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Abstract: The Agusan River basin is a lifeline for residents in Agusan del Norte, Agusan del Sur, and Davao del 

Norte. However, human activities have caused water contamination and siltation, leading to significant structural 

and physical changes in the river. This study utilized two machine learning classifiers, Support Vector Machine 

(SVM) and Random Forest (RF), within the Google Earth Engine (GEE) platform to assess the land use and land 

cover (LULC) changes from 2000 to 2020. The results unequivocally favored SVM, with higher accuracies of 

95.53%, 95.61%, and 92.21% in 2000, 2010, and 2020, respectively. Notably, the study unveiled the substantial 

impact of LULC changes on critical water quality parameters, including turbidity, total suspended solids, and 

pH. These findings bear profound implications for the conservation and management of the Agusan River Basin, 

providing policymakers with invaluable insights for crafting interventions to preserve this invaluable natural 

resource. 
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1. INTRODUCTION 

 

Land cover describes the physical properties of the 

earth's surface. The Earth's surface is not uniform at 

all; there are differences such as water, bare ground, 

trees, grass, asphalt, and more. Land use refers to how 

people use the land for social and economic purposes. 

Urban and agricultural sectors are the two land use 

types that are the most well-known. The land cover 

represents all kinds of differences in the Earth's 

surface in a broad sense. 

 

Land use and land cover (LULCC) change refers to 

human activities that influence hydrological 

processes [1] [2]. Natural events like storms, forest 

fires, and landslides, as well as human-induced 

factors such as deforestation, climate change, and 

stochastic events can drive LULC change [3] [4]. 

LULC change can result in increased storm runoff, 

reduced vegetation cover, and sediment transport, 

leading to water quality degradation. Effective 

management of land use and land cover is crucial in 

mitigating land degradation, climate change, and 

extreme rainfall events [4] [5]. Changes in land cover 

impact the atmosphere, climate, and biology of the 

Earth, affecting flooding, sedimentation, and stream 

habitats [6] [7] [8]. Conversion of forests, wetlands, 

and agricultural land into impervious urban surfaces 

yields economic benefits but poses environmental 

costs, increasing runoff and nonpoint source 

pollution [9] [10]. 

 

Remote sensing data has played a significant role in 

monitoring land use and land cover (LULC) changes. 

These data provide valuable information about the 

Earth's surface in terms of spatial, spectral, and 

temporal resolutions. Numerous studies have 

investigated the impact of land development on 

floods using remote sensing [11]. Specifically, the 

use of Landsat images has facilitated the precise 

identification and mapping of LULC change on a 

large scale [12]. Various methods and datasets, such 

as supervised classification, PCA, hybrid 

classification, unsupervised classification or 

clustering, and different classifiers, have been 

employed for change detection analysis using remote 

sensing imagery [13] [14] [15] [16]. Among these 

methods, supervised classification techniques are 

commonly considered the most effective, although 

ongoing discussions persist regarding their respective 

advantages and disadvantages. Among these 

classifiers are SVM and RF which are machine 

learning techniques used for classification and 

prediction. 

 

In the early 1970s, remote sensing techniques were 

introduced for monitoring water quality. Water 

bodies across the landscape are impacted by various 

factors such as suspended sediments (turbidity), 

algae (chlorophylls and carotenoids), chemicals 

(nutrients, pesticides, and metals), dissolved organic 

matter (DOM), thermal releases, aquatic vascular 

plants, pathogens, and oils. For this particular study, 

the focus was on assessing water quality based on 

three parameters - pH, turbidity, and Total Suspended 

Solids (TSS). Geospatial technology, such as remote 

sensing and GIS, enables the analysis and 

visualization of LULC changes and their impact on 

water quality indicators, advancing our 

understanding of this relationship [10]. 
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Guppy and Anderson [17] emphasized the 

importance of water for sustaining life, and Kummu 

[18] highlighted the crucial role of freshwater 

resources from rivers in supporting various aspects of 

everyday life. The increase in water and resource 

availability and demand, driven by the growing 

global population, has significantly impacted LULC 

change in rivers, negatively affecting their physical 

properties and ecology [19] [20]. Numerous studies 

have examined the effects of LULC changes on river 

basins, including impacts on runoff, discharge, water 

yield, headwater fluvial, morphology, structure, and 

dam construction [21] [22] [23] [24] [25]. However, 

the effectiveness of the different models has not been 

thoroughly compared.  

