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Abstract

Visual object tracking (VOT) is one of the most widely studied computer vision approaches that

can produce the trajectory of a moving object from a sequence of frames. VOT has many ap-

plications, such as navigation for robots, intelligent video surveillance, smart logistics, robotics

for manufacturing, etc. Most VOT models are based on deep neural networks (DNNs) because

of their powerful feature extraction capability. However, most of the current VOT research has

focused on the design of model architectures that is limited to exploring the full potential of the

VOT model. In this thesis, we take the following three aspects to build a more powerful and

reliable visual tracking scheme:

Data Augmentation is a data pre-processing technique commonly used with deep learning

models to mitigate overfitting during training. In the context of visual object tracking, many

state-of-the-art trackers employ an online updating strategy, wherein a classifier is dynamically

trained in real-time during testing to accurately locate the target. The online updating of the

object model using samples from previous frames plays a pivotal role in achieving precise visual

object tracking. Exploring how to effectively leverage these samples, such as through data aug-

mentation, offers a novel approach to improve tracking performance. By applying data augmen-

tation techniques to the collected samples, we can introduce variations and diversify the training

data, thereby enhancing the model’s ability to generalize to different visual conditions. This, in

turn, enables the tracker to better adapt to the inherent challenges encountered in real-world

4



scenarios and achieve more accurate and robust tracking results.

Therefore, we propose the DeepMix that takes historical samples’ embeddings as input and

generates augmented embeddings online, enhancing the state-of-the-art online learning meth-

ods for visual object tracking. More specifically, we first propose the online data augmentation

for tracking that online augments the historical samples through object-aware filtering. Then,

we suggest MixNet, which is an offline trained network for performing online data augmen-

tation within one step, enhancing the tracking accuracy while preserving high speeds of the

state-of-the-art online learning methods. The extensive experiments on three different tracking

frameworks, i.e., DiMP, DSiam, and SiamRPN++, and three large-scale and challenging datasets,

i.e., OTB-2015, LaSOT, and VOT, demonstrate the effectiveness and advantages of the proposed

method.

The above improvement method is constrained to online-updated trackers, thereby limiting

its applicability. To further enhance the robustness of the model, modifications have been made

to its testing aspect. Specifically, efforts have been focused on optimizing the model’s resilience

against prevalent challenges encountered in real-world scenarios, such as motion blur.

Motion blur caused bymoving the object or camera during exposure can be a crucial challenge

for visual object tracking, affecting tracking accuracy significantly. For this problem, we explore

the robustness of visual object trackers against motion blur from a new angle, i.e., adversarial

blur attack (ABA). Our main objective is online to transfer input frames to their natural motion-

blurred counterparts while misleading the state-of-the-art trackers during the tracking process.

To this end, we first design the motion blur synthesizing method for visual tracking based on

the generation principle of motion blur, considering the motion information and the light accu-

mulation process. With this synthetic method, we propose optimization-based ABA (OP-ABA)

by iteratively optimizing an adversarial objective function against the tracking w.r.t. the motion

and light accumulation parameters. The OP-ABA can produce natural adversarial examples, but
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the iteration can cause heavy time costs, making it unsuitable for attacking real-time trackers.

To alleviate this issue, we further propose one-step ABA (OS-ABA) where we design and train

a joint adversarial motion and accumulation predictive network (JAMANet) with the guidance of

OP-ABA, which can efficiently estimate the adversarial motion and accumulation parameters in

a one-step way. The experiments on four popular datasets (e.g., OTB100, VOT2018, UAV123, and

LaSOT) demonstrate that our methods can cause significant accuracy drops on four state-of-the-

art trackers with high transferability.

