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ON THE SLOW MOTION OF VISCOUS LIQUID 

PAST A CIRCULAR CYLINDER 

By Hikoji YAMADA 

Surnrnary.-The two-dimensional problem which determines the flow 
field of a viscous liquid past a circular cylinder placed perpendicular to 
the uniform flow has been treated elegantly by S. Tomotika and T. Aoi,l) 
by means of the Oseen's linearised equations. We here treat the same 
problem by the same equations but in somewhat different way, with the 
view of determining the Reynolds number at which the rear twin-vortices 
make their appearance. The found value is about 3.02 which is not re­
mote from the experimental one 2.65, but this coincidence is rather con­
tingent and the Oseen's approximation in general seems to be remote 
from the exact solution of the Navier-Stokes equations except the case 
of extremely small Reynolds number. This is indicated in the following 
by the consideration of the pressure. 

§ 1. Integration of Oseen's Equations.-A circular cylinder of radius a is 
placed in a uniform liquid flow of velocity U, density () and kinematic vis­
cosity 11, which flows along the x-axis to its positive direction, being the 
liquid boundless and the cylinder length infinite. The coordinate axes are 
rectangular and the cylinder axis coincides with the z-axis. The equations 
of motion of the liquid in the Oseen's approximation are, as are well known, 

Jlf' = -SJ' 
oSJ 

11 J SJ - U- = 0 , ox (1) 

where Wis the stream function and SJ the vorticity. We introduce the non­
dimensional quantities 

If' 
Ua = ¢, 

SJ 
U/a = w, 

and the non-dimensional coordinates, rectangular and polar, 

( __£' .l:'...) = (Xr, Yr)= (r, 0), 
a a 

which yield the equations in the form 

J1¢ = -w, 
Ua ow 

J1W--- = 0, 
II OX1 

(2) 

(2') 

(1') 

(1) S. Tomotika: Studies on mathematical physics (in Japanese), Vol. 1, (1949), 
pp. 130-150, Iwanami book co.; or S. Tomotika and T. Aoi: The steady flow of viscous 
fluid past a sphere and circular cylinder at small Reynolds numbers, Quat. }our. 
Mech. and App. Math., Vol. 3 (1950), pp. 140-161. 
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and then separate the disturbance due to the presence of the cylinder from 
the uniform flow, writing cf; as 

which brings the equations into 

.Jir/J =-(I)' 

where R1 is a quarter of the Reynolds number R: 

Ri = Ua = ~! _2aU = l__R. 
2J..I 4 µ 4 

(3) 

(1") 

(4) 

The solution w of (l"), which is anti-symmetrical with respect to the xr 
axis and vanishes at infinity, is well known and given by a series of the 
modified Bessel functions Km(z), i.e. 

= 
(0 = eR1x1 22 Cm Km(R Ir) sin mB ' (5) 

m-1 

and then the equation which the function rp satisfies is the following: 

= 
.J1r/J = -eR1x1 23 CmKm(Rir) sinmO 

m=l 

= -23 {.22 CmKm(R1 r) [lm-n(R1 r) - lm-t-n(Ri r)]} sin nB. 
n=I m=l 

Here we expand the solution rp into the Fourier series with respect to the 
variable O and assume 

= 
r/J = 23 r/Jn(R1 r) sin nO, (6) 

n:=l 

then the general expression of r/Jn can easily be determined as follows : 

r/Jn(r}) = (an r;n + a_n r;-n) 

- 2- 1R O I, Cm f '1 ("f}n ~I-n - r;-n ~l-t-n) Km(~) Um-n(O - lm-t-n (~)} d~; 
7r 1- m=I Rt 

(7) 

herein the first term on the right side is the complementary function and 
the second the particular integral, "I} being written for R1 r. Cm and an, 
a_n are the undetermined integration constants. 

