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Abstract: This study demonstrates the potential of machine learning to predict the permeability of soil-fly ash mixtures, 

thereby promoting fly ash as a sustainable building material. Due to its environmental benefits and enhanced engineering 

properties when added to mixtures, fly ash, a byproduct of coal combustion, is gaining popularity. Several machine 

learning algorithms were evaluated, with the linear regression model proving to be the most precise and straightforward. 

It captured the linear relationship between percentage of fly ash and permeability (RMSE of 6.42 x 10-06cm/s and R2 of 

0.811). Training and testing of models utilized a comprehensive database of soil-fly ash mixtures. The implications of the 

study's findings for engineering and environmental applications are substantial. The model's accuracy in estimating soil-

fly ash mixture permeability is validated by the excellent correlation between predicted and actual permeability values. 
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1. INTRODUCTION  

 

In recent years, the construction industry has undergone 

a paradigm shift toward environmentally friendly and 

sustainable practices [1] [2] [3]. As the world faces the 

challenges of climate change and declining natural 

resources, there is a growing need to investigate 

alternative materials that can reduce the ecological 

footprint of construction projects [4]. The unique 

properties and environmental benefits of fly ash, a 

byproduct of coal combustion in power plants, make it a 

promising construction material [5]. By incorporating 

machine learning techniques, it is possible to estimate the 

permeability characteristics of soil-fly ash mixtures. 

Before applying machine learning to estimate 

permeability characteristics, it is essential to comprehend 

the environmental effects of fly ash and its viability as a 

building material. Fly ash is a powdery substance 

produced in coal-fired power plants during the 

combustion of pulverized coal [5]. Historically, fly ash 

was viewed as a waste product requiring extensive 

disposal measures. Despite this, the construction industry 

has recognized fly ash as a valuable resource due to a 

growing awareness of its potential environmental 

impacts [6]. 

Fly ash has several characteristics that make it an 

environmentally viable alternative. In the first place, its 

use reduces the demand for conventional cement, a major 

contributor to carbon dioxide emissions. By substituting 

a portion of cement with fly ash, the production of 

concrete can significantly reduce its carbon footprint. In 

addition, fly ash improves construction materials' 

workability, durability, and chemical resistance [7]. Its 

application can reduce water permeability, reduce alkali-

silica reaction, and increase the strength of concrete 

structures. 

In numerous engineering applications, including 

embankments, road pavements, and landfill liners, the 

permeability characteristics of soil-fly ash mixtures are 

crucial [8]. Accurately estimating permeability is crucial 

for ensuring the stability and long-term performance of 

these structures. Traditional laboratory-based methods 

for determining permeability are time-consuming, costly, 

and frequently constrained by sample availability [9]. 

Machine learning techniques offer a promising 

alternative for overcoming such challenges. It is possible 

to develop robust and effective algorithms for estimating 

the permeability characteristics of soil-fly ash mixtures 

by taking advantage of the power of artificial intelligence 

and data-driven models. Large datasets containing 

geotechnical properties, particle size distribution, and fly 

ash content, among other variables, can be analyzed by 

machine learning algorithms to establish patterns and 

relationships [10]. 

Using machine learning to estimate permeability 

characteristics has several advantages over traditional 

methods. First, machine learning algorithms can process 

vast quantities of data quickly and efficiently, enabling 

the analysis of intricate relationships and patterns. This 

capability enables accurate permeability predictions in 

situations where conventional models fail due to inherent 

assumptions and limitations. 

Second, machine learning models can adapt and learn 

from new data, enhancing their accuracy and 

performance continuously over time [11]. As more data 

from field measurements and laboratory tests becomes 

available, the models can be updated and refined to 

improve their predictive capabilities. This iterative 

procedure ensures that estimates of permeability remain 

relevant and accurate, even in environments of dynamic 

construction. 

The incorporation of machine learning techniques into 

the estimation of the permeability characteristics of soil-

fly ash mixtures is a significant step toward sustainable 

construction practices and environmental preservation.  

The use of fly ash in construction results in enhanced 

performance characteristics. The addition of fly ash to 

soil mixtures improves their stability, decreases their 

permeability, and increases their chemical resistance. 

