sakai tractive-force formula: 

(2.5) 

(2.6) 

'o = C1 p'g ~k615, (2.7) 

where 13 is a parameter connected with Kramer's uniformity modulus M by 
~= 2+M 

1+2M 

viii) Chang tractive-force formula : 

r = C [~] 
0 8 • Po M 

[ 'k ]½ 'o = cs' fa Jjf 

for 

for 

p'k '-- I -M/2.0, 
Po 

p'k. . 
--'--~M=- < 2.0, 

Po 

(2.8) 

A comparison of the above equations shows that the non-uniformity of 

form and size of grains is practically important and many efforts have 

been made to allow it. However these equations must hold for the case of 

uniform spherical grains. Therefore, if the parameters ~. M, J., ~ are put 

equal to unit, they must show at least the same law apart from numerical 

coefficients. But, in fact, only the formulas (2.2), (2.3) and (2.6) which are 
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dimensionally correct give linear law between , 0 and p'gk and the others 

give different power laws T 0 00 H, k½, k'i. Since the discrepancy can not be 

attributed to non-uniformity, we may be led to the ·following speculation: 

every one of the above formulas is correct and merely the regions of their 

validity are different according to data used and their objects aimed. In 

fact, Indri, Chang tractive-formulas seem to point out existence of a critical 

grain diameter at which (r-0, p'g k) curve changes slope more or less abruptly 

(see Fig. 1). If so, it is natural to infer that the critical grain diameter 

may presumably be attributed to some peculiar phenomena and that ex­

ploration of the mechanism of critical tractive force must based on this 

point of view. 

Although many improvements of empirical formulas have been done to 

reduce the scattering of measured points by taking account of the non­

uniformity effects of grains, the residual is not yet so small. As its causes 

we can mention i) the difficulty to allow the no~-uniformity of grains by a 

simple deyice, ii) the non-uniformity of hydrodynamical characteristics of 

flumes used, iii) various definitions of the critical tractive force adopted, etc. 

Among these we can by no means ignore the third, when we analyse 

systematically the data given by various investigaters. 

The definition of the critical tractive force adopted by H. Kramer and 

U.S. Waterways Experiment Station is such that which effects a general 

movement of the material up to and including the largest component 

particles. H. Krey's criterion is beginning of noticeable or lively movement 

and A. Schoklitsch's is commencement of motion of a single particle resting 

freely on a bed of material of like size. Thus it is natural that the 

measured values show systematical differences according to the criterions 

and • we must make allowances for this circumstance in a theoretical 

investigation. 

§ 3. Dimensional analysis. When the flow is turbulent the critical 

tractive force must be considerably influenced by turbulent motion. If we 

assume as usual that the turbulent state can be specified by two parameters, 

namely its intensity v' and its linear dimension i., then• the independent 

quanitities which enter into consideration are r-o, p, Po, k, g, v, v', i. and in 
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general the mean velocity v. And there are seven independent non-dimen­

sional quantities PIPo, ).Jk, , 0Jpg k,. vk/v, v'k/v, vfi/kg, v'hl kg. Since it is not 

conceivable physically the density and acceleration of gravity to play any 

role other than the gravitational force in the fluid acting on grains, we can 

safely omit p/p0 and Froude's numbers and write 

, 0 = I( .vk v'k ~) (3.1) 
p'gk v ' v ' k . 

The equation holds in general for any flume regarding v, v' and J. as 

characterizing quantities of the flow near the bed. In the case of a uniform 

steady flow the state of turbulent flow near the bed can be determined 

only by 'o, p, v and k, so that again by dimensional consideration vk/v, v'k/v 

and J./k are functions of merely v*k/v, where v* = ,I , 0/fi. 
Thus (3.1) becomes , 0/rigk = l(v*k/v). Finally introducing the para· 

meter (3 mentioned in § 2, vii) to allow the non-uniformity of grains we 
have 

'o = 1( V6,~-) . 
(3p'gk f-'Y 

(3.2) 

Now almost all the existing data concerning critical t1 active force have 

been tabulated in the papers of Y. L. Chang 1> and T. Sakai.2l The measure­

ments of Y. L. Chang himself show systematically greater values than others. 

