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Abstract VIII

Abstract

With the increasing user demands for the ubiquitous availability of location-based

services, and the acknowledgement of their substantial business prospects in many

fields, including healthcare, security and entertainment, researchers have exten-

sively studied indoor localization techniques that do not rely on the Global Po-

sitioning System (GPS) or other localization technologies that do not work well

in indoor environments. The explosive growth and wide proliferation of mobile

devices (e.g., smartphones, smartwatches, in-vehicle sensors, etc.), the majority

of which are smartphones, led to a huge boost in smartphone-based indoor lo-

calization approaches due to its integration with rich advanced sensors, including

Wi-Fi and inertial sensors. Consequently, Wi-Fi based localization is becoming a

popular approach for providing location based services in indoor environment and

pedestrian dead reckoning (PDR) based on inertial sensor readings has become

one of the most practical methods for indoor location inference. However, differ-

ent technologies come with their own challenges and shortcomings when precise

positioning is concerned with the indoor environment.

Due to the labor-intensive and time-consuming tasks of radio signature collec-

tion in Wi-Fi based indoor localization systems, it is hard to build a comprehensive

radio map constructed with received signal strength (RSS) for location prediction.

Although crowdsensing could solve the problem of radio signature collection, there

are various uncertainties about the location annotations contributed by the crowd,

which would affect the performance of the localization model. To address such is-
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Abstract IX

sues and realize efficient indoor localization systems based on Wi-Fi fingerprint, we

propose a crowdsensing-based indoor localization framework, ALCIL, which uti-

lizes the active learning technique to collect the informative data to improve the

performance of the model under a certain cost. We then employ global and local

optimization strategies considering the multiple attributes of locations to improve

the accuracy of location prediction in different dimensions. In addition, we propose

a sample selection method based on stream-based active learning so as to improve

the quality of radio maps and enhance the performance of the indoor localization

model without penalizing the location-annotation process. The effectiveness of the

proposed framework is verified through the experiments in the context of practi-

cal multi-story buildings. Our experiment shows that the proposed method can

localize users’ mobile devices accurately at the given fixed budget.

Regarding the PDR, which suffers from the severe position error accumula-

tion with time due to the sensor drift. Activity landmark, which is available in

many scenarios without additional deployment cost, is employed to calibrate the

cumulative error. We propose an indoor navigation based on landmark without

extra deployment cost, in which landmark is recognized by an unsupervised feature

learning method to automatically extracts and selects the features to reduce the ef-

fort of data processing. The proposed method jointly trains denoising autoencoder

implemented by convolutional neural network (CNN) and long short-term memory

(LSTM) neural networks producing a compact feature representation of the data

to identify landmarks. Besides, the relative distance between different landmarks

is estimated by PDR to generate the indoor landmark map with the help of the

multidimensional scaling technique. The effectiveness of the proposed framework

is verified through experiments in the context of practical buildings. Furthermore,

it was applied to the proposed indoor spatiotemporal contact awareness frame-

work (iSTCA) due to the spread of COVID-19, which explicitly considers the

self-containing quantitative contact analytics approach with spatiotemporal infor-
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Abstract X

mation to provide accurate awareness of the virus quanta concentration in different

origins at various times. Smartphone-based PDR is employed to precisely detect

the locations and trajectories for distance estimation and time assessment with-

out the need to deploy extra infrastructure. Another custom deep learning model

is designed, composing of bidirectional long short-term memory (Bi-LSTM) and

multi-head CNNs for extracting the local correlation and long-term dependency to

recognize landmarks. By considering the spatial distance and time difference in an

integrated manner, we can quantify the virus quanta concentration of the entire

indoor environment at any time with all contributed virus particles. We conducted

an extensive experiment based on practical scenarios to evaluate the performance

of the proposed system, showing that the average positioning error is reduced to

less than 0.7𝑚 with high confidence and demonstrating the validity of our system

for the virus quanta concentration quantification involving virus movement in a

complex indoor environment.

To make the proposed activity landmark-based indoor localization system more

efficient, we conduct an extensive study on crowdsensing-based activity landmark

recognition. Federated learning (FL) is a distributed framework that enables mul-

tiple parties to enable the collaborative learning without uploading the data of

each participant. However, the assumption of FL is to rely on the annotated data

on client, which is difficult to acquire the annotations for sensor-based activity

recognition on all uploaders due to the lack of expertise or resource. Moreover,

a general model is not suitable for each person because of the data heterogene-

ity, resulting from the different physical characteristics and various contextual

information. To this end, in this work, we propose a semi-supervised learning

method for personalized federated human activity recognition (HAR), in which

clients have completely unlabeled data, while the server has a small amount of

labeled data contributed by volunteers. Clients conduct unsupervised learning on

autoencoders with locally unlabeled data to collaboratively learn a general rep-
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Abstract XI

resentation model. Server conducts supervised learning on an activity classifier

with labeled data stored on the server. After that, the shared global model is per-

sonalized using individually pseudo-labeled data on each client side, wherein both

confidence and uncertainty are taken into account concurrently, with the aim of

achieving a balanced selection for assigning pseudo labels to samples. We conduct

extensive experiments using two different real-world HAR datasets, demonstrating

the effectiveness of the proposed methods.
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Chapter 1. Introduction 1

Chapter 1

Introduction

In recent years, various Location-Based Services (LBS) have significantly pen-

etrated into many aspects of people’s daily life with the explosive growth and

large-scale proliferation of smart devices and other wireless mobile devices. The

primary objectives of LBS are providing users with location identification, naviga-

tion assistance in unfamiliar places such as shopping centers and airports and other

services to meet the positioning demand of different groups under varied scenarios

[106]. Particularly, the contact tracing service has witnessed a tremendous increase

in interest as a non-pharmaceutical and practical measure for disease prevention,

primarily due to its effectiveness in reducing the transmission of contagious dis-

eases, such as COVID-19 [54]. Consequently, these types of services have become

increasingly integrated into our societal activities, which indicates the importance

of precise location information for offering better services and a higher quality of

satisfaction for users. The widely accepted and popular localization system, the

global positioning system (GPS) does not work well in a complicated indoor envi-

ronment due to the attenuation of satellite signals by obstacles like walls, furniture,

and human beings, failing to meet the needs for accurate indoor localization.

Nowadays, advancements in hardware technologies have led to novel sensing

technologies, which provide compact yet powerful sensors with the ability to cap-
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Chapter 1. Introduction 2

ture a wide variety of readings. Hence, various solutions have been studied to ad-

dress the constraints of GPS and other global navigation satellite systems (GNSS),

such as the wireless signal-based methods using Wi-Fi signals, ultra-wideband

(UWB), Bluetooth, radio frequency identification (RFID), Zigbee, visible light

and acoustic-based technologies [161]. Within this framework, the unique wireless

signal characteristics, usually represented by the received signal strength indicator

(RSSI), at a particular spatial location serve as the fingerprint for that position,

thereby allowing the estimation of a user’s location through fingerprint matching

with a pre-established position–fingerprint relationship database. Among all these

radio communication technologies, Wi-Fi signal is the ideal candidate for indoor

localization and becomes one of the extensively studied localization technologies

due to the popularity of smartphones with embedded Wi-Fi chips [124]. Moreover,

the ubiquity of sensor-rich smartphones with wireless communication capabilities

not only eases the physical measurements of ambient signals but also presents

an opportunity to investigate the fused sensor data for positioning, further pro-

moting the development of indoor localization. An algorithm, namely, pedestrian

dead reckoning (PDR), can utilize the estimated motion dynamic (such as speed,

heading, orientation, or motion states) of smartphone carrier’s via fused inertial

sensor data, including accelerometer, magnetometer, and gyroscope, to locate a

pedestrian in GNSS challenging environments. Since there is no need for extra in-

frastructure and no coverage limitation, PDR has become one of the mainstream

indoor localization methods [44].

Different localization techniques have different advantages and limitations in

terms of coverage, accuracy, requirement for infrastructure and cost of deployment.

Therefore, the merits and demerits of an indoor localization system should be

comprehensively considered first before the positioning system is designed. Among

the factors, the deployment cost plays a paramount role in the large-scale practical

application to provide the indoor LBS and the high expenses would significantly
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Chapter 1. Introduction 3

hinder the adoption of a localization system. The deployment cost essentially

comprises pre-configured infrastructure, data acquisition and data processing and

analysis.

The prevalent Wi-Fi fingerprinting-based indoor localization techniques can

be deployed without the need for additional infrastructure due to existing Wi-Fi

access points. However, the Wi-Fi signals would not be accessed because of the

out-of-coverage and signal shielding, which are common in developing countries

with poor information and communication technology infrastructure. Moreover,

since existing Wi-Fi networks are typically configured for communication instead

of localization and the RSSI is sensitive to complex indoor environments, great ef-

fort in terms of time and labor should be expended on the collection and updating

of the fine-grained fingerprint database to achieve high localization accuracy [107].

The investment in data engineering, including data labeling, data preprocessing

and data feature computing, is worthwhile with raw datasets, which may not yet

be labeled and cleaned, before performing data analysis effectively for location

inference. Thus, we should devote additional effort to accurately annotate and

process the data for subsequent feature extraction, thereby enabling efficient data

analysis to infer the location. The significant PDR technique is self-contained,

which continuously provides relative location estimation without considering wire-

less signal coverage or infrastructure, and appears to require no deployment cost.

However, it suffers from accumulated errors due to sensor drift, resulting in large

deviations over time. Wi-Fi fingerprinting technique is usually integrated with

PDR techniques to reduce errors, in which both the drift problem of PDR and

the failure of wireless localization methods for continuous localization (tracking)

[161, 98].

Consequently, in this thesis, we focus on the investigation of various techniques

to reduce deployment costs, including pre-established infrastructure cost, data

collection cost and data processing and learning cost, thus achieving efficient indoor
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Chapter 1. Introduction 4

localization systems and their practical applications.

1.1 Major Research Contributions

In order to attain the overall objective, the major research contributions of this

dissertation are briefly described below:

First of all, the crowdsensing technique is applied to reduce the cost of labor-

intensive and time-consuming fingerprint collection for radio map construction in

popular Wi-Fi fingerprinting-based indoor localization systems with Wi-Fi signal

covered. Although crowdsensing could solve the problem of radio signature col-

lection, there are various uncertainties about the location annotations contributed

by the crowd, which would affect the performance of the localization model. To

address such issues and realize efficient indoor localization systems based on Wi-

Fi fingerprints, we propose a crowdsensing-based indoor localization framework,

ALCIL, which utilizes the active learning technique to collect the informative data

to improve the performance of the localization model under a certain cost and the

machine learning approaches to learn the strong patterns heuristically for accu-

rate location estimation. We conducted extensive experiments to demonstrate the

effectiveness of the proposed framework, locating users’ mobile devices efficiently

at the given fixed budget.

Secondly, we develop an activity landmark-based PDR to realize efficient indoor

navigation with high precision in various environments regardless of the configu-

ration status of wireless access points. The activity landmark, which stands for

a location point that imposes a certain pattern on the motion sensor readings, is

properly recognized with the sensors inside smartphones and applied to the cal-

ibration of the accumulated errors in PDR at no extra cost. To further reduce

the deployment cost of data processing, the feature of activity landmarks is ex-

tracted by an unsupervised feature learning method without manual calculation,
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Chapter 1. Introduction 5

producing a compact representation for landmark identification. The validity of

the proposed approach to provide efficient indoor navigation was verified with

9,271 samples collected using a crowdsensing technique for 27 landmarks in the

context of practical buildings.

Thirdly, the above-mentioned activity landmark-based PDR was utilized to

develop an indoor spatiotemporal contact awareness framework (iSTCA) to en-

able precise contact tracing of Covid-19 in various indoor environments. The

iSTCA explicitly considers the self-containing quantitative contact analytics ap-

proach with spatiotemporal information to provide accurate awareness of the virus

quanta concentration in different areas at various times. PDR technique is em-

ployed to precisely detect the locations and trajectories for distance estimation and

time assessment with recognized activity landmarks using a designed deep learn-

ing model. Thus, the contact-tracing feature within this framework allows for

a more detailed and quantitative understanding of indoor exposure to virus with

virus lifespan considered, which is difficult to discern using conventional techniques

based on relative distances between devices. Furthermore, the integration of ac-

tivity landmark-based PDR positioning methods with a spatiotemporal model of

virus concentration variations has led to the development of a cost-effective solu-

tion that can be employed in diverse indoor environments, including those lacking

ICT. We performed an evaluation using actual movement history data collected in

a building and confirmed the effectiveness of the developed system.

Lastly, we employ federated learning -based activity landmark recognition to

make the activity landmark-based indoor localization system more efficient and

useful. We proposed a method based on semi-supervised learning and federated

learning (FL) that can perform personalized human activity recognition (HAR)

while considering user privacy and cost reduction on data annotation, in which FL

clients have completely unlabeled data, while the FL server has a small amount of

labeled data contributed by volunteers. This approach is characterized by collab-
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orative semi-supervised learning conducted between client devices and a server for

the general model training, using pseudo-labels that take into account trustworthi-

ness and uncertainties for model personalization. This method can be applied to

efficiently identify activity landmarks in indoor localization techniques. Through

evaluation experiments with two different real-world activity recognition datasets,

the persuasive accuracy improvement is confirmed compared to conventional tech-

niques.

1.2 Thesis Organization

This thesis is composed of the following chapters.

Chapter 1 introduces the overview of research motivations of this thesis and

our approaches and contributions.

Chapter 2 presents the background and gives an overview of related work,

including research in crowdsensing-based indoor localization and the applications

of indoor localization, especially the contact tracing.

Chapter 3 describes an efficient crowdsensing-based indoor localization using

active learning techniques to reduce the deployment cost. We present the detail

of the methods and evaluation results.

Chapter 4 provides an activity landmark based PDR to realize efficient indoor

navigation in various environments regardless of the configuration status of wireless

access points.

Chapter 5 introduces the iSTCA framework for precise contact tracing of the

Covid-19 virus in various indoor environments, in which a more detailed and quan-

titative understanding of indoor exposure to virus can be achieved by considering

virus lifespan. We provide the detail of iSTCA and the evaluation.

Chapter 6 presents our study on efficient activity recognition using semi-supervised

learning and FL, which involve clients with totally unlabeled data and a server with
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Figure 1-1: Structure of the thesis
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a small amount of labeled data and utilize pseudo-labels with trustworthiness and

uncertainties considered for model personalization.

Finally, chapter 7 concludes our contributions of this thesis and discusses pos-

sible future research.
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Chapter 2

Background

2.1 Indoor Localization Systems

Indoor localization systems hold significant importance in expanding LBS into in-

door settings where GNSS is unreliable. Such systems are typically integrated and

deployed within homes and buildings, facilitating interaction with smart devices

to provide them with spatial context. Therefore, over the past decades, numerous

innovations have emerged to address the complexity within indoor environments

and to strive for higher accuracy in localization through the utilization of vari-

ous techniques and diverse technologies. Typically, the following three categories

of techniques are often used: triangulation-based, fingerprinting-based and dead

reckoning techniques [161, 124].

Triangulation-based positioning systems mainly use radio technology, such as

Wi-Fi, Bluetooth, UWB and RFID. The detected physical measurements of the

signals are firstly converted to some geometric parameters (e.g., distance and an-

gle), and then determine the actual location with trilateration or triangulation ap-

proaches, which include Time of Arrival (ToA), Time Difference of Arrival (TDoA),

Time of Flight (ToF), Return Time of Flight (RToF), Angle of Arrival (AoA).

However, they usually require dedicated devices to achieve stable measurements,
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which greatly limit their applications in reality. Furthermore, the deployment cost

of those dedicated devices also includes careful calibration of indoor environments

with experts.

Fingerprinting technique is widely adopted as the basic scheme of location de-

termination due to the already installed wireless local area network infrastructure

in some buildings. The main idea is to calculate the location of the object by

matching a set of measurements called fingerprints with a set of fingerprints that

are collected and stored in a pre-built database. A fingerprint is the specifications

or measurements from various signals at a certain location, such as the received

signal strength (RSS) of Wi-Fi access points. Fingerprinting comprises an offline

training phase and an online location estimation phase. During the training phase,

a fingerprint database is created within the specified area of interest. In the subse-

quent online localization phase, the target’s location is estimated by comparing the

measured fingerprints against the pre-established database. Apart from the cost of

previously configured infrastructure, the notable expenses associated with the de-

ployment of fingerprinting techniques are the collection, updating and processing

of fine-grained fingerprints, which are time-consuming and labor-intensive.

The dead reckoning (DR) technique relies on inertial measurement unit (IMU)

sensors to approximate relative location with little or no infrastructure to be de-

ployed, in which the IMU sensors can track target movement by the equipped

accelerometers, gyroscopes, and magnetometers. An inertial navigation system

that provides accurate directional information uses DR and is applied. In this

study, we focus on DR for pedestrians called PDR. The latest location of the user

will be calculated based on the previously determined position and displacement

derived from the achieved measurements of moving directions, velocity, and inter-

val sampling using IMU sensors. However, it demands a precise initial position to

avoid errors and suffers from cumulative inaccuracy due to sensor drift and con-

textual interference, leading to deviation in position estimation. Although PDR
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can be deployed without additional equipment, it is essential to establish refer-

ence points, such as the Wi-Fi fingerprints, for the purpose of error correction and

accurate localization.

2.1.1 Crowdsensing-based Indoor Localization

In recent years, there has been a rapid increase in smartphones and wearable de-

vices outfitted with various built-in sensors, causing crowdsensing-based mobile

applications to become increasingly widespread. Crowdsensing is an extension of

crowdsourcing that refers to leveraging the intelligence of distributed participants

to accomplish one complex task. Crowdsensing presents a unique opportunity for

utilizing inertial sensors in mobile devices, as human mobility can offer unpar-

alleled sensing coverage and data transmission without incurring the prohibitive

costs associated with traditional sensor networks. Generally, within this approach,

individuals acquire data utilizing sensors embedded within their smartphones, nav-

igate the environment, and extract information for phenomena investigation that

yields benefits for themselves [65, 101, 169].

As crowdsensing can take advantage of human mobility and the mobile devices

they carry allows for extensive environmental sensing and data transmission with-

out the need for deploying additional infrastructure, the possibility of building

large-scale sensing applications with efficiencies is greatly enhanced. Thus, the

crowdsensing paradigm is perfectly suitable for fingerprinting-based indoor local-

ization, in which the construction of a timely fingerprint database, also known as

a radio map in Wi-Fi fingerprinting-based localization, needs regular site surveys

with an expert in the target area. Many researchers used crowdsensing technology

to propose efficient indoor localization systems in order to reduce the deployment

costs, time-consuming and labor-intensive, such as LiFS, Walkie-Markie [156, 118].

Besides, the extensive engagement of anonymous users can also benefit indoor lo-

calization by facilitating the automated development of indoor floor plans and
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establishing navigation spaces that include all walkable paths within particular

environments, thereby further contributing to the advancement of intelligent in-

door LBS.

2.1.2 Applications of Indoor Localization

The application of indoor localization systems has seen a drastic increase in use

around the world. They vary from tracking and navigation to asset management

and autonomous vehicle navigation to facilitate our daily life. The following pro-

vides a brief overview of these applications.

The primary aim of indoor localization systems is to locate the position of an

object, track the position sequence for any moving object, and facilitate naviga-

tion in indoor environments. In construction management, this technology has

been employed to monitor laborers, materials, and machinery. Doctors or nurses

can track the location of their patients and track their mobility to ensure patient

safety in the hospital using a localization system [161, 124]. Indoor localization can

be employed for user location-based authentication purposes, such as implement-

ing location-based access control for sensitive business information and allocating

hardware resources based on the user’s position. Surveillance can be another

paradigm where a suspect may be tracked indoors.

Asset management can fundamentally benefit from tracking, as it would allow

different businesses to track the location of their assets, allowing for better in-

ventory management. In shopping malls or markets, personalized marketing and

advertisement can be achieved based on the customers’ location. In a warehouse,

there is a high demand for tracking assets such as electronic equipment and man-

ufacturing objects. Key requirements for indoor asset tracking include monitoring

goods throughout the supply chain, implementing autonomous tracking systems,

and addressing theft protection and other security-related concerns [106].

Autonomous vehicle navigation is another significant application of indoor lo-
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calization. In indoor environments, unmanned aerial vehicles (UAVs) and un-

manned ground vehicles (UGVs) have obtained significant interest for their ex-

tensive capabilities in aerial surveillance support, emergency evacuation routes

determination, search and rescue operations conduction, and many more. Addi-

tionally, autonomous navigation is crucial for various equipment, including service

robots, self-driving cars, and smart wheelchairs. Since the working environment

is likely to be an unstructured and unknown area for these vehicles, indoor lo-

calization and navigation are particularly indispensable to ensure safe navigation

without any collision in an indoor area [124].

