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ON THE SLOW MOTION OF VISCOUS LIQUID
PAST A CIRCULAR CYLINDER

By Hikoji YAMADA

Summary.—The two-dimensional problem which determines the flow
field of a viscous liquid past a circular cylinder placed perpendicular to
the uniform flow has been treated elegantly by S. Tomotika and T. Aoi,D
by means of the Oseen’s linearised equations. We here treat the same
problem by the same equations but in somewhat different way, with the
view of determining the Reynolds number at which the rear twin-vortices
make their appearance. The found value is about 3.02 which is not re-
mote from the experimental one 2.65, but this coincidence is rather con-
tingent and the Oseen’s approximation in general seems to be remote
from the exact solution of the Navier-Stokes equations except the case
of extremely small Reynolds number. This is indicated in the following
by the consideration of the pressure.

81, Integration of Oseen’s Equations.—A circular cylinder of radius a is
placed in a uniform liquid flow of velocity U, density p and kinematic vis-
cosity v, which flows along the x-axis to its positive direction, being the
liquid boundless and the cylinder length infinite. The coordinate axes are
rectangular and the cylinder axis coincides with the z-axis., The equations
of motion of the liquid in the Oseen’s approximation are, as are well known,

a0 =9, vag—U2_o, W
ox

where ¥ is the stream function and £ the vorticity. We introduce the non-
dimensional quantities

2 2
= =¢, = =0, 2
Ua ¢ Ula ¢ @
and the non-dimensional coordinates, rectangular and polar,
(£, 2) = i, 30 = @ 00, @)
which yield the equations in the form
4o =—0, so-922_, an
Vv BX]

1) S, Tomotika: Studies on mathematical physics (in Japanese), Vol. 1, (1949),
pp. 130-150, Twanami book co.; or S. Tomotika and T. Aoi: The steady flow of viscous
fluid past a sphere and circular cylinder at small Reynolds numbers, Quat. Jour.
Mech. and App. Math,, Vol. 3 (1950), pp. 140-161.
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12 H. YAMADA

and then separate the disturbance due to the presence of the cylinder from
the uniform flow, writing ¢ as

¢:y]+¢, (3)

which brings the equations into

4= —ow, Alw—‘le;—w:O, an
X1

where R, is a quarter of the Reynolds number R:

_Ua_1 2aU0_14, @

R, = —
T2y 4y 4

The solution » of (1), which is anti-symmetrical with respect to the x;-
axis and vanishes at infinity, is well known and given by a series of the
modified Bessel functions K.(z), i.e.

© = eRim S Cp Kn(R17) sinml , )
m—1
and then the equation which the function ¢ satisfies is the following:

419 = —er1m1 i Con Kn(R,7) sin m0
m=1
= "niii—‘& Co KRy #) [Imn(R1 #) — In(R1 7)1} sin 0 .

Here we expand the solution ¢ into the Fourier series with respect to the
variable f and assume

¢ = i'::l du(R7) sin 70 , 6

then the general expression of ¢, can easily be determined as follows:

D)) = (An )" + Ay, n=")
n

— —1—~ S Cn J (pr &1r-n — = g1 K(8) {Tmen(8) — Imn (6D} d€;
2 T R[" m=1 R,
™

herein the first term on the right side is the complementary function and
the second the particular integral, # being written for R;». Cn, and an,
a_, are the undetermined integration constants.

The integration constants are determined by the boundary conditions.
First, on the cylinder surface » =1, ¢ and 0¢/dr are to vanish, i.e. when
1=R,

¢ =—1, ¢y =¢3=--=0,
¢'=—R,"1, ¢/=¢=--=0,

prime indicating the differentiation with respect to 7. From these equations

we obtain
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ar=—R7l, da=d:=0s=0a3=--=0. ®)

Next we consider the behavior of ¢ when 7 tends to infinity. The con-
dition in this case is the finite remain of ¢. As is easily seen

n

/i J Kn(&) {Im-n(8) — Imtn(€)} &1 dE ~0(1),
Ry

and then by means of the relations (6) and (7) we have to assure the

finiteness of the expressions

n

—Ri7') — %Rl_z 7 mi::l CmJ Kn(&) In-1(8) — Im+1(8)} d§,

Ry

: 5 c [ ©
_27 R}_"ZU’”' mz=1 CmJ Km(é) {I’m—n<$)— Im+n<s)} 51_"(15,

Ry

(n=<1)

when 7 tends to infinity. In these expressions integrals can be accom-
plished by means of the formulae

