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A CONTRIBUTION TO THE THEORY OF THE SEEPAGE 

THROUGH AN EARTH DAM 

By Michio OHJI 

Some calculating formulas are proposed for the seepage through a two­
dimensional earth dam on the impermeable ground, making use of the 
Cauchy's theorem in the' function theory together with other simplifying 
assumptions. The method seems to be a general one, but only the cases 
of a rectangular and trapezoidal dams with a horizontal base are calculated 
here, for which both of the experimental and theoretical data are available. 
As is seen from the numerical examples, these formulas give at least 
the correct order of magnitude for the total flux and the height of the 
seepage surface. Incidentally the legitimacy of the Dupuit-Forchheimer­
Muskat's formula for the total flux of a rectangular dam is pointed out. 

1. Introduction.0 In most of the practical cases the steady motion of 
the ground-water can be described by the Darchy's law 

v =-grad(!), k (/)=~(p+pgy), 
µ 

(1.1) 

where v is the vector of the filtration velocity, k a constant factor called 
the permeability of the soil, µ the viscosity, P the pressure, p the density, 
g the gravitational accerelation and y the vertical coordinate measured 
upward. Further in view of the condition of incompressibility 

divv = 0, (1. 2) 

we have readily Laplace's equation for the velocity potential (/), that is, 

r~@=O, (1. 3) 

provided that the permeability k can be considered uniform. Mathemati­
cally, therefore, the problem is to find the solution of (1. 3) under the 
appropriate conditions at the boundaries.2l 

Now we shall consider the seepage of water through an earth dam built 
on the impermeable layer (see Fig. 1 or 2). In this case the straightforward 

I) For the detailed account of this section, see Muskat, M., The Flow of Homo­
geneous Fluid through Porous Media, (1937) McGraw-Hill, especially Chaps. II, III, 
IV, VI. This book will be simply denoted by [M] hereafter. 

2l A number of contributions in this connection are described in the monograph 
of P. Ya. Polubarinova-Kochina and S. B. Falkovich, Theory of Filtration of Liquid 
in Porous Media, vol II of "Advances in Applied Mechanics", (1951) Academic 
Press Inc. 
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analysis becomes extremely difficult, owing to the fact that there appear 
a free surface and a surface of seepage1) determined by the condition that 
p = 0 upon them ( the atmospheric pressure is taken to be zero), and their 
geometrical forms can not be given a priori. Indeed for any two-dimen· 
sional system such a problem can be rigorously solved, in principle, by 
means of the method of hodograph or the complex velocity plane, as is 
done by Hamel and Gunther for the case of a dam with vertical faces 
(rectangular dam)2' but the laborious work in the numerical computations 
makes it almost impossible to proceed to more general cases. This is the 
reason why various attempts have been made by several authors to obtain 
the approximate theories. Among them the methods of Dupuit-Forchheimer3' 

and of Muskat4l for a rectangular dam, and those of Dachler5) and of 
Casagrande6l for a trapezoidal one (oblique faces) are frequently quoted, 
but none of them seems to have succeeded in covering all cases. 

On the other hand, we have a convenience to use the experimental means. 
As is well known, the equation (1. 3) is identical in the form with that of 
the electric potential for the steady current or of the Hele-Shaw's potential 
for the two-dimensional slow motion of a strongly viscous fluid, from which 
the methods of electrical models7) on one hand and Hele-Shaw's models8) 

on the other have been developed in addition to the direct method of sand 
models. By proper choice of the apparatus it will be possible in either 
way to obtain the results with sufficient accuracy for arbitrary two-dimen­
sional systems. However, considerable amounts of time would be naturally 
required to do so, especially in the cases with free boundaries such as ours. 
Then is not there any other means which are suitable for the rapid (though 
somewhat rough) estimation of the important quantities? An attempt to 
answer this question will be found in the subsequent sections. 

2. Method of Contour Integrals. Let us again consider the two·dimen· 
sional motion and introduce the complex potential W in the following way : 

I) Some physical considerations lead us to the conclusion that the free surfaee, 
in general, must terminate a little above the outflow level, leaving the surface of 
seepage at the lower part of the outflow face in accordance with our experiences. 
See [M], pp. 288-291. 

2) Hamel, G., Z.a.M. M., 14 (1934) 129-analytical part; Hamel, G. and Gunther, E., 
Z.a.M.M., 15 (1935) 255-numerical part. An alternative method is demonstrated by 
Polubarinova-Kochina, (1939), see ibid., pp. 175-180. 

3) Forchheimer, Ph., H ydraulik, 3d ed., (1930) Verlag Teubner, Chap. III, or [M], 
§6.17. 