The integration constants are determined by the boundary conrlitions. 
First, on the cylinder surface r = l, <J; and orj; for are to vanish, i.e. when 

"I} =R1 

r/Ji=-1, </J2=r/J3=•··=0, 
</Ji'= -R,-1 , r/J/= </J3'= ··· = 0, 

prime indicating the differentiation with respect to "I}. From these equations 

we obtain 
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ai = -R1-1, a-1 = a2 = a-2 =a~= ··· = 0. (8) 

Next we consider the behavior of ¢ when r; tends to infinity. The con­
dition in this case is the finite remain of ¢. As is easily seen 

r;-n j~ Km(O {lm-n(~) - lm-t-n(~)} ~l-t-n d~ ~ 0(1), 
R1 

and then by means of the relations (6) and (7) we have to assure the 
finiteness of the expressions 

1 = J~ -R1-1 Y) - 2 Rr-2 Y/ ~I Cm RiKm(f;) Um-I(~)- lm-t-i(f;)} d~, 

1 = J~ - 2~R1-2 r;n L, Cm Km(~) Um-n(f;)- lm-t-n(~)HL-nd~, 
n m=I Rt 

(9) 

(n~l) 

when 7! tends to infinity. In these expressions integrals can be accom­
plished by means of the formulae 

I~ Km(f;) Um-n(~) - lm-t-n(~) }~l-n d~ 
Rt 

= [ -~l-n {Km-iC~) In-m(~) + Km-i~) In-m-t-1Cn + ... 

+K-m(~)ln-t-m-1(~)}]~ , (n = 1, 2, 3, ···) 
Rt 

(10) 

and2) the condition of finiteness results in the simultaneous linear equa­
tions of the remaining integration constants C,n's: 

= 
L, Cm{Km-1(R1) In-m(Ri) + Km-2(R1) In-m-t-iCR1) + ... + K_m(R1)ln-t-m-i(R1)} 
m=l 

or writing 

the equations read : 

= {-2R1 

0 

(n = 1), 

(n ;=:;; 2), 

Cm= 2Ri Cm' 

(11) 

(12) 

L, Cm'{Km-i(Ri) In-m(Ri) + Km-2(Ri) ln-t-m-i(Ri) + ... + K-,n(Ri) ln-t-m-t-1(R,)} 
m=I 

- {-1 
- 0 

(n = 1), 

(n ;=:;; 2). 
(11') 

2) Changing the sign of n we obtain the integrated expressions of \ : 1 Km(~){/ m-n( ~) 

-Im-t-n(~)}~I-t-nJ~(n=l,2,···), which appear in the expressions of ,0n's, but which 
we do not require in this paper. 
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At this point we take into consideration the fact that Cm's appear 
usually as the products with the factors Km(R, r)'s. When the argument 
is small the value of the function Km increases rapidly with increasing m, 
and then it is rather preferable for the numerical calculation to obtain 
the values of the products Cm' Km(Ri) than the values· of Cm' themselves. 
For this purpose we rewrite (11') as follows : 

(13) 

and these are the final equations3) for the determination of the integration 
constants. 

For any given R1 we calculate Xm1 s from the equations (14) and then 
all field quantities are determined for the Reynolds number R = 4 R1 . 
Especially the vorticity (non-dimensional) on the cylinder surface is 

= 
(w)r=l = 2 R1 eRi cosO l:: Xm sin m(), (15) 

m=:::1 

and in the followings use is made of this quantity only. For instance, 
the existence of the rear twin-vortices appears as the existence of a pair 
of separation points on the cylinder surface and the positions of these 
separation points are determined by the condition of vanishing vorticity : 
(w)r=I = 0. 

When we go through a separation point along the cylinder surface the 
vorticity has to change the sign. Physically this is evident, for the flow 
along the cylinder surface reverses its direction at this point. Mathemati­
cally this is the branching point of the locus </J(r, ()) = 0. Expanding ¢ 

at a certain point (1, r'}) on the surface and taking into consideration 
the relations 

the expansion reads : 

¢(1 + Jr, r'} + J{J) = ~ (~~~) i,., Jr2 

+ ! {(~;s) 1,., Jr3 + 3 ( 0;3f,.2\., Jr2 ,:10} + higher terms. 