7
J Km(e) {Im—n(s) - Im-l-n(é) }&l—n d&

Ry

= [—é‘-n (Knt(8) Toe(E) + Kmo(8) Tnomir(E) - -

K on(®) Inm_l(s)}] ., =123 ) (10)

n

Ry
and® the condition of finiteness results in the simultaneous linear equa-
tions of the remaining integration constants C,'s:

glcm{Kmﬂ(R[) Inom(R1) 4+ Kn—o(RY) In-mt1(R) + -+ + K_n(RD)Ingm— (R}

—2R, n=1,
= ‘11
{0 =2, ab
or writing
Cn=2R,Cu 12)

the equations read :

i‘._lCm'{K ~1(R1) (R + Kno(R1) Lnpm—1 (B0 + - + KR D1 (R1)Y
-1 (n=1),
= 11’
{ 0 (n=2). a1
2 Changing the sign of #» we obtain the integrated expressions of S ;’21 Km(&){Im-n(€)

— Imtn(8)}E1tnde(n=1,2,---), which appear in the expressions of 4,'s, but which
we do not require in this paper.
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At this point we take into consideration the fact that C,'s appear
usually as the products with the factors K,(R;7)'s. When the argument
is small the value of the function K, increases rapidly with increasing m,
and then it is rather preferable for the numerical calculation to obtain
the values of the products C,' K,(R;) than the values of C,’' themselves.
For this purpose we rewrite (11') as follows:

Cm, Km(Rl) =Xm, (13)
ks . Km—l(Rl) Km—2(R1> K—m(Rlﬂ
Zon Ry TR & S Tuma(RD) o 4 50 L (RO
-1 (n=1),
{0 @z (s

and these are the final equations® for the determination of the integration
constants,

For any given R, we calculate x,'s from the equations (14) and then
all field quantities are determined for the Reynolds number R =4R,.
Especially the vorticity (non-dimensional) on the cylinder surface is

(@)=t = 2Ry eF1 30 3 x. sinm0 (15)
m=1

and in the followings use is made of this quantity only. For instance,
the existence of the rear twin-vortices appears as the existence of a pair
of separation points on the cylinder surface and the positions of these
separation points are determined by the condition of vanishing vorticity :
((,0)7«:1 = 0.

When we go through a separation point along the cylinder surface the
vorticity has to change the sign. Physically this is evident, for the flow
along the cylinder surface reverses its direction at this point. Mathemati-
cally this is the branching point of the locus ¢(7,0)=0. Expanding ¢
at a certain point (1, #) on the surface and taking into consideration

the relations
¢> _ (%) _ (fi =
ol - (802>1,o 0%/ 1.4 0,
o
or,

an=(3),
: >1,0 - (aa(:(é‘)l,a - agz‘gr)l.o: 0,

(

. _1 (%%
oL+ ar, 9+ a0) =+ (24) e

the expansion reads:

1 <§E‘£> 3 (634’ > B } .
T% { 37 I”}A" +3 30 272 1”’Ar 40} + higher terms.

3) As is easily seen (14) is the same in its contents as the corresponding equa-
tions of the papers quoted in the footnote (1).
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From this expression we see the fact that through only the point (1, &) for
which (02¢/97?),, » just vanishes the locus ¢ =0 has two directions:

3% (7)1
2 — T =
ar:=0, <ar3)1.ﬂAr+3 00 or2 I.ﬂA 0,

and then the condition of a separation point is (0%¢/072),, =0. This con-
dition, by means of the relation 4,¢ = —o, is equivalent to the condition
(@)1, =0.

§2, Birth of Twin-Vortices.—The equatio‘ns (14) are solved for several
small values of R, and the results are tabulated in Table 1.

TasLe 1.

R, R X1 X3 X3 X4 X5 X6 X7 X3

0.1 0.4 | —3.42460| 0.92877 | —0.04727 | 0.00118| —0.00004| —— e —_—

0.2 0.8 | —2.24086| 0.93303 | —0.09367 | 0.00475 | —0.00016 | —— —_ _—

0.3 | 1.2 | —1.81875| 0.95017 | —0.14012| 0.01064 | —0.00082| —— _ e

04 | 1.6 [ —1.60844| 0.97609 | —0.18731| 0.01889  —0.00126| — —— —_

0.6 24 | —1.42065| 1.04838 | —0.28618| 0.04276 | —0.00420| — —_— —_—

0.8 | 3.2 | —1.36408 | 1.14447 | —0.39439 | 0.07726 | —0.01029 | 0.00103 | —0.00008 | —

10 | 4.0 | —1.37120| 1.26357 | —0.51570| 0.12371| —0.02042 | 0.00257 | —0.00027 | 0.00000

In the table the mark —— indicates the neglect of these higher terms,
i.e. the assumed zeros at the outset.