This systematic deviation seems to be caused by his use of a accelerated 

flume, in which turbulence is weaker than in an ordinary uniform flow. 

Thus although his data are numerous we have regretfully rejected them. 

Because of a similar reason or considerable scattering C. M. White's 3) and 

E. I. Indri's are also rejected. The data thus selected are shown in Table I 

with the calculated values of , 0/pp'gk and v*k/[1v. 

With these data, by plotting log , 0 and , 0//3,o'gk against log fip'gk and 

log v*k//1v re,spectively we obtain Fig. l, 2. The later shows the existence 

of the relation-ship (3.2) and that the slight change of slope in Fig. 1 at 

about (3p'gk = 250 which gives rise to various confusions in establishment 

of tractive-force formulas turns into a distinct minimum at about 

v*k/vp = 25 in Fig. 2. 

IJ, 2 l Loe. cit. 
3) C. M. White, The equilibrium of grains on the bed of a stream, Proc. Roy. Soc. A. 174 

(1940) 322. 
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Table I 

'l"o Density Mean 
{102x 10-1 

Investigator dynes/cm2 of grainll Dia. k fJ v* z1 
v*k 21 'l"o __Ji___~}½ 

P gr/cm3 cm {Jv {JP1 gk fJ v2 Po 

xk 

F. Schaffernak 7.359 2.65 0.1536 1.20 2.71 34.7 2.47x 10-2 0.171 

A. Schoklitsch 53.40 2.60 0.6520 1.00 7.31 477 5.22x10-2 0.763 
25.84 2.60 0.405 1.00 5.08 206 4.07 0.474 
11.09 2.6() 0.2256 1.00 3.33 75.2 3.14 0.264 
4.32 2.60 0.1240 1.00 2.08 25.8 2.22 · 0.145 
2.75 2.60 0.0916 1.00 1.66 15.2 1.92 0.107 

H. Krey 2.35 2.68 0.0376 1.07 1.53 5.40 3.56x10-2 0.436 
2.75 2.61 0.0526 1.05 1.66 8.31 3.15 0.0605 
3.14 2.57 0.0800 1.09 1.77 13.0 2.34 0.0904 

Prussian 5.01 2.65 0.1154 1.48 2.24 17.5 1.81 X 10-2 0.120 

Exp. Institute 4.12 2.65 0.0846 1.78 2.03 17.2 1.69x 10-2 0.0863 
5.69 2.65 0.0836 1.40 2.39 14.2 3.01 0.0886 
5.49 2.65 0.0744 1.33 2.34 13.1 3.43 0.0797 
2.35 2.65 0.0244 1.30 1.53 2.88 4.60 0.0364 
5.49 2.65 0.0806 1.37 2.34 13.8 3.07 . 0.0854 
4.91 2.65 0.0686 1.31 222 11.6 3.37 0.0741 

H. Engels 9.81 2.65 0.1484 1.53 3.13 30.4 2.67x10-2 0.153 

G. K. Gilbert 3.83 2.69 0.0576 1.04 1.96 10.9 3.86x 10-2 0.0674 
5.99 2.69 0.1906 1.12 2.45 41.6 1.69 0.219 

. 29.0 2.69 0.3710 1.05 5.38 190. 4.49 0.434 
48.1 2.69 0.5296 1.07 6.93 343 5.12 0.615 

H. Kramer 5.11 2.70 0.0706 1.38 2.26 11.5 3.15x10-2 0.0756 
3.83 2.70 0.0558 1.28 1.96 8.54 3.22 0.0614 
4.81 2.70 0.0800 1.32 2.19 13.3 2.73 0.0872 

---
U.S. Waterways 4.64 2.65 0.0586 1.46 2.15 8.65 3.35x10-2 0.0609 
Exp. Station 4.21 2.65 0.0541 1.30 2.05 8.53 3.70X 10-2 0.0585 