These characteristics make fly ash an ideal material for 

applications such as embankments, road pavements, and 

landfill liners, where the permeability characteristics of 
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the soil-fly ash mixtures are crucial to the long-term 

performance. 

Learning machine techniques provide an effective 

method for accurately estimating permeability 

characteristics. By analyzing large datasets containing 

geotechnical properties, particle size distribution, and fly 

ash content, machine learning algorithms can identify 

patterns and relationships that are challenging to 

determine using traditional methods. These algorithms 

can then generate models with high accuracy for 

predicting permeability. 

The benefits of machine learning extend beyond the 

accurate estimation of permeability. The adaptability and 

self-learning capabilities of these algorithms allow them 

to improve their performance continuously over time. As 

new data from field measurements and laboratory tests 

become available, the models can be updated to improve 

their predictive capabilities and ensure that the 

permeability estimates remain accurate and relevant. 

Thus, the construction industry has been adopting 

sustainable practices in response to climate change and 

depletion of natural resources. Fly ash, a coal combustion 

byproduct, has emerged as a promising environmentally 

friendly building material. It reduces the demand for 

carbon-intensive cement and improves concrete's 

workability, durability, and chemical resistance. 

Permeability characteristics of soil-fly ash mixtures are 

essential for structural integrity and performance in a 

variety of engineering applications. Traditional methods 

for estimating permeability are time-consuming and 

expensive, but machine learning offers a promising 

alternative. By analyzing massive datasets, machine 

learning algorithms can accurately predict permeability 

and continuously enhance their performance with new 

information. This incorporation of machine learning into 

construction practices is an important step toward 

sustainable construction and environmental preservation, 

as it promotes the use of fly ash for improved 

construction performance. 

 

2. METHODOLOGY 

 

2.1 Soil Mixtures for Permeability Test 

In the laboratory testing protocol, various soil and fly ash 

mixtures were formulated to determine the effect of fly 

ash on permeability. By adjusting the proportions of the 

constituents, these mixtures were created. The objective 

was to determine how the presence of fly ash affected the 

soil's permeability. 

 

Table 1. Number of Specimens for Permeability Tests 

Soil Mixture No. of Specimens 

100FA 24 

75FA25S 24 

50FA50S 24 

25FA50S 24 

100S 24 

 

To precisely evaluate the impact of fly ash on the soil, 

various amounts of fly ash were incorporated into the 

mixtures. The following sums were applied: 0% (100S), 

25% (25FA75S), 50% (50FA50S), 75% (75FA25S), and 

100% (100FA). These ratios indicate the proportion of 

fly ash present in each mixture, with the remainder being 

soil (denoted "S"). Using these varying quantities of fly 

ash, the researchers sought to determine the effect of fly 

ash content on the permeability characteristics of soil. 

 

2.2 Sample Preparation 

To calculate the required mass for each dry soil mixture, 

the relative density requirement of 90% was utilized. The 

first step is to unscrew the permeameter's cap and upper 

chamber in order to remove them. Next, calculate the 

inside diameter of the permeameter by measuring the 

inside diameter of the chambers. Then, position porous 

stones inside the chamber's base and ensure that they are 

properly positioned. Place filter paper on top of the 

porous stones to create a barrier. Using a scoop and 

funnel, carefully pour the prepared soil in a circular 

motion into the lower chamber until it reaches a depth of 

1.5 cm. Now, position the rubber gasket between the 

chambers before placing the upper chamber on the lower 

chamber. Utilize a tamping device and perform 

approximately 30 to 40 tamps per layer to compact the 

soil layer. Repeat this compacting procedure until all the 

soil meets the required 10 cm height. It is imperative to 

practice this step for precision. After the soil has been 

compacted, place another layer of filter paper followed 

by the upper porous stones on top of the soil. Place the 

compression spring on top of the upper porous stone, 

followed by the chamber cap and its sealing gasket. To 

firmly secure the cap, tighten the nuts by screwing them 

together. The final set-up is shown in Fig. 1. 