The aforementioned applications illustrate that localization can offer efficient

and effective services across various application areas, with the underlying objec-

tive of assisting users and customers. In the future, we anticipate a broader range

of services and applications that will be facilitated by indoor localization.

2.2 Contact Tracing

Infectious diseases, which can be spread, directly or indirectly, from one person

to another, pose a serious threat to human health, national economy and soci-

etal development, especially COVID-19 that has struck a devastating blow to the

global economy. In response to the spread of infectious viruses, contact tracing is

a well-established part of the management of disease outbreaks, which has become

one of the most critical measures to effectively curb the spread of the virus. Con-

tact tracing involves identifying, notifying, and quarantining people who have had

close contact with new cases in order to prevent further transmission within the

community [57, 16]. When systematically applied, contact tracing will break the

chains of transmission of infectious disease and is thus an essential public health

tool for controlling infectious disease outbreaks [54].

In history, contact tracing has been widely used in the control of infectious
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diseases and has become a pillar of communicable disease control in public health

with a lot of human and material resources for decades. Thus, the traditional

contact tracing methods suffer from some major limitations when dealing with

large-scale outbreaks of infectious diseases, such as the pandemic of COVID-19.

Relying mainly on manual interviews and investigations, the traditional tracing

methods are time-consuming and labor-intensive. The more recent digital con-

tact tracing methods are far more efficient and have helped greatly reduce the

consumption of human labor and other material resources [61]. Given their great

advantages, various digital information technologies in contact tracing have been

applied in many countries as effective means of COVID-19 inhibition [5].

Usually, digital contact tracing applications are installed on portal devices, typ-

ically smartphones, to conveniently and intelligently realize tracing with the help

of existing sensors based on various technologies, such as GNSS, Bluetooth, and

Wi-Fi [5, 26]. There are typically two approaches for contact determinations, peer-

to-peer proximity detection-based and geolocation-based. Peer-to-peer proximity

can be estimated by the received signal strength (RSS) of wireless signals, such as

Bluetooth and UWB. Many contact tracing applications rely on Bluetooth-based

systems that can directly detect whether users came in proximity of each other.

The proximity can be approximated by the strength of the signal, which is very

short and can be obstructed by buildings and walls. Therefore, in a high-risk

environment for close contact like buildings or public transit, it can reflect func-

tional proximity more effectively and accurately. However, with applications that

evaluate exposure risk based on Bluetooth, proximity exchange is in essence not

sufficient because of the fact that apart from the human-to-human interaction,

some infectious diseases like coronavirus can also transmit through common en-

vironments or commonly touched surfaces[26]. This kind of contact can only be

determined by geolocation-based approaches. The distance between two devices

in geolocation-based approaches is precisely derived from the cross-examination
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after obtaining the accurate location and trajectory with the help of localization

techniques using various technologies, such as GNSS, Wi-Fi and PDR.

Contact tracing in indoor environments can complement the ones used in out-

door environments to enable comprehensive digital contact tracing. However, in-

door contact tracing imposes unique technical challenges due to virus concentra-

tions and unreliable GNSS signals in indoor environments. The virus concentra-

tions, which play a critical role in calculating the amount of viruses we are exposed

to and further assessing the infection risk, should be explicitly considered in in-

door contact tracing applications [119, 140]. Although the virus concentration will

gradually decrease due to inactivation, deposition, and air purification after the

virus-laden droplets are exhaled, the poor air exchange rate, superspreaders, and

more virulent variants will keep it at a relatively high concentration for a long time

in an indoor environment. Li et al. utilized active Wi-Fi sensing to collect the

data and leveraged signal processing approaches and similarity metrics to align and

detect virus exposure with location-dependent virus concentration [72]. However,

to accurately estimate the concentration, investigating the airborne transmission

of these ejected particles is, thus, of fundamental importance in a closed environ-

ment because of the assemblage, in which human movement is implicitly involved

to achieve the initial motion state of droplets. Tu et al. an epidemic contact tracing

with Wi-Fi network and smartphone-based PDR, involving not only coarse-grained

duration but also the fine-grained distance between students [134]. Although the

motion state of humans can be acquired in the contact awareness system with

PDR and Wi-Fi, the Wi-Fi network would not be accessed sometimes because of

the out-of-coverage and signal shielding.
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Chapter 3

A Cost-Effective and

Quality-Ensured Framework for

Crowdsourced Indoor Localization

3.1 Introduction

With the rapid development of wireless technology and pervasive computing, LBSs,

such as social networks, tracking, navigation, recommendation and social distanc-

ing, have shown tremendous value [58, 96]. Particularly, contact tracing services

have garnered considerable attention as a non-pharmaceutical and practical mea-

sure for disease prevention, primarily due to their effectiveness in reducing the

transmission of infectious diseases, such as COVID-19. The essence of LBSs is to

locate the user and then provide useful information at the appropriate time and

right location. Therefore, the performance of the LBSs is greatly influenced by the

accuracy of localization measures [34].

Localization is a mechanism for determining the spatial relationship based on

the physical position or logical position of different entities [108]. Depending on

the target environment, it can be divided into outdoor localization and indoor
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localization. GNSS, such as GPS, Galileo Satellite Navigation (Galileo), BeiDou

Navigation Satellite System (BDS) and other satellite systems can locate us pre-

cisely and reliably in an outdoor open environment, which is widely exploited in

our everyday lives [6]. However, GNSS does not perform well in urban canyons,

underground environments and indoor environments in which we spend most of

the time because of the lack of a unified infrastructure and the weak signal strength

of satellites due to the absence of line of sight, the attenuation of satellite signals

as they cross through physical objects, especially walls, and noise interference,

resulting in inaccurate localization of us or devices [27, 17]. What’s more, indoor

localization has played an important role in tracking and navigation, especially in

large buildings such as shopping malls and underground parking lots. Therefore,

to fill the gap, indoor localization technology has been extensively researched for

many years.

Indoor localization is the process of obtaining the location of a user or device

in an indoor setting or environment, which has been well-developed with the joint

effort of researchers and engineers in the past few decades. For different scenarios,

researchers investigate lots of technologies to build indoor localization systems:

RFID, Bluetooth, Zigbee, UWB, wireless local area network (WLAN), infrared

ray (IR), ultrasound, magnetic field and visible light. Among the aforementioned

technologies, as an infrastructure-free technology, WLAN (or Wi-Fi) is widely used

because of the ubiquity in deployment and accessibility on the device [161, 132].

Many indoor localization methods based on Wi-Fi using different techniques that

mainly cluster into trilateration (including TOA, TDOA and AOA) and finger-

printing have been proposed. In the trilateration method, the distance to three

points that could obtain the relative location of a user via basic geometry and

trigonometry is estimated according to the RSSI and the path-loss propagation

model [4]. In the fingerprinting approach, a number of fingerprints from different

grids within the target area are collected to obtain the training dataset to train

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3. Efficient Crowdsourced Indoor Localization with Active Learning 18

a machine-learning algorithm that could predict the coordinates online given the

measured fingerprints at the location of the user. Fingerprinting techniques apply

machine learning algorithms to find the spatial pattern behind the sensed RSS data

in the target area to reduce the effects of RSS fluctuation in trilateration caused by

the complicated indoor environment, plentiful multipath fading and various non-

line-of-sight (NLOS) conditions that result in inaccurate propagation mode even

though calibrating considerable samples, which is widely researched for accurately

locating the user now [56].

The RSSs from detected access points (APs) in a different position can be

recognized as the fingerprint in fingerprinting indoor localization system, which

includes an offline training phase and an online location prediction phase. Since

machine learning algorithms require plentiful training data to achieve great perfor-

mance, the fingerprinting method also demands a large number of fingerprints in

the offline training phase to improve the accuracy of location prediction. Numer-

ous fingerprints should be obtained from different positions of interested regions

to construct the fingerprinting dataset with annotation by researchers to construct

an elaborated radio map in the training phase. Subsequently, in the online esti-

mation phase, machine-learning methods trained with the collected dataset could

properly return the estimated user’s position after conducting a location query

using the stored radio map. However, owing to the RSS variance caused by envi-

ronmental changes between the two phases, along with the limited availability of

experts, the collection and annotation of fingerprints can be quite laborious and

time-consuming [147, 166].

Crowdsourcing is a potential solution to solve the site survey problem because

everyone could become a contributor. With the development of sensor technology

and the popularity of wireless mobile terminal devices, such as laptops, smart-

phones and so forth, mobile devices integrate more and more sensors, including

Wi-Fi and camera, leading to more and more powerful abilities of computing and
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sensing, which make it possible to encourage ordinary mobile devices users to

contribute their effort and large quantities and scalabilities of fingerprint data

could be achieved, thus so-called crowdsourcing based indoor localization, reduc-

ing the burden of site survey. As the low deployment cost and efficient approach to

constructing a radio map, much different crowdsourcing-based indoor localization

systems have been proposed [166, 155, 43]. Crowdsourcing-based indoor localiza-

tion techniques do reduce the burden on researchers, while some new variances

like unsure annotation because of the lack of expert knowledge about positioning

or Geographic Information System (GIS) are introduced. In fact, without the as-

sistance of GNSS, specific measurements are demanded to calculate the location,

which requires enough specialized knowledge and equipment. In a crowdsourcing

scenario, we do not know the information about the task performer that may work

in different fields with different capacities and are unable to obtain his/her pre-

cise location in detail, including height, latitude and longitude. Therefore, many

researchers now bypass the process of data annotation, trying to automatically

generate the annotation by some auxiliary sensors and find other data patterns

from different perspectives to assist in positioning users. While the annotation is

indispensable for achieving better performance of fingerprinting approach in indoor

scenarios.

In this chapter, for crowdsourcing-based indoor localization, a framework,

named ALCIL, Active Learning-based Crowdsourced Indoor Localization, which

could reduce the efforts of site survey and ensure the performance of the posi-

tioning methods has been proposed. ALCIL can reduce the number of fingerprint

data that constitute the radio map without affecting the performance of location

prediction, using active learning. Active learning is a modern method in machine

learning, aiming to reduce the sample size, and complexity by selecting the in-

formative data according to informativeness measures and increase the accuracy

of data tasks with minimal costs. Moreover, ALCIL can ensure the accuracy of
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the fingerprint label via participants’ relative annotation of all data and experts’

re-verification of reduced instances with high informativeness. Location can be

labeled by absolute position with precise height, latitude and longitude and log-

ical position. The relative position associated with an indoor environment that

is available for everyone even those without relevant expertise. To achieve AL-

CIL, participants only need to describe the uncomplicated relative position and

the complex and specialized labeling work with informative data can be calculated

by experts, reducing the annotation variances and cost.

To demonstrate the effectiveness of ALCIL, we have conducted extensive exper-

iments over the dataset collected in West Zone of Kyushu University’s Ito Campus

to evaluate the proposed methods. We have developed an application to collect

data and annotate data with relative information and physical values of different

attributes of location. Experiments indicate that ALCIL can obtain the better

dataset with high quality and accurate performance of indoor localization with

the constraint of cost.

The remainder of this chapter is organized as follows. Related work about

crowdsourced indoor localization and active learning is reviewed in Section 3.2.

Section 3.3 described the theoretical methodology and the architecture of the pro-

posed ALCIL system. Section 3.4 presents the experimental methodology and

results in two datasets. Finally, the conclusion and future work are presented in

Section 3.5.

3.2 Related Work

In this section, we discuss related works in fingerprinting-based indoor localization,

crowdsourced indoor localization and active learning.
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3.2.1 Crowdsourced Fingerprinting-based Indoor Localiza-

tion

Ambient radio signals can be conveniently obtained to identify different locations,

serving as fingerprints for location interference in indoor environment [110]. A

plethora of indoor localization methods that adopt the radio-based fingerprint

to predict a user’s location has been proposed. The core idea is to build up a

fine-grained radio map consisting of the fingerprint of each interested location,

which the position can be achieved using matching algorithms. RADAR is the

first attempt to apply the fingerprinting-based technique with a KNN match-

ing algorithm in indoor localization, which utilizes the Wi-Fi fingerprint [169, 9].

Though the wide GSM, TV signals and FM radio signals are researched as fin-

gerprints for positioning, Wi-Fi fingerprints can be recognized as the most repre-

sentative fingerprinting-based in indoor localization due to the rapid development

of wireless communication and the extensive deployment of WLAN infrastructure

[138, 104, 102, 120].

Wi-Fi fingerprinting-based indoor localization can measure the RSSs from de-

tected APs at target area to construct the detailed radio map on training phase,

which will be used to determine the location via deterministic and probabilistic al-

gorithms with different similarity metrics like Euclidean distance, Kullback-Leibler

(KL) divergence and Jensen-Shannon (JS) divergence [159, 2, 92, 93, 3]. The RSS

of target location can be calculated in deterministic approaches, whose accuracy is

greatly affected by noise and variation which are tackled in probabilistic methods

[33]. All these approaches will distinguish the location within the previously sur-

veyed fingerprints database, whose accuracy and coverage are critical attributes

to achieve better performance, which means labor-intensive and time-consuming

[65].

Crowdsourcing is the most suitable approach to collect large-scale fingerprints

because everyone can be the potential contributor using the terminal devices with
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plenty of sensors in-built, including smartphones, PDA, and human mobility. The

term crowdsourcing was first presented in 2006 by Jeff Howe [50]. Crowdsourcing

was traditionally used to be a distributed problem-solving and production model,

but now, it can be seen a promising approach to address some of the growing

challenges associated with data collection and data processing, as demonstrated

by Amazon Turk, Netflix, and the ESP game, which expand human computation

[15, 165]. As a low-cost and efficient method to collaborate the intelligence of

different people, crowdsourcing has been widely employed in the acquisition of Wi-

Fi fingerprints [149, 167]. We can’t achieve the complete training data just with

data collection because annotation is the important part to train the prediction

model. However, due to anyone can be a contributor, including people who do

not have the expertise about location technique, and the label may be inaccurate.

Although there are some solutions without site survey processing to realize indoor

localization, label is inevitable to return accurate location prediction in indoor

scenario [141, 1, 123].

3.2.2 Active Learning

Active learning is a modern method in machine learning, aiming to reduce the

sample size, complexity, and increase the accuracy of the data tasks as much as

possible with fewer data. The key hypothesis of active learning is that the learning

mechanisms will be more intelligent if the learning algorithm can actively choose

the most significant unlabeled data. An active learner will query only a small

number of valuable unlabeled instances to be labeled by an oracle or annotator to

automatically enlarge the labeled dataset in an intelligent manner [111].

There are three main scenarios that have been studied of active learning, mem-

bership query synthesis, stream-based selective sampling, and pool-based sampling

[111, 73, 154].

• In query synthesis, any unlabeled instance can be queried by an active
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learner, including the model-generated, even though it may have no prac-

tical meaning and cannot be labeled by a human annotator. While the

other scenarios do not have this problem that cannot be labeled, because

the learner must query the instances of what it thinks is important from the

actual input pool.

• In stream-based selective sampling, the unlabeled instances will be queried

sequentially by the learner [81]. And the learner will decide whether the

instance be annotated or not.

• In pool-based sampling, many unlabeled instances are assumed to be avail-

able. In this kind of scenario, the learner should rank the entire unlabeled

instances according to an informativeness measure, that is the pool of un-

labeled instances, then, query the most informative one [81]. The main

difference between pool-based sampling and stream-based selective sampling

is that the former should evaluate all unlabeled data before selecting a query,

while the latter just query the instance in sequence [112].

Selective sampling is the most relevant scenario to crowdsourcing-based indoor

localization, including stream-based active learning and pool-based active learning.

In the stream-based scenario, the decision of annotating the current piece of data

can be determined by the informativeness measures, which is also applicable to

data ranking for data labeling in pool-based active learning after we collect a

certain amount of data. The measure of informativeness evaluation is vital in all

active scenarios and can be parted into uncertainty selection, query by committee,

expected objective change, and data-centered method [73, 12, 49].

• Uncertainty selection, which would query the most uncertain instance on the

prediction of the current model.

• Query by committees (QBC), which queries the most disagreeing instance
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of the committees’ prediction. Each committee member is a different model

based on the current training set.

• Expected objective change, which queries the instance that could make

the maximizing impact on the objective. For example, maximizing model

change, maximizing the generalization error reduction, and maximizing the

output variance reduction.

• Data-centered method, which queries the most representative of the most

informative instance.

It can be seen that active learning and crowdsourcing are critical technologies

for optimizing data collection and processing, and many researchers have con-

ducted a lot of studies on the ways to integrate them [42]. Lease suggests that

crowdsourcing with active learning may provide new insights for better focusing

annotation effort on the examples that will be most informative to the learner

to accelerate model training, as well as reduce the cost of data annotation [67].

Costa, et al. propose methods of combining crowdsourcing and active learning.

The methods were tested with the Jester data set, a text humor classification

benchmark, and the result shows promising improvements [24].

ALSense is a novel active learning framework under crowdsourced scenarios

that can be used for indoor localization, which considers the cost of data annota-

tion, and its main goal is minimizing the prediction error of crowdsourced tasks

within a fixed annotation cost. Crowdsourcers calculate the informativeness of

current data based on their own simple model trained by the initial dataset and

upload the data with higher informativeness. After the server collects a certain

amount of data, pool-based sampling is utilized to determine the instances that

need to be labeled from the collected data and requests the participant to annotate

it [154]. Although ALSense can control the cost of annotation, it is necessary to

ensure the label’s accuracy, which is difficult to achieve in practice due to different
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crowdsourced workers with diverse expertise, and just only target for the classi-

fication tasks. Hence, we propose ALCIL to minimize the predictions of indoor

localization tasks, including classification and regression, subject to collection and

annotation cost constraints under different crowdsourced workers.

3.3 Methodology

In this section, we analyze the annotation cost of Wi-Fi fingerprints and present the

detailed framework of ALCIL. Besides, the optimization strategies are explained

for indoor localization with multi-labels.

3.3.1 Problem Construction and Overview

To achieve Wi-Fi fingerprinting-based indoor localization, it is necessary that one

or more people carries a terminal device with WLAN access and RSSs measurement

from different APs to collect the fingerprints on various location of the target

indoor region [85]. The fingerprints in different positions should be labeled with

some identification, like the building number, floor number, room number, and

physical coordinate to form the training dataset, called radio map, which is time-

consuming and labor-intensive and requires some expertise or specific equipment.

Given a set of fingerprints of 𝑋, {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑘 is the RSSs vector

of the 𝑘-th sample we collect and the value of it should belong to the value space

𝑅𝑥. A set of labels of 𝑌, {𝑦1, 𝑦2, . . . , 𝑦𝑛}, where 𝑦𝑘 is the labels of the 𝑘-th RSSs

sample 𝑥𝑘, which may include more than one attribute, like height, latitude, and

longitude, and the value of it should in the label space 𝑅𝑦. (𝑋, 𝑌 ) is trained in the

offline phase to discover the reflection of 𝑓 : 𝑋 → 𝑌 to obtain the location in the

online phase. Actually, 𝑓 can be each one of hypothesis spaces 𝐹 and the prediction

error or interference error 𝐸 of 𝑓 can be equated by 𝐸 =
∑︀𝑛

𝑖=0 𝐿(𝑦𝑖, 𝑓 (𝑥𝑖)) that

we can measure the performance of 𝑓 and it should be minimized, where 𝐿 is
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a specific measurement. No matter what the selection and the measurement of

𝑓 , we all need accurate label 𝑦. However, the cost of obtaining 𝑌 is higher than

collecting 𝑋, hence improving the quality of 𝑌 at a certain cost to make 𝑓 perform

better is essential. Under the restriction of cost, M, which we can obtain from the

incentive method, only selected instances set 𝑋 ′ of 𝑋 can be annotated, and the

label of 𝑋 ′ we can get is 𝑌 ′.

min𝑥
′
𝑖∈𝑋

′ , 𝑦
′
𝑖∈𝑌

′ 𝐸 =
∑︀𝑛

𝑖=0 𝐿
(︀
𝑦

′
𝑖, 𝑓
(︀
𝑥

′
𝑖

)︀)︀
𝑠.𝑡.