 

This study aimed to evaluate land use and land cover 

(LULC) classification using RF and SVM machine 

learning algorithms within the Google Earth Engine 

(GEE) platform. The focus was on assessing how 

LULC changes in the Agusan River may have 

influenced river water quality and developing 

effective management practices addressing both 

concerns. The accuracy of both methods was 

compared to determine the most precise classifier, 

followed by mapping and analyzing LULC changes 

in the study area from 2000, 2010, and 2020 to 

identify significant patterns impacting water quality 

and inform management strategies. 

 

Figure 1. Agusan River Basin – Study Map Area 

2. METHODOLOGY 

 

The study utilized the Landsat satellite dataset 

integrated into the Google Earth Engine image 

collections, with Landsat-7 for 2000-2012 and 

Landsat-8 for 2013-2020, to generate LULC maps for 

2000, 2010, and 2020. Using SVM and RF 

classifiers, the study aimed to simulate and evaluate 

the relationship between water quality parameters 

such as pH, Turbidity, and Total Suspended Solids 

(TSS) and LULC changes between 2000-2020, 

employing the IDW interpolation method for surface 

mapping. The IDW method was selected for 

predicting values within the range of observed data, 

and zonal statistical tools were employed to assess 

the influence of land use/land cover on water quality 

by calculating zone values based on another dataset. 

Water quality and LULC values were obtained 

through point feature conversion and the "zonal 

statistics as table" tool [26] [27].  

 

 

Figure 2. The General Framework of the Study 

Google Earth Engine (GEE) was utilized to 

efficiently classify a vast amount of remote sensing 

data. The Landsat images from 2000, 2010, and 2020 

were accurately classified using SVM and RF 

algorithms. To ensure data reliability, the accuracy of 

the classifications was thoroughly checked. Water 

quality data, specifically pH, turbidity, and total 

suspended solids (TSS), were collected from the 

Environmental Management Bureau of the 

Department of Environmental and Natural Resources 

(DENR). Additionally, an assessment was conducted 

to determine the impacts of LULC change on these 

parameters. 

 

2.1 LULC Sampling Points 

 

In this study, the training and validation points were 

selected using a technique previously applied and 

theorized by Kanniah [28] and Lin [29] which 

involves selecting sample points from high-

resolution Google Earth photos. The selection of 

these sample points was performed using the time-

slider feature of Google Earth, ensuring that the 

selected points were within the study area. To ensure 

accuracy, ground truth samples were collected using 

Google Earth imagery, Landsat data composites, and 

expert knowledge. The sample points were randomly 

divided into two categories for the classification 

process: training samples (70%) and validation 

samples (30%). This approach ensured that the 
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classification was carried out with high accuracy and 

consistency from both machine learning classifiers. 

 

2.2 Data Collections 

 

Table 1. Data used in the Study 

 

2.3 Land Cover Classification using GEE 

The Google Earth Engine (GEE) offers convenient 

online access to a range of research satellite data, 

including fields operations data, historical land use 

and land cover (LULC) datasets, and aerial 

photographs. GEE enables users to access archived 

satellite images, such as Landsat data, which are 

provided as a collection by the United States 

Geological Survey. This eliminates the need to 

download the satellite images, simplifying the data 

acquisition process [30].  

 

In this study, Landsat image composites were created 

every 10 years from 2000 to 2020 using the Google 

Earth Engine (GEE) platform. Machine learning 

classifiers, SVM and RF, were employed for accurate 

land use and land cover (LULC) classification. 

Ground truth samples were collected using historical 

imageries from Google Earth and expert knowledge. 

The classification process aimed to identify four main 

classes (built-up, barren, vegetation, and water) and 

several subclasses within the vegetation class 

(grassland, shrubs, forest, agricultural, palm 

plantation, and others). The accuracy of the 

classifications was evaluated using a Confusion 

Matrix. Landsat-7 ETM and Landsat-8 OLI sensors 

were used for generating the image composites. The 

GEE platform facilitated efficient data collection, 

classification, and analysis, making it a valuable tool 

for producing accurate LULC maps. 