 

 
Fig. 1. Permeability Sample 

 

2.3 Permeability Test 

The soil permeability test is a laboratory test that 

measures the rate at which water can flow through a soil 

sample under a hydraulic gradient. It provides valuable 

information regarding the soil's ability to allow water to 

pass through it, which is a crucial parameter for a variety 

of geotechnical and engineering applications [12]. In this 

study, falling head was employed.  This test is similar to 

the constant head permeability test; however, instead of 

maintaining a constant hydraulic head, the head is 

allowed to fall at a known rate. In a permeameter, the 
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time required for the water level to fall between two 

specific points is measured. Using the permeameter's 

dimensions and the time recorded, the permeability of the 

soil can be determined. 

 

2.4 Machine Learning Modelling 

Machine learning is a subfield of artificial intelligence 

(AI) concerned with the development of algorithms and 

models that enable computers to learn and make 

predictions or decisions without being explicitly 

programmed [13]. Utilizing statistical techniques to 

enable computer systems to automatically learn and 

improve based on experience or data. In this study, the 

following are used for modelling: decision tree, linear 

regression, quadratic regression, neural network, and 

ensemble methods. 

A decision tree is a hierarchical model that uses a tree-

like structure to make decisions or predictions by 

segmenting the data based on feature values and creating 

a series of if-then conditions that lead to a final outcome 

[14]. The objective of linear regression is to establish a 

linear relationship between a dependent variable and one 

or more independent variables using a line that best fits 

the data to make predictions or estimate the value of the 

dependent variable [15]. Quadratic regression is a type of 

regression analysis that uses a quadratic equation to 

model the relationship between a dependent variable and 

independent variables, allowing for a curved relationship 

between the variables [16]. A neural network is a 

computational model that emulates the structure and 

operation of the human brain. It is composed of 

interconnected nodes or artificial neurons organized in 

layers, which learn and process information in order to 

make predictions or solve complex problems by 

adjusting the weights between nodes [17]. Ensemble 

methods combine multiple individual models to enhance 

overall performance in terms of prediction. These 

methods, such as Random Forest and Gradient Boosting, 

aggregate predictions from multiple models, capitalizing 

on the diversity and collective intelligence of the 

individual models to make more accurate and robust 

predictions [18]. 

In this study, the dependent variable s permeability in 

cm/s, while the independent variable is the percentage of 

fly ash. The data split ratio is 70% training, 15% 

validation, and 15% testing. 

 

2.5 Validation 

Two evaluation metrics will be used to compare the 

models: coefficient of determination (R2) and root mean 

square error (RMSE). R2 measures the proportion of the 

variance in the dependent variable that is explained by 

the model, whereas RMSE quantifies the average 

deviation between the predicted and actual values [19]. 

Additionally, an equality line representing the ideal 

relationship between predicted and actual values will be 

generated for each model. This will provide a visual 

reference for evaluating the accuracy and performance of 

each model in relation to the equality line [20]. 

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Results of Permeability 

Typically, the soil component comprises the majority of 

the soil mixture. If the soil is contaminated or does not 

meet the required specifications, it can be excavated and 

treated. Typically, the permeability of pure soil falls 

between 1.47x10-05 cm/s and 2.70x10-05 cm/s. In the case 

of the '100S' microfabric, which consists of extremely 

elongated grains, large angular grains, and an abundance 

of silt grains with a rough surface, these characteristics 

contribute to efficient drainage. 

Fly ash is a recommended soil additive because it permits 

the recycling of waste materials. However, the addition 

of fly ash modifies the inter-particle void ratio, which is 

a crucial factor in the microscopic test for characterizing 

the '100F' mixture. This particular mixture consists of silt 

grains of varying sizes, which form the microfabric. The 

presence of silt particles of nearly identical sizes 

increases permeability by creating larger inter-particle 

voids. Typically, the permeability range for pure fly ash 

is between 1.93x10-05 cm/s and 7.29x10-05 cm/s. 

The 75FA25S, 50FA50S, and 25FA75S mixtures consist 

of a combination of fly ash and soil. The microstructure 

of these mixtures is comprised of a combination of 

extremely elongated grains, large angular grains, and a 

significant presence of both larger and smaller silt grains 

with rough surfaces. As the percentage of fly ash in these 

mixtures increases, the drainage capacity also increases. 