3) As is easily seen (14) is the same in its contents as the corresponding equa­
tions of the papers quoted in the footnote (1). 
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From this expression we see the fact that through only the point (1, 0) for 
which (o2<f; /or2) 1,,, just vanishes the locus <P = O has two directions: 

,Jr2 = 0, (o3<P) Jr+ 3 (--1!L) ,J6 = o, or3 I, ,J 06 or2 I. ,J 

and then the condition of a separation point is (02<J;/or2 ) 1,,, = 0. This con­
dition, by means of the relation .:/1</J = -w, is equivalent to the condition 
(w)1,,1=0. 

§ 2. Birth of Twin-Vortices.-The equations (14) are solved for several 
small values of R1 and the results are tabulated in Table 1. 

TABLE 1. 

R1 I R I X1 I X2 I X3 I X4 I X."i I Xu I X7 I Xg 

0.1 0.4 -3.42460 0,92877 -0.04727 0,00118 -0.00004 - - -
--

0.2 0.8 -2.24086 0.93303 -0.09367 0,00475 -0.00016 - - -
----

0.3 1.2 -1.81875 0.95017 -0.14012 0.01064 -0.00082 - - -
----

0.4 1.6 -1.60844 0,97609 -0.18731 0,01889 -0.00126 - - --
-- ---

0,6 2.4 -1.42065 1.04838 -0.28618 0,04276 -0.00420 - - -
~ --

0.8 3.2 -1.36408 1.14447 -0.39439 0,07726 -0.01029 0.00103 -0.00008 -
----- --

1.0 4.0 -1.37120 1.26357 -0,51570 0.12371 -0.02042 0.00257 -0.00027 0.00000 

In the table the mark -- indicates the neglect of these higher terms, 
i.e. the assumed zeros at the outset. 

By means of this table we first write down the expression ( w ),.=1 for 
R = 0.4, and know easily that ( w )r=1 has only two zero-points 6 = 0 and 6 = re, 
between these points the value of ( w )r=I being decidedly negative. This 
means that the liquid flows arround the cylinder from fore- to aft-stagnation 
point throughly and has no separation point between them. In other words, 
the twin-vortices do not exist. The same is true up to R = 2.4. As an ex· 
ample of this vorticity distribution along the cylinder surface the case of 
R = 2.4 is shown in Table 2 and plotted in Figure 1. But when the Reynolds 
number grows past a certain number between 2.4 and 3.2, the matter is 
changed. In this case there appears a pair of zero points of ( w )r=i, i.e. 
separation points between the stagnation points, as the case R = 4, for exa­
mple, which is tabulated in Table 2 and plotted in Figure 4 clearly proves. 
We know that the existence or non-existence of the separation points de-· 
pends on the sign of the gradient along the cylinder surface (r = 1) of the 
vorticity at the rear stagnation point (6 = 0), and the Reynolds number 
at which the twin-vortices make their appearance is characterised by the 
condition of vanishing of this gradient. 
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This gradient at the rear stagnation point is given by 

(16) 

TABLE 2. 