⃒⃒
𝑌

′ ⃒⃒ ≤𝑀
(3.1)

3.3.2 Architecture

Figure 3-1 shows the proposed indoor localization system architecture, which can

be divided into two parts: the mobile device and the positioning server. On the

mobile device side, there is a local active learner which can detect the informative-

ness of collected fingerprints for the localization method based on utility measure,

then decides whether to upload a data item with relative annotation, like the

building number, floor number, room number and the distance to some obvious

indoor objects. Moreover, the local active learner can be updated by the server

in a certain period. The global active learner can select informative samples from

the uploaded data summited by crowdsourcers based on informativeness measure-

ment to remind us to re-calibrate the fingerprints, including the absolute height,

latitude and longitude. Therefore, the uploaded data item with accurate annota-

tions is added to the database of labeled fingerprints to train a better model. The

indoor localization model and global learner are updated when a new re-calibrated

fingerprint appears in the labeled database to make the system perform better.

For this system, a few calibrated fingerprints and the informativeness measure

need to be settled down according to the localization approaches. A small amount

of initial data with labels should be collected to accelerate the deployment, pro-

viding the localization service and incentive the crowdsourcer to participate, and
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Figure 3-1: The architecture of ALCIL

thus, the performance of the initial indoor positioning model should achieve a

certain level. As we mentioned above, there are many informativeness measures,

which can be selected based on our target. The purpose of this system is to ob-

tain a precise model that predicts the position stably according to the data we

calibrated, therefore, we need to continuously reduce the variance of the model
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derived. QBC is a model-driven selection approach, which involves maintaining

a committee 𝒞 = {𝜃1, 𝜃2, . . . , 𝜃𝑐} of models trained on the labeled dataset and se-

lect the most disagree one to constrain the hypothesis space, reducing the model

variance. To detect the level of disagreement, various distance forms are utilized,

among which KL divergence can measure the difference between different proba-

bility distributions [113, 89]. KL divergence is characterized by,

𝑥*
𝐾𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥

∑︀𝐶
𝑐=1 𝐷(𝑃𝜃𝑐||𝑃𝑐)

𝐶
(3.2)

where

𝐷(𝑃𝜃𝑐 | |𝑃𝑐) =
∑︁
𝑖

𝑃𝜃𝑐 (𝑦𝑖|𝑥) log
𝑃𝜃𝑐 (𝑦𝑖|𝑥)
𝑃𝑐 (𝑦𝑖|𝑥)

(3.3)

Here 𝜃𝑐 represents a particular model in the committee, and 𝒞 represents the

committee as a whole, hence 𝑃𝒞 (𝑦𝑖|𝑥) =
∑︀𝐶

𝑐=1 𝑃𝜃𝑐 (𝑦𝑖|𝑥)
𝐶

is the agreement that 𝑦𝑖 is

the correct label. Thus, this disagreement measure considers the most informa-

tive instance to be the one with the largest average difference between the label

distributions of any one committee member and the consensus. As the variant

of KL divergence with some useful improvement, including that it is symmetric

between two distributions, and it always has a finite value [146], JS divergence

is also used to measure the disagreement. Therefore, QBC is appropriate as the

informativeness measure in indoor localization systems to improve the prediction

accuracy.

3.3.3 Optimization Strategies

As mentioned above, location can be expressed in different terms, including the

relative address and absolute address, each of them has different attributes. Rel-

ative location is the description of how a place is related to other places like the

floor number is the relative height to the ground, and the building number is the

relative location from other buildings of a region, directly showing the connection
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with others. Geographic coordinates of longitude and latitude help us pinpoint

the absolute location which is a kind of relative address relative to the equator

(latitude) and prime meridian (longitude) and help us understand each other with

the fixed standard. Depending on the different purposes, the importance of various

attributes is also different. For the significant application of measuring the dis-

tance between people, which is widely applied to detect the social distance under

COVID-19, building number and floor number are more straightforward than a

string of digits because we can directly obtain the conclusion we desired when we

have no knowledge about geography.

However, accurate coordinates do help us calculate the precise information

we need, like the social distance, and if we focus on certain attributes, we can-

not achieve it. Thus, the importance of various attributes is different at diverse

phases. The prediction accuracy of the building number and floor number is more

important at first, as the project carried on, and when there is no significant im-

provement about it, we should focus on the coordinates’ prediction. For indoor

localization with multiple labels, we design two optimization strategies in different

stages, namely the local optimization strategy and the global optimization strat-

egy. The former focuses on the optimization of a subset of all features, and the

other one optimizes all attributes at the same time. When the current strategy

cannot have a significant impact on the location prediction, the accuracy reaches

a critical point, and it is a waste to take more effort to continuously improve, and

it is time to change the strategies or attributes we focused on.

3.4 Experiments

In this section, we evaluate the performance of ALCIL on a dataset we collected

in the West Zone of Kyushu University. The dataset is randomly divided into

training data and test data, and a small collection of training data is selected at
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random.

3.4.1 Data Collection

To collect the necessary data for our experiments, we developed a data collection

application on Android smartphone, integrated the Wi-Fi fingerprint sensing and

data annotation via text or image, where the labels can be relation position or

absolute position. It records the (Service Set Identifier (SSID), MAC address,

RSSI) for each detected AP. Several participants with knowledge of localization

contribute more than 4000 fingerprints with accurate labels of building ID, floor

ID and geographic coordinate, using the same Android phone, LG Nexus 5, over

different days. Among them, building ID and floor ID are categorical labels and

latitude and longitude are quantitative values. The dataset was divided into train-

ing (70%), validation (10%) and testing (20%) sets, randomly, without overlapping,

and then 200 samples from the training sets are randomly selected to achieve an

initial model for bootstrapping the system.

3.4.2 Localization Methods and Evaluation Metrics

Various machine learning methods are widely researched in many different fields,

among which random forest (RF) has been deeply studied as the critical feature

of convenient behavior both in terms of accuracy and efficiency in prediction tasks

[20]. RF is an ensemble learning approach that behaved on many independent

decision trees, and the result is calculated as,

𝑓(𝑥) =
𝑁∑︁

𝑛=1

1

𝑁
𝑓𝑛(𝑥) (3.4)

where 𝑓𝑛 is the 𝑛− 𝑡ℎ decision tree and 𝑁 is the total number which is not always

the same, depending on the specific tasks and dataset [137]. Whether it is a

classification mission or regression analysis, RF has achieved tremendous success,
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Figure 3-2: Data collection system

which is the main reason for being chosen because there are quantitative values of

latitude and longitude and categorical labels of building and floor ID [48]. Some

separate RF models are performed for the regression of continuous attributes and

the classification of discrete labels, respectively, to return the different descriptions

of location.

The prediction accuracy of two categorical location attributes (building ID

and floor ID) is applied to evaluate the performance of the corresponding model.

We utilize root-mean-square error to measure the regression results for latitude

inference and longitude inference, which is defined as:

𝑅𝑀𝑆𝐸(𝑦, 𝑦) =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=0

(𝑦𝑖 − 𝑦𝑖)
2 (3.5)

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3. Efficient Crowdsourced Indoor Localization with Active Learning 32

where 𝑦𝑖 represent the estimated value of 𝑖− 𝑡ℎ sample and 𝑦𝑖 is the corresponding

true value.

3.4.3 Results and Discussion

In the experiments, we evaluate how the proposed system performs with the in-

crease of annotation acquisition cost M. Because there are multiple labels of the

location, to show its efficiency clearly, we can consider it as multiple independent

problems, including two classification and two regression tasks using a collected

dataset.

(a) building ID prediction (b) floor ID prediction

Figure 3-3: Accuracy of the proposed framework on building ID prediction and
floor ID prediction. The dashed lines in these figures represent the communication
rounds required to achieve the corresponding accuracy.

There are two methods involved in this experiment, the proposed ALCIL and

RSCIL. RSCIL represents random selection-based crowdsourced indoor localiza-

tion, in which the crowdsourcers would select the data to upload to the server at

random and the server randomly selects the data to re-calibrate from the uploaded

dataset. As the system runs, assuming we select 𝜆 samples from Λ the data set

each time, the cost of recalibration for each data is fixed at 𝜂 and then, each round,

all the accurate annotation we obtained will spend 𝜂𝜆 which should lower than 𝑀 .

Here we set Λ to 50, 𝜆 to 10, and we perform 60 rounds to construct the complete
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labeled dataset. It means that the number of uploaded samples should be greater

than 50 to be used as the data pool of the server.

(a) longitude prediction (b) latitude prediction

Figure 3-4: RMSE of the proposed framework on longitude prediction and latitude
prediction. The dashed lines in these figures represent the communication rounds
required to achieve the corresponding prediction errors.

As we mentioned before, more queries usually imply better performance for

supervised learning applications. However, except for the quantity, the quality

of queries matters as well. Therefore, we consider the four attributes of location

as four separate tasks, indicating that the system possesses a singular objective,

rather than varying objectives as the experiment progresses. Consequently, to test

the quality of query samples in different tasks, the selection of 60 rounds of data

would focus on one of the four specific objectives: building prediction, floor pre-

diction, longitude estimation, and latitude estimation. The results of building and

floor predictions are presented in Figure 3-3. As can be observed, with the help of

active learning, a higher accuracy performance is available at the same annotation

cost, thus increasing efficiency in both building and floor predictions and realizing

efficient localization. Furthermore, it can be discerned that the performance gain

for floor predictions is superior to that of building prediction. This outcome can be

attributed to the relatively high precision acquired by the initial model in building

ID prediction, resulting in a comparatively smaller actual gain. The evaluation
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result of longitude prediction and latitude prediction is presented in Figure 3-4.

The continuously decreasing errors of active learning based models not only sug-

gest that we approach the accurate location, but also indicate we are converging

towards it at a relatively faster pace.

Figure 3-5: The holistic evaluation of the proposed framework. The dashed line
in the figure represents the communication rounds required to achieve the corre-
sponding error.

We assemble the prediction results of the four models and try to evaluate the

system using a holistic outcome. Regarding the classification tasks, we count the

number of incorrect predictions made by the classification models and generate

results with corresponding penalty factors to simulate regression tasks. Therefore,

the comprehensive metric is proposed as:

𝐹 = 𝐸𝑁𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔*𝑃𝐹𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔+𝐸𝑁𝑓𝑙𝑜𝑜𝑟*𝑃𝐹𝑓𝑙𝑜𝑜𝑟+𝑅𝑀𝑆𝐸𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒+𝑅𝑀𝑆𝐸𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 (3.6)
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where 𝐸𝑁𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 and 𝐸𝑁𝑓𝑙𝑜𝑜𝑟 are the number of inaccurate building IDs and floor

IDs, respectively. Considering that incorrectly predicted building ID and floor

ID can have a significant impact on final location estimation results, we assign

penalty coefficients to 50 and 4. We perform a comprehensive evaluation of the

system based on the new criterion, and the results are illustrated in Figure 3-5.

As observed from Figure 3-5, our proposed ALCIL is capable of achieving bet-

ter performance compared to RSCIL in general. In comparison to the gradual

improvement of RSCIL, the distinct characteristics of ALCIL can be clearly ob-

served. Although the model’s performance would improve with the increase in

labeled samples, the impact of the four different subtasks on the global results

varies. It is evident that in the first two rounds, the system’s performance signif-

icantly improved, followed by a period of steady decline and then experienced a

substantial drop afterward. This phenomenon occurs because the accuracy of the

initial building prediction model dramatically increases, and subsequently, as the

overall performance begins to stabilize, the optimization turns towards refining the

floor prediction model. After the acquired performance gain of the floor prediction

model in several rounds, the overall performance of the system gradually improves

as the number of labeled samples increases. Consequently, our proposed system

would swiftly attain a better result and higher efficiency with lower labeling costs

compared to RSCIL.

3.5 Conclusion

We proposed a cost-effective and quality-ensured framework for crowdsourced in-

door localization, which collects informative data to further improve the perfor-

mance of the model at a certain cost. In ALCIL, the researcher needs to obtain

a collection of Wi-Fi fingerprints with precise labels as the initial data to train a

primary model, which can be comprehensive when some users are motivated by
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incentive measures to contribute more samples in actual deployment. While con-

sidering the participants’ ability, the annotation can be the relative location. Then

the informativeness of the sample is detected based on QBC to determine whether

this sample uploads to the server. After the server obtains a certain number of

samples, considering the multiple attributes of location, the data that are valu-

able for the current target will be selected to recalibrate. Avoiding the annotation

of all data can reduce the cost of obtaining the complete dataset. The effective-

ness of this framework is demonstrated by the collected data. Possible extensions

to this framework include the integration of an appropriate incentive mechanism

to motivate more users to collect Wi-Fi fingerprints within the target area, and

mechanisms for considering the device heterogeneity.
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Chapter 4

Mapless Indoor Navigation based on

Landmarks

4.1 Introduction

Navigation problems about how to reach the destination from the origin is often

encountered in human daily life and work, especially in unfamiliar area. Depending

on the target environment, it can be divided into outdoor navigation and indoor

navigation. GNSS, such as GPS, Galileo, BDS and other satellite systems can nav-

igate us precisely and reliably in an outdoor open environment, which are widely

exploited and broadly applied in our everyday lives [64]. Although outdoor nav-

igation is well satisfied, indoor navigation is more challenging. Since GNSS does

not perform well in urban canyons, underground environments, and indoor envi-

ronments in which we spend most of the time and tend to lose position more easily

because of the lack of a unified infrastructure and the weak signal strength of satel-

lites due to the absence of line of sight, the attenuation of satellite signals as they

cross through physical objects, especially walls, and noise interference, resulting

in inaccurate navigation of us or devices [27, 17]. Furthermore, indoor navigation

has played an important role in our routine, especially in a large building like a
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shopping mall or underground parking lot. Thus, in an effort to find an alternative

technique that can provide indoor navigation service with high precision, a variety

of approaches have been extensively researched in decades.

Many indoor navigation systems have been researched with the joint effort of

researcher and engineer in the past few decades. For different scenarios, researchers

investigate lots of technologies and techniques to build indoor navigation systems:

RFID, Bluetooth, Zigbee, UWB, WLAN, IR and ultrasound. Among these radio

frequency-based methods, Wi-Fi is the most commonly used and extensively ap-

plied for indoor navigation systems using received signal strength and channel state

information as the Wi-Fi settings are considered broadly distributed. While the

Wi-Fi signals would not be accessed when the user is out of Wi-Fi coverage range,

which are common in developing country due to poor ICT infrastructure [63], or

the radio coverage has to be blocked sometimes. Therefore, the pre-deployment

and special hardware hinder the wide adoption and practical application.

Meanwhile, mobile devices of all kinds are rapidly involving, and our daily life

is significantly changed. The range of application, including indoor navigation, are

efficiently growing with more and more advanced built-in sensors equipped. With

the help of portable devices people usually carry around, PDR based on built-in

inertial sensors, which is self-contained, has been obtaining growing attention in

different scenarios [80]. Nevertheless, PDR is prone to suffer from the accumulated

error because of sensor drift, resulting in accuracy degradation. The combination

of PDR and Wi-Fi fingerprinting which is extensively adopted, Bluetooth, and

some other localization methods to calibrate the trajectory are common remedies.

In addition, a recent trend is to remove the requirements of infrastructure support.

Spatial context, such as maps and landmarks, which is available in many sce-

narios, can be another choice to calibrate the indoor navigation system based on

PDR without additional deployment cost. Fusing spatial information which is easy

to understand for successful wayfinding is an effective way to achieve indoor navi-
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gation with little or mostly with no need for complementary infrastructure [36]. As

a piece of important spatial information, the landmark is a salient point in sensor

readings when people pass the location, which can be detected by built-in sensors.

There are many different proposed methods that integrated landmark in indoor

navigation and positioning systems, in which landmark detection and matching

are both involved to realize indoor navigation in works [36, 141, 47]. Currently,

the manual designed features and threshold are extracted to detect different land-

marks [44]. When numerous identified landmarks are in proximity, the adoption

of additional Wi-Fi fingerprints is broadly implemented for recognition [167].

In this paper, to reduce additional infrastructure demand in indoor navigation

systems, we propose mapless indoor navigation system based on landmark identi-

fication. The motivation of this work is to provide navigation service to people

with a typical smartphone equipped coming to a new area and without recourse

to any additional deployment and spatial information in advance. The proposed

methods can be divided into two phases: offline training and online navigating. In

the former phase, the records produced by the embedded sensors of mobile devices

are collected to automatically extract features and train a landmark recognition

model after being preprocessed, including filtering and segmenting. The semantic

map is subsequently constructed with the help of detected landmarks and PDR.

In the later phase, online navigation is achieved based on the location estimated

by PDR and detected landmarks with sensor reading stream. The major contri-

bution of this work consists of two aspects: the first aspect involves a novel extra

infrastructure-free landmark-based indoor navigation systems without radio cover-

age to characterize landmarks without a detailed floor plan ahead, which reduces

the deployment without extra cost requirements and the cognitive load of people

with a human-friendly navigation experience compared with physical coordinates

to locate and navigate users. For the second part, a custom deep learning model

is designed and implemented for landmark identification with the ability to auto-
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matically extract features through the raw signals to create an indoor landmark

map.

The remainder of this chapter is organized as follows. Related work about

indoor navigation, especially the landmark-based navigation, is reviewed in Section

4.2. Section 4.3 introduce the theoretical methodology and the architecture of

proposed mapless landmark-based indoor navigation system. Section 4.4 presents

the experimental methodology and results in datasets collected. Finally, conclusion

and future work are presented in Section 4.5.

4.2 Related Work

There are three different modes to display the guidance in a navigation system:

geographical coordinates, symbolic modes, and hybrid information [153]. Geo-

graphical coordinate is a detailed representation of location, a machine-friendly

way, which is widely applied to navigation system in many professional devices.

For indoor navigation, since the GNSS signal reception is degraded accuracy of

the coordinates will be affected, therefore, representation via the earth coordi-

nate system will be changed to a relative coordinate system, which is relative to

a pre-defined location in the indoor environment. Symbolic modes denote the en-

vironment with the logical relationship of different areas or locations, which can

generally navigate people both indoors and outdoors in a human-friendly way.

These two representations are combined in the hybrid mode navigation systems.

This section discusses a brief overview of the relevant literature, which can be

divided into indoor navigation based on geographical coordinates and landmark-

aided navigation.
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4.2.1 Indoor Navigation

With the help of indoor localization technologies and techniques promoted by the

rapid development of wireless technology and pervasive computing, the theoretical

research and practical application of indoor navigation systems has been efficiently

broadened. Multiple deterministic models are designed in combination of phys-

ical laws and mathematical, such as: AoA, ToA, and TDoA [153]. Among the

various methods, acquiring the distance traveled through the Log-Distance Path

Loss (LDPL) model from the RSS of sensed environmental radio signals consti-

tutes a significant approach for location estimation within buildings [114]. Since

the accuracy of the statistical models is greatly affected by noise and variation,

the probabilistic methods are investigated [33]. Additionally, a plethora of indoor

positioning methods adopt the RSS as fingerprint to realize localization has been

proposed. The core idea is to build up a fine-grained radio map consisting of the

fingerprint of each interested location, which the position can be achieved using

matching algorithms. RADAR is the first attempt to apply the fingerprinting-

based technique with k-nearest neighbors (KNN) matching algorithm in indoor

localization, which utilizes the Wi-Fi fingerprint [9]. Wi-Fi fingerprinting-based

indoor localization can measure the RSSs from detected access points (APs) at tar-

get area to construct the detailed radio map on training phase, which will be used

to determine the location via deterministic and probabilistic algorithms with dif-

ferent similarity metrics like Euclidean distance, Kullback-Leibler divergence and

Jensen-Shannon divergence [94, 2, 93, 3]. Therefore, the quality and quantity of ra-

dio map, which depend on the number of wireless devices installed and annotation

accuracy, makes a significant impact on the performance of Wi-Fi fingerprinting

based positioning systems [83].

Simultaneous Localization and Mapping (SLAM) is a well-known technique

that dominates the robotic field, which usually rely on the laser range sensor or

cameras to build the map based on landmarks and simultaneously infer robot
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location in an unknown area. SmartSLAM, as a modified algorithm based on

smartphone, is proposed to gradually construct the indoor floor plan for anony-

mous buildings, employing inertial sensors to track users and using Wi-Fi signals

as an indicator to find anchor point [121]. SematicSLAM uses the estimated land-

mark in the environment as reference point and combine the inertial sensors as

an odometer to keep track of users [1]. Wi-Fi related fingerprint is also used in

WalkSLAM and Wi-Fi-RTT-SLAM [86, 41].