By means of this table we first write down the expression (w),=; for
R =0.4, and know easily that (®),=; has only two zero-points § =0 and 0 =,
between these points the value of (®w),=1 being decidedly negative. This
means that the liquid flows arround the cylinder from fore- to aft-stagnation
point throughly and has no separation point between them. In other words,
the twin-vortices do not exist. The same is true up to R =24. As an ex-
ample of this vorticity distribution along the cylinder surface the case of
R =24 is shown in Table 2 and plotted in Figure 1. But when the Reynolds
number grows past a certain number between 2.4 and 3.2, the matter is
changed. In this case there appears a pair of zero points of (®w),=1, i.e.
separation points between the stagnation points, as the case R =4, for exa-
mple, which is tabulated in Table 2 and plotted in Figure 4 clearly proves.
We know that the existence or non-existence of the separation points de- -
pends on the sign of the gradient along the cylinder surface ( =1) of the
vorticity at the rear stagnation point (0 =0), and the Reynolds number
at which the twin-vortices make their appearance is characterised by the
condition of vanishing of this gradient.
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This gradient at the rear stagnation point is given by

Fia. 1.

<?9> R €M S mxm, (16)
80 1,0 m=1
TaBLE 2.

0 (0)r=1 0 (0)r=1 0 (0 )r=1
degree | R =24 { R=40 |degree| R_24 | R=40 |degree| R=24 | R=4.0

0 0.00000| 0.00000 70 | —0.82415| —0.942401| 140 | —1.67227  —2.42206

10 | —0.01504| 0.01108| 80 | —1.09585| —1.33696! 150 | —1.38712| —2.02972

20 | —004612| 0.00204| 90 | —1.36640| —1.75130 | 160 | —0.99277 | —1.46308

30 | —0.10826| —0.04732 . 100 | —1.60570| —2.13794 | 170 | —051776 | —0.76626

40 | —021379 —0.15618 110 | —1.78169| —2.44346| 180 0.00000|  0.00000

50 | —0.36986, —0.33920 | 120 | —1.86470| —2.61678

60 | —0.57632| —060310| 130 | —183211| —261738

1
(W)poy
— g 1893
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and can easily be calculated by means of Table 1. The results are given
in Table 3 and plotted in Figure 2. From the figure we know the vanish-
ing gradient realised at the Reynolds number about 3.02. Then the twin-
vortices appear at this Reynolds number in the immediate neighborhood of
the rear stagnation point, and enlarge their domain of existence with the
Reynolds number.

TaBLE 3.
R ] 04 | 08 12 | 1s | 24 | 32 40
P
(35) '—-0.37672 —0.31150 | —0.24323| —0.17772| —0.07082 | +0.01745 | +-0.08193
1,0

0.1

ow

36 )1,a

0 1.0 20 3 —=R 4
~01
-0.2
~03
-04
F1e. 2.

§3. Consideration of Pressure and Resistance.— The critical value 3.02
of the Reynolds number found above is not remote from the experimental
one® 2,65. In this respect the Oseen’s approximation seems good enough
for the practical purpose. Then up to what Reynolds number the approxi-
mation holds? To answer this question we consider the pressure.

4 C.f. H. Nisi and A. W. Porter: On eddies in air, Phil. Mag. (6), 46 (1923),
pp. 754-768,.
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We take up the Oseen’s equations in the form:

ov 1
— = - P A\’
ox P grad P+ v 4V, } an
divV =0,
and introduce the non-dimensional quantities:
A\ P
U= v, W =p, as®

and the non-dimensional polar coordinates (7, ), the equations becoming
then into the form:

op 1 Qo du ou o D
ar " 2R 7ol ar 00T 5 Sinl sin 0,
18"
°p 1 2o v oy . u .
700 3R ar ar CO80 T g sinl + - sind,

where (u, v) are the components of the non-dimensional velocity v in the
polar coordinates, therefore the relations

_ 8¢ _ _9%
“Treer VT Tor
have to hold between (#, v) and ¢ in section 1. Other notations are as
before or self-evident. The well known relation

a

41V = —curl curl v = (— o0 8w>

700 or
are used in the derivation of (18’).
When we integrate the first equation of (18’) along the initial line from

r =1 to oo, and the second equation along the cylinder surface from 6 =0
to 6, we have

PR S e -7
by p““1+21€1j1 r <80>9=Udr, (20)
[}
_ 1 %0
bo— po = j0<2R1 2w cosﬁ)rﬂdﬂ, @D

denoting by po, P, Do the pressures at the rear stagnation point, at infinity
and at the point (1, ) on the cylinder surface respectively. The integrals
on the right sides of these equations require a little consideration and can
be evaluated as follows.