4.21 2.65 0.0525 1.22 2.05 8.83 4.06 0.0583 
4.02 2.65 0.0506 1.33 2.01 7.81 3.69 0.0541 
3.83 2.65 0-0483 1.30 1.96 7.28 3.77 0.0521 
2.87 2.65 0.0347 1.15 1.69 5.11 4.45 0.0371 
3.16 2.65 · 0.0310 1.23 1.78 4.48 5.12 0.0341 
2.25 2.65 0.0205 1.21 1.50 2.54 5.61 0.0227 

27.8 2.65 0.4077 1.20 5.27 179 3.51 0.453 
---

Aki and Sato 2.16 2.70 0.022 1.14 1.47 2.84 5.17x10-2 0.0251 
7.35 2.70 0.070 1.60 2.71 11.9 3.93 0.0714 
9.W 2.70 0.122 1.38 3.10 27.4 3.43 0.131 

Ishihara 6.37 2.58 0.071 1.45 2.52 12.4 4.01 X lQ-2 0.0732 
5.19 2.58 0.092 1.35 2.28 15.5 2.70 0.0976 

---·----

Remarks: 11 Since all the measurements are concerned with water channels, the density has 
not been distinguished from the specific weight. 

· 21 In P1 = P - Po the density of water lias been put equal to unit. As the molecular 
viscosity of water v we have·used 0.01 corresponding to 20°C. 
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By C. M. White's Theory, in a laminar flow , /f3p'gk is a constant 
determined by surface arrangement and angle of repose of grains, but in 

a turbulent flow it is reduced. by l/T, · where T is called as " turbulence 

factor." Accordingly the minimum of , 0/fJp'gk corresponds to a maximum 

of turbulence factor. Fig. 2 shows thus existence of some peculiar pheno­

menon in which turbulence plays an important role and any theory con­

cerning the critical tractive forces must give a satisfactory explanation of 
this peculiarity. 

Equation (3.2) can be rewritten in a convenient form for practical use 
i -½ 

b t f t . ( 'o v*k) t ( 'o. _ ( v*k) ( 'o ) ) y a rans orma 10n, f3p'gk , vf" o {3p'gk , /1 - vf" {3p'gk ' 

namely 

0,0! ~ • o.fi 
"' 

✓ • 

' .. 
0,03 ~ • v. • cl' 

o/ e -
~ ·-;;;:;;/ i-c.--• ---., 
., 

e • • 

-2.0 -1.r -1,0 -D.!' 0 

{ 8/<lto f'jtk Uj f1(IOOV)2 fo • 

Fig. 3 

•o = ifJ (fl f3~~o . k) . (3.3) 
{3p'gk 

This relation is shown in Fig. 3 using the data in Table 1. The 

minimum corresponding to that at v*k/vf3 = 25 in Fig. 2 appears at about 
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log { ,li~~?)2 • ~: t k = 1-15 which gives for a usual condition (fl. · 1.0, 

p'/p0 c.--= 1.6, v. · 0.1) h. · 0.12 cm. 

Since the argument of cf; in (3.3) involves fl and p' !Po as cubic root 

and v as 2/3 power, it is approximately a function of only k, the grain 

diameter, and that proportional. Thus we may propose a system of em- . 

pirical formulas obtainable from Fig. 3, 

' 0 = -0.047 log10 X-0.023, log10 X<-1.0, 
flp'g!? 

' 0 = 0.01 log1o X + 0.034, - l.O<log10 X < -0.6, 
{lp'gk 

' 0 = 0.0517 log10 X+0.057, -0.6<log10 X, 
flp'gk 

where 
1 

X = {1.02 X 10-1~ • .J!_ f'. k .. 3/ p' • k 
(31,, Po J V Po 

(3.4) 

It is here mentioned that in the last approximate expression of X k must 

be measured in cm. 

II. Theoretical Considerations 

§ 4. We shall now consider physical meaning of the occurrence of the 

sharp minimum in the critical tractive force diagram at about v*k/v13 = 25. 