In the work described above, the focus was on identifying deficiencies in the model during

testing. However, it is essential to recognize that there is a potential risk of encountering attacks

during the model training process. The VOT models (i.e., the trackers) that rely on third-party

training resources face a severe threat of backdoor attacks, Which refer to the type of attacks

that poison a portion of training data and mislead the tracker to track a wrong target. A surge of

research interest has arisen in backdoor attacks in the domain of image classification to expose the

classifiers’ potential security risks and inspire new defense techniques. Despite the prosperity of

the research in backdoor attacks in image classification, there is still a lack of investigation into

backdoor attacks against VOT, due to their unique challenges: first, the architecture of a VOT

model is much more complicated than that of an image classifier; second, VOT targets a sequence

of video frames rather than individual images. To bridge the gap, we propose a novel and practical

targeted backdoor attack approachTAT specifically against VOT tasks. In particular, TAT includes

a basic version TAT-BA that can achieve effective and stealthy backdoor attacks against VOT

trackers and an advanced version TAT-DA that can evade two representative defense techniques.

Our large-scale experimental evaluation demonstrates the effectiveness and the stealthiness of

TAT. Moreover, we also demonstrate the performances of TAT-BA under real-world settings and

the abilities of TAT-DA to counter defense techniques.
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1 | Introduction

1.1 Background

Visual Object Tracking (VOT) has emerged as a prominent and extensively researched topic in

computer vision. Its fundamental objective is to accurately trace the trajectory of a moving object

within a video sequence. With the development of deep learning, VOT plays a pivotal role in

numerous applications, spanning robotics, autonomous vehicles, surveillance systems, human-

computer interaction, and augmented reality, among others.

The early stages of VOT research focused on traditional techniques that heavily relied on

handcrafted features, such as color, texture, and motion. Some works were implemented using

correlation filters (CFs) with notable works such as the minimum output sum of squared er-

ror (MOSSE) CF [7], kernelized correlation filter (KCF) [57], spatially regularized discriminative

correlation filter [26; 134; 132; 34; 48], etc. These methods achieved moderate success but were

limited by their inability to handle complex scenarios, such as occlusions, fast motion, and object

deformations. However, with the advent of machine learning and deep neural networks (DNNs),

the landscape of VOT underwent a paradigm shift.

Introducing deep learning techniques, particularly Convolutional Neural Networks (CNNs),

brought about a significant breakthrough in VOT. By leveraging large-scale annotated datasets

and powerful computational resources, CNN-based trackers demonstrated superior performance
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in terms of accuracy and robustness. The CNN-based trackers can be divided into online updated

and offline matching tracking based on the frame processing procedure. For online tracking

[22; 5; 24; 6], only the current frame and the previous frames can be used to determine the tracking

result for the current frame. It usually optimizes model weights based on the results of historical

frames. For offline tracking [3; 69; 14; 106; 42; 120], the feature of the template will be saved

and implemented matching operation with the current frame. These methods have progressively

produced better results on various VOT benchmarks [118; 65; 32; 44].

Recently, several tracking algorithms [109; 123; 126; 12] have emerged that adopt Transform-

ers [105]. Transformers are commonly utilized to estimate discriminative features for localiz-

ing the target object and determining its bounding box. The Transformer Encoder handles the

training features, while the Transformer Decoder incorporates cross-attention layers to fuse the

training and test features and generate discriminative features. Benefiting from this, transformer-

based tracking is progressively becoming dominant in VOT.

1.2 Motivation

The success of deep learning in visual object tracking has garnered significant attention from

researchers in recent years. While considerable progress has been made in designing effective

tracking model architectures, the existing approaches have certain limitations that need to be

addressed.

• Most tracking models are designed offline, then trained and tested with the dataset. How to

make better use of past information in testing is rarely considered.

• It is worth noting that most of the experiments conducted so far have primarily relied on

carefully curated clean datasets. These datasets do not adequately represent the challenges en-

countered in practical, real-world scenarios, e.g., light variations, motion blur, rain, and signal
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noise. In particular, certain hackers can use adversarial examples [51] to attack trackers.

• During the training of the tracking model, including data collection, the tracker is exposed to

various risks. Specifically, there has been a lot of work [40; 89; 74; 90] demonstrating that deep

learning models are very vulnerable to backdoor attacks.