While complete replacement of bentonite with a mixture 

of fly ash may not be feasible, it is worthwhile to consider 

substituting a certain amount of fly ash for bentonite in 

the cut-off mixture, as detailed in the following sections 

of the study. The addition of fly ash to soil mixtures 

increases the inter-particle voids, resulting in a 

permeability range of 1.93x10-05 to 5.02x10-05 cm/s, 

shown in Fig. 2. 

 

 
Fig. 2. Range of Permeability of Soil-Fly Ash Mixture 

 

3.2 Machine Learning Models for Permeability 

In this study, the following are used for modelling: 

decision tree, linear regression, quadratic regression, 

neural network, and ensemble methods. 

The Linear Regression model emerges as the victor due 

to its superior performance in terms of both RMSE and 

R2. It achieves the lowest RMSE value of 6.42 x10-06, 

which indicates minimal deviation between the predicted 

and actual values. This illustrates the model's precision 

in making accurate predictions. 

Moreover, the Linear Regression model has the highest 

R2 value, 0.811. This indicates that the model can explain 

approximately 81.1% of the variance in the target 
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variable. The high R2 value highlights the model's 

capacity to capture and account for the underlying 

relationships between input features and the target 

variable. 

Comparatively, the Tree, Quadratic Regression, 

Ensemble, and Neural Network models trail the Linear 

Regression model slightly in terms of RMSE and R2 

values. Although these models exhibit adequate 

performance, they do not surpass the precision of the 

Linear Regression model. The responses in shown in Fig. 

3. 

 

 
Fig. 3. Responses of ML Linear Model 

 

On a given dataset, we compare the performance of 

multiple regression models. A Tree model, Linear 

Regression, Quadratic Regression, Neural Network, and 

Ensemble model are under consideration. The 

assessment is based on two key metrics: root mean 

squared error (RMSE) and the coefficient of 

determination (R2). Table 2 contains the RMSE and R2 

values obtained for each model. 

The RMSE of the tree model is 6.85x10-06 cm/s, and its 

R2 is 0.796. It captures intricate data interactions and 

patterns with a high degree of predictive accuracy. In 

terms of RMSE and R2, it lags slightly behind the Linear 

Regression model, despite its excellent performance. 

The Linear Regression model has an impressive RMSE 

of 6.42x10-06 cm/s and R2 of 0.811. These results indicate 

that the model is a good fit for the data, explaining a 

substantial portion of the target variable's variance. Its 

performance is superior to that of the Tree model, making 

it a formidable rival. 

 The RMSE of the Quadratic Regression model is 

7.22x10-06 cm/s and the R2 is 0.774. Incorporating 

quadratic terms, this model represents nonlinear 

relationships. However, it performs marginally worse 

than both the Tree and Linear Regression models. 

The Neural Network model has an RMSE of 

0.000780034 and an R2 of -2639.049, which is an 

extremely low negative value. These results indicate that 

the model does not adequately represent the data and may 

be affected by overfitting or other issues. It significantly 

underperforms the other models evaluated. 

The Ensemble model yields an RMSE of 7.04x10-06 cm/s 

and an R2 of 0.785 respectively. It combines multiple 

predictive models to improve performance. In terms of 

R-squared, it performs adequately but is slightly inferior 

to the Linear Regression model. 

Based on the evaluation of RMSE and R2 values, the 

best-performing model is the Linear Regression model. 

It has the lowest RMSE, which indicates minimal 

deviation from the actual values, and the highest R2, 

which indicates a strong ability to explain the variance in 

the target variable. The Linear Regression model 

performs better than the other models, including the Tree 

model, which is renowned for its ability to capture 

complex interactions. When selecting the most 

appropriate model for a particular use case, it is necessary 

to also consider other factors, such as interpretability and 

computational complexity. 

 

Table 2. Summary of Model Performances 

Model RMSE R2 

Tree 6.85E-06 0.79634207 

Linear 

Regression 
6.42E-06 0.81095208 

Quadratic 

Regression 
7.22E-06 0.7739044 

Neural 

Network 
7.80E-04 0.0037892 

Ensemble 7.04E-06 0.78502235 

 

In the given data, we compared the stability of the 

performance of various models (Tree, Linear Model, 

Quadratic Model, Ensemble, and Neural Network). 