By observing other turbulent phenomena 1> we may conclude the oc­

curence of the minimum to be intimately connected with the fact that as 
Reynolds number decreases molecular viscosity become dominant compared 

with turbulent viscosity, in other words, the inertia effects becomes smaller 

than the effects of pressure gradient and molecular viscosity. 

Thus following Taylor's discussion2> we are led to a conjecture that 

the forces acting on grains are primarily due to the transverse pressure 

o For example: i) The resistance of rough pipes show the just noticeable change from 
quadratic law at v*k/11+25 when Reynolds number decreases, ii) the form drag of a cylinder 
becomes important abruptly at Reynolds number-+50 as it increases, iii) in a smooth pipe 
molecular viscosity becomes lO~a of turbulent viscosity at the distance v*y/ 11 = 32 when the 
wall is approached, etc. 

2 > G. I. Taylor, Note on the Distribution of Turbulent Velocities in a Fluid near a Solid Wall, 
Proc. Roy. Soc. A, 135 (1932). 
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gradient and that the occurrence of its maximum effect may be caused by 

a synchronizing phenomenon between the grain size and the scale of tur­

bulence which produces the pressure gradient. 
in the turbulent flow through a channel with roughness k not so large 

the distribution of velocity defect is the same as the case of a smooth 
channel. So that in the large part of the whole region except the small 

region near the walls the turbulence i's mainly produced by the action of 

mixing processes, the influences of roughness being negligible. Then we 

can provisionally divide the whole region into the inner and outer layer. 
The former is a small region including grains its turbulent energy being 

produced by roughness and by influences of the outer turbulence. The 
later is a large region outside of the inner layer where the turbulent_ energy 

being supplied from the energy of mean flow and the influences of rough­
ness being negligible. 

Though this definition is rather arbitrary, following the discussion of 
Taylor we can infer that because of negligible vertical component of 

turbulent velocities the fluctuations of pressure gradient near the grains 

are produced by that of the outer layer the directions of which are nearly 

transverse to the mean flow. Thus we can consider a equivalent layer 
which represents the outer layer in such a way that the characteristics 
of pressure fluctuations in it are equivalent to that of the effective pressure 
fluctuations of the outer layer acting on the inner layer. 

The bigger the grains, the greater the distance of the equivalent layer 

from the wall is. On the other hand, if k is less than the thickness of 
the laminar sub-layer LI the height of the equivalent layer must be the 
same as that for J. So that we may put in general as an approximation. 

(4.1) 

where ~ denotes the height of the equivalent layer measured from the 

virtual laminar sub-layer and a, b are· contants. 
Let us take the x-axis along the wall in the direction of mean flow, the 

y-axis perpendicularly to the wall and the 2-axis transversely to the mean 

flow. According to Taylor's discussion the scale of turbulence in x-direction 
is far greater than that in z-direction. Further the forces due to pressure 
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gradient acting on a grain are negligible when· the scale of turbulence is 

very large. So that we may be satisfied by considering merely the linear 

dimension of turbulence in z-direction, M. On the other hand it might be 

expected that the scales of turbulence in y- and z-direction become compar­

able as f increases. Then we may assume M to be same order of the 
mixing length, 

(4.2) 

since as seen later f / J is not small. 

Inserting (4.2) to (4.1) we obtain 

M = c1.:l+c2k, c1 = ab', c2 = bb'. (4.3) 

Now the resultant force exerted by fluctuating pressure gradient on a 

grain is very small in either cases of M/k ~ l or <{ 1 and only considerable 

when M is comparable with k. If consequently c2 is suitably small, the 

effects of turbulence increases and then decrease through a maximum as k 

increases from zero. In the following sections we shall examine this idea 

some-what in detail using a simple turbulence model. 