 

2.4 Spatial Analysis for Water Quality Parameters 

To generate surface maps for water quality 

parameters, the study employed the Inverse Distance 

Weighted (IDW) interpolation method using ArcGIS 

10.8. IDW is a commonly used algorithm for spatially 

interpolating point data, allowing estimation of 

values beyond the sampled points [26]. This method 

assumes that each measurement point has a localized 

influence that diminishes with distance, with the 

strongest influences occurring near the observed 

point [27]. The IDW method was selected because it 

enables the prediction of values for unsampled 

locations within the range of observed data. Zonal 

statistical tools in ArcGIS 10.8 were also utilized to 

assess the impact of land use and land cover on water 

quality. These statistical tools calculated zone values 

based on data from another dataset. To obtain water 

quality and land use/land cover values in tabular 

form, the centroid of the union councils was 

converted into a point feature, and the "zonal 

statistics as table" tool in ArcGIS 10.8 was employed. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Base Land Cover Map 

 

Using Landsat 7 mages for the years 2000-2012 and 

Landsat 8 images for the years 2013-2020 with a 30-

meter resolution and a supervised SVM classifier and 

RF classifier, the land cover map of Agusan River 

Basin (ARB) was generated, as shown in Figure 3. 

The eight classes were Agricultural (sage dust), 

Barren (cocoa brown), Built-Up (mars red), Forest 

(leaf green), Grassland (lemongrass), Palm 

Plantation (autunite yellow), Shrubs (light apple), 

and Water (big sky blue). Its total land area was 

recorded to be 1210948.83 hectares. The three land 

covers for the years 2000, 2010, and 2020 were the 

generated LULC using Google Earth Engine (GEE) 

and ArcGIS software. 

 

Land use and cover maps generated by RF and SVM 

classifiers show notable changes over time. SVM 

reveals an increase in agricultural land cover, a 

decrease in barren and shrubland areas, a rise in palm 

plantations, and a slight growth in built-up areas. RF, 

on the other hand, shows a decline in agricultural and 

forest land cover, an increase in palm plantations, and 

a slight increase in built-up areas. These changes are 

influenced by natural factors and human activities 

such as urbanization, industrialization, and the global 

demand for palm oil. 

 

3.2 Summary of Overall Accuracy Assessment 

SVM algorithm achieved higher overall accuracy 

(92.21% to 95.61%) compared to Random Forest 

(RF) for land cover classification. SVM showed 

promise in accurately classifying Forest and Palm 

Plantation, while accuracy for Grassland and 

Agricultural classes was lower. RF demonstrated 

good overall accuracy (93.94% to 94.7%) but 

accuracy varies among land cover classes, 

emphasizing the need for improvements. Considering 

the user's Accuracy is crucial for identifying classes 

that require classification enhancement. Forest had 

the highest accuracy, while Palm Plantation and 

Agricultural classes showed lower accuracy.  

 

Datasets Source 

Agusan 

River 

Basin 

Boundary 

CSU-CreATe (Center Resource 

Assessment-analytics and 

Emerging Technologies) 

Landsat 

Images 

USGS Earth Explorer 

(https://earthexplorer.usgs.gov/) 

Water 

Quality 

Data 

DENR – Environmental 

Management Bureau, Butuan 

City 8600 
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Figure 3. Agusan River Basin Land Cover Map for the years 2000, 2010 and 2020 
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Improvements are needed for specific classes in both 

algorithms. 

 

3.3 LULC Change Detection Analysis 

 

 
Figure 4. Change Detection Analysis using SVM 

 

Between 2000 and 2020, notable land cover changes 

occurred in the study area. Shrubs were the largest 

land cover class in 2000, but by 2010, Agricultural, 

Palm Plantation, and Built-Up areas increased, while 

Barren, Forest, and Shrubs decreased. The most 

significant changes were observed in Agricultural, 

Palm Plantation, and Grassland. Palm Plantation 

experienced the largest increase, while Forest and 

Grassland decreased. Overall, agricultural land 

expanded, built-up areas increased gradually, and 

forest cover declined due to potential deforestation. 

Palm Plantations significantly increased, while 

shrubs decreased gradually. 

 

Land cover changes in the study area between 2000, 

2010, and 2020 indicate fluctuations in forest and 

shrub cover. Forest cover increased from 19.12% to 

22.81% in 2010 but decreased to 21.57% in 2020. 

Shrubs decreased from 50.11% to 43.13% in 2010 

and further to 41.44% in 2020. Agricultural land 

decreased, while built-up areas and barren land 

showed slight changes. Grassland decreased 

significantly, and palm plantation areas expanded. 