Substituting the expression (5) of » into (20) we have

o

po—po=1—3 Cu J K/ () + Kn(8)} dé
m=1 1

R

oo

=1+ 3c [e'ﬂ Ku(R) + J EUE(E) — Knai(E)} de] ,

Ry
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and taking account of the recurrence formula

o

J eH{Kn(8) — Kn1(8)} d€ = 2eP1 K ((Ry) + j e Kn_1(8) — Kn—2(8)} dé
Rl 1

R

the integral can be evaluated resulting into the expression:

Po—po=14em 3 CollEn(RD + 2 Knoi(RD) + - + 2 K(RD + K(RDY.
m=1
(20"
For the second integral (21) the substitution of @ brings it into
0

Do — ps = i Cm’J eBicostf R, cos 0 K,(R;) sinml + R K,/(R,) sin m03}d6 .
m=1 0

We replace R;K,/(R;) of this expression by —m K, (R:) — R,K,,—1{R,) and
partially integrate the term which contains —m K,(R;), then it becomes

0
J ef1esdf R, cos 0 Kn(R,) sinmb + R, K,/ (R,) sin m0} do

(]

)
= [eRl cosd K.(Ry) cos mﬁ]
0

‘]
_ J o™i 0 R, Kn(Ry) sinm =10 + Ry K 1(R) sin m0} do,

0
and here taking account of the recurrence formula

]
J eF1 cosd {R1 Km(Rl) sinm — 160 + R1 Km_l(Rl) sin mﬁ} do

0

o ‘]
= _[2 efiesd K (Ry) cosm — 1 0]

0
+ } ef1esd (R K, (R sinm—260 + R, K,,_,(R,) sinm — 10} d0

0

the integration can be completed; the result is as follows:

bo— D =7§1Cm' eBLeosd {K (Ry) cosml + 2 Ky (Ry) cosm — 186
+ -« + 2K3(R1) cos 0 + Ko(R)}
— 33 o 07 {Eu(RD) + 2 Kyt (R + -+ + 2 KR + Ko RDY.
1)
Combining (20’) and (21') the pressure arround the cylinder is finally

{Km(Rl) cosml + 2 Ky_1(Ry) cosm — 10
FER + 2 Ky(R1) cos 0 + Ko(R:)

which is the expression just equivalent to the one already known.”

bo—po= 14 emem 5.6,

m=1

b

3 C.f. the papers quoted in the footnote (1).



20 H. YAMADA

As the pressure around the cylinder is thus given the .coefficient® of
resistance due to pressure Cp can easily be obtained:

- K()(Rl) I ((R)+L(R)+2K(RY) - I(R)+(Ry)
E: ............ F2Kn-1(R1) * Tno(RD) + In(RD) . (@3
FKn(R1) « Ina(R1) + Lnp(Ry)

Cp=—=2
» 2

Rewriting this expression by means of the relation (11’) (# =2) we obtain

Cp=—5- E mxm I(Ry); €))

1 m=1
but this same quantity, making use of the well known relation
Ku(RD) Int1i(RD) + Kpp1 (R1) In(Ry) = R, ™1

in the expression (23), can be expressed in another form:

Cp:'—R—ZmC,"F"‘mem m(R1), (25)

1 m=1 1m...

and from these two expressions it results finally™

Cp=—2 '
» Rmz_mc (26)

At this point we turn to the Navier-Stokes equations:

1
VPV = —+ v
(VP) pgradP+uA } @n

divv =0,

and introduce the vorticity. Then denoting by k the unit vector of z-
direction the equations become

P o1
grad (; + —vz) =y AV + 2V, K], )

2 @7)
divvV =0,
and expressed non-dimensionally in the polar coondinates:
0 1 .\ 1 %0
5(1’* 2") = T9R, rog "'
(28)

3 1
_° g2y - ‘Y
r80<p+2v>—2R1 y O

© Definition of Cp: 2apU2Cp= s:ﬂadﬂ(—P)rm cos0.

