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A NEW INTERPRETATION OF MIXTURE LENGTH THEORY 
IN VIEW OF ENERGY RELATION AND TURBULENT 

FLOW IN A PIPE 

By 

Michinori KURIHARA 

From Vol. 3. No. 1 

§ 1. Up to the present, in investigations on the turbulent flows in a 

pipe or between parallel walls the diffusion of turbulent energy generally 

has not been taken into consideration. For instance, Prandtl's hypothesis 

assumes that . the turbulent energy is supplied from the energy of the mean 

flow which exhibits velocity gradient of some degree through the random 

motion of lumps of fluid and the turbulent velocities are of the same order 

in magnitude as the excess velocities which the lumps will aquire during 
their motion in a din;ction along the velocity gradient through a mixture 

length. However the turbulent motion are maintained even in a region 

where the mean flow does not show any appreciable change in its velocity 

distribution. · Hence it seems that the diffusion of turbulent energy from · 

the other regions may be also one of the dominant processes e.g. in a pipe 

flow. In this paper it is examined, how may be interpreted physically 

Prandtl's hypothesis in the mixture length theory when the transfer of 
momentum:;and turbulent energy are taken into consideration at th·e same 

time. By the aid of its consequences the distributions of turbulent energy 

and velocity of the mean_Jlow in a pipe or between parallel walls have · 

been studied, especially considering the contribution of _molecular viscosity. 

I. Generation and Dissipation of Turbulent Energy 

§ 2. Let u', v', w' be the components of turbulent velocities and pE 
the kinetic energy of turbulence i.e. E-= ~ ~ u12. If we are justified in 

lJ Abbrivated from "Investigations on Turbulence III, A new Interpretation of Mixture Length 
Theory in view of Energy Relation and Turbulent Flow in a Pipe" (in Japanese), Rep. 
Res. Inst. Fluid Engng. Kyushu Univ. (1946) 21-68. 



16 M. KURIHARA 

for the present case. 

The value of 1/1 can be estimated from the measurements of Prandtl 

cited in the paper of G. I. Taylor (Statistical Theory of Turbulence III, 

Proc. Roy. Soc. A, 151 (1935)) as i/1 = 0.210. 

§ 4. We shall now examine the behaviours of the functions o:(y), <j,1(y) 

in two diemensional pressure flow by the aids of equations (8), (8)' when 

1J (y) = canst. is assumed. 

At the first place, let us assume Prandtl's hypothesis concerning to 
· f 1 r 

mixture length, l = /0 - 1-. Put E0 = 1- - 0 , where the suffix "o" refers 
. i l 7) p 

to the values at the wall. Then neglecting molecular viscosity (9) gives 

E = Eo t . Inserting these relations into (8) and solving for the function 

¢(y) we have 

(10) 

for the case of parallel walls. The function c(y) can be obtained by the 

definition of 7), o: (y) = sf~ • Similar equations hold for the -case of a 
a ' Y) 

pipe flow. 

On the surface where e (y) = l the production and the dissipation are 

exactly in balance. e (y) increases from zero at the centers to unit at 

y = ~ for parallel walls, y = -}- a for a pipe respectively and then through 

a maximum tends to again unit at the wall. 

~ 10 -... 
Ct:"tuM!~ 
z-

"" 

G=ro1i"ll 
z.,,.~ 

0.5 1.0 

!1/1,: 

Fig. 1 

Secondly if we assume Okaya's · 

phypothesis (Proc. Phys.-Math. Soc. 

Japan. 22 (1940) 146) about the mixture 
l -a'_f_ 

length, h = l*-(l-e h ), where l* 

and a' · are non-dimensional constants 

depending slowly upon Reynolds num­

ber, we have similar results and the 

surfaces on which e (y) becomes unit 

are given by y =0.5l0h or 0.696a. The 

results of calculations for the flow 

between parallel walls are given in 

Fig. 1 with the observed o:(y) calculated 
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from the data given by Taylor in his investigation on distribution of dis­

sipation of energy in a pipe over its cross-section (Table II, Statistical 

Theory of Turbulence III, loc. cit.). If we remember that our hypothesis 

i.e. 1J(Y) = const. or equation (8) has been introduced orginally for the 

purpose of studies of turbulent flow near a wall, but not in a central region 

and that on the contrary Taylor's data become inaccurate near the wall, it 

seems that the hypothesis explains . well the truth for large part of the 

domain. 

It is here noted that the outer region between the surface .:(y) = l 
and the wail . may be called the generating zone, in which the rate of pro­

duction of turbulent energy is greater than that of dissipation and similarly 
the central region up to e (y) = 1 the consuming zone, its turbulent energy 

being supplied from the generating zone by diffusion. 