4) Muskat, M., Trans. Amer. Geophys. Union, (1936) 391. or [M], §6.20. 
5) Daehler, R., Grundwasserstromung, ll936) Julius Springer, pp. 106-110, or [M], 

§ 6.10. 
6) Casagrande, L., Die Bautechnik, Heft 15 (1934) 205, or [M], p. 339. 
7) The distribution of the electric potential is measured on the relatively high 

resistance sheet (such as that coated with aquadag, or a graphite colloid) equivalent 
to the permeable cross-section of the dam. See [M], §4.17 and § 6. 6. 

8) The Motion of a strongly viscous fluid, syrup for instance, between two glass 
pletes (set up at an interval of 2-3mm) is observed. Gunther, E., Wasserkraft u. 
Wasserwirtschaft, Heft. 3 (1940) 49. 
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w = ([) + i7Jf' 

where 7Jf is the stream function such that 

f721fl' = 0' 

and 

a@ aw a@ aw 
- = ---(= - u) - = --(= - v) 
ax ay ' ay ax ' 
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(2.1) 

(2.2) 

(2.3) 

x being the horizontal coordinate, u and v the x- and y-components of v 
respectively. Any curve on which W(x, y) = const. is a streamline; parti­
cularly the free surface is specified by the condition that 1fJ' = -Q,1) while 
the impermeable base corresponds to the value 7Jf = 0. Here Q means the 
total flux through the dam. 

Since we are interested only in the non-singular solution inside the bound­
aries, the complex potential W can be considered as a regular function of 
the complex variable z = x + iy there because of the Cauchy-Riemann's 
relation (2. 3). Accordingly, for any simple closed curve K within this 
region we have 

f KW dz= 0, (2. 4) 

in virtue of the Cauchy's theorem. Furthermore assuming that W can be 
analytically continued beyond the boundaries, and integrating it along each 
of the boundary segments, (2. 4) is still valid so long as the singular points, 
which may occur on the boundaries, are excluded. Let such a contour be 
denoted by G. Then deviding the integral into the real and imaginary 
parts, we get from (2. 4) 

R = f O ([) dx - 7Jf dy = 0, (2.5) 

and 

I= f O ([) dy + 7Jf dx = 0, (2.6) 

respectively. These are the necessary (of course not sufficient) conditions 
which must be satisfied by the exact harmonic solution. Conversely if 
only the requirements (2. 5) and (2. 6) are taken into considerations, we 
may expect to have an approximation in some sense. This is the principle 
of our present method. 

3. A Rectangular Dam. First, for the sake of comparison with the 
exact results, the case of a rectangular dam is considered in particular, 
although it is reduced easily from the case of the next section. Using 
the notations and the coordinate system of Fig. 1, we shall define the 
dimensionless quantities as follows : 

ll The negative sign comes from those in the equations (1. 1) and (2. 3). 
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Hu : inflow level 

H 1 : outflow level 

H = H 1 + H s : seepage level 

L : width of the dam 

~=x/L, r;=y/L, h0 =H0 /L, h,=Hi/L, h=H/L, hs=hs/L,} 

c/J = @ I Ji L, c/J = 1Jf I k L, q = QI ii L, 

where 

k = k pg 
µ ' 

(3.1) 

a constant with the dimension of velocity. The boundary conditions for 
this system are writ ten in the following schema : 

Segments cp ¢ 

inflow face (~ = 0) c/J = hn 
3¢ = 0 

0 <,; .<:::: h, cp = h,O at 
outflow face 

(~ = 1) hi<r;<h cp ='f/ 
3¢ -~= -k 
0~ 

(3.2) 

free surface (P = O) ¢ = -q 

impermeable base ('f/ = 0) o<k = o 
or; 

¢ = 0 

Now let us apply the equations (2. 5) and (2. 6). In order to remove the 
ambiguity, the contour G is at first considered to be deformed so as to avoid 
each of the points A, B, C, D and E of Fig. 1 by the circular arc of a small 
radius. But from the physical considerations it is natural to suppose that 
both of cp ar.d ¢ are finite and single-valued everywhere on the boundaries, 
and hence in the limit the contributions from these special points must 

I) These are equivalent to suppose the pressure distributes hydrostaticaily along 
these segments (see (1.1)). 
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vanish with the radii of the circles. Thus we can safely take the integra­
tions along the boundary segments without modifying them. Then under 
the conditions of (3. 2) , it turns out immediately that 

~ (hu 2 - hi2) - q = 0, 

for (2. 6), from which we have 

q = ~ (hn2 - hr2) , or Q = k(Ho2 - HI2) 
2L 

(3.3) 

This is quite the same as the customary formula of Dupuit-Forchheimer­
Muskat. It has been long noticed that in spite of the approximate formula­
tion of these authors, (3. 3) gives the numerical value of the total flux 
obtained from the exact theory within the errors of computations.I) In 
the present theory we get again the same result under no other specific 
assumptions than the validity of the Cauchy's theorem (2. 4), which may 
be permissible now. We can, therefore, infer that the relation (3. 3) is 
a correct one, not an approximation. In this respect, it is very interesting 
that former approximate theories, though quite different in nature, succeeded 
so far as the flux is concerned. 