§ 5. Neglecting the x- component of fluctuating gradient we assume a 

sinuous variation of pressure fluctuation P' in the 2-direction P' = P sin 

2rr(z+i3)/M, where i3 denotes phase proportional to time. Further we 

assume the spherical form of diameter k for grains. Then the force acting 

on a grain in the z-direction becomes 

JF1 = MP cos 2rr _a_ 1 k cos rr _k_ - M sin-.!!!!_] . 
Ml M rr M 

Therefore the root of mean square of the force acting on unit cross section 

of the grain ilfi is given by 

Jfi = 2v2P/i(C) = 4 JPfi (C), 

fi(C) = sin(~~ cos C ,. C' = : l 
f' 

(5.1) 

where Jp is the root of mean square of pressure fluctuations in the 
equivalent layer. 

As mentioned in the preceding section we can apply the theory of• 

turbulent flow in a smooth pipe to the equivalent layer. So that by the 
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paper I 1i the turbulent energy E at a point not far distant from the wall 

is given by 

(5.2) 

where 

(5.3) 

in which , denotes the shearing stress at the wall and K = 0.40. 

On the other hand G. I. Taylor2> has shown 

ilP= apE, (5.4) 

where a is a numerical constant depending on the mode of fluctuations. 

As it is nearly the case, when the turbulence is two dimensio_nal and 

moreover the one component is dominant, we have a = i/2. Thus we 

obtain by (5.1), (5.2), (5.3) and (5.4) 

(5.5) 

Next we must estimate the drag due to the turbulent motion in the 

inner layer considered as being produced by the outer turbulence, since 

that part of the turbulent motion which is caused by grains would not 

give appreciable influences, its scale being very small compared with grain 

size. Let u', w' be the velocity components of such a virtual turbulent­

motion which is equivalent to that near a smooth wall and ilu, ilw the 

roots of mean square of u' w'. Then the root of mean square of u', 

w' on the surface of a grain are given by Ju {(sin (/2)/(/2}, ilw {(sin (/2)/(/2}, 

since the wave length of velocity fluctuations are nearly equal to twice of 

pressure fluctuations ( u' w' co sin rr (z + o)/ M). So that neglecting the varia-

tions of the resistance coefficients, we obtain for the drag per 

the bed surface 

· { Llu ( LJw ) 2} u2 ilh .. , (1 +tt /2(t;))2+ u-/2 (r;) • zt2+(L1uh(r;))2 , 

unit area of 

(5.6) 

11 M. Kurihara, Rep. Res. Inst. Fluid Engng. Kyushu Univ. 3 (1946) 21, its abbrivated account 
will be seen in this report. 

21 G. I. Taylor, Proc. Carnb. Phil. Soc. 32 (1936). 
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its direction U being given by tg tJ = {(Jw)/u} h (()/[1 + {(Ju)/u} /2 (()]. 
In the equilibrium theory of White the drag in the direction of the 

mean flow acting on a grain and the gravitational force are just in balance 

at the commecemcent of movement. But grains may begin their movements 

by comparatively small tractive force, when they lose their stability by any 

agency, so that we can define the critical tractive force such that at which 

the grains are in equilibrium under the actions of the resultant drag and 

gravity. Thus we have by similar way as in White's theory 
. ½ 

{( 7 L!/i+(Jh)z)2+(J/2ft} = c ~ p'gkfgcp, (5.7) 

where s denotes the packing coefficient defined as. number of grains 

= C X area/Jil', if the angle of repose. 

Let , 0 be the critical tractive force and T the turbulence factor defined 

by White, then inserting (5.5), (5.6) in (5.7) we obtain 

l 7-: ·' k t 'o =Tc 6(Fg' gcp, (5.8) 

1 

T = [ x2 i- (;s; J;(() IJf(x)+Z rr, (5.9) 

where 
½ -I 

{( Ju )~ ( Jw ) 2} f ( Ju ) 2} X = 1 + /2 (() u- + ---;;;- /2 (() · I 1 + -Z-t h (() 

x { 1 + ~tu h (()}, 
½ 

{( . Ju )2 ( Jw . )2} { ( Ju ) 21 -1 
Z = 1 + fz (() -ll- + ----:i;- }2 (() . 1 + -lt-/z (() j 