Stability is the consistency of the model's predictions 

when presented with identical inputs or data. 

Observing the provided data, we can see that the linear 

model consistently predicts values within a small range 

for each and every data point. Fly Ash percentage 

predictions from the linear model range between 

1.78x10-05 cm/s and 5.89x10-05 cm/s, indicating a stable 

behavior. 

 

 
Fig. 4. Parametric Analysis of each model 

In contrast, the predictions of the other models 

(Quadratic Model, Ensemble, and Neural Network) are 

more variable. For instance, the predictions of the 

quadratic model range from 1.75x10-05 cm/s to 5.05 x10-

05 cm/s, those of the ensemble model range from 1.95x10-

05 cm/s to 5.08x10-05 cm/s, and those of the neural 

network range from -0.000775689 to 0.004707021. 

These larger ranges imply that these models are more 

sensitive to the input data and may not generate 

consistent predictions for similar inputs. 
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The linear model's stability is attributable to its simplicity 

and linearity. The linear relationship between the input 

variables and the target variable is assumed by linear 

models. This simplicity makes the linear model less 

susceptible to overfitting and more tolerant of input data 

variations. 

In practical applications, stability is an essential model 

characteristic. When presented with new data that is 

similar to the training data, a stable model is less likely 

to produce erroneous or unexpected outcomes. This can 

be especially important in domains where consistency 

and reliability are crucial, such as financial forecasts, 

medical diagnoses, and safety-critical systems. 

Based on the provided data, we can conclude that the 

linear model is more stable than the other evaluated 

models. 

The linear model successfully derived an equation, 

denoted by Eq. 1, which accurately predicts the 

permeability of the soil mixture based on its fly ash 

content. This equation demonstrates the capability of the 

model to establish a consistent relationship between these 

two variables, shown in Eq. 1. 

 

𝑘 = 3.789𝑥10−07𝐹𝐴 + 1.71410−05 (1) 

 

Where, 

k = Permeability in cm/s; 

FA = Percentage of Fly Ash in %. 

 

3.3 Validation 

Examining the equality line on a scatter plot where the x-

axis represents the observed permeability values and the 

y-axis represents the predicted permeability values can 

assess the linear model's validity. In this instance, the 

equality line is a 45-degree line where the values of x and 

y are equal, shown in Fig. 5. 

 

 
Fig. 5. Equality Line of the linear model 

 

On the scatter plot of observed permeability values 

versus predicted permeability values, the data points 

corresponding to the experimental percentages of 0%, 

25%, 50%, 75%, and 100% are still prevalent. On the 

scatter plot, these specific percentages form distinct 

clusters or points. 

 

4. CONCLUSIONS 

 

This study concludes by highlighting the potential of 

machine learning techniques for predicting the 

permeability of soil-fly ash mixtures and the significance 

of using fly ash as a sustainable building material. By 

incorporating fly ash into soil mixtures, not only can 

waste from power plant fly ash be managed effectively, 

but the engineering properties of the mixtures can also be 

enhanced. 

To estimate the permeability of soil-fly ash mixtures, 

various machine learning algorithms, including decision 

tree, linear regression, quadratic regression, neural 

network, and ensemble methods, were investigated. 

Compared to other models, the linear regression model 

demonstrated superior predictive accuracy and 

simplicity. With an RMSE value of 6.42 x10-06 cm/s and 

an R2 value of 0.811, it accurately captured the linear 

relationship between the percentage of fly ash and 

permeability. 

The equality line analysis further validated the linear 

model's performance by comparing the predicted and 

actual permeability values. The scatter plot revealed that 

the data points were closely aligned with the equality 

line, indicating that the linear model accurately estimated 

the permeability of soil-fly ash mixtures. 

This study highlights the potential of machine learning in 

predicting the permeability of soil mixtures and 

emphasizes the significance of incorporating sustainable 

materials such as fly ash into construction practices. The 

results contribute to a greater understanding of soil-fly 

ash mixtures and provide important insights for 

engineering and environmental applications. 
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