Next we consider the real part (2. 5). It becomes at once 

JI rho J h 
(ifJAB - c/Jrm) d~ + ) ¢AR dr; - ¢rm dr;-+ q(ho - h) = 0, 

(I • (I 0 

(3. 4)2) 

but contrary to the foregoing case, we cannot proceed beyond this without 
the knowledge of the true solution, unless we introduce some kind of as­
sumption or approximation here. 

So let us approximate most simply each of the actual distribution of 
the integrands in (3. 4) by a straight line : for instance, since ¢(A) = 0 and 

r"o 
cjJ(E)= -q we assume ¢Ai•:= -qr;/ho accordingly ) ¢ARd'/} = -qhu/2, etc. 

• (I 

Of course, this linearity assumption must be very crude, but, for the time 
being, we are going to examine to what extent such a rough simplification 
can be effective. Thus the equation (3. 4) simply reduces to 

which gives 

l q 
2 (h, - h)-+ 2 (ho - h) = 0, 

h = q ho+ h1 
q-+ l . 

I) [MJ, p. 317, p. 363 and p. 380, also see Table 1. 

(3. 5) 

2) DAB means the value of the potentials on the segment AB, and so on. 
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or in view of (3. 3) 

(3.6) 

where 

,Jh = ho - h1. 

(3. 5) or (3. 6), together with (3. 3) are the calculating formulas of a rec­
tangular dam. In Table 1 a few examples of application are shown in 
comparison with the exact values, where it is seen that the present formulas 
give the values of hs in the correct order of magnitude. Remembering 
the roughness of the linearity assumption we may content ourselves with 
these accuracies, 

TABLE 1. Examples of Rectangular Dams. 

Case I I I II I III I IV I V I VI 

ho 1.988 1.509 2.043 1.802 1.419 1.077 

h1 0.519 0.356 0 0 0 0 

from (3. 3) 1.842 1.075 2.09 1.624 1.007 0.580 
q I- ---------

from hodograph 1.846 1.081 2.09 1.618 1.008 0.581 theory --

from (3.6) 0.952 0.597 l.381 l.115 0.712 0 395 
hs ~-

from hodograph 0.753 0.455 1.307 I 1.072 0.713 0.425 theory 

These cases correspond to those tabulated in Table 14, p. 314 of [MJ. 

4. A Trapezoidal Dam. 

Fig. 2. 

The above calculation can be extended to the case of a trapezoidal dam 
without special difficulties. Let the angles of inclination of the faces be 
denoted by a and /3 in the sense of Fig. 2, and let us use the other nota -
tions as before. Here we suppose always O < a, fJ < 90". The boundary 
conditions are: 
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Segments rp c/! 

inflow face, AE ifJ = hu 
oc/! = o 

along BC ifJ = hi on 
outflow face, BD 

along CD rp = r; ocJ! - . - = -k Sill fJ 
on 

(4.1) 

free surface, DE (P = O) c/! = -q 
----

impermeable base, AB or/J c/! = 0 -- = 0 
or; 

in which n is the dimensionless length along the inward normal. In this 
case we have to notice that the velocity should be zero at the lower cor­
ners A and B (if Hr= 0, then at A only), where the equipotential lines 
and streamlines cross obliquely. These stagnation singularities, however, 
do not influence the validity of the Cauchy's theorem, because they produce 
no residue, neither efJ nor c/J being infinite there. 

Thus in accordance with (2. 5) and (2. 6), we have 

jl jl-11, cot /l jll,u jll, 
ifJAB d~ - ifJnE d~ + .PAF. dr; - c/! 8n dr; - ~ (h2 + h12) cot~} 

Cl hc, cot a, U O ( 4. 2) 

- hu2 cot a + q(hu - h) = 0, 

for R, and 

c/!an d~ - ¢AE d~ + l_(hi2 - h,i2) + q(l - h cot fJ - ho cot a)= 0, jl-1,cot/l Jnucota, 

I O 2 
(4.3) 

for I. In contrast with the previous case, the integrals of the unknown 
functions now appear in both of these. Again we shall make use of the 
linearity assumption here, but owing to the existence of the stagnation 
points stated above, a little modification seems to be necessary. Namely, 
in the vicinities of these points the motion will be quite slow and accord­
ingly the velocity potential must be stationary there. 