DR, as a radio signal-free localization method based on inertial sensors such as

accelerometers, gyroscope, magnetometer, and barometer, are presented in many

works. Given a starting point, locations can be continuously calculated by comb-

ing last position and the displacement inferred by the motion information which

is provided by three parts: step detection, estimated strides length and heading

changes. Because of no additional requirements and no coverage limitation of DR,

it is popular in wireless blocked or denied area and emergencies [22, 117]. While,

due to environmental contamination, vibration and temperature fluctuations, in-

evitable sensor drift causes the positioning error accumulated along movement,

resulting in degraded localization performance. Wi-Fi fingerprint is commonly in-

tegrated to enhance the accuracy. Predefined Wi-Fi fingerprint as the reference

point to When the Wi-Fi fingerprint whose corresponding location is known as the

reference point is passed, the accumulated error can be eliminated by the absolute

landmark position. Besides, with the ubiquitous mobile sensor rich device, DR is

gradually extended to PDR.

In addition to PDR, SLAM and Wi-Fi based localization approaches, plenty of

research based on light Intensity, RFID, Bluetooth, Zigbee and other technologies

realize the indoor positioning. However, extra infrastructure deployment or specific

devices are required in the sensor-based approaches, even for the self-contained

inertial sensor-based PDR methods, in which the absolute position of anchor point

is needed to calibrate the positioning error.
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4.2.2 Landmark-based Navigation

Landmark is defined as a spatial point with salient features and semantic char-

acteristics from its near environment in indoor navigation systems, which can be

used to calibrate the localization error based on the inherent spatial information.

Fuqiang presents the concept of sensory landmark with distinctiveness to distin-

guish, stability patterns to detect and identifiability to identify, categorizing the

different landmarks based on the type of built-in sensor within the smartphone to

assist indoor localization [45]. The location of these landmarks, presented by geo-

graphical coordinates or the relationship with other locations/areas, where people

perform specific and predictable movements can be detected and correspondingly

identifiable change displayed on the changes of the readings of at least one type of

sensor, as an anchor point to correct the position we calculated.

To identify the landmark, plenty of features are manually calculated, and the

special thresholds of different sensors within various kinds of landmark recogni-

tion are analyzed. For instance, the threshold of angular velocity produced by

a gyroscope is usually used to detect the corner landmark, and the acceleration

changes can recognize the stairs. The combination of different thresholds of var-

ious sensors forms the decision tree, which can reveal the standing motion state

to further distinguish common landmarks, such as corners, stairs, and elevators

[87]. However, the calculation, extraction, and selection of features of different sen-

sors for various landmarks are heuristic with professional knowledge of the domain

and time-consuming, and laborious. To simplify feature engineering and improve

performance, deep neural networks are applied in a variety of works. A convo-

lutional neural network (CNN) is trained on the one-dimensional sensor data to

learn the proper features automatically and landmark identification in [168]. The

long short-term memory (LSTM) based deep RNNs (DRNNs) to classify the lo-

cation mapped from variable-length input sequences of sensor data for landmark

classification [13]. Wang Y, et.al. improve the LSTM neural network to recognize
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different kinds of spatial structure-related sensory landmarks [145].

To navigate people based on the detected landmarks, in addition to the lo-

cation, how to organize the landmarks precisely and effectively is also necessary.

Multiple landmarks that the logical relationships are well displayed in an easy-

understanding construction of an indoor floor plan for indoor navigation. Although

almost all buildings provide the indoor map at some conspicuous locations, it is

still not easy for people, especially the spatial cognitive disability, children, to

understand the map and reach the destination. ALIMC estimates the relative dis-

tance of all the landmarks detected and then generates the indoor floor plan using

multidimensional scaling algorithms [167]. IndoorWaze calculates the movement

trajectory with the help of PDR between different landmarks to construct the

landmark graph to guide people, and the same fashion of the detected landmarks

is also presented in many works [47, 75, 55]

4.3 Methods

In this section, the proposed indoor navigation system is presented, which only

needs a smartphone, precisely the sensors in it. Both hardware sensors and vir-

tual sensors are in a smart device. Hardware-based sensors derive their data by

directly measuring specific environmental properties and physical attributes, such

as the barometer, accelerometer, and gyroscope. Readings of virtual sensors are

calculated by one or more hardware sensors, such as the gravity sensor, linear

acceleration, and rotation sensor. Here, the accelerometer, gyroscope, barometer,

and rotation sensor.

4.3.1 Architecture

Figure 4-1 shows the architecture of proposed indoor navigation systems, which

can be divided into two phases: offline training and online indoor navigation. In
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the offline phase, various sensor data flows for analyzing are firstly collected from

a handheld smartphone’s built-in sensors which record the changes of environment

and body motion. The collected signals need to be preprocessed, which includes

data filtering and data scaling, to reduce the noise for better motion state estima-

tion. Next, with the help of PDR techniques, the locations and the trajectories are

estimated to build the indoor landmark map, which is to further assist the nav-

igation on online phase. Besides, the preprocessed data are also used to extract

the features for landmark identification model training to aid online navigation.

The same data collection module and PDR algorithms are utilized in online phase.

On online data processing, for timely navigation, the fixed sliding window with

a degree of overlap is applied to generate the same inputs as the model trained.

Therefore, the landmark identification model can distinguish the landmark and

calibrate the location due to sensor drift and cumulative error simultaneously.

What’s more, in combination of the indoor semantic map constructed by land-

marks, users are navigated with accessible instructions based on their connectivity

relationships.

Figure 4-1: Architecture of proposed approach
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4.3.2 Data Preprocessing

To combine the data from different sensors for landmark identification, the specific

processing process is described below, including data alignment, data interpolation,

data filtering, data scaling and data segmentation.

Data alignment The same sampling rate for data collection is set to 50 Hz due

to the low frequency of human movements [131]. Although the constant rate is

defined, the time interval between the recorded adjacent readings of each sensor is

not always the same because of the observational error and random error, and it

oscillates within a certain range in practice. To acquire the same number of samples

for conveniently performing the subsequent procedures, we take the timestamp of

the first data collected as the starting time to align the sensor readings at the same

time interval with the help of data interpolation.

Data interpolation During the practical data collection using smartphone sen-

sors, some data points in the acquired dataset are lost due to malfunctioning; such

data points are typically replaced by 0, NaN, or none [59]. To fill in the missing

values, the data interpolation technique was developed, in which the new data

point is estimated based on the known information. Linear interpolation, as the

prevalent type of interpolation approach, was adopted in this paper, using linear

polynomials to construct new data points [152]. Generally, the strategy for linear

interpolation is to use a straight line to connect the known data points on either

side of the unknown point and, thus, it is defined as the concatenation of linear

interpolation between each pair of data points on a set of samples.

Data filtering Due to the environmental noise and interference caused by the

unconscious jittering of the human body, there are many undesirable components

in the obtained signals that need to be dealt with [152]. This usually means

removing some frequencies to suppress interfering signals and reduce the back-
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ground noise. A low-pass filter is a type of electronic filter that attempts to pass

low-frequency signals through the filter unchanged while reducing the amplitude

of signals with a frequency above what is known as the cutoff frequency. A But-

terworth low-pass filter with a cutoff frequency of 3 Hz is applied to denoise and

smooth the raw signals.

Data scaling The difference in the scale of each input variable increases the

difficulty of the problem being modeled. If one of the features has a broad range

of values, the objective functions of THE established model will be highly proba-

bly governed by the particular feature without normalization, suffering from poor

performance during learning and sensitivity to input values and further resulting

in a higher generalization error [29]. Therefore, the range of all data should be

normalized so that each feature contributes approximately proportionately to the

final result. Standardization makes the values of each feature in the data have

zero means by subtracting from the mean in the numerator and unit variance, as

shown in Equation 4.1:

𝑋
′

𝑖 =
𝑋𝑖 − 𝜇

𝜎
(𝑖 = 1, 2, 3 · · · , 𝑛) (4.1)

where the 𝑋
′
𝑖 is the standardized data, 𝑛 represents the number of data channels,

and 𝜇 and 𝜎 are the mean and standard deviations of the 𝑖-th channel of the

samples [29]. This method is widely used for normalization in many machine

learning algorithms and is also adopted in this work to normalize the range of

data we obtained.

Data segmentation A sensor-based landmark recognition model is typically fed

with a short sequence of continuously recorded sensor readings, since only a single

data point cannot reflect the characteristics of landmarks. The sequence consists of

all the channels of selected sensors. To preserve the temporal relationship between
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the acquired data points with the aligned times, we partition the multivariate time-

series sensor signals into sequences or segments leveraging the sliding operation,

which consists of 128 samples (corresponding to 2.56 𝑠 for the sampling frequency

at 50 Hz) [152, 46]. It is noteworthy that the length of the window is picked

empirically to achieve the segments for all considered landmarks, in which the

features of the landmarks can be precisely captured to promote the landmark

identification model training [131, 162].

4.3.3 PDR

Generally, PDR consists of three main components: step detection, stride length

estimation and Heading estimation.

Step detection As the most popular method for accurate step detection, peak

detection is employed in this work, which relies on the repeating fluctuation pat-

terns during human movement. Using the smartphone’s accelerometer to deter-

mine whether the pedestrian is stationary, or walking is straightforward as it di-

rectly reflects the moving acceleration. The magnitude of acceleration in three

dimensions (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) instead of the vertical part is employed as the input for

peak findings to improve the accuracy, which can be expressed as:

𝑎 =
√︁

𝑎2𝑥 + 𝑎2𝑦 + 𝑎2𝑧 (4.2)

where 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 denotes the three-axis accelerometer values in the smartphone

[157]. A peak is detected when 𝑎 is greater than the given threshold. To further

enhance the performance, the low-pass filter is further applied to the magnitude to

reduce the signal noise. Due to the acceleration jitter, the incumbently detected

peak points need to be eliminated. Hence, an adaptive threshold technique of the

maximum and minimum acceleration is adopted to fit different motion states with

a time interval limitation between adjacent detected steps.
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Stride length estimation Various linear and nonlinear methods are proposed

to estimate the step length, which varies from person to person because of different

walking postures determined by various factors, including height, weight, and step

frequency. Therefore, it is not easy to precisely construct the same step-length

estimation model. Some researchers assume that the step length is a static value

affected by the individual characteristics of different users. On the contrary, the

empirical Weinberg model estimates the stride length according to the dynamic

movement state, which is closer to reality [148]. The model is given by:

𝑆𝐿 = 𝑘 4
√
𝑎max − 𝑎min (4.3)

where 𝑘 is the dynamic value concerned with the acceleration of each step and

𝑎max , 𝑎min are the maximum and minimum accelerations for each step [28].

Heading estimation Heading information is a critical component for the entire

PDR implementation, which seriously affects localization accuracy. To avoid the

cumulative error in the direction estimation based on the gyroscope, and short-

term direction disturbances based on the magnetometer, the combination of the

gyroscope and magnetometer is typically adopted for heading estimation [157].

The current magnetometer heading signals, current gyroscope readings, and pre-

viously fused headings are weight-averaged to form the fused heading. The weight-

ing factor is adaptive and is based on the magnetometer’s stability as well as the

correlation between the magnetometer and the gyroscope [28]. As they are already

fused in the rotation vector achieved from the rotation sensor in the smartphone,

the heading change can be calculated by a rotation matrix transformed from the

rotation vector [158]. The rotation vector is defined as: [𝑥, 𝑦, 𝑧, 𝑤], and the matrix

is defined as 𝑀,𝑀 ∈ 𝑅3×3. The heading direction on three dimensions can be
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evaluated by:

𝑀 =

⎡⎢⎢⎢⎣
𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1− 2𝑦2 − 2𝑧2 2𝑥𝑦 − 2𝑧𝑤 2𝑥𝑧 + 2𝑦𝑤

2𝑥𝑦 + 2𝑧𝑤 1− 2𝑥2 − 2𝑧2 2𝑦𝑧 − 2𝑥𝑤

2𝑥𝑧 − 2𝑦𝑤 2𝑦𝑧 + 2𝑥𝑤 1− 2𝑥2 − 2𝑦2

⎤⎥⎥⎥⎦ (4.4)

𝜃 =

⎡⎢⎢⎢⎣
𝑎𝑟𝑐𝑡𝑎𝑛2(𝑀12, 𝑀22)

𝑎𝑟𝑐𝑠𝑖𝑛 (−𝑀32)

𝑎𝑟𝑐𝑡𝑎𝑛2(−𝑀31,𝑀33)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑎𝑟𝑐𝑡𝑎𝑛2(2𝑥𝑦 − 2𝑧𝑤, 1− 2𝑥2 − 2𝑧2)

𝑎𝑟𝑐𝑠𝑖𝑛(−2𝑦𝑧 − 2𝑥𝑤)

𝑎𝑟𝑐𝑡𝑎𝑛2(2𝑦𝑤 − 2𝑥𝑧, 1− 2𝑥2 − 2𝑦2)

⎤⎥⎥⎥⎦ (4.5)

4.3.4 Landmark Identification

Autoencoder is a type of unsupervised neural networks that can be used to learn

feature representation of data. It learns the feature representation by training the

network to reconstruct the data at the output layer. Each autoencoder consists

of three parts: encoder, compressed features and output, whereby the compressed

features extracted by encoder are sent to the decoder part to reconstruct the

input. Many variants are proposed to solve different problems, such as the sparse

autoencoder, variational autoencoder and denoising autoencoder [139]. Denoising

autoencoder is a useful variant of vanilla autoencoder to learn a robust feature

representation by introducing stochastic noise to the input data and the critical

part will be reconstructed from the corrupted data [53, 40].

Usually, the denoising autoencoder are built by fully connected layers. Since

the sensor data flow has a strong 1D structure that the previous state and the next

state connect tightly. 1D convolution operation can efficiently capture the local

correlation features by limiting the hidden units’ receptive field to be local. CNN

considers each frame of sensor data as independent and extracts the feature for

these isolated portions of data without considering the temporal context beyond

the boundaries of the frame. Due to the continuity of sensor data flow produced by

user behavior, local correlation and long-term connections are both important to
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identify the landmark [162]. While LSTM with learnable gates, which modulate

the flow of information and control when to forget previous hidden states, as a

variant of vanilla Recurrent Neural Networks (RNN), allows a neural network to

effectively extract the long-range dependencies of time-series sensor data.

Figure 4-2: The block diagram of landmark identification

The structure of the landmark identification module is shown in Figure 4-

2. When preprocessed data segmentation of multiple sensors comes, features in

different domains are automatically extracted by unsupervised featuring learning

pipelines based on denoising autoencoders implemented by alternatively stacked

1D convolutional layer and 1D max-pooling layer and multiple LSTM layers, re-

spectively. Denoising autoencoder extracts the robust feature, both short-time

correlation and long-term dependencies from the sensor data corrupted by envi-

ronmental noise. Finally, features extracted by encoder parts will be concatenated

to train a classification model used in online predicting phase to identify land-

marks to improve the localization accuracy and the performance of navigation

based on the landmark map. The indoor landmark map can be generated based

on the relative distance of different landmarks calculated by PDR, with the help of

multidimensional scaling techniques which are commonly used to find the spatial

relationship based on dissimilarity information, such as the relative distance in
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this work, between objects.

4.4 Performance Evaluation

In this section, we evaluate the performance of proposed methods on the dataset

we collected on the fourth floor of the Building 1, at the Center Zone of Kyushu

University’s Ito campus.

4.4.1 Data Collection

Figure 4-3: The floor plan in our experiment

For recording sensor data flow, we used the built-in sensors of a smartphone

(Pixel 4a) and developed an Android application that periodically read and stored

the readings. To collect the sensor dataset when the landmark passed and build

the landmark map, five participants were invited to collect the data. During each

collection, participants were required to keep their phones in hand and walk with

them held to their chest level. They were also required to record the timestamp

of passing by the landmark and the identification of the landmark. Landmark

information they passed are the type of scenario, the type of landmark, and the

moment of passing by the landmark.
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After data preprocessing, some statics with a brief description of the clean

dataset are shown in Table 4.1. There are 9,271 samples in total for all 27 land-

marks, including almost all (toilet are not included, only one door selected of room

1401 and 1409, and no landmark for room 1410) the corners, stairs, elevators and

two doors, which is assumed to be open during our experiment of each room of

the corridor, shown on Figure 4-3.

Table 4.1: Landmark identification performances of different models in the col-
lected dataset

Users S. Rate # Landmark # Samples Sensors

5 50Hz 27 9271 A,G,R,B

4.4.2 Hyperparameter Settings

The landmark identification model is trained on the collected data with different

hyperparameters, which are listed in Table 4.2. Keras framework with Tensor-

Flow backend is used for the implementation of the classifier to minimize the

cross-entropy loss. Both LSTM and 1D CNN share the same parameters, if not

specifically summarized. The number of hidden layers represents the number of

encoder layers, the same number of layers on decoder parts.

4.4.3 Results and Discussion

Visual results Figure 4-6 depicts the landmark graph generated by our system

based on all the data we collected. The map presented in both Figure 4-5 and

Figure 4-4 are very similar to the ground truth in Figure 4-3. The difference

between these two landmark maps is whether the door landmark was selected or

not. Doors are usually not selected as a landmark in existing systems, while the

building where we conduct our experiments is a teaching building, and many people

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 4. Mapless Indoor Navigation based on Landmarks 54

Table 4.2: Training hyperparameters

Hyperparameters Value

Optimizer Adam

Batch size 64

Dropout rate 0.5

Filter size 5

Learning rate 0.002

Input vector size 128

Input channels 12

Number of epochs 800

Number of hidden layers 2

Units of hidden layers 64

come to study or take classes in the classroom. Therefore, we spend triple time

to obtain the landmark map with door in, as a frequently visited location, we still

choose the doors of the classroom as an important kind of landmark, which makes

the map more comprehensive and guides people to the greatest extent possible.

Landmark Identification. The landmark identifications are performed using

the collected data, which were divided into training set and test set randomly

without overlap between these two datasets. There are a total of 27 landmarks,

and most of them are similar, which can be divided into four categories in total,

including half-occupied doors, corners, stairs, and elevators.

We evaluated the classification performance of proposed approaches for four
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Figure 4-4: The landmark-based indoor map without door

Figure 4-5: The landmark-based indoor map with door

kinds of landmark. The recognition result is presented by the confusion matrix

in Table 4.3. The confusion between the individual labels is small. Many other

landmarks are misclassified as doors, which mainly because people have to make

the same movement when entering and exiting the classroom as they do around
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Table 4.3: Confusion matrix for the kinds of landmark classification

Prediction/Truth Doors Corners Elevators Stairs

Doors 1578 10 1 0

Corners 20 652 2 0

Elevators 13 18 280 0

Stairs 2 2 4 140

corners, turning a direction and continuing to walk. The same situation occurs in

elevator detection, mainly when entering and exiting elevators. Figure 4-6 is the

classification confusion matrix on 27 landmarks of the experiment conducted floor.

Indoor navigation We test the navigation service based on the generated land-

mark graph. In this experiment, four different routes are randomly selected. We

reached each destination by following the landmark based indoor relative map with

different wrong steps. Most of the wrong steps are at the beginning to identify the

landmark, in which people have to move more than three steps to start the land-

mark identification model and plenty of space near the landmark. Additionally,

if it is the incorrect landmark detected, users will be misguided, which happens

in the fourth trail. There are three different directions near Room 1401 for users

to start the walking, and the wrong direction is chosen without landmark identi-

fication at the first several steps. While it can be corrected during movement in a

large area. Nevertheless, the results show that the proposed approach is accurate

as an infrastructure-free indoor navigation system.
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Figure 4-6: Confusion matrix for landmark identification

Table 4.4: Navigation result

Start Point End Point Total steps Wrong Steps

#1 Front door of
Room 1404

Front Door of
Room 1401

77 2

#2 Elevator near
Room 1404

Front door of
Room 1409

96 3

#3 Stairs near
Room 1401

Stairs near
Room 1403

69 5

#4 Corner near
Room 1401

Front door of
Room 1404

41 12
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4.5 Conclusion

In this paper, based on the sensor data flow from smartphone built-in sensors,

including an accelerometer, a gyroscope, a barometer, and a virtual rotation sen-

sor fused by inertial sensors, indoor navigation with the help of spatial landmark

identification and PDR to generate the indoor map is achieved. What’s more,

the landmarks, such as stairs, elevators, corners, and doors are distinguished by

denoising autoencoder for automatically extracting the features without the re-

quirement of extra infrastructure to significantly eliminate the laborious manual

feature design. The effectiveness of this framework is demonstrated by extensive

experiments based on the collected data.
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Chapter 5

Indoor Spatiotemporal Contact

Analytics Using Landmark-Aided

Pedestrian Dead Reckoning on

Smartphones

5.1 Introduction

The worldwide COVID-19 pandemic has brought about many changes in our daily

lives and struck a devastating blow to the global economy. It is widely recog-

nized that airborne transmission serves as the primary pathway for the spread of

COVID-19 via expiratory droplets, especially in indoor environments [115]. During

the viral outbreak, many people were infected due to exposure to virus droplets

generated by human ex-halation activities [88, 140, 77]. Some infected patients

spread the virus unknowingly without properly being examined because there is

an incubation period that varies for different mutations and asymptomatic patients

who never experience apparent symptoms [38]. Reliable and efficient tracing and

quarantining have become more important than ever to alert individuals to take
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actions to interrupt the transmission between people and further curb the spread

of the disease. Contact tracing involves identifying, assessing, and managing peo-

ple who are at risk of the infection, and tracking subsequent victims as recorded

by the public health department [7]; contact tracing can be performed via manual

or digital methods. Since the manual contact tracing is labor-intensive and time-

consuming and may be incomplete and inaccurate due to forgetfulness; automatic

digital contact tracing has been widely researched in recent years [97]. Usually,

digital contact tracing applications are installed on portal devices, typically smart-

phones, to conveniently and intelligently realize tracing with the help of existing

sensors based on various technologies, such as a GNSS, Bluetooth, and Wi-Fi.