) As the coefficient of resistance due to friction C; (similarly defined as C,) is
Cr=—=/R, imxm[m(Rl), it results the well known formula of S. Tomotika and T.
Aoi: Cp= Cf, c.f. the papers quoted in the footnote (1).
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These are the equations which correspond to (18), and consequently it
follows in the same way as in there the relations which correspond to
(20) (21):

o, 1,1 ”;('«Lw

b= b =5+ 5p Jl , aa)eznd” @9
1 (*/ow '

bo— D0 =5, Mar)m‘w' (30)

These relations between the pressure and vorticity are the correct ones, for
they are the direct results from the Navier-Stokes equations, contrary to
the approximate nature of (20) (21), due to the approximation adopted in
the original Oseen’s equations.

But when the approximation is good enough, i.e. when (%, v) and o treated
in section 1 are near to the solution of the Navier-Stokes equations, we can
use this Oseen’s approximation in (29) (30) and the resulting pressure dis-
tribution must be near to the real pressure. On the other hand the Oseen’s
pressure (20) (21), or (22), is expected to be a good approximation. Thus
the two pressure distributions have to coincide approximately, and this
coincidence is the assurance of a good approximation to the real of the
Oseen’s solution. When the coincidence, however, is not good we have to
expect the failure of the approximation. In this way we can have a quali-
tative knowledge of the degree of approximation.

Now when we use the same w-value the differences between the expres-
sions (29) (30) and (20) (21) are

1
a(p() - pm) = _E ’
0 3D
5(156 - Pn) = J (w)r:] cos 0 db .

0

By means of (15), which is the expression of (®w).-;, the second of the
above differences becomes

0
0(pe — po) = 2R, Z_Ime eF1cs0 gin b cos 0 db

0

I
»
M
KR
Bl
i

0
{Im-i-l——n(Rl) [m-H+n(RI) } J sin 10 db ,

+ L1 -n(R1) — Ip—1+0(R1)

0

and finally

Rl R had I 7=i(R1) — Inpn=t
3Cpo— o) = Ry EL cos nl ST [ { i(R1) +ai(RD}
n=l n m=1 + {Im—n—-rT(Rl) - Im-l‘m(Rl)}
The difference in the coefficients of pressure resistance can also be easily
evaluated by means of the relation (32), thus:

32
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2z

3CP=2%Z —0(pe — Do) cosﬂadﬂ:”_R‘m
JO

) m2—1xm {In—2(R) — Into(RD}.
B (33)
These differences we have calculated for the two cases: R =0.8 and 4.0.
For the pressure distribution we found:
R =08: 0(ps— p.) = —0.52882 — 0.14163 cos 0 + 0.21705 cos 26
— 0.04719 cos 36 + 0.00058 cos 46 -+ 0.00001 cos 50,
R =40: 0(ps— p.) = —0.23906 — 0.57679 cos 0 -+ 0.49201 cos 20
— 0.19075 cos 36 + 0.01364 cos 46 + 0.00091 cos 56
-+ 0.00004 cos 66,
and the difference in the coefficients of resistance follows from these values
directly. Table 4 and Figure 3 show the results. The values of the Oseen’s
approximation are to be calculated by the formulae (22) and (26), but
here we borrowed them from the paper by S. Tomotika and T. Aoi® for

the sake of shortness; the curves in the figure indicate the pressure dis-
tributions of the two sorts.

TasLe 4.
R =038 R =40
’ * Po—P.. ) Po—P..
degree | (Py—Pu)/5oU? a( 1, ) (Po—Pun) 500" 6( 1 )
2 2
0 —2.924 —1.000 —0.834 —1.000
30 —3.028 —1.087 —1.021 —1.000
60 —2.842 —1.323 —1.401 —1.178
90 —1.416 —1.491 —1.158 —1.435
120 1.430 —1.039 0.245 —0.789
150 4.448 —0.596 2.194 1.001
180 5758 —0.245 3111 2.067
% * .
Cp, Oseen 0Cyp Cyp, Oseen oCp
3.392 0.222 1.461 0.906

N. B. The values of the asterisked columns are borrowed from
the paper of S. Tomotika and T. Aoi.

From these results we know that the approximation of the Oseen’s
equations is only good when the Reynolds number is extremely small.

8 (C.f. the footnote (1).
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6 .
| 7

R:40
Yloseen 4
~Z ._’__/7 / /

7,
_____ R« / /7

-2 S3Z4o 7
‘\\’./ ,/
] 1]

R=0.8 (0s¢en) /

4
/
7

~4 = S e —— s

-6

Fia. 3.

In the case of R =0.8 the differences above stated seem to be admissible,
but when R =4.0 the differences are so much considerable that we are
forced to think of the approximation one step more advanced to meet

practical requirements.

(Received Nov. 30, 1953)