Thus, instead of approximating by a single linear distribution, we had 
better suppose the potential distribution at the base in the following way: 

{

ifJAE' = hu , for 0 < ~<ho cot a, .. 
. r/Jwc, linearly decreases from hu to h1 , f 

ifJAB • 
for hu cot a < ~ ~ 1 - h1 cot {1 , 

r/Jc,B = hi , for 1 - h, cot fJ ~ ~ ~ 1, 

(4.4) 

where E' and C' are the projection of E and C on AB (see Fig. 2). With 
this assumption the first integral of (4. 2) becomes 
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JI 1 
0 

<PAR d~ = ho2 cot a + h1 2 cot {3 + -2 (hu + hr) (1 - ho cot a - h1 cot {3). 

Though somewhat contradictorily, evaluating the other integrals under 
the linearity assumption as before, we get finally from ( 4. 2) 

q ,Jh = hs[q + 1- ho(cota + cot{3)J, (4.5) 

and from ( 4. 3) 

q(2 - hu cot a - h1 cot {3 - hs cot {3) = ho2 - hr2, (4. 6) 

which are the simultaneous algebraic equations for the unknowns q and hs. 
The solutions can be written as follows: 

where 

q = ~1 a (± ✓I+ b - l), (a=#= 0) 
+ 111 

hs = _q Jh , 
q + 111 

a=! [111(111 + 112)-(hc,2- hr2)], 

b = 111 (l + 111) (ho2 - hr2), 
a2 

111 = 1 - hu J, 

112 = 1 + (Jh) cot {3, 

A = cot a + cot {3 , 

(4.7) 

(4.8) 

(4.9) 

and the double sign in ( 4. 7) should be taken positive when a > O and 
negative when a < 0. If a becomes zero or small enough 

Vl11 + 112 q = 111 
111 + 1 

(4. 7') 

have to be used in place of (4. 7). It is readily seen that (4. 7), (4.7') and 
(4.8) reduce to (3.3) and (3.6) when a={3=90'. 

As is stated before, there is no rigorous solution of a trapezodal dam 
at present, and so we have to refer to the experimental work or existing 
approximate evaluations, in order to check the .reliabilities of these formulas. 
Unfortunately, however, the author knows only few examples in this 
respect, of which the following two are mentioned here.1) 

Example 1. 

a= {3 = 30', 

ho = 0.270 , h1 = 0 : 

ll [M], pp. 322, 323 and § 6.10. 
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tlh = 0.270, hr.2 - h12 = 0.07290, 

cot a= cot {3 = 1.732, ,l = 3.464, 

a1 = 1- 0.270 X 3.464 = 0.0647, 1 + a1 = 1.0647, 

a2 = l + 0.270 X 3.464 = 1.468, 

a1 + a2 = 1.533, 

1 
a = 2 (0.0647 X 1.533 - 0,07290) = 0.01315 > 0, 

b = 0.0647 X 1.0647 X 0.0729 = 29 05 
(0.01315) 2 • ' 

✓ 1 + b - l = 4.48 , 

= 0.01315 X 4.48 = O 0553 
q 1.065 ~· 

0.270 X 0.0553 
hs = 0.0553 + 0.0647 = 0·124 · 

These are to be compared with 

q = 0.0689. } 
(electrical method), 

hs = 0.189, 

and q = 0.0429, (Dachler's method) .1) 

Example 2. 

a= {3 = 45°, 

ho = 0.377 , hi = 0 : 

We have in the similar way 

q=~. 

hs = 0.105, 
~ 

which are to be compared with 

and 

q = 0.106, } 
hs = 0.170, 

q = 0.0897, 

C electrical method) , 

(Dachler's method) .o 

9 

5. Concluding Remarks. Although the numerical examples of last 
section alone are not sufficient to draw the general conclusions, we may 
imagine that the proposed formulas can predict the seepage through any 
given trapazoidal dam qualitatively. Furthermore the same method would 
be also applicable to more complicated cases. Still, the orincipal defects 
of the present method are : (1) that :r...o information of the shape of free 
surface is obtained, (2) that the conditions of the derivatives, e.g., o<jJ/or; 
= 0 along the base etc. are not taken into considerations and (3) that 
the numerical results are sometimes greater and sometimes less than 

1) hs cannot be determined from Dachler's method. 
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the true values (see the values of hs in table 1 and § 4). In these connec­
tions some improvements would not be impossible, however apart from 
the mathematical interests, it will be more convenient in practice to in­
troduce the correction-factors for q and hs, which are to be determined 
from the systematic experiments. 

Lastly the author's best thanks are due to the members of this institute 
for their valuable discussions and also to Mr. N. Isayama and Miss J. Goto 
for their assistance in preparing the manuscript. 
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