Contact tracing in indoor environments can complement the ones used in out-

door environments to enable comprehensive digital contact tracing. However, in-

door contact tracing imposes unique technical challenges due to virus concentra-

tions and unreliable GNSS signals in indoor environments [72]. The virus con-

centration, which plays a critical role in calculating the amount of a virus we are

exposed to and further assesses the infection risk, should be explicitly considered

in indoor contact tracing applications [140, 35]. The quantitative infection risk for

a susceptible person is significantly associated with the quantity of the pathogen

inhaled in the surrounding ambient air, from the respiratory droplets exhaled by in-

fected individuals [11]. Thus, inhaling a large amount of the virus in a short period,

i.e., under the 15 min time mark, can greatly increase the infection risk, especially

for so-called “superspreading events”, which invariably occur indoors [21]. More-

over, the majority of time has to be spent by people in indoor contexts with plenty

of daily activities performed. However, GNSS-based approaches do not work well

in indoor environments due to signal attenuation. Phone-to-phone pairing-based

methods using Bluetooth low energy (BLE) work only for direct face-to-face con-

tact tracing scenarios and are inapplicable to indirect virus exposure in ambient

aerosols. The expelled pathogen-containing particles can remain active in the air
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for hours without sufficient sanitization, especially in indoor environments, con-

structing a significant fraction of the virus concentration [140]. Recently, vContact

was proposed as a means to detect exposure to the virus with the consideration

of asynchronous contacts by leveraging Wi-Fi networks, while the spatiotemporal

dynamism in the virus concentration is not fully being considered [72].

Although the virus concentration will gradually decrease due to inactivation,

deposition, and air purification after the virus-laden droplets are exhaled, the

poor air ex-change rate, superspreaders, and more virulent variants will keep it

at a relatively high concentration for a long time in an indoor environment [35,

18]. The viral particles are continuously ejected by infected people at different

locations, relying on human movement. Moreover, due to the initial motion state

and environmental airflow, these droplets maintain a ceaseless transmission before

they are removed and meet somewhere (at some time), which leads to constant

changes in the virus concentration within the control volume [142]. To accurately

estimate the concentration, investigating the airborne transmission of these ejected

particles is, thus, of fundamental importance in a closed environment because of the

assemblage, in which human movement is implicitly involved to achieve the initial

motion state of droplets [142]. The qualitatively location-specific assessment of the

viral concentration is proposed with the dual use of computational fluid dynamic

simulations and surrogate aerosol measurements for different real-world settings

[100]. Moreover, the transmission of the virus brings about changes in the viral

concentration of a specific location in an overall space, as well as the movements

of people. Z. Li et al. analyzed the dispersion of cough-generated droplets in the

wake of a walking person [77].

To be precisely aware of the amount of the virus one is exposed to and to

detect both direct and indirect contacts, an indoor spatiotemporal contact aware-

ness (iSTCA) framework is proposed. Since the virus concentration (at different

times in the same area) is not the same because of the dispersion and diffusion of
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the virus and human movements, we employed a self-contained PDR technique to

calculate the human trajectory with accuracy and further achieve the location and

time of the expelled virus droplets for the quantitative measurement of the concen-

tration at any time in different spots. Moreover, based on the acquired changing

virus concentration and reliable trajectories, the exposure time and distance of

both direct and indirect contacts can be derived via cross-examination to realize

quantitative spatiotemporal contact awareness.

Our main contributions are as follows:

1. To accurately present the virus concentrations at different times, we estab-

lished quantitative virus concentration changes in various areas of indoor

environments at different times by infected individuals. The viral-laden

droplets were continuously released during the expiratory activities, moving

forward. During the movements of viral-loaded droplets exhaled by infec-

tious individuals at different locations and times, the virus instances met in

certain spots at certain times and contributed to the calculation of the con-

centration. Finally, the concentration of each virus instance was integrated.

2. We employed PDR for the acquisition of the trajectory to conduct contact

awareness without requiring extra infrastructure or being affected by cover-

age limitations compared with other indoor positioning techniques.

3. We considered various landmarks to calibrate the cumulative error for trajec-

tory achievement by using PDR. A custom deep neural network using bidi-

rectional long short-term memory (Bi-LSTM) and multi-head CNNs with

residual concatenations was designed and implemented to extract tempo-

ral information in forward and backward directions and spatial features at

various resolutions from built-in sensor readings for landmark identification.

4. Additionally, we demonstrate the effectiveness of the proposed Bi-LSTM-

CNN classification model for landmark identification through empirical ex-
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periments, as well as the performance of our proposed iSTCA system for

quantitative spatiotemporal contact analytics.

The remainder of this part is organized as follows. The related work about

contact awareness and indoor localization techniques, including PDR, is reviewed

in Section 5.2. Definitions and preliminaries about virus concentrations and dif-

ferent contact types are introduced in Section 5.3. Section 5.4 introduces the

theoretical methodology and the architecture of the proposed iSTCA. The exper-

imental methodology and results based on the collected datasets are presented in

Section 5.5. Section 5.6 reveals the limitations of this work. Finally, we present

the conclusion and future work in Section 5.7.

5.2 Related Work

Contact tracing is used to identify and track people who may have been exposed

to a virus, due to the prevalence of many infectious diseases in our society. To

conduct contact tracing, it is necessary for the infected individuals to provide their

visited locations and people whom they encountered based on the specific defini-

tions of meetups for different diseases. Instead of interviews and questionnaires

via traditional manual tracing, technology-aided contact tracing can track people

at risk conveniently and intelligently. To reduce the spread of COVID-19 effec-

tively, digital contact tracing, which generally depends on applications installed

on smartphones, has been developed in both academia and industry, using various

technologies, such as GNSS, Bluetooth, and Wi-Fi.

There are typically two approaches for encounter determinations, peer-to-peer

proximity detection-based and geolocation-based. Peer-to-peer proximity can be

estimated by the RSS of wireless signals, such as Bluetooth and UWB, and the

distance between two devices in geolocation-based approaches can be precisely

derived from the cross-examination after obtaining the accurate location and tra-
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jectory with the help of localization techniques using various technologies, such as

GPS, Wi-Fi, and PDR.

Some systems based on peer-to-peer proximity using Bluetooth or BLE have

been implemented, and part of them are deployed by the governments of various

countries, such as Australia (COVIDSafe), Singapore (Trace together), and the

United Kingdom (NHS COVID-19 App) due to their ubiquitous embedding in

mobile phones [116]. Among these systems, the most representative protocols are

Blue Trace and ROBERT [21, 10]. The data from Bluetooth device-to-device com-

munications are stored and checked against the data uploaded by the infector. In

Blue Trace, the health authority contacts individuals who had a high probability

of virus exposure, whereas ROBERT users need to periodically probe the server

for their infection risk scores. In addition, Google and Apple provide a broadly

used toolkit based on Bluetooth, named Google and Apple Exposure Notification

(GAEN), to facilitate a contact tracing system in Android and iOS and curb the

spread of COVID-19 [69]. Despite some minor differences in implementation and

efficiency, these schemes are all independently designed and very similar. When

exposure is detected, the RSS in the communication data frame is utilized to esti-

mate the distance between two devices and notify the user. However, it has been

demonstrated that the signal strengths can only provide very rough estimations

of the actual distances between devices, as they are affected by device orientation,

shadowing, shading effects, and multipath losses in different environments [68, 70].

Although it is difficult to measure the distances among users accurately by using

Bluetooth and other technologies, the UWB radio technology has the capacity to

measure distances at the accuracy level of a few centimeters, which is significantly

bettering than Bluetooth [52]. The use of UWB, however, has some significant

drawbacks, including the fact that UWB is not widely supported by mobile de-

vices, requires extra infrastructure, and is not energy efficient, which makes UWB

less useful in practice [14]. All of the above works that are based on calculated
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proximity using RSS do not consider the user’s specific physical location, resulting

in unsatisfactory tracing results. Moreover, these approaches cannot be applied to

the detection of temporal contact due to the dispersion and lifespan of the virus.

To achieve accurate geolocation in contact tracing, plenty of localization sys-

tems have been researched with the joint efforts of researchers and engineers in

the past based on GNSS, cellular technology, RFID, and quick response (QR) code

[97]. GNSS can be used for contact tracing as the exact position of a person can be

located and it is available globally. Many countries, including Israel (HaMagen 2.0)

and Cyprus (CovTracer), use GPS-based contact tracing approaches [116] as well.

GNSS signals are usually weak in indoor environments due to the absence of the

line of sight and the attenuation of satellite signals, as well as the noisiness of the

environment. Many people may spend most of their time in indoor environments,

which can result in limited contact coverage. It is difficult to detect contact based

on cellular data due to the large coverage of cell towers and high location errors

[72]. RFID was used to reveal the spread of infectious diseases and detect face-to-

face contact in [109, 51]. QR codes for contact tracing require users to check in at

various venues by scanning the placed QR codes manually to record their locations

and times, which are deployed in some countries, such as New Zealand (NZ COVID

Tracer) [116]. However, special devices or codes have to be deployed at scale for

data collection. Recently, some protocols were proposed for Wi-Fi-based contact

tracing with the pre-installed Wi-Fi Access Point. WiFiTrace was proposed by

proposed in [133]. WiFiTrace is a network-centric contact tracing approach with

passive Wi-Fi sensing and without client-side involvement, in which the locations

visited are reconstructed by network logs; graph-based model and graph algorithms

are employed to efficiently perform contact tracing. Wi-Fi association logs were

also investigated in [127] to infer the social intersections with coarse collocation

behaviors. Li et al. utilized active Wi-Fi sensing for data collection; they lever-

aged signal processing approaches and similarity metrics to align and detect virus
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exposure with temporally indirect contact [72]. As the changes in virus concentra-

tions over time (due to the transmission of aerosols and environmental factors) are

not considered, their results are in relatively low spatiotemporal resolutions. The

approach presented in [134] divides contact tracing into two separate parts, dura-

tion and distance of exposure. The duration is captured from the Wi-Fi network

logs and the distance is calculated by the PDR positioning trajectory, calibrated

by recognized landmarks with the help of a CNN, ensuring the performance of

contact tracing. Although integration with the existing infrastructure is benefi-

cial in mitigating the deployment costs, it may not fully satisfy the requirements

of contact tracing with the high spatiotemporal resolution because of the absent

coverage [39]. The trajectory obtained by the PDR technique, without requiring

special infrastructure, can improve the coarse-grained duration and make it fine-

grained. This can enable the development of a contact-tracing environment that

considers the virus lifespan in detail.

One of the ultimate goals of contact awareness systems is to estimate the risk

based on the recorded encounter data [60]. Moreover, with the exposure duration

and distance obtained, the virus concentration is significant to determine the ex-

posed viral load, which is closely associated with the infection risk [119]. Typically,

the virus concentration in a given space depends on the total amount of viral load

contained in the viable virus-laden droplets in the air and maintains a downward

trend because of the self-inactivation and environmental factors. Researchers pre-

sented the qualitative location-specific assessment of viral concentration with the

dual use of computational fluid dynamic simulations and surrogate aerosol mea-

surements for different real-world settings [100]. The practical viral loads emitted

by contagious subjects based on the viral loads in the mouth (or sputum) with

various types of respiratory activities and activity levels are presented in [119].

Furthermore, to quantitatively shape the virus concentration in a targeted envi-

ronment at different times, the constant viral load emission rate is adopted with
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the virus removal rate, including the air exchange rate, particle sediment, and viral

inactivation rate in [19].

The aforementioned contact tracing research usually only considers the static

virus concentration without considering the exposure to the environmental virus

and dynamism in the virus concentration. Moreover, in contrast to the qualitative

estimation of exposure risks that can be achieved in previous works, there is a lack

of sufficient quantitative awareness about the concentrations of contracted viruses.

Such awareness would be useful in our daily lives to protect ourselves from virus

infections.

5.3 Definitions and Preliminaries

Virus-encapsulating secretions are continuously exhaled and aerosolized into air-

borne virus-laden particles with infectivity from daily expository activities. There

is a great difference between the size and number of droplets expelled, depending

on their origin locations in the respiratory tract [77]. The time and distances of

these droplets traveling in indoor environments largely depend on the expiration

air jet, particle weight, and ambient factors. The movements and the viral loads of

virus-containing particles are directly associated with the virus concentrations in

different regions. To quantitatively become aware of the exposure of the virus, the

quanta concentration as a medical virus concentration indicator, virus airborne

pattern, and various contact types are present.

5.3.1 Quanta Concentration

The viral loads of virus-containing droplets change after leaving the human expira-

tory tract with airborne transmission and a combination of environmental factors.

In particular, the viral load emitted is expressed in terms of the quanta emission

rate (𝐸𝑅𝑞, 𝑞𝑢𝑎𝑛𝑡𝑎 · ℎ−1), in which a quantum is defined as the dose of airborne
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droplet nuclei that infect 63% of susceptible persons with exposure [19]. The

quanta concentration in an indoor area at time 𝑡, 𝑞(𝑡) is measured by:

𝑞 (𝑡, 𝐸𝑅𝑞) = 𝑁𝐼 ·
𝐸𝑅𝑞

𝑅𝑅𝑖𝑣 · 𝑉
+

(︂
𝑞0 +𝑁𝐼 ·

𝐸𝑅𝑞

𝑅𝑅𝑖𝑣

)︂
· 𝑒

−𝑅𝑅𝑖𝑣 ·𝑡

𝑉
(𝑞𝑢𝑎𝑛𝑡𝑎 ·𝑚−3) (5.1)

where 𝐸𝑅𝑞 is the quanta emission rate of the infector (measure in 𝑞𝑢𝑎𝑛𝑡𝑎 · ℎ−1),

𝑞0 is a constant declaring the initial number of quanta in the space, 𝑉 (𝑚3) is

the target indoor volume, 𝑁𝐼 represents the number of infected individuals in the

investigated volume, 𝑅𝑅𝑖𝑣 (ℎ−1) is the removal rate for the infectious virus in the

considered spaces [19]. 𝑅𝑅𝑖𝑣 consists of three contributions, the air exchange rate

(AER) via ventilation, the deposition on surface rate (𝑘) caused by gravitational

sedimentation and turbulent eddy impaction, and the viral inactivation rate (𝜆).

The typical 𝑘 is 0.24 ℎ−1 and the inactivation rate 𝜆 of viable COVID-19 particles

in a typical indoor environment without sunlight is generally 0.63 ℎ−1, as indicated

in [19, 136]. The 𝐸𝑅𝑞 is determined by the viral load in sputum, the volume of

signal droplets, and the quantity of all expelled droplets per exhalation. Thus, the

quanta concentration 𝐸𝑅𝑞 is modeled as:

𝐸𝑅𝑞 = 𝑐𝑣 · 𝑐𝑖 · 𝐼𝑅 ·
∫︁

𝑁𝑑(𝐷) · 𝑑𝑉𝑑(𝐷) (𝑞𝑢𝑎𝑛𝑡𝑎 · ℎ−1) (5.2)

where 𝑐𝑣 represents the viral load in the sputum of the infector (RNA copies·𝑚𝐿−1),

𝐼𝑅 is the inhalation/exhalation rate produced by the breathing rate and tidal

volume, 𝑁𝑑 is the droplet concentrations in different expiratory activities of the

infected person (𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 · 𝑐𝑚−3), 𝑉𝑑 is the volume of a single droplet (𝑐𝑚3) with

the function of particle diameters 𝐷, and 𝑐𝑖 is the conversion factor, presenting

the ratio between one infectious quantum and the infectious dose expressed in the

viral RNA copies [119]. There is a wide range of variations in the quanta emission

estimation via Equation (2), depending on these and other factors, such as virus

concentration in the mouth, activity level, and the type of coughing or exhaling.
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With light exercise and speaking, a quanta concentration of 142 (𝑞𝑢𝑎𝑛𝑡𝑎 ·ℎ−1) can

be obtained, which was widely adopted in many works [119].

5.3.2 Spatial–Temporal Contact

COVID-19 contained in expiratory droplets and expelled from the infector is trans-

ported and dispersed in the ambient airflow before finally being removed, inacti-

vated, and inhaled by a susceptible. There are a number of factors that contribute

to the droplet’s movement, such as the horizontally emitted velocity, the particle

weight and the external environment. Occasionally, coughing and sneezing gen-

erate more particles with higher initial velocities (11.7 𝑚 · 𝑠−1 for coughing) and

virus quanta concentrations, while constantly performed breathing and speaking

(3.9 𝑚 ·𝑠−1 for speaking) produce fewer particles with relatively lower initial veloc-

ity and virus quanta concentrations [119]. Large droplets usually settle quickly in

a few seconds or minutes owing to gravitational sedimentation and are evaporated

into small nuclei in indoor environments, where the particle can disperse for a

long distance in the vaporization process. Tiny particles, including ones that are

evaporated and originally expelled, are trapped and carried continuously forward

within a moist, warm, turbulent cloud of gas, with the help of airflow movement.

To facilitate the calculation, the movement of each virus-laden droplet expelled at

each moment is independent and divided into two stages, maintaining a uniform

motion with the initial horizontal velocity (e.g., 3.9 𝑚 · 𝑠−1), being well-mixed

within the moved space in the first phase (e.g., 1𝑠), and then instantaneously and

evenly distributed in the overall considered space.

The contact in COVID-19 contact tracing is originally equivalent to direct

face-to-face contact, while due to the transmission of the virus and survival time

in the air, more cases of indirect contact have emerged [88]. Here, indirect contact

mainly represents the asynchronous time contact, called temporal contact. Direct

and indirect contacts are types of spatiotemporal contacts. If there is no time
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difference between two people, and only a spatial distance is presented, it is called

spatial contact. Similarly, if there is no space difference between two people, and

only a temporal distance is presented, it is called temporal contact. There are time

and space gaps, a mixture of two single cases, called spatiotemporal contacts. Since

both the time and space differences would decrease the virus quanta concentration,

it is necessary to obtain the accurate value for the precise awareness of the virus

quanta concentration.

5.4 Methodology

This work utilizes the trajectories, including the spatial position coordinates and

time obtained by the PDR technique to quantitatively estimate the time-dependent

changes in the virus quanta concentration derived from the movement and lifespan

of the virus in various places of the considered indoor environment. The overview

of the proposed scheme is systematically introduced in Section 5.4.1. In Section

5.4.2, we provided the data processing approaches utilized in PDR-based trajectory

construction and the estimation of droplet exhalation. The PDR technique (with a

calibration of the landmark recognized by a landmark identification model based on

a residual Bi-LSTM and CNN structure) is discussed in Section 5.4.3. Further, the

contact awareness model relying on the precisely constructed pedestrian trajectory

is detailed in Section 5.4.4.

5.4.1 System Overview

An overview of the proposed iSTCA system is presented in Figure 5-1. More pre-

cisely, the data flow of various sensors for the analysis was primarily collected from

the existing sensors in handhold smartphones, which record the changes in the en-

vironment and body motion. The signals need to be processed, including data

filtering and scaling, to reduce the noise for a better state of motion estimation
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before training the landmark identification model and performing the PDR. The

trajectory can be achieved based on the PDR technique and properly corrected

with the assistance of the identified landmark distinguished by the trained land-

mark recognition model. The trajectory is defined as a set of points consisting of

the time and position, {(𝑡0, 𝑥0, 𝑦0), (𝑡1, 𝑥1, 𝑦1), · · · (𝑡𝑛, 𝑥𝑛, 𝑦𝑛)} where (𝑥𝑖, 𝑦𝑖) repre-

sents the location coordinates and 𝑡𝑖 is the moment when the individual passes the

location. The virus quanta concentrations in different spaces at various moments

can be measured quantitatively to achieve sufficient awareness with the help of the

estimated spatial distance, temporal distance and infectivity model, as shown in

Equation 5.1.