de;ree I 
(w)r=I {J ( W )r-:1 {J (w)r=I 

R = 2.4 I R=4.0 degree R=2.4 I R=4.0 degree R= 2.4 I R=4.0 

0 0.00000 0.00000 70 -0.82415 -0.94240 140 -1.67227 -2.42206 

10 -0.01504 0.01108 80 -1.09585 -1.33696 150 -1.38712 -2.02972 

20 -0.04612 0.00204 90 -1.36640 -1.75130 160 -0,99277 -1.46308 

30 -0.10826 -0.04732 100 -1.60570 -2.13794 170 -0.51776 -0.76626 

40 -0.21379 -0.15618 110 -1.78169 -2.44346 180 0.00000 0.00000 

50 -0.36986 -0.33920 120 -1.86470 -2.61678 

60 -0.57632 -0.60310 130 -1.83211 -2.61738 

(WJr.1 

t 

0 
o· 30° oo· 

0.04 

·-
-1 

-
\\ ,,. 
'O 

-0.08 

-2 -0.12 

_3 ___ __. _____ __,_ ___ _,,_ ___ _,_ ___ ...,_ __ ___,J 

Fro. 1. 
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and can easily be calculated by means of Table 1. The results are given 
in Table 3 and plotted in Figure 2. From the figure we know the vanish­
ing gradient realised at the Reynolds number about 3.02. Then the twin­
vortices appear at this Reynolds number in the immediate neighborhood of 
the rear stagnation point, and enlarge their domain of existence with the 
Reynolds number. 

TABLE 3. 

R 1- 0.4 r_ 0.8 _ 1 _ 1.2 _ 1 _1.6 _ 1 2.4 1 3.2 1 4.0 

(i~) ,, 0 I -o.376721-0.31150 \ -0.24323 \ --=o.17:72 [ --0.07082 \ +0.01745 [ +o.08193 

0.1.------.-----,,-----,-----7 

(~),., 

I 
O J l{J 2p 3,o/ ---. R 4p 

-01 c--- --+-------+--+--~-.._ ___ __, 

-0.2t------+----,..-----r-------+---------l 

-031---f---+-----l-----+-----1 

-Q_4...._ _ __. ____ _,_ ____ .J..__ ___ _____J 

Fm. 2. 

§ 3. Consideration of Pressure and Resistance.- The critical value 3.02 
of the Reynolds number found above is not remote from the experimental 
one4) 2.65. In this respect the Oseen's approximation seems good enough 
for the practical purpose. Then up to what Reynolds number the approxi­
mation holds? To answer this question we consider the pressure. 

4) C.f. H. Nisi and A. W. Porter: On eddies in air, Phil. Mag. (6), 46 (1923), 
pp. 754-768. 
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We take up the Oseen's equations in the form : 

clV 1 U -- = -- grad P + J.1 JV, 
OX p 

d.ivV = 0, 
} (17) 

and introduce the non-dimensional quantities: 

V 
-=V, u (18) 

and the non-dimensional polar coordinates (r, 0), the equations becoming 
then into the form : 

op = --1- ow - ou cos{} + ~ sin{} - .!!_ sin{}, ) or 2 R1 r of} or r of} r 
(18') 

cl p l OW ov ov . u . 
r of} = 2 R1 or - or cos{} + r of} sm {} + r Sill{}' 

where (u, v) are the components of the non-dimensional velocity v in the 
polar coordinates, therefore the relations 

have to hold between (u, v) and ¢ in section 1. Other notations are as 
before or self-evident. The well known relation 

( ow ow) 
A1V = -curl curl V = - r of}, or (19) 

are used in the derivation of (18'). 
When we integrate the first equation of (18') along the initial line from 

r = l to co, and the second equation along the cylinder surface from {} = 0 
to {}, we have 

1· r= 1 (ow) 
Po - P= = 1 + 2 R1 L r of} 0=0 dr' (20) 

J
0 

( 1 clw Pe - Po = -- - - w cos o) dO , 
0 2R1 or r=I 

(21) 

denoting by Po, P=, Pe the pressures at the rear stagnation point, at infinity 
and at the point (1, 0) on the cylinder surface respectively. The integrals 
on the right sides of these equations require a little consideration and can 
be evaluated. as follows. 

Substituting the expression (5) of w into (20) we have 

Pr, - P= = l - i: Cm' J= e~{Km'(~) + Km-1(~)} d~ 
m=l Rt 

= 1 + ]pm' [eR1 Km(R1) + [J e~{Kma) - Km-1(~)} d~]' 
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and taking account of the recurrence formula 

Joo e~{Krn(~) - Km-1(~)} d~ = 2 eR1 Km-1(R1) + f 00 e~{Km-1(~) - Km-za)} d~ 
R1 • RJ 

the integral can be evaluated resulting into the expression : 