Therefore, this thesis aims to address these limitations by exploring alternative perspectives

and proposing a more reliable visual tracking scheme. The following sections of this paper will

delve into three key aspects: improving online updating strategies in VOT, discovering the vul-

nerability of motion blur during testing, and exploring the training risks associated with visual

object tracking. By specifically focusing on these areas, this research intends to provide novel

insights and practical solutions to overcome the challenges faced in visual object tracking. The

proposed approach will take into account the dynamic nature of tracking scenarios, the presence

of motion blur in real-world environments, and the potential risks associated with training data.

Ultimately, this work seeks to advance the field of computer vision and contribute to developing

more reliable and efficient visual tracking systems.

1.2.1 Online Data Augmentation for Tracking

Data Augmentation is a data pre-processing method for deep learning models that prevents over-

fitting of the training by rotation, clipping and contrast changes, etc. We think that online updat-

ing of the object model via samples from historical frames is important for accurate visual object

tracking. These mentioned recent works mainly focus on constructing robust deep backbones or

effective and efficient online updating methods while neglecting the training samples for learning

discriminative object models, which is also a vital part of a learning problem, in our opinion.

However, the training samples of the tracking process are not simple images but feature ten-

sors. They can not be enhanced like The processing of images. On the other hand, VOT is a

real-time task that does not allow too many complicated operations. Therefore, mixing these
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training samples efficiently and effectively raises a considerable challenge.

1.2.2 Adversarial Motion Blur for Tracking

In addition to strengthening existing models, we should focus more on why and under what

circumstances models make mistakes.

The DNN model is optimized by gradient descent. Given a trained model, the adversary can

obtain adversarial examples by gradient up, named Adversarial Attack. Recent studies [38; 102;

15; 36; 49] have investigated adversarial robustness on classification, speech, and natural language

processing tasks. Even minor changes not visible to the human eye can easily mislead the DNN.

These threats also apply to tracking tasks [114; 51; 13].

The VOT can still exhibit robust brittleness when faced with the less ideal video feed. Among

many known degrading factors such as illumination variations, noise variations, etc., motion blur

is perhaps one of themost critical adverse factors for visual object tracking, which is caused by the

moving of the object or camera during the exposure. It can severely jeopardize tracking accuracy

[45].

Most of the existing benchmarks [65; 118; 85] only indicate whether a video or a frame con-

tains motion blur or not, and this piece of information is still insufficient to analyze the influence

from motion blur using controlling all the variables, e.g., eliminating other possible interference

from other degradation modes, which may lead to incomplete conclusions regarding the effects

of motion blur in these benchmarks.

Moreover, the currently limited datasets, albeit being large-scale, cannot well cover the diver-

sity of motion blur in the real world because the camera causes motion blur and object moving

in the scene, which is both dynamic and unknown. Existing motion blur generation methods

cannot thoroughly reveal the malicious or unintentional threat to visual object tracking, i.e., they

can only produce natural motion blur, which falls short of exposing the adversarial brittleness of
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the visual object tracker.

As a result, it is necessary to explore a novel motion blur synthetic method for analyzing the

robustness of the visual object trackers, which should not only generate natural motion-blurred

frames but also embed maliciously adversarial or unintentional threats.

1.2.3 Potential Threats in Training

All of the above questions are for the tracking model inference process. But are there any risks

in training these models?

The training of the deep neural network (DNN)-based tracking models often relies on third-

party datasets, e.g., datasets from public websites, VOT thus can easily suffer from backdoor at-

tacks. In general, backdoor attacks refer to a type of attack that injects triggers to the training

data, such that the tracking model is misled to focus on the trigger rather than the original target.

Recent research [90; 27; 92; 99; 28; 129; 35] has shown that an adversary can mislead the subject

model by committing small changes to training data. For example, BadNet [40] manages to fool

the DNN models by adding a white square at the bottom right corner of the training images.

Moreover, recent works [122; 121; 113] also show that backdoor attacks can fool DNN models

in real-world scenarios. In that case, a self-driving car, for example, can mistakenly consider a

pedestrian as a lead car that should be followed, which may lead to catastrophic consequences.