Figure 5-1: Overview of iSTCA

5.4.2 Data Preprocessing

In order to integrate data from various sensors for the purpose of landmark cal-

ibrated PDR, the requisite data preprocessing methodologies are identical to the

data preprocessing approaches delineated in Section 4.3.2, Chapter 4, involving

data alignment, data interpolation, data filtering, data scaling and data segmen-

tation.
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5.4.3 PDR-Based Trajectory Construction Model

For the quantitative evaluation of the virus quanta concentration, the precise spa-

tial distance and temporal difference between two individuals should be efficiently

estimated. To reach this objective, a diverse range of indoor localization techniques

have been investigated for various scenarios. The widely studied fingerprinting-

based method relies on the latest fingerprint database that needs to be precisely

updated in time. In addition to the time-consuming and labor-intensive collection

and re-establishment, the instability of RSS due to environmental uncertainties

poses another challenge to the accuracy [126]. Moreover, coverage and distribu-

tion are also not satisfied in countries with poor ICT infrastructure [63]. Therefore,

the self-contained PDR algorithm without extra requirements and coverage lim-

itations is employed in this work, and its accuracy is improved by the identified

landmark.

PDR

Since PDR does not need additional equipment or a pre-survey, it has a wide range

of potential applications for the indoor positioning of pedestrians. It relies on the

inertial sensors extensively existing in mobile devices, e.g., smartphones, to acquire

information about the user’s movements, which are then combined with the user’s

previous location to estimate the present position and further achieve complete

trajectory. The equation utilized for location estimation is as follows:⎧⎨⎩ 𝑥𝑡 = 𝑥𝑡−1 + 𝑆𝐿𝑡 sin 𝜃𝑡

𝑦𝑡 = 𝑦𝑡−1 + 𝑆𝐿𝑡 cos 𝜃𝑡
(5.3)

where (𝑥𝑡, 𝑦𝑡) is the pedestrian position at time 𝑡, 𝑆𝐿𝑡 is the step length, and 𝜃𝑡

details the heading direction of the pedestrian [76].

As mobile technology continues to evolve, a growing number of physical sensors

are being installed in smartphones and, thus, various combinations of sensors can
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provide increasingly rich information, which makes PDR more feasible and accessi-

ble. A typical PDR system is comprised of three primary elements: step detection,

step-length estimation, and heading estimation [82]. Each of these components is

expounded upon in Section 4.3.3, Chapter 4.

Landmark Identification Model

Although PDR methods can estimate the location and trajectory of pedestrians,

low-cost inertial sensors built into smartphones provide poor-quality measure-

ments, resulting in accuracy degradation. Moreover, the cumulative error, includ-

ing the heading estimation caused by the gyroscope and step-length estimation

error caused by an accelerometer, could be produced in the long-term positioning

using PDR, increasing the challenge of precise localization collection. Therefore,

it is necessary to prepare the reference points with the correct positions known

during the movement to reduce the accumulated errors when the user passes. Spa-

tial contexts, such as landmarks, can be selected to calibrate the localization error

based on the inherent spatial information without additional deployment costs.

Landmark is defined as a spatial point with salient features and semantic charac-

teristics from its near environment in indoor positioning systems, such as corners,

stairs, and elevators [39]. These features can be observed for identification in one

or a combination of different sensors as people pass through the landmark. The

locations of these landmarks are presented by geographical coordinates or the rela-

tionships with other locations/areas, where people perform specific and predictable

activities. Changes in motion are reflected in sensor readings, and different mo-

tions present different patterns. The specific activities that people perform when

passing landmarks are also reflected in at least one sensor. Using the data of one

sensor or the combination of data from multiple sensors, the changing pattern of a

specific activity can be identified, and then the landmark can be recognized [47].

The identified landmark can be used as an anchor point to correct the path we
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obtained and improve the performance of the calculated trajectory.

Landmark identification involves classifying the sequences of various sensor

data recorded at regular intervals by sensing devices, usually smartphones, into a

well-defined landmark, which has been extensively regarded as a problem of multi-

variate time series classification. To address this issue, it is critical to extract and

learn the features comprehensively to determine the relationship between sens-

ing information and movement patterns. In recent years, numerous features have

been attained in many studies on certain raw signal statistical aspects, such as

variance, mean, entropy, kurtosis, correlation coefficients, or frequency domains

via the integration of cross-formal codings, such as signals with Fourier transform

and wavelet transform [95]. Moreover, the special thresholds of different features

for various kinds of landmark recognition are specifically analyzed. For instance,

the threshold of angular velocity produced by a gyroscope is usually used to de-

tect the corner landmark, the acceleration changes can recognize the stairs. The

combinations of different thresholds of various sensors forming the decision tree

can detect the standing motion state to further distinguish common landmarks,

such as corners, stairs, and elevators [167, 144]. However, despite high accuracy,

the calculation, extraction, and selection of features of different sensors for various

landmarks are heuristic (with professional knowledge and expertise of the specific

domain), time-consuming, and laborious [95].

To facilitate feature engineering and improve performance, artificial neural net-

works based on deep learning techniques have been employed to conduct activity

identification without hand-crafted extraction. Deep learning techniques have been

applied in many fields to solve practical problems with remarkable performance,

such as image processing, speech recognition, and natural language processing, to

solve practical problems [62, 66]. Many kinds of deep neural networks have been

introduced and investigated to handle landmark identification based on the com-

plexity and unsurenesss of human movements. Additionally, CNN and LSTM are
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widely adopted with high accuracy rate activity recognition among the applied

networks. CNN is commonly separated into numerous learning stages, each of

which consists of a mix of convolutional operation and nonlinear processing units,

as follows:

ℎ𝑘 = 𝜎(
∑︁
𝑙∈𝐿

𝑔
(︀
𝑥𝑙, 𝑤𝑘

)︀
+ 𝑏𝑘) (5.4)

where ℎ𝑘 reveals the latent representation of the 𝑘-th feature map of the current

layer, 𝜎 is the activation function, 𝑔 denotes the convolution operation, 𝑥𝑙 indicates

the 𝑙-th feature map of the group of the feature maps 𝐿 achieved from the upper

layer, 𝑤𝑘 and 𝑏𝑘 express the weights matrix and the bias of the 𝑘-th feature map of

the current layer, receptively [130]. In our model, the rectified linear units (ReLU)

were employed as the activation functions to subsequently conduct the non-linear

transformation to obtain the feature maps, denoted by:

𝜎(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (5.5)

More importantly, the convolution operation in CNN can efficiently capture the

local spatial correlation features by limiting the hidden unit’s receptive field to be

local [143]. CNN considers each frame of sensor data as independent and extracts

the features for these isolated portions of data without considering the temporal

contexts beyond the boundaries of the frame. Due to the continuity of sensor data

flow produced by the user’s behavior, local spatial correlations and temporally

long-term connections are both important to identify the landmark [130]. LSTMs

with learnable gates, which modulate the flow of information and control when to

forget previous hidden states, as variants of vanilla RNNs, allow the neural network

to effectively extract the long-range dependencies of time-series sensor data [32].

The hidden state for the LSTM at time 𝑡 is represented by:

ℎ𝑡 = 𝜎(𝑤𝑖,ℎ · 𝑥𝑡 + 𝑤ℎ,ℎ · ℎ𝑡−1 + 𝑏) (5.6)
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where ℎ𝑡 and ℎ𝑡−1 are the hidden state at time 𝑡 and 𝑡 − 1, respectively, 𝜎 is the

activation function, 𝑤𝑖,ℎ and 𝑤ℎ,ℎ are the weight matrices between the parts, and

𝑏 symbolizes the hidden bias vector. The standard LSTM cells barely extract the

features from the past movements, ignoring the future part. To comprehensively

capture the information for landmark identification, the Bi-LSTM is applied to

access the context in both the forward and backward directions [31].

Figure 5-2: Architecture of the landmark identification model

Therefore, both Bi-LSTM and CNN are involved in capturing the spatial and

temporal features of signals for landmark identification. The architecture of the

proposed landmark identification is shown in Figure 5-2. It performs the func-

tion of landmark recognition using the residual concatenation for classification,

followed by Bi-LSTM and multi-head CNNs. When preprocessed data segmen-

tations of multiple sensors come, the inherent temporal relationship is extracted

sequentially by two Bi-LSTM blocks that consist of a Bi-LSTM layer, a batch nor-

malization (BN) layer, an activation layer, and a dropout layer. BN is a method

used to improve training speed and accuracy with the mitigation of the internal

covariate shift through normalization of the layer inputs by recentering and re-

scaling [152]. Next, multi-head CNN blocks with varying kernels size are followed

to learn the spatial features at various resolutions. Each convolutional block is
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made of four layers: a one-dimensional (1D) convolutional layer, a BN layer, an

activation layer, and a dropout layer. To accommodate the three-dimensional in-

put shape (samples, time steps, input channels) of the 1D convolutional layer, we

retain the output of the hidden state in the Bi-LSTM layer. Then the acquired

spatial and temporal features are combined, namely the concatenations of the out-

puts of the multi-head CNNs and Bi-LSTMs. To reduce the parameters and avoid

overfitting, the global average pooling layer (GAP) with no parameter to optimize

rather than the traditional fully connected layer is applied before combining the

outputs [131]. Finally, the concatenated features are transmitted into a BN layer

to re-normalize before being fed into a dense layer with a softmax classifier to

generate the probability distribution over classes.

5.4.4 Contact Awareness with Trajectory

Exhalation and inhalation respiratory activities are constantly alternating (e.g.,

each breath consists of 2.5𝑠 of continuous exhalation and 2.5𝑠 of continuous in-

halation), and droplets are continuously being released from the respiratory tract

with a horizontal velocity during the process of exhalation with the same direction

as the movement of the human. The particles exhaled at each moment will con-

tinue to move forward, starting from the user positions when they are expelled.

The viral droplets exhaled from the infectious host are transported and dispersed

into the ambient airflow before finally being inhaled by a susceptible person. Each

exhalation lasts several seconds (e.g., 2.5𝑠), in which a long distance can be traveled

for those who are in motion, and the initial position of droplets expelled cannot

be accurately estimated in an indoor environment. Therefore, once complete, the

exhalation period is divided into many short-term (e.g., 0.1𝑠) particle ejections.

Because the interval is short, the continuous virus exhalation process can be con-

verted into an instantaneous process, i.e., the virus is released instantly at the

beginning of each interval. The virus-laden droplets expelled at different inter-
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vals maintain independent and identical motion patterns and the initial positions

of the particles released in each interval can be regarded as the locations of the

people at the initial moments. The virus-containing particles maintain a uniform

motion of initially horizontal velocity (e.g., 3.9 𝑚 ·𝑠−1) in the first second and then

instantaneously will mix in the overall considered space. Meanwhile, the droplets

are evenly distributed within the moved space. In the first movement phase of the

exhaled droplets in each interval, the virus moves in the same direction as the peo-

ple travel, which is called forward transmission. As for the backward transmission,

in general, the initial velocity of the virus is faster than the speed of movement

and the speed of airflow, so in the first phase, very few virus particles move in the

opposite direction.

The movements of all viral-loaded droplets exhaled by infectious people at

different locations will meet somewhere at some time and contribute to the calcu-

lation of concentration. To precisely present the virus quanta concentrations, the

transmissions of all virus particles per exhalation sources from different origins and

in different states are assumed to follow the same patterns, in which the particles

keep constant initial velocity in the first second and then will instantly mix in the

overall space. The time it takes for the virus to move to the current point and

the contribution to the virus quanta in the present are estimated with the help of

spatial distance and velocity. Thus, the quanta concentration in an indoor area at

time 𝑡, 𝑞(𝑡, 𝐸𝑅𝑞) is measured by:

𝑞 (𝑡, 𝐸𝑅𝑞) =
𝑖=𝑁𝑣∑︁

𝑖

(︃
𝐸𝑅𝑖

𝑞

𝑅𝑅𝑖𝑣 · 𝑉 (𝑡𝑖)
·
(︁
1 + 𝑒−𝑅𝑅𝑖𝑣 ·𝑡𝑖

)︁
+

(︃
𝑞0 ·

𝑒−𝑅𝑅𝑖𝑣 ·𝑇

𝑉
+ 𝑞𝑖0 ·

𝑒−𝑅𝑅𝑖𝑣 ·𝑡𝑖

𝑉

)︃)︃
(5.7)

where 𝑅𝑅𝑖𝑣 is the virus removal rate of the target space, 𝑁𝑣 represents the virus

generated in different places at different moments, 𝐸𝑅𝑖
𝑞 is the of the quanta emis-

sion rate of the infector at which the virus (𝑖-th) is expelled, 𝑇 is the time difference
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from the start of the experiment to present, 𝑡𝑖 is the time difference between the

current time and the originating time of the virus (𝑖-th), 𝑉 (𝑡𝑖) is the volume of

the space that the 𝑖-th virus had passed since it was expelled to the present, 𝑞0

is the environmental virus quanta number, 𝑞𝑖0 is the virus exhaled by the infector

that has evenly spread to the overall investigated space with the volume of 𝑉 .

Exhaled virus particles eventually become the environmentally well-mixed virus

quanta, while different initial states induce different decays.

5.4.5 Spatiotemporal Contact Awareness

The algorithm of the proposed iSTCA with the landmark-calibrated PDR tech-

nology based on a smartphone is detailed in Algorithm 1. The detailed procedures

are as follows,

Firstly, the raw signals are acquired via the developed collection application and

preprocessed to create the dataset for the landmark identification model training

by utilizing the data preprocessing method introduced in Section 5.4.2.

Secondly, the landmark recognition model designed in Section 5.4.3 would be

trained and stored based on the dataset generated in the first step to further the

PDR algorithm.

Thirdly, the target trajectory 𝒮 is constructed by performing the landmark-

calibrated PDR technique, including step detection, stride length estimation, head-

ing determination, and landmark identification.

Fourthly, we obtain the initial state set {𝑄𝑖
0} of the expelled particles in the 𝑖-th

(𝑖 = 1, 2, 3 . . .) short-term period with the help of the calculated human movement

trajectory 𝒮 and the preset viral particle ejection interval 𝜏 . 𝑄𝑖
0 defines the state

of all 𝑖-th emitted particles in interval 𝜏 and consists of three parts 𝑡, 𝑉, 𝑞, where 𝑡

represents the elapsed time after being exhaled, 𝑉 represents the spread coverage

of droplets due to airborne dispersion, and 𝑞 represents the quanta concentration.

Fifthly, the state set {𝑄𝑖
𝑗} at the 𝑗-th interval for any 𝑄𝑖

0 after being expelled is
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Algorithm 1 Indoor spatiotemporal contact awareness algorithm
Input: raw sensor signals of infector’s smartphone;

trained landmark identification modelℳ𝑙𝑚;
target time 𝒯 ;
target position 𝒫 ;
Infectivity modelℳ𝐼 .

Output: quantitative virus quanta concentration in 𝒫 at 𝒯 .

1: time interval initialized to 𝜏 ;
2: quanta concentration in 𝒫 at 𝒯 (𝑞𝒯𝒫 ) initialized to 0;
3: construct the processed signals 𝒟;
4: achieve the trajectories 𝒮 from 𝒟, landmark-calibrated viaℳ𝑙𝑚;
5: establish the initial state set {𝑄𝑖

0} of all viruses expelled at different intervals,
where 𝑄𝑖

0 ← (𝑡𝑖0, 𝑉 𝑖
0 , 𝑞𝑖0), 𝑖 represent the number of time intervals;

6: for each 𝑄𝑖
0 do

7: for 𝑗 𝑖𝑛 0, 1, 2, . . . ⌈𝒯 −𝑡𝑖0
𝜏
⌉ do

8: achieve the 𝑄𝑖
𝑗 ←

(︀
𝑡𝑖𝑗, 𝑉 𝑖

𝑗 , 𝑞𝑖𝑗
)︀

with movement pattern (ℳ𝐼) itself;
9: if 𝒫 𝑖𝑛 𝑉 𝑖

𝑗 then
10: update 𝑞𝒯𝒫 , 𝑞𝒯𝒫 ← 𝑞𝒯𝒫 + 𝑞𝑖𝑗

11: end if
12: end for
13: end for
14: return 𝑞𝒯𝒫

acquired by employing the defined movement pattern of the considered particles.

Finally, the virus quanta concentration 𝑞𝒯𝒫 in the target position 𝒫 at the target

time 𝒯 is reached. The virus quanta concentration presented within 𝒫 at 𝒯 by

particles expelled in the various intervals is summed to estimate 𝑞𝒯𝒫 . Moreover,

the virus quanta concentrations presented in different locations at various times

can be further evaluated.
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5.5 Experiments

In this section, we evaluate the performances of the proposed methods through

experiments with the dataset we collected in a university building. We introduce

the experimental scenario and data collection in Section 5.5.1 and the results are

presented in Section 5.5.2; we analyzed the performances related to the landmark

identification, PDR, and virus quanta concentration.

5.5.1 Experimental Scenario and Data Acquisition

We collected our experimental data on the fourth floor of the Center-Zone-1 build-

ing of Kyushu University’s Ito campus. We assume that there is no exchange of

virus particles with the room space. Figure 5-3 shows the floor plan of the exper-

imental area. Based on the practical scenario, the Manhattan distance is applied

to measure the virus movement. Since the width (measured as 2𝑚) and height

(assumed to be 3𝑚 based on the practical scenario) of the hallway are generally the

same, the volume of the virus coverage can be determined by the virus movement

distance for the calculation of the virus quanta concentration. When the virus

encounters a corner, its direction changes, leading to a shift in the virus quanta

concentration to varying degrees. For a corner with two branches, the concen-

tration is assumed to decrease by half due to the inertia effect while these viral

particles continue the forward transmission. If it is a corner with three or more

branches, we assume that the virus quanta would be distributed evenly in all other

directions.

In data collection, five recruited participants held Pixel 4a smartphones with

the required sensors integrated (e.g., accelerometer, gyroscope, and rotation sen-

sor) and an Android application installed. The application can periodically read

and store the readings of 11 channels (3 for the accelerometer, 3 for the gyroscope,

and 5 for the rotation sensor) as the user walks along the prescribed routes at
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Figure 5-3: The floor plan of our experiment

a normal speed in the experimental area. Moreover, participants are required to

hold their smartphones at chest level, which is a reasonable position where par-

ticipants can record extra information to facilitate data processing. Indeed, it is

recommended that they record the timestamp and the identification of the passing

landmark to construct the dataset for the landmark identification model training.

5.5.2 Analysis and Discussion

Landmark Identification

The proposed landmark recognition model was extensively evaluated by a series

of experiments and implemented using the Keras framework with the TensorFlow

backend to minimize the cross-entropy loss. The model was performed using the

collected data with 3863 samples. The dataset was divided into training (70%)

and testing (30%) sets, randomly, without overlapping. There were a total of 11

landmarks, including 7 corners, 2 stairs, and 2 elevators.

Table 5.1 details the network configuration considered in our study. Since

there were many combinations of parameters, to reduce the selection space, we

let all of the Bi-LSTM neurons share the same value, with the 1D convolution

filter and kernel sizes accessing the same setting, respectively. To achieve stable
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performances of different model settings, a grid search with the 10-fold cross-

validation method was adopted. It worked through all of the combinations of

parameters to find the best settings. It should be noted that the following study

uses the bold value for each parameter when it is not otherwise specified.

(a) learning rates (b) batch sizes

Figure 5-4: Model accuracy on various learning rates and batch sizes

Moreover, the model configuration (the Adam optimization algorithm) was

selected as the optimizer during the gradient descent. Other training hyperparam-

eters were also evaluated and their recognition accuracies are presented in Figure

5-4. More specifically, the experiment was conducted with the learning rates of

0.00001, 0.00002, 0.00005, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02,

and 0.05, as presented in Figure 5-4a. The mini-batch size was tested with 16,

20, 32, 50, 64, 100, 128, 150, 200, and 256, as shown in Figure 5-4b. The model

configured as Table 5.1 achieved the highest identification accuracy of 98.4% when

the learning rate was 0.0002 and the mini-batch size was 256. Additionally, early

stopping criteria and a learning rate reduction strategy were applied during the

model training process in order to reduce the issue of over-fitting and to improve

the model performance. The learning rate decreased with a factor of 0.5 when

the accuracy was not improved for 10 epochs and the training ended if the accu-

racy without enhancement on the validation was set after 15 iterations. Detailed
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Table 5.1: Landmark identification neural network configuration.