The chart highlights land cover percentage changes 

over a ten-year interval. These changes reflect natural 

growth, urbanization, and industrialization, 

providing insights into land use dynamics in the 

region. 

 

 
Figure 5. Change Detection Analysis using RF 

 

3.4 Impact of LULC Change on Water Quality 

Parameters 

 

The pH level of the Agusan River in the Agusan River 

Basin showed a slight increase from 2010 to 2020, 

remaining within a stable and neutral range. Despite 

significant land cover changes, including urban 

expansion and shifts in vegetation types, the river's 

pH has maintained stability. Agricultural activities 

and their associated inputs can impact water pH, but 

the river system demonstrates resilience and 

buffering capacity, mitigating these effects to some 

extent. 

 

Turbidity in the Agusan River Basin consistently 

decreased from 2010 to 2020, despite significant land 

use and land cover changes. The decrease in 

vegetation cover, coupled with sustainable land 

management practices like erosion control and 

agroforestry, contributed to lower turbidity levels. 

The increase in forest and palm plantation land cover 

likely played a role in preserving riparian buffer 

zones, which enhance water quality. Vegetation and 

sustainable practices are crucial in mitigating 

turbidity in the Agusan River Basin. 

 

Table 2. Impacts of LULC in pH 

Land Cover 2010 2020 

Area (ha) pH Area (ha) pH 

Agricultural 3,329,100 7.27 4,530,600 7.54 

Barren 4,630,500 7.28 1,578,600 7.52 

Built-up 280,800 7.30 3,861,000 7.56 

Forest 8,443,800 7.26 13,566,600 7.54 

Grassland 3,824,100 7.27 328,500 7.55 

Palm 

Plantation 

2,566,800 7.26 6,183,900 7.54 

Shrubs 16,166,700 7.27 392,400 7.49 

Water 582,300 6.96 9,382,500 7.52 

 

Table 3. Impacts of LULC in Turbidity 

 

Land use and land cover (LULC) changes have 

significantly contributed to the decrease in total 

suspended solids (TSS) levels in the Agusan River. 

The expansion of agricultural, built-up, forest, and 

palm plantation areas, coupled with improved land 

management practices, has effectively reduced soil 

Land Cover 2010 2020 

Area (ha) Turbidity Area (ha) Turbidity 

Agricultural 3,329,100 227.72 4,530,600 211.39 

Barren 4,630,500 235.00 1,578,600 202.36 

Built-up 280,800 225.44 3,861,000 218.93 

Forest 8,443,800 221.20 13,566,600 207.37 

Grassland 3,824,100 228.24 328,500 188.22 

Palm 

Plantation 

2,566,800 231.97 6,183,900 209.98 

Shrubs 16,166,700 225.10 392,400 186.15 

Water 582,300 185.40 9,382,500 194.49 



Proceeding of International Exchange and Innovation Conference on Engineering & Sciences (IEICES) 

 

245 
 

erosion and sediment runoff, leading to lower TSS 

levels. Although certain land cover types have 

decreased, their past contributions in retaining soil 

particles and stabilizing the landscape are still 

evident. Sustainable agricultural practices and 

effective stormwater management systems have also 

played a role in minimizing erosion and 

sedimentation, further reducing sediment reaching 

the river and contributing to the decrease in TSS 

levels. 

 

4. CONCLUSION AND 

RECOMMENDATIONS 

 

This study utilized Support Vector Machine (SVM) 

and Random Forest (RF) classifiers to assess changes 

in Land Use Land Cover (LULC) in the Agusan River 

Basin from 2000-2020. SVM showed effectiveness in 

accurately classifying narrow rivers, while RF may 

struggle with such classification due to potential 

misclassification. LULC changes were found to have 

significant impacts on water quality parameters such 

as turbidity, Total Suspended Solids (TSS), and pH. 

Ongoing monitoring and management strategies are 

crucial for preserving water quality in the basin. 

interventions to mitigate human impact, regulate land 

use, restore degraded areas, and promote sustainable 

livelihoods for local communities. These findings 

have important implications for the conservation and 

management of the Agusan River Basin. 

Additionally, future research should explore 

improved classification algorithms, involve 

community engagement, and address climate change 

adaptation within the context of conservation and 

management efforts in the basin. 
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