Po - Poo = l + eRi ~ Cm'{Km(R1) + 2 Km-1(R1) + ··· + 2 K1(R1) + Ko(R1)}. 
m=l 

(20') 

For the second integral (21) the substitution of cu brings it into 

Po - Pu= l; Cm' Jo eRi cos 0{-R 1 cos(} Km(Rr) sin m(} + R1Km'(R1) sin m(}}d(}. 
m=I O 

We replace R1Krr/(R1) of this expression by -m Km(R1) -R1Km-r(R1) and 
partially integrate the term which contains -mKm(R1 ), then it becomes r eRi cos 0{-R1 cos(} Km(Ri) sin m(} + Rr Km'(R1) sin m(}} d(} 

= [eRi cose Km(R1) cos m(} J: 
-r eR1 cosO {R1 Km(Rr) sin m - l (} + Ri Km-1(R1) sin mO} d(}, 

and here taking account of the recurrence formula r eR1 °0 • 0 {R1 Km(Rr) sin m, - 1 (} + Rr Km-1(R1) sin mO} d(} 

= -[2 elii coso Km-1CR1) cos m - l (} r 
+ r e"1 °0 • 0 {R1 Km-1CR1) sin m - 2 (} + R1 Km-2CR1) sin m -10} d(} 

the integration can be completed; the result is as follows : 
00 

Po - Po = ~ Cm' eRi "0 " 9 {Km(Rr) COS m(} + 2 Km-1(R1) COS m :::__ i (} 
m=l 

+ ··· + 2 K1(R1) cos(} + Ko(Rr)} 
00 

- ~ Cm' eRi {Km(Rr) + 2 Km-1(R1) + ··· + 2 K1(R1) + Ko(R1)}. 
m=I 

(21') 

Combining (20') and (21') the pressure arround the cylinder is finally 

0 ,; C , {Km(Rr) cos mO + 2 Km-1(R1) cos m - l (}} 2 Po - Poo = l + eR1 cos L.., m ' ( 2) 
m=I + ............... + 2 K1(Rr) COS(}+ Ko(R1) 

which is the expression just equivalent to the one already known/•l 

5) C.f. the papers quoted in the footnote (1). 
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As the pressure around the cylinder is thus given the coefficient6' of 
resistance due to pressure C P can easily be obtained : 

(23) 

Rewriting this expression by means of the relation (11') (n = 2) we obtain 

but this same quantity, making use of the well known relation 

in the expression (23), can be expressed in another form : 

and from these two expressions it results finally7' 

TC = 
Cp= -2R ,6mCm'• 

l m=l 

At this point we turn to the Navier-Stokes equations : 

(VP') V = - ~ grad P + µ .JV, l 
divV = 0, 

(24) 

(25) 

(26) 

(27) 

and introduce the vorticity. Then denoting by k the unit vector of z­
direction the equations become 

(27') 
divV=O, 

and expressed non-dimensionally in the polar coondinates: 

(28) 

6) Definition of Cp: 2a()U2 Cp= 12"ad0(-P)r=rcosll. )n 
7) As the coefficient of resistance due to friction Ct (similarly defined as Ci,) is 

= 
Ct= -TI/ R1 I: mx,,dm(RI), it results the well known formula of S. Tomotika and T. 

m=l 
Aoi : C1, =Ct; c. f. the papers quoted in the footnote ( 1) . 
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These are the equations which correspond to (18'), and consequently it 
follows in the same way as in there the relations which correspond to 
(20) (21): 

_ 1 _1 r= _!_ ( 8w) dr, 
P1 - P= - 2 + 2R 1 Ji r 80 0=0 

(29) 

f 
0 

1 ow di}. 
P0 - Po =2 - R- ( aJ r==l 

1 ~ O 

(30) 

These relations between the pressure and vorticity are the correct ones, for 
they are the direct results from the Navier-Stokes equations, contrary to 
the approximate nature of (20) (21), due to the approximation adopted in 
the original Oseen's equations. 