Layers Parameter Value

Input shape (None, 128, 11)

Bi-LSTM1 neurons 32, 64, 128, 256

Bi-LSTM2 neurons 32, 64, 128, 256

Conv1_1

kernel size 3, 5, 9, 11

filters 32, 64, 128

stride 1

Conv2_1

kernel size 3, 5, 9, 11

filters 32, 64, 128

stride 1

Conv3_1

kernel size 3, 5, 9, 11

filters 32, 64, 128

stride 1

Conv1_2, Conv2_2, Conv3_2

kernel size 3, 5, 9, 11

filters 32, 64, 128

stride 1

Dropout drop rate 0.2, 0.3, 0.5, 0.8
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Table 5.2: Training hyperparameters

Hyperparameters Value

Optimizer Adam

Activation function ReLU

Batch size 256

Learning rate 0.0002

Epochs 800

training hyperparameter settings are revealed in Table 5.2.

Following the considered model configuration and optimal training hyperpa-

rameters, the accuracy curve and loss curve of the training and testing processes

are illustrated in Figure 5-5. The recognition results on 11 selected landmarks of

the experiment-conducted floor are presented by the confusion matrix in Figure

5-6.

(a) Accuracy (b) Loss

Figure 5-5: Accuracy (a) and loss (b) curves of the model on the selected param-
eters

Moreover, to evaluate the proposed network more comprehensively, further
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Figure 5-6: Confusion matrix for landmark identification

comparisons were conducted on other deep neural networks (CNN, LSTM, and

LSTM-CNN without residual connections) with the same depth and training hy-

perparameters as shown in Table 5.2. Table 5.3 presents the obtained experimental

results of accuracy, precision, recall, and F1-score using different networks. It can

be seen that the proposed Bi-LSTM-CNN network achieved the highest perfor-

mance in all four metrics thanks to the elaborately extracted spatial and temporal

features. Therefore, the effectiveness of the proposed Bi-LSTM-CNN classification

model for the landmark identification task is demonstrated with the experimental

evaluation.

Trajectory Tracing

The path shown as the red line in Figure 5-3 is designed to evaluate the perfor-

mance of PDR with landmark calibration, and the results are presented in Figure
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Table 5.3: Landmark identification performances of different models in the col-
lected dataset

Method Accuracy Precision Recall F1-Score

CNN 0.9327 0.9404 0.9116 0.9258

LSTM 0.9637 0.9636 0.9600 0.9618

LSTM-CNN 0.9706 0.9750 0.9705 0.9727

Bi-LSTM-
CNN (our)

0.9836 0.9849 0.9850 0.9849

5-7a. To quantitatively evaluate the positioning accuracy, we show the cumulative

error distribution in Figure 5-7b. It can be seen from the left figure that the orig-

inal PDR has an increasing error due to the initial wrong direction, although the

information of many short segments can be described relatively accurately. Due

to the significant error in the heading estimation without the landmark correction,

the cumulative error distribution is not displayed in the right picture. The per-

formance of PDR with the landmark calibration is well examined, nearly 80% of

the positioning errors are less than 0.4 𝑚, and the error probability within 0.7 𝑚

is higher than 90%. From the conducted experiments, the performance of the

PDR-fused landmark calibration was evaluated with a lower positioning error, as

compared to the PDR without calibration.

Virus Quanta Concentration

As mentioned above, we regard all virus particles exhaled every 0.1𝑠 during ex-

halation as virus instances. There will be many virus instances expelled during

the entire movement of an infector. During the transmission of each instance, a

uniform motion with a velocity of 3.9 (𝑚 · 𝑠−1) is maintained in the first second

after exhalation, and the virus quanta are evenly distributed in the space that is
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(a) (b)

Figure 5-7: The performance (a) and the cumulative error distribution (b) of the
proposed landmark-calibrated PDR.

passed by. The initial number of quanta (𝑞0 = 0), the virus quanta emission rate

(𝐸𝑅𝑞), and the removal rate of infectious viral-laden particles (𝑅𝑅𝑖𝑣) are 142 and

1.37, respectively, and remain the same within the experiment [119, 19].

Figure 5-8: Quanta concentration of viral particles changes over time (first 1.5 s)
after being released. Red points represent the instantaneous concentration at the
end of each shorter interval

The virus-laden particles released in each interval follow the same moving pat-

tern, leading to the same trend in the change of the quanta concentration. We
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chose the instantaneous concentration at the end of each shorter interval with a

length of 0.1𝑠 to represent the concentrations at all times during the entire interval,

as presented in Figure 5-8. As can be seen in 5-8, the overall change in concentra-

tion presents an exponentially decreasing trend, from above 88 in the first interval

(0~0.1𝑠) to close to 0 one second later. The sharp decrease one second later is

because of an instantaneous expansion of the viral aerosol coverage to the entire

considered space.

(a) 𝑡 = 0𝑠 (b) 𝑡 = 0.5𝑠 (c) 𝑡 = 5𝑠

Figure 5-9: Indoor virus quanta concentrations at 𝑡 = 0𝑠 (a), 𝑡 = 0.5𝑠 (b), and 𝑡 =
5𝑠 (c), respectively, from the start of the movement. Virus quanta concentration is
achieved by Equation 5.7, involving human movement along the directional path
depicted in Figure 5-3 and the transmission of virus-laden particles.

The time when people started moving along the path, as illustrated by the

directional red line depicted in Figure 5-3, can be regarded as the start (𝑡 = 0𝑠) of

the experiment. Figure 5-9 presents the virus concentration in the current envi-

ronment at the time of 0𝑠, 0.5𝑠, and 5𝑠 from left to right (using lines to represent

the considered corridor spaces), involving both human movement and virus-laden

particles transmission. Among them, at 𝑡 = 0𝑠, only the virus concentration near
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the point start can be seen to exceed 80, while most of the other parts are not

covered by viral particles. At 𝑡 = 0.5𝑠, under the combined movements of virus

droplets and humans, the relatively high quanta concentrations covered more. In

addition, after another 0.5𝑠, the particles initially expelled at 𝑡 = 0𝑠 will spread to

the overall space. At 𝑡 = 5𝑠, the area with higher quanta concentration gradually

moves forward with the movement of people. Moreover, due to the accumulated

particles that diffuse into the entire environment, the quanta concentration in the

overall space is increased, gradually reaching a non-negligible level compared with

the concentration of the newly expelled virus instance.

5.6 Limitations

Although the proposed iSTCA system realizes quantitative representation for ex-

posed virus concentrations with the help of the landmark-calibrated PDR tech-

nique, there are some challenges that need to be overcome. First of all, there

are some strict restrictions in the data acquisition process. The participants are

required to hold the smartphone, specifically the Pixel 4a, at chest level. As a

result, except for the diversity of users considered, other factors that affect the

motion sensor readings are not seriously taken into account, such as the mobile

device heterogeneity (e.g., different types or various vendors) and the device’s sta-

tus variation (e.g., putting in a pocket or handbag). In addition, a large amount

of power of the smartphone is consumed during the indoor positioning process,

resulting in the smartphone being overheated.

5.7 Conclusions

Technology-assisted virus exposure tracking approaches are increasingly being adopted

to mitigate and tame the epidemic. In view of the complexity of quantifying virus

exposure due to human movement and airborne dispersion of virus particles, we
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propose iSTCA, a self-containing contact awareness approach that exploits PDR-

based techniques. Quantitative information support directly concerned with risk

assessment is provided for self-protection and epidemic control. More precisely,

to reduce and calibrate the cumulative errors of trajectories based on landmarks,

we apply Bi-LSTM and multi-head CNN with residual concatenation to long-term

dependency in forward and backward directions and extract local correlations at

various resolutions for landmark identification. The proposed method exploits the

trajectories of people with viral-laden droplets exhaled and the transmission and

attenuation of viruses in the air to quantify the virus quanta concentration in an

indoor environment via spatiotemporal analytics for prevention and sanitization.

Possible extensions to this work include the integration of wearable devices, such as

smartwatches and smart bands, to replace mobile phones for power saving in indoor

positioning. Moreover, we can apply the proposed techniques for the development

of services in developing communities without reliable digital infrastructure.
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Chapter 6

Personalized Federated Human

Activity Recognition through

Semi-Supervised Learning and

Enhanced Representation

6.1 Introduction

The proliferation of mobile phones and wearable devices equipped with a variety

of sensors enables the acquisition of large amounts of data on human movement

and contextual information from many sources, thus providing the means to un-

derstand and predict human behavior at an unprecedented scale [129]. HAR refers

to the identification of human physical activities in real-world settings, which has

become increasingly essential in various applications such as smart homes, health-

care, and sports, and has drawn interest from both academia and industry [8]. To

recognize activities, it is critical to extract and learn the features comprehensively

to determine the relationship between sensed information and movement patterns.

Both traditional HAR with hand-crafted features and deep learning models with
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automatic feature extraction rely on centralized training, in which massive activity

data scattered around multiple devices are shared or uploaded. However, motion

data can reveal plenty of private information, such as daily behaviors and habits.

FL proposed by McMahan et al. can address the aforementioned privacy chal-

lenge in centralized approaches [91]. FL is a distributed framework that enables

multiple parties to collaboratively train a shared global model by aggregating lo-

cally updated models without directly accessing users’ data. Thus, participants

can collectively benefit from the shared model without compromising their data

privacy [150]. Most existing FL systems for HAR assume that the ground-truth

of the data on clients is known to train supervised local models. However, in a

practical scenario, manually and accurately annotating the time-series data for

HAR is difficult. A completely unlabeled data on the client side is more reason-

able, meanwhile, a small amount of data contributed by researchers or volunteers

can be stored on the server side. A relevant approach to tackle the label scarcity

problem is semi-supervised learning (SSL), in which a model is initialized with a

small portion of labeled data and subsequently undergoes continuous updates uti-

lizing unlabeled data [103]. Presotto et al. propose a hybrid method with FL for

HAR that combines active learning for label query and label propagation to semi-

annotate the local unlabeled data, while initial private data are needed for sample

selection in active learning [103]. Zhao et al. take advantage of unsupervised

representation learning to solve the label scarcity problems, in which an autoen-

coder is utilized for the feature learning of local models with unlabeled data and

a global classifier is trained with labeled data on server side [164]. However, the

challenging data heterogeneity of HAR in FL setting due to the different physical

characteristics and various contextual information are not properly considered for

clients [150]. The statistical diversity of local data would not be properly learned

in existing FL paradigms with a single global model trained for capturing common

features, resulting in performance degradation for clients in HAR. Thus, it is nec-
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essary to fine-tune the shared global model on a particular client to learn unique

information for personalized HAR.

Figure 6-1: A resourceful server with labeled data and distributed clients with
totally unlabeled data

To cope with the above issues, we propose a personalized federated HAR based

on semi-supervised learning with enhanced representation learning, which involves

a resourceful server with labeled data and distributed clients with totally unlabeled

data, as illustrated in Figure 6-1. In our proposed design, a shared global model
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is decoupled into a feature extraction model and a classification model, where the

global deep representation learning model is jointly trained with the labeled data

on the server side and the unlabeled data on clients, and the extracted features

are fed into a separated classification network on the server side to train a global

classifier for HAR, which is further personalized for each client in a semi-supervised

fashion. Because neither the small amount of labeled data on the server side

nor the locally sparse data of each client can individually train a general feature-

extraction model, we design an autoencoder to take advantage of the abundant yet

heterogeneous data residing on each side to learn an enhanced representation [71,

128]. After the entire global model training and sent to selected clients, we adopt

the idea of pseudo-labeling to perform semi-supervised learning on private data for

model personalization. However, training the network with falsely inferred pseudo-

labels may degrade the performance of the personalized model [122]. To ensure the

quality of produced pseudo labels, we select several models with the best server-

side performance as auxiliary models. we keep the artificial labels only when these

models assign very high confidence with low uncertainty to one possible class. With

the integration of enhanced representation learning and federated semi-supervised

learning, we conduct empirical experiments to evaluate the proposed approach on

different HAR datasets, demonstrating the effectiveness of the proposed methods.

In particular, the following contributions are made:

1. A novel personalized federated HAR technique based on semi-supervised

learning is proposed, in which a global model is decoupled into representation

learning and classification network. They are jointly trained with completely

unlabeled data on client side and labeled data on server side in a semi-

supervised fashion.

2. An unsupervised representation learning method in FL for HAR is proposed

to learn enhanced representation from the heterogeneous data on the server

and clients.
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3. We propose a reliable pseudo-labeling approach for high-quality virtual label

acquisition with the confidence and uncertainty considered in FL settings.

4. Extensive experiments are conducted using two real-world human activity

datasets to demonstrate the effectiveness of the proposed methods in different

practical FL scenarios.

The rest of the chapter is organized as follows. Section 6.2 reviews the related

work. In section 6.3, we present the proposed methods. In section 6.4, we elabo-

rate on the evaluation of proposed methods and discuss the experimental results.

Lastly, we conclude the paper in section 6.6.

6.2 Related Work

6.2.1 Human Activity Recognition

DL based techniques have been extensively researched in HAR. The framework

based on convolutional neural network (CNN) are studied to automatically extract

the features for HAR [94, 25]. Besides, LSTM has the ability to preserve sequence

information over time and capture long-term dependencies, so that it can extract

temporal features in time-series sensor data for HAR [143, 140]. Both the CNN

and LSTM are combined in [152] to identify different daily life activities. Nafea et

al. employ the CNN and Bi-LSTM to automatically capture spatial and tempo-

ral features from sensor data to recognize human activities [95]. ConvAE-LSTM

adopts CNN to extract features, which are further condensed by autoencoder, and

LSTM to adapt at temporal modeling to realize the recognition of human activities

from time-series sensor data [130].
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6.2.2 Federated Learning for HAR

FL was proposed as an alternative to traditional centralized DL, in which a global

model can be trained collaboratively with multiple clients coordinated by a server

[90, 78]. FL has been widely adopted in many applications, including HAR [74,

125]. Sozinov et al. proposed an FL based HAR system and its performance

is sufficiently robust, realizing an acceptable accuracy comparable to centralized

learning [125]. Zhao et al. proposed an FL based HAR system for activity and

health monitoring [163]. PMF was proposed as a privacy-persevering mobility

prediction framework based on FL, in which a personal adapter was designed for

local personalization to further improve the accuracy [37]. Furthermore, given that

personalization is a critical aspect of HAR, relevant studies have demonstrated

that, in FL, fine-tuning the global model for each client significantly enhances the

recognition rate [23, 151].

6.2.3 Semi-supervised Federated Learning

To address the label scarcity problem in practical FL, semi-supervised learning is

extensively studied. Semi-supervised learning combines both supervised learning

and unsupervised learning to tackle the model training with limited labeled data

[30]. Generating pseudo labels for unlabeled data to construct labeled data for

model training in a supervised fashion has been extensively studied [30, 84, 79].

For instance, Diao et al. propose SemiFL to combining the communication-efficient

FL with semi-supervised learning, in which clients have completely unlabeled data,

while the server has a small amount of labeled data. They design an alternate

training to ensure the accuracy of pseudo labels, that is, “fine-tune global model

with labeled data” and “generate pseudo-labels with the global model” [30]. Liu et

al. use labeled data on an FL server to train a model through supervised learning

and then send this model to FL clients to generate labels on their local data [84].

Another direction of semi-supervised FL is to perform unsupervised learning on
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clients to derive robust feature representation learning from the unlabeled data

instead of producing pseudo labels, in which the global feature representation

is then used to build downstream tasks with a limited amount of labeled data.

For example, van Berlo et al. introduce federated unsupervised representation

to pre-train the model using unlabeled data to solve the label scarcity problem

[135]. Zhao et al. proposed a semi-supervised FL framework for HAR, in which

clients conduct unsupervised learning on autoencoders with unlabeled local data

to learn general representations and a server conducts supervised learning on an

LSTM classifier with labelled data [164]. However, personalization is not properly

considered in these works. Recently, FedHAR was proposed to build the global

model by aggregating the computed unsupervised and supervised gradients, in

which a small number of clients own labeled data, and a large number of clients

only have unlabeled data [160]. FedAR, assuming that there are labeled data in

each client, combines active learning and label propagation to semi-automatically

annotate the local streams of unlabeled sensor data [103]. Different from these

works, we do not rely on the assumption of clients possess labeled data. For the

more realistic case of storing only limited labeled data contributed by researchers

or volunteers on the server, we propose a practical solution to continuously improve

model performance by integrating representation learning and pseudo-labeling.

6.3 Methodology

6.3.1 Preliminaries

In this work, we focus on semi-supervised FL with completely unlabeled clients.

Let 𝑥𝑢,𝑚 represent the unsupervised data at client 𝑚 = 1, 2, 3 . . .𝑀 , where 𝑀 is the

number of clients. The small amount of labeled dataset on server is {𝑥𝑙, 𝑦𝑙}. We

decouple the deep neural network 𝑊 into the representation layers, denoted by 𝑊𝑎

and the final decision layer, denoted by 𝑊𝑐𝑙𝑠. Thus, the server model is parameter-

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6. Efficient Activity Recognition with Personalization 99

ized to 𝑊 𝑡
𝑔 =

(︀
𝑊𝑎

𝑡
𝑔,𝑊𝑐𝑙𝑠

𝑡
𝑔

)︀
at 𝑡−𝑡ℎ communication round and similarly, the client’s

model is parameterized to {
(︀
𝑊𝑎1

𝑡,𝑊𝑐𝑙𝑠1
𝑡
)︀
,
(︀
𝑊𝑎2

𝑡,𝑊𝑐𝑙𝑠2
𝑡
)︀
, . . . , (𝑊𝑎𝑀

𝑡,𝑊𝑐𝑙𝑠𝑀
𝑡)}.

6.3.2 System Design

Figure 6-2: Overview of proposed scheme
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An overview of the proposed scheme is presented in Figure 6-2. Following the

FL paradigm, the server periodically sends the weights of a global activity recog-

nition model to the available clients for model updating. The same deep neural

network structure is established on the server and clients, with representation lay-

ers and classification layers for HAR. The global server model is initialized with

the limited labeled data on the server, while the network on each client side is

implemented with a semi-supervised learning strategy to personalize the server

model. In each communication rounds 𝑡, the global model 𝑊 𝑡
𝑔 , which has already

been fine-tuned with the server-side labeled data, is sent to selected clients for fur-

ther updating with. After receiving the global model, each client would perform

unsupervised learning for representation learning and then, send the updated rep-

resentation model to server. Server average the uploaded parameters from active

clients to obtain a new representation layer, which is further trained with 𝑊 𝑡
𝑐𝑙𝑠𝑔

to

learn a new complete model 𝑊 𝑡+1
𝑔 on server for following communications. Each

client can further learn a personalized model by pseudo labeling in which both con-

fidence and uncertainty are considered in selecting the right samples with several

global models with better performance in history.

6.3.3 Representation Learning

The universal features extracted from inputs with the representation part of DL

model significantly affect the performance of the learning tasks of interest [99].

In practical scenarios, there are many unlabeled data collected by different users,

and thus, to comprehensively utilize the target data, unsupervised feature ex-

traction has been proposed and studied. Autoencoder relies on reconstructing

unlabeled data using unsupervised neural networks. The data is encoded to its

latent representation as the extracted features, and then, the decoder part tries

to reconstruct the original data from the learned representation. To facilitate the

feature design and selection for HAR, various autoencoders are proposed, such
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as villa autoencoder [130] and stacked autoencoder [94]. Moreover, van Berlo et

al. show promising potential of using autoencoders to implement semi-supervised

FL and Zhao et al. apply autoencoders to unlabeled local data to learn general

representations for HAR [164]. Therefore, in order to address the lack of labels

on clients in HAR with sensory data and achieve a strong generalization ability

while leveraging heterogeneous data, our proposed system applies semi-supervised

learning in an FL system, in which server and clients use unsupervised learning

to jointly train autoencoders with their own data in an unsupervised fashion for

further recognition, and the server uses supervised learning to train a classifier

that can map encoded representations to activities with a labeled dataset.