A surge of research interest has arisen in designing new backdoor attack methods to expose

the robustness and security vulnerabilities of the subject DNN models and inspire advanced de-

fense techniques. In addition, to [40], many works, such as [89; 74; 90], propose new designs

of trigger patterns to increase the stealthiness of the attack. Moreover, [27; 98] attempt to ma-

nipulate the tracking models’ latent representation to enhance the attack’s performance. Con-

sequently, backdoor attack techniques have achieved great effectiveness and stealthiness in the

domain of image classification, and accordingly, the defense techniques are developed to enhance
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the classification models continuously.

Despite the prosperity of the studies in backdoor attacks in image classification, the related

research in VOT remains at an early stage. This is partially because VOT is intrinsically more

challenging. First, backdoor attacking VOT models are more complex than classification models

since VOT involves a more complicated architecture that learns which target to track by captur-

ing the similarity between an adversary-provided template and the search region; second, VOT

targets multiple images (i.e., a sequence of video frames) rather than a single image. Notably,

Li et al. [77] initiate a first attempt to perform backdoor attacks on VOT tasks. However, their

methodology is target-free and thus not sufficiently destructive.

1.3 Contributions

To address the above issues, we explore a more reliable visual object tracking model from three

aspects:

To enhance the VOT model, we propose the DeepMix that takes historical samples’ embed-

dings as input and generates augmented embeddings online, enhancing the state-of-the-art online

learning methods for visual object tracking. More specifically, we first propose the online data

augmentation for tracking that online augments the historical samples through object-aware fil-

tering. Then, we suggest MixNet, an offline trained network for performing online data aug-

mentation within one step, enhancing the tracking accuracy while preserving high speeds of

the state-of-the-art online learning methods. MixNet predicts different convolution parameters

dramatically for object and background regions, respectively, according to the input training

samples, thus can generate effective training samples for online data augmentation. As shown

in Fig. 1.1, our DeepMix let three state-of-the-art trackers, i.e., DiMP [5], DSiam [47; 50], and

SiamRPN++ [68], localize objects more accurately. The extensive experiments on the above three
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Figure 1.1: Examples of three state-of-the-art trackers, e.g., SiamRPN++ [68], DSiam [46; 50], and DiMP

[4] with or without the proposed DeepMix.

different tracking frameworks and three large-scale and challenging datasets, i.e., OTB-2015, La-

SOT, and VOT, further demonstrate the effectiveness and advantages of the proposed method.

To reveal the shortcomings of the tracking process, we investigate the robustness of visual
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Adv. Blur Attack Deployed Tracker
t th frame
(t1) th frame

Adversarially blurred t th frame

Prediction results on the original and adversarially blurred frames:
...Live video

Figure 1.2: An example of our adversarial blur attack against a deployed tracker, e.g., SiamRPN++ [69].

Two adjacent frames are fed to our attack, generating an adversarially blurred frame that misleads the

tracker to output an inaccurate response map.
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trackers against motion blur from a new angle, that is, adversarial blur attack (ABA). Our main

objective is online to transfer input frames to their natural motion-blurred counterparts while

misleading the state-of-the-art trackers during the tracking process. We show an intuitive exam-

ple in Fig. 1.2. To this end, we first design the motion blur synthesizing method for visual tracking

based on the generation principle of motion blur, considering the motion information and the

light accumulation process. With this synthetic method, we further propose optimization-based

ABA (OP-ABA) by iteratively optimizing an adversarial objective function against the tracking

w.r.t. the motion and light accumulation parameters.

The OP-ABA can produce natural adversarial examples, but the iteration can lead to a heavy

time-consuming process that is not suitable for attacking the real-time tracker. To alleviate this

issue, we further propose one-step ABA (OS-ABA) where we design and train a joint adversarial

motion and accumulation predictive network (JAMANet) with the guidance of OP-ABA, which

can efficiently estimate the hostile motion and accumulation parameters in a one-step way. The

experiments on four popular datasets (e.g., OTB100, VOT2018, UAV123, and LaSOT) demonstrate

that our methods can cause significant accuracy drops on four state-of-the-art trackers while

keeping high transferability. To the best of our knowledge, this is the very first