But when the approximation is good enough, i.e. when (u, v) and w treated 
in section 1 are near to the solution of the Navier-Stokes equations, we can 
use this Oseen's approximation in (29) (30) and the resulting pressure dis­
tribution must be near to the real pressure. On the other hand the Oseen's 
pressure (20) (21), or (22), is expected to be a good approximation. Thus 
the two pressure distributions have to coincide approximately, and this 
coincidence is the assurance of a good approximation to the real of the 
Oseen's solution. When the coincidence, however, is not good we have to 
expect the failure of the approximation. In this way we can have a quali­
tative knowledge of the degree of approximation. 

Now when we use the same w-value the differences between the expres­
sions (29) (30) and (20) (21) are 

' ) 1 o(Po - P= = - 2 , 

o(Po - Po)= j 0 
(w)r=I 

() 

cosll dll. l (31) 

By means of (15), which is the expression of (w)r=I, the second of the 
above differences becomes 

o(P0 - Po) = 2R1 i: Xm J0 
eRi 00• 0 sin mo cos O dO 

m=l 0 

_ =. = {Im-n-n(R1) - lm-t-1-t-n(Ri) } . j0 sinn0 dfi, 
- R1 ,~1Xm :if:1 + I,n-1-n(R1) - lm-1-t-n(R1) o 

and finally 

'(P p) _ R.;, l - cosnO ~. [ Um·-n-1(R1) - lm-t-n-1(R1)}] 
0 0 - 0 - I L.., ---- L.., Xm" • 

n=l n m=I + {lm-n-t-iCR 1) - lm-t-n-t-iCR1)} 
(32) 

The difference in the coefficients of pressure resistance can also be easily 

evaluated by means of the relation (32), thus: 
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a Cp = / r,t -o(Po - Po) cos 8 a d8 = TC : 1 ~ Xm {lm-2CR1) - Im1-2(Rr)}. 
a . 0 m-1 (33) 

These differences we have calculated for the two cases : R = 0.8 and 4.0. 
For the pressure distribution we found : 

R = 0.8: o(Po - P=) = -0.52882 - 0.14163 cos 8 + 0.21705 cos28 

- 0.04719 cos 38 + 0.00058 cos 48 + 0.00001 cos 58, 

R = 4.0: o(Po - P=) = -0.23906 - 0.57679 cos 8 + 0.49201 cos 28 

- 0.19075 cos 38 + 0.01364 cos 48 + 0.00091 cos 58 

+ 0.00004 cos 68, 

and the difference in the coefficients of resistance follows from these values 
directly. Table 4 and Figure 3 show the results. The values of the Oseen's 
approximation are to be calculated by the formulae (22) and (26), but 
here we borrowed them from the paper by S. Tomotika and T. Aoi8) for 
the sake of shortness ; the curves in the figure indicate the pressure dis· 
tributions of the two sorts. 

TABLE 4. 

R = 0.8 R = 4.0 
/J 

* o(;-P=) * o(:-P=) degree 1 1 (P0-P=)f2/u2 
2pU2 

(Po-P=)f2Pui 2pU2 

0 -2.924 -1.000 -0.834 -1.000 

30 -3.028 -1.087 -1.021 -1.000 

60 -2.842 -1.323 -1.401 -1.178 

90 -1.416 -1.491 -1.158 -1.435 

120 1.430 -1.039 0.245 -0.789 

150 4.448 -0.596 2,194 1.001 

180 5.758 -0.245 3.111 2.067 

* 

~~ 
* 

Cr,, Oseen Cp, Oseen /JC1, 

3,392 1.461 0.906 2 

N. B. The values of the asterisked columns are borrowed from 
the paper of S. Tomotika and T. Aoi. 

From these results we know that the approximation of the Oseen's 
equations is only good when the Reynolds number is extremely small. 

8) C.f. the footnote (1). 
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FIG. 3. 

In the case of R = 0.8 the differences above stated seem to be admissible, 
but when R = 4.0 the differences are so much considerable that we are 
forced to think of the approximation one step more advanced to meet 
practical requirements. 

(Received Nov. 30, 1953) 