6.3.4 Personalization with Uncertainty-Aware Pseudo La-

beling

As the shared global model is fine-tuned with a small amount of labeled samples, it

is not adaptive for all clients due to the possible heterogeneity between local data

on client side and labeled data on server side. Thus, the server model with general

representation and shared classifier is personalized for a specific person. To obtain

the information of local data as much as possible for model personalization, the

pseudo labels for some samples are inferred. Typically, for each unlabeled data

sample, it would pick the class with maximum predicted confidence as prediction

to be used as a pseudo label. For sample 𝑥𝑖, 𝑦𝑖𝑘=1 denotes that class 𝑘 is present

in the corresponding input as a potential label and 𝑦𝑖𝑘 = 0 represent the class’s

absence. We set the 𝑝𝑖𝑘 represents the probability of class 𝑘 being present in the

samples. With this prediction probability, the pseudo-label can be generated for

𝑥𝑖 as: ̃︀𝑦𝑖𝑘 = 1 [𝑝𝑖𝑘 ≥ 𝛾] (6.1)
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where 𝛾 ∈ (0, 1) is a threshold used to produce hard labels and 1[∙] produce

one-hot labels with given values.

In our setting, the criteria used to select how many and which samples are

transferred from unlabeled data to the labeled data during training at each round

is key to our method. When starting to personalize, the client would pull several

best models in history on a server to achieve some relatively well-performed models

for conducting pseudo labeling. Then, the pseudo-labels would be generated based

on the agreements and uncertainty of the model prediction [79, 105]. Let g𝑖 =

[𝑔𝑖1, 𝑔𝑖2, . . . , 𝑔𝑖𝐾 ] ⊆ {0, 1}
𝐾 be a binary vector representing the selected pseudo-

labels in sample 𝑥𝑖, where 𝑔𝑖𝑘 = 1 when ̃︀𝑦𝑖𝑘 is selected and 𝑔𝑖𝑘 = 0 when ̃︀𝑦𝑖𝑘 is not

selected. This vector is obtained as follows:

̃︀𝑔𝑖𝑘 = 1
[︀
𝑝𝑖𝑘 ≥ 𝛾

]︀
+ 1 [𝑢(𝑝𝑖𝑘) ≤ 𝜎] (6.2)

where 𝑢(𝑝) is the uncertainty of a prediction 𝑝, and 𝜎 are the uncertainty thresh-

olds. The uncertainty part ensures the network prediction is sufficiently certain

to be selected. Therefore, to maintain stability in each model, we retain artificial

labels whose largest class probability is above a predefined threshold 𝛾𝑡 for com-

munication round 𝑡 , and the uncertainty of corresponding class probability should

lower than a preset threshold 𝜎𝑡. Since the imbalance of training would degrade

the model performance, we also made an adjustment with class balance for sample

selection.

6.3.5 The Holistic Algorithm

To sum up, the holistic mechanism of the proposed method is presented in Al-

gorithm 2, including the personalization methods. In each communication round,

the server selects part of clients to join the representation learning. An unsuper-

vised representation learning on autoencoder part is conducted before sending to
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the server. Server would aggregate the uploaded autoencoder to learn with unla-

beled data and then, the overall model is fine-tuned with labeled data stored on

server side. Each client can further learn a personalized model by pseudo label-

ing, in which both confidence and uncertainty are considered in selecting the right

samples.

6.4 Experimental Evaluation

6.4.1 Dataset Description

Two widely used real-world datasets: HAR-UCI and PAMAP2 are adopted to

conduct the experiments.

HAR-UCI This standard dataset was collected from the sensor recording of

30 individuals performing activities of daily living (ADL) while carrying a waist-

mounted smartphone with embedded inertial sensors. Those involved 30 partici-

pants within an age range of 19-48 years. Each person had a smartphone (Samsung

Galaxy S II) strapped to their waist, and perform six activities: walking, walk-

ing upstairs, walking downstairs, sitting, standing, laying. The built-in sensors,

including accelerometer and gyroscope, are used to capture 3-axial linear acceler-

ation and 3-axial angular velocity at a constant rate of 50Hz, which were further

processed by applying noise filters and then sampled in fixed-width sliding windows

of 2.56 seconds (128 readings).

PAMAP2 This dataset is a public dataset for human physical activity moni-

toring. It was collected from 9 different subjects with 3 IMUs positioned in hand,

chest and ankle and a heart rate monitor. Each IMUs has three embedded sensors:

a 3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer, to record

the corresponding sensor data at constant rate of 100Hz. Altogether, over 10 hours
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Algorithm 2 Personalized federated human activity recognition through semi-
supervised learning and enhanced representation
Input: Labeled data {(𝑥𝑙, 𝑦𝑙)}, Unlabeled data {𝑥𝑢,1:𝑀} distributed on 𝑀

local clients, server model parameterized by 𝑊𝑔 =
(︀
𝑊𝑎𝑔 ,𝑊𝑐𝑙𝑠𝑔

)︀
,

client models parameterized by {𝑊1:𝑀} = {(𝑊𝑎1:𝑀 , 𝑊𝑐𝑙𝑠1:𝑀)},
local epochs 𝐸𝑐, global epochs 𝐸𝑔

1: Initialize 𝑊 0
𝑎𝑔 , 𝑊 0

𝑐𝑙𝑠𝑔
with labeled data {(𝑥𝑙, 𝑦𝑙)} on server;

2: for each communication round 𝑡 do
3: randomly select 𝐶 part of the clients 𝑀𝑐;
4: for each client 𝑚 ∈𝑀𝑐 do
5: Distribute server model parameters to local client
6: 𝑊 𝑡+1

𝑎𝑚 ← ClientUpdate(𝑥𝑢,𝑚, 𝑊 𝑡
𝑎𝑚 ,𝑊

𝑡
𝑐𝑙𝑠𝑚

)

7: end for
8: 𝑊 𝑡+1

𝑎𝑔 ←
∑︀

𝑚∈𝑀𝑐

𝑛𝑚

𝑛
𝑊 𝑡+1

𝑎𝑚

9: Fine-tune global model 𝑊 𝑡+1
𝑎𝑔 and 𝑊 𝑡+1

𝑐𝑙𝑠𝑔
on {𝑥𝑙, 𝑦𝑙}

10: end for

11: ClientUpdate(𝑥𝑢,𝑚, 𝑊 𝑡
𝑎𝑚):

12: for each local epoch 𝑒 ∈ 𝐸𝑐 do
13: train 𝑊 𝑡

𝑎𝑚 using mean squared error (MSE) loss
14: end for
15: return 𝑊 𝑡

𝑎𝑚 and send it to server

16: ClientPersonalization(𝑥𝑢,𝑚, 𝑊𝑎𝑚 ,𝑊𝑐𝑙𝑠𝑚):
17: Pull the best b models in history from server as {𝑊 𝑝𝑠𝑒𝑢𝑑𝑜}
18: for each personalization iterations 𝑡𝑝 do
19: Pseudo labeling 𝑥𝑢,𝑚 using {𝑊 𝑝𝑠𝑒𝑢𝑑𝑜}
20: 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← select pseudo label using (2)
21: for each local epoch 𝑒 ∈ 𝐸𝑐 do
22: Train (𝑊𝑎𝑚,𝑊𝑐𝑙𝑠𝑚) with 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 and cross-entropy loss
23: end for
24: Add (𝑊 𝑎𝑚,𝑊𝑐𝑙𝑠𝑚) to {𝑊 𝑝𝑠𝑒𝑢𝑑𝑜}
25: end for
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of data were collected, from which nearly 8 hours were labeled as one of 18 preset

activities (12 activities selected) performed during data collection. The raw signals

of each person were segmented in a sliding window with fix-length of 2.56 seconds

(256 readings) and 50% overlap.

6.4.2 Experiment Setup

To evaluate our proposed method, we conduct experiments with various settings

where we randomly attempt different numbers of labeled samples for supervised

training on the server to update the global model. More concretely, the amount of

the data with annotation stored on the server is 200, 300, 500 for both datasets.

In each communication, the number of randomly selected clients is 6 for HAR-UCI

dataset and 2 for PAMAP2 dataset. The global epochs and local epochs for model

training in each communication round are both equal to 5. We adopt Stochastic

gradient descent (SGD) as the optimizer by default where the learning rate is 0.05,

decreased by a factor of 0.4 for every 20 FL rounds, the momentum factor is 0.9

and 𝐿2 regularization is 0.001 to prevent over-fitting. Also, the batch size is 32 for

model training and the size of learned representation is 256 by default.

Models

Our HAR model consists of an autoencoder and a classifier. More specifically,

two 1-dimensional convolutional layers have 32 and 128 output channels with the

same kernel size of 9 and stride length of 2, respectively. The output is fed in a

ReLU layer before computing by a Bi-LSTM layer with a hidden size of 128 and an

activation of Tanh. Then, the output is flattened to a linear layer, that transforms

it into a specific size. For the decoder part, the output of another linear layer

is transformed into suitable shape for the input of the following Bi-LSTM layer

with an activation of Tanh. Two transposed 1-dimensional convolutional continue

to decode the output with input channels of 128 and 32, kernel size of 9 and 9,

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 6. Efficient Activity Recognition with Personalization 106

stride length of 2 and 2, and output padding size of 1 and 1, respectively. Finally,

the output of the decoder is reshaped to the same construction of input data.

Besides, the classifier is constructed with a linear layer whose input is the learned

representation and the output is the number of activities.

Baselines and Metrics

We evaluated the following schemes to demonstrate the effectiveness of our pro-

posed approach.

Fully Supervised All the samples with label are used to train a fully super-

vised model for the measurement of ideal accuracy we could hope to obtain with

FL settings.

Partially Supervised Since we assume the labeled data only exist on the

server side, a baseline method that only uses these labeled data to conduct super-

vised training is designed.

Semi-supervised FL with Autoencoder (SSFLAE [164]) The clients con-

duct unsupervised learning on autoencoders with unlabeled local data to learn

general representations, and a server conducts supervised learning to only train

the activity classifier, after the representation part is aggregated.

SSFLAE with joint fine-tuning (SSFLAE-FT) Since there are representa-

tion part and the classifier part in SSFLAE, instead of frozen the encoder part

with classifier training, an end-to-end training fashion is designed, in which the

representation part and the classifier is jointly fine-tuned.

Pseudo Label To personalize the global model, a pseudo label with high

prediction confidence would be set to conduct supervised model training in an

end-to-end fashion.

The averaged prediction accuracy on the test data of each client is applied to
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evaluate the performance of each model, which is defined as:

𝐴𝑐𝑐 =
1

𝑀

𝑀∑︁
𝑖=1

𝑎𝑐𝑐𝑖 (6.3)

6.5 Results

Table 6.1 and 6.2 denote the comparison result with baseline approaches on two

datasets with different number of labeled data in server, respectively. Generally,

the proposed methods can achieve the best prediction performance under each

setting on both two datasets. Although the labeled samples are the same in dif-

ferent datasets, the overall performance is slightly lower in the same settings. It

is because the clients in PAMAP2 dataset are much more heterogeneous than

HAR-UCI and more diversified physical activities are performed for each involved

person.

6.5.1 Evaluation of Unsupervised Representation Learning

Comparing the SSFLAE with other FL methods, we can see there is a great perfor-

mance degradation from partially supervised FL in terms of the activity prediction

accuracy on these two datasets. However, SSFLAE-FT can achieve a better predic-

tion accuracy, outperforming the partially supervised FL. In combination of these

two observations, the reason for the decline in the performance of SSFLAE may be

that we have not searched for the optimal hyperparameters, such as the learning

rate and the momentum for different optimizer, and the fine-tune strategy is also

not good. Actually, van Berlo et al. pointed out that the fine-tuning strategy of SS-

FLAE can result in bad test set performance, and the unsupervised representation

learning is recommended to executed to obtain the information of a more diverse

number of users with bigger set of activities compared with the small amount of

labeled dataset for HAR [135]. We demonstrate the effectiveness of unsupervised
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representation learning with autoencoder in FL settings, in which leveraging the

massive amount of unlabeled data samples can improve the performance. Partially

supervised FL only exploring the small amount of labeled samples result in poor

generalization and personalization for specific clients, especially for PAMAP2. Be-

sides, we found that as the number of labeled data stored in the server increases,

the performance gain brought by unsupervised representation learning becomes

smaller. With more and more labeled samples, the statistical characteristics of

labeled dataset are getting closer and closer to the overall dataset, and thus, the

larger the amount of annotations selected, basically the smaller the improvement

in the prediction accuracy of the model with representation learning.

Table 6.1: Prediction results on HAR-UCI

Dataset HAR-UCI

Number of Labeled samples 200 300 500

Model

Fully supervised 96.69

Partially supervised 78.41 81.88 86.03

SSFLAE 26.35 29.56 48.07

SSFLAE-FT 80.72 82.51 86.80

Pseudo Label 76.89 79.47 82.16

Ours 82.31 84.25 89.27

6.5.2 Evaluation of Personalization

To personalize the shared server model, we take the annotations produced by tra-

ditional confidence-based pseudo labeling techniques and our uncertainty-based
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Table 6.2: Prediction results on PAMAP2

Dataset PAMAP2

Number of Labeled samples 200 300 500

Model

Fully supervised 95.04

Partially supervised 75.43 80.95 84.61

SSFLAE 20.67 23.68 25.13

SSFLAE-FT 77.78 81.43 86.46

Pseudo Label 69.50 76.82 79.51

Ours 77.85 81.59 87.62

algorithms. Generally, our proposed semi-supervised approaches can improve the

performance of global model on specific client, which demonstrate the effective-

ness of proposed personalization methods with uncertainty-aware based pseudo

labeling. Regardless of the method, we can see that better initial models lead

to better personalization accuracy, especially for HAR-UCI. However, noting

that the confidence-based technique degraded the prediction accuracy to varying

degrees, especially for PAMAP2 with strong heterogeneity. It is due to the fact

that when an incorrect prediction is used for model training, the error accumulates

and adversely affects the prediction accuracy of the personalized model. Compared

to confidence-based techniques, we use several global models with better perfor-

mance to annotate the unlabeled dataset, taking into account both the accuracy

and the uncertainty of the prediction to guarantee the label accuracy. Moreover,

the activity patterns for some clients in PAMAP2 are quite different from those

of other clients, in which the initially personalized model is received from a server

trained with a small number of labeled samples, resulting in incomplete learning
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for various activity patterns. Because the model only learns a part of the activ-

ity class, more similar samples will be selected when generating the pseudo labels

with high confidence, leading to a great performance decline. Thus, the proposed

pseudo labeling method with uncertainty awareness and class balance can reach a

high personalization accuracy.

6.6 Conclusion

The challenge of acquiring labeled data from end users constrains the FL applica-

tions for HAR in real-world. This paper proposes a federated HAR through semi-

supervised learning and enhanced representation to address the issue of totally

unlabeled clients. By employing autoencoders trained in an unsupervised fashion

on clients and a classifier trained via supervised learning on the server, our system

attains enhanced accuracy for HAR, which is comparable to that of a supervised

FL system but does not require any locally labeled data. Due to the different phys-

ical characteristics and various contextual information, after receiving the shared

model, further personalization is performed locally. Pseudo-labeling techniques

are adopted to produce the annotations, in which, the confidence and the uncer-

tainty are considered at the same time and the selection is made as balanced as

possible to set the pseudo label for samples. Comprehensive experimental analysis

indicates that our personalized federated HAR with semi-supervised learning and

enhanced representation learning approach substantially enhances the performance

of a labeled server in conjunction with unlabeled clients, achieving a competitive

accuracy with a personalization model.
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Chapter 7

Conclusion

This thesis focused on studying efficient crowdsensing-based indoor localization

systems and their applications.

To acquire localization in GNSS-denied indoor environments, various approaches

using data collected from different sensors and wireless transmitters have been pro-

posed. However, it is essential to develop cost-effective positioning techniques that

take deployment costs, including pre-configured infrastructure cost, data collection

cost and data processing and learning cost, into account for efficiently provid-

ing location services in indoor spaces. A crowdsensing-based indoor localization

framework is proposed to achieve cost-effective Wi-Fi fingerprinting-based indoor

localization systems, in which active learning is introduced to realize deployment

cost reduction on data collection and data annotation, and machine learning ap-

proaches are applied to learn robust features for precise location inference. Subse-

quently, to achieve efficient and accurate indoor localization services in a variety

of spaces, regardless of the deployment of wireless infrastructure, we develop an

efficient indoor localization system using PDR with automatically identified ac-

tivity landmarks calibrated. Furthermore, we integrate the location information

obtained through this method with a spatiotemporal model of virus concentra-

tion changes for comprehensive contact tracing of Covid-19, and its effectiveness
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is demonstrated via extensive experiments. Additionally, an extensive study on

crowdsensing-based activity landmark recognition using semi-supervised and fed-

erated learning is conducted to meet the reality, where the general representation

model is achieved jointly by the server and the clients, and the personalized models

are acquired with totally unlabeled local data.

In Chapter 3, the crowdsensing technique is applied to reduce the cost of labor-

intensive and time-consuming fingerprint collection for radio map construction in

popular Wi-Fi fingerprinting-based indoor localization systems with Wi-Fi signal

covered. Although crowdsensing could solve the problem of radio signature col-

lection, there are various uncertainties about the location annotations contributed

by the crowd, which would affect the performance of the localization model. To

address such issues and realize efficient indoor localization systems based on Wi-

Fi fingerprints, we propose a crowdsensing-based indoor localization framework,

ALCIL. ALCIL employs the active learning technique to collect informative data

for performance improvement of the localization model under a certain cost and

applies the machine learning approaches to learn the strong patterns heuristically

for accurate location estimation. We conduct extensive experiments to demon-

strate the effectiveness of the proposed framework, reducing 70% of the data label

acquisition cost and locating users’ mobile devices efficiently at the given fixed

budget.

In Chapter 4, we develop an activity landmark-based PDR to realize efficient

indoor navigation with high precision in various environments regardless of the con-

figuration status of wireless access points. The activity landmark, which stands

for a location point that imposes a certain pattern on the motion sensor readings,

is properly recognized with the sensors inside smartphones and applied to the cal-

ibration of the accumulated errors in PDR at no extra cost. To further reduce

the deployment cost of data processing, the feature of activity landmarks is ex-

tracted by an unsupervised feature learning method without manual calculation,
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producing a compact representation for landmark identification. The validity of

the proposed approach to provide efficient indoor navigation was verified with 9271

samples collected using a crowdsensing technique for 27 landmarks in the context

of practical buildings.

In Chapter 5, the above-mentioned activity landmark-based PDR was utilized

to develop an indoor spatiotemporal contact awareness framework (iSTCA) to

enable precise contact tracing of Covid-19 in various indoor environments. The

iSTCA explicitly considers the self-containing quantitative contact analytics ap-

proach with spatiotemporal information to provide accurate awareness of the virus

quanta concentration in different areas at various times. PDR technique is em-

ployed to precisely detect the locations and trajectories for distance estimation and

time assessment with recognized activity landmarks using a designed deep learn-

ing model. Thus, the contact-tracing feature within this framework allows for

a more detailed and quantitative understanding of indoor exposure to virus with

virus lifespan considered, which is difficult to discern using conventional techniques

based on relative distances between devices. Furthermore, the integration of ac-

tivity landmark-based PDR positioning methods with a spatiotemporal model of

virus concentration variations has led to the development of a cost-effective solu-

tion that can be employed in diverse indoor environments, even those lacking ICT

infrastructure. We perform an evaluation using actual movement history data col-

lected within a practical building and confirmed the effectiveness of the developed

system. Particularly, the PDR-based location estimation error is reduced to 0.7𝑚

with high confidence under the calibration of an automatic landmark identification

model with an accuracy of 98.36%. Thus, the virus concentration in indoor spaces

is achieved more accurately, confirming the feasibility of fine-grained contact trac-

ing.

In Chapter 6, we conduct an extensive study on crowdsensing-based activity

landmark recognition to make the activity landmark-based indoor localization sys-
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tem more efficient. We propose a method based on semi-supervised learning and

federated learning (FL) that can perform personalized human activity recogni-

tion (HAR) while considering user privacy and cost reduction on data annotation,

in which FL clients have completely unlabeled data, while the FL server has a

small amount of labeled data contributed by volunteers. Since a general model

in the server is not suitable for each client due to the different physical charac-

teristics and different contextual information in crowdsensing-based scenarios, a

specific model is learned for each user to reduce the effects of data heterogene-

ity for the achievement of better system performance. The proposed approach is

characterized by collaborative semi-supervised learning conducted between client

devices and a server for the general model training, using pseudo-labels that take

into account trustworthiness and uncertainties for model personalization. This

method can be applied to efficiently identify activity landmarks in indoor local-

ization techniques. Through evaluation experiments with two different real-world

activity recognition datasets, the persuasive accuracy improvement is confirmed

compared to conventional techniques.
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