九州大学学術情報リポジトリ Kyushu University Institutional Repository

Multiscale Investigation of Adsorption Phenomena for Adsorption Heat Transformer and Desalination

サガル, サレン

https://hdl.handle.net/2324/7157380

出版情報:Kyushu University, 2023, 博士(学術), 課程博士

バージョン: 権利関係:

氏	名	Sagar Saren					
論 文	名	Multiscale Investigation of Adsorption Phenomena for Adsorption					
		Heat Transformer and Desalination					
	(吸着式熱交換器および海水淡水化のための吸着現象のマルチスク						現象のマルチスケ
		一ル角	军析)				
論文調査委員		主	查	九州大学	准教授	Kyaw	Thu
		副	査	九州大学	教授	宮崎	隆彦
		副	查	九州大学	教授	渡邊	裕章
		副	查	九州大学	准教授	Sprin	g Andrew

論文審査の結果の要旨

The thesis describes the multi-scale development of adsorption heat transformer cycles from molecular scale to application for water desalination. The major contributions are: GCMC simulations of several working pairs, thermodynamic surface models of adsorbent + adsorbate systems, theoretical model for predicting the maximum upgradable temperature from waste heat, the performance evaluation of AHT-MED cycles. Therefore, the author of the thesis deserves to receive Doctor of Philosophy (Ph.D.) degree.