(5.10) 

X ~:V /z (() 

These equations refer to the mean state of turbulent flow near the 

wall. As mentioned above the grains can move by actions of some greater 

· forces which appear with not vanishi°ng probabilities. Therefore we must 

introduce certain coefficients r1, rz, r3 which depend on the criterion of the 

commencement of grain movement in (5.9), (5.10) as follows: 

T = [ X 2+ (,~s; r1fi (() 1J1"2 (x) + z)2J\ (5.11) 
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x-\(1+r, ~; /2(cJ)'+(r, J: /2Cc>)'/-' (1+( '::' /2W)r 

X \1+ 72 ~~ h(c::)), 

I( Ju )2 ·( Jw )2) ½I ( Ju )2)-i Z= l+r2zth(() + 73zt/2(() · 1+ ~/2(() . 

L1 , 
X 73 _.!!!_ h (() 

u 

· III Numerical Considerations 

83 

. (5.12) 

§ 6. Determination of coefficients ci, c2• Though at present it is im­

possible to determine theoretically the coefficients a, b, b' in (4.1), (4.2) 

accordingly Ci, c2 in ( 4.3), we can easily estimate the order of magnitude of 
them. 

For the case of k/J < 1 the equivalent layer must be defined as that 

the turbulence at which represents the turbulence in the outer layer for 

the laminar sub-layer as regards to pressure fluctuations. So that it might 

be expected that at the equivalent layer the turbulence would not be much 

influenced by the wall, in other words, the molecular viscosity would be 

negligible compared with the turbulent viscosity. If we assume temporally 

molecular viscosity of 5%, we have a = 7.3 (see Fig. 4 in I)). On the other 

band, for the ca?e of k/ L1 > 1, the equivalent layer would lie at the dis­

tance of ths same order as k above the inner layer, accordingly we get 

b--2. 

The mixing length l may be interpreted as one fourth of the wave 

length when the velocity fluctuations are represented by a sinuous form. 

Then we have b' . · 0.4, since I . · 0.2 f. By these values we obtain finally 

C1 ~ 2.9, C2 ,_, 0.8. ( 6.1") 

The value of c2 ~ 0.8 is consistent with the fact that the theoretical 

least value of c2 deduced from the nature of function f; (() is 0.699 and C2 

must take a value a little larger than this limiting value to make Llf; 

reasonably small when k tends to practically infinity. 1?ut we have no 

trustworthy support for c1~2.9. Accordingly we will so determine er as 
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to make agree the theoretical maximum point of the turbulence factor 

with the observed. As an approximation, if we make the maximum point 

( = 2.082 of Ii(() correspond to (v*k)/11 == 25, anticipating (6.3) and accepting 

c2 = 0.8 we obtain c1 = 2.6, which is in good agreement with the predicted 

value c1 ~ 2.9. Thus we shall use in followings 

C1 = 2.6, C2 = 0.8. (6.2) 

As seen from the order of magnitude of the height of the equivalent 

layer x is much greater tllan 1 so we can safely put IJ!·(rJ = 1 in (5.11). 

Then Ii(() and /2(() which are shown in Fig. 4 represent directly the con-

Fig. 4 

tributions of fluctuations of pressure and of velocities respectively. The 

argument can be written by (4.3), (5.J) 

k k/11 
(=7! M =ir C1+0.k/il' (6.3) 

where v*tl/11 = 6.83. 
Thus we can calculate Ii(() and /2(() against the non-dimensional grain-

diameter v*k/11 by (6.3) and Fig. 4. 

§ 7. Coefficients rs- The pressure and components of velocity in the 

inner layer fluc~uate according to certain probability laws characteristic to 

the turbulence. If we assume for these fluctuating quantities Gaussian law 
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P = {1hl2n- a} e-{x~f2112l, we obtain /xi" for I xl>x1 with a given probability. 