II. Velocity Distribution 

§ 5. Velocity Distribution in the generating Zone. With the assump­

tion 1) = aecf; = const. we can treat the problem of turbulent flow near a 

. wall taking into account the contribution of molecular viscosity. 
~ 

Following Prandtl, if we assume near a wall l = !0 --j, and put for 

simpli~ity U., =-J Ta , U., = ✓Ea, the11 we 
I' V 1l 

have from (7), (9) for the 

ratio of molecular viscosity to turbulent viscosity and the turbulent _energy 

8 (y) = v ✓ Ea jt_ __§__ = 1 . _y_ (11) -v E; /0 E . f ' E, 1 + o h ' 

where E0 denotes the ~upposed turbulent energy at the wall when molecular 

viscosity is neglected. 
Introducing a non-dimensional length x defined as 

X = 2K U., f ' K == lho • • ~--
JI 1/ 'l 

(12) 

and eliminating O from (11) we have 

J}; =t-+✓1--~ ✓1 .+ : 2 • : } • ✓ ri-. (13) 

As we shall see later K = 0.4. Since so x becomes considerable when 
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--1!,___ 1 slightly increases, we can safely put for the entire domain 
y 

in the bracket of (13). Thus we have from (11) and (13) 

✓E jY 1 ✓-y--
Eo = IJ!"(x) h' 8 = XIJ!"(X) • -h-' 

where 

Solving (15) for X 

21Ji" x=--= 1- 7Jf2 

h -=1 
y 

(14) 

(15) 

(16) 

We see by (14), (15), (16) that very near the wall X~21Jl, i.e. turbulent 

energy increases linearly with the distance from the wall, and 0~4, i.e. 
X 

the ratio of molecular viscosity to turbulent viscosity decreases proportion-

ally to the inverse square of the distance. Numerical values of IJl and fl 

for various values of x are given in Table I. 

Table I. 

X I O l 2 I 4 I 6 I 8 i 10 I 15 I 20 I 30 I 50 I 100 

'I! ( = j7f) \ o j 0.6181 o.7811 o.8471 o.882j o.9o5j o.9361 o.951j o.967f o.9soJ o.990 

o ( = ~) \ 00 I 1.618 0.640\ 0.3931 0.2831 0.220( 0.142[ o.1051 0.0681 0.0401 0.020 

Molecular viscosity is dominant in the regions x? 5 and then rapidly 

decreases and becomes 9.1% of the total viscosity at x = 20. 

§ 6. Now near the wall neglecting the· gradient of shearing stress, i.e. 

putting t = 1, we can write the equation of motion for the mean flow 

as fx ( gT) = -}- · 2 ; X IJl • Transforming the independent variable x to IJl we 

can easily obtain its solution with the boundary condition U = 0 for IJl = O. 

_!!_ = _l __ {- IJl(x) + log 1 + lf(x) } . 
U, K · l- lJ!"(x) 

(17) 

This solution gives for x:> 1 the logarithmic velocity distribution. The 

comparison with the measurements of Nikuradse shows that in our theory 

turbulent viscosity is over estimated in the immediate neighbourhood of 
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the wall, where the wall and the molecular viscosity strongly restrict the 

turbulent motion. So that it is natural to introduce as an approximation a 

pure laminar sub-layer. Let its thickness be J and the corresponding value 

of 'Y. be ;(1. Then as the complete solution of the problem we get 

- Ur - '.U{ for X < X1 , · u - X l 
U _ . 1 _{ X1 _ _ lft(x-x· )·+ log 1 + 1Jf(x-x1) l for x> X . 
u, K 2 ·1 1-- lff(x-x1) f · - ·1 

(18) gives for X < Xi U - 1 { X1 1 1 . 4 K I f U' } --- - -- - -- --- + og + og -- . 
~ K 2 - v 

Comparing with the empirical formula of Nikuradse 

i, = 5.5+5.75 log1o °:f , we obtain 

20 U P-ru u;:=5.5+5.75...,;r,. y 

\ 
\ C 

10 

I.O 20 

Fig. 2. Velocity Distribution near Wall. 
V 

3.0 

JI 

(18) 

A: Pure laminar sub-layer, B: ~=0.10, 
V 

C: ~=0.05. 
JI 
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K = 0.40, Xi= 5.46, (19) 

which give 
II 

= 6.83, Ui J = 45 for the pure laminar sub-layer. 
II 

The theoretical velocity distribution with the numerical values of (19) 

is shown in Fig. 2, in which also Nikurade's measurements are plotted. 

The agreement especially in the immediate neighbourhood of the wall is 

beautiful. This seems to ascertain our assumptions, i.e., 7J = a E ¢1 = const. 

and the rapid decrease of mixing length towards the wall or the existence 

of a pure laminar sub-layer. 

§ 7. Distribution of turbulent energy near a wall. In virtue of equa­

Jr 

s.o 
n ua. 
fo?-;, ,, y 

Fig. 3 

6.0 

tion (14) we can discuss the 

distribution of turbulent velocity 

in a pipe except its central region. 

The turbulent velocity has its 

maximum value at a point f max 

near the•; wall. Its relation to 

Reynolds number of the mean 

flow is shown in Fig. 3. Again 

experimental results of Fage, 

Townend and · Taylor seem to 

confirm the theoretical result. 

§ 8. Velocity distribution in 

a pipe. In the central · region of a 

pipe, i.e. the consuming zone, our 

theory does not hold in the strict 

sense. So we assume a hypabolic distribution of turbulent energy instead 

of that of given by ( 13) and a constant mixing length for this region. Then 

we can calculate the velocity distribution through a cross section of the 

pipe. The results of calculation are as follows : 

r < r3 (the consuming zone) 

Uc-U = ~1. ;1 . j 2r3 . {-1+ j1+(-.!_ Y}, (20) 
U~ K ,3 a r3 

r> r3 (the generating zone) 
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(21) 

Comparison with the measurements of Nikuradse and Stanton are given 

in Fig. 4. 

15.0 

/O.0 

o : Nil<uro.dse 

p~ t• 1p 
l:i 

5.0 

0 ¼. o.s 1.0 

Fig. 4. Velocity Distribution in_ a smooth Pipe. 

Full line: ~3/a = 0.21, K"" 0.4. Dotted line: ~3/ a = 0.25, K = 0.38. 