For example 

1- rxl Pdx = 0.0l ' xifa = 2.53, Tif;a = 2.89, I J-x1 
= 0.025 , = 2.24, = 2.58, (7.1) 

= 0.0625, = 1.87, = 2.24, 

= 0.156 , = 1.42, = 1.87 · 

It is clear that adoption of the commencemlnt of movement of a few 
grains as the definition of the critical tractive force corresponds to observa­

tions of movements by large forces with small probabity of occurrence and 

general movement of bed material corresponds to small forces with large 

probability. Thus there is a correspondence between the criterions and 

the probabilities. 

H. C. H. Townend1l has shown the observed maximum velocity fluctua­

tions nearly equa.l to three times of the root-mean-square values. So that 

we might identify the most precise criterion (e. g. due to photographic 

observation as in the case of Townend) with. the probability of 1% by 

(7.1). Then rather arbitrarily we define the lower order criterions by steps 

of 2.5 times as in the magnitude of fixed stars. 

Naturally rs· in (5.11), (5.12) must be determined consistently with the 

probability of occurrence of resultant forces. For this purpose it is neces­

sary to know the correlations between the fluctuations of velocity compon­

ents and pressure. But on account of lack of our knowledge putting stress 
on the dominancy of pressure fluctuations we assume provisionally a simple 

relation rr = r2 = r3 = r, .that is to say, we shall consider such cases in 

which the fluctuations of velocity cooperate ·farvourably with that of 

pressure (the most effective factor) to produce maximum resultant forces. 

§ 8. Comparison of the theory with the observations. Since we have 

determined the values of coefficients Cr, c2 and rs. we are now able to com­
pare the theoretical results with the observations. Namely, using White's 

measured values of e = 0.4 and tg cp = l for grains, u1/zt = 0.1, w1/u = 0.6 

estimated from Fage and Townend's measurements2> of the maximum velocity 
1> H. C. H. Townend, Proc, Roy. Soc. A. 145 (1934). 
2> A. Fage and H. C. H. Townend, Aero. Res. Ctee. Rep. Mem. No. 147,i (1932), H. C. H. 

Townend, Joe. cit. Fig. 8. 
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fluctuations Ui, W1 10 a square . pipe and further the theoretical values 

u. = 1/ 2, ✓-1- = 0.210 we can calculate the turbulence factor and then the 

cri~ical tractive force against (v*k/v) by (5.8), (5.11), (5.12) (6.3) and Fig. 4. 

The· results of calculations are shown in Table 2 and in Fig. 2 with full 

lines. 

Table 2 
-

k 
log v;k I 1-st class (2.5%) 2-nd class (6.25%) 3rd class (15.6%) 

I I 
I 
----

J T !' 0 T !'o T I '(I 
I 

0.25 0.235 2.738 0.0763 2.416 0.0865 2.087 0.1001 
---

0.50 0.536 4.546 0.0460 3.960 0.0528 3.344 0.0625 
---------

1.00 0.836 6.689 0.0313 5.802 0.0360 4.864 0.0430 
- -

I 
2.00 i.138 9.339 0.0224 8.089 0.0258 6.767 0.0309 

4.00 1.439 10.114 0.0207 8.768 0.0238 7.335 0.0285 

6.00 1.615 9.536 0.0219 8.267 0.0253 6.921 0.0302 . 
10.00 · 1.837 8.199 0.0255 7.118 0.0294 5.966 0.0350 

---

20.00 2-138 _6.303 0.0332 5,.484 0.0381 4.610 0.0453 

50.00 2.537 .f.684 0.0446 4.088 0.0511 3.457 0.0605 

100.00 2.837 4.056 0.0515 3.552 0..0588 3.018 0.0693 

200.00 3.138 l 3.734 0.0560 3.271 0.0639 2.794 0.0748 

The figure shows that in spite of the crudeness of our theory its results 

explain fairly well the main character of the observed facts. This agree­

ment seems to confirm our conjecture that the fluctua_tions of pressure 

gradient play a role of paramount importance for the problem of tractive 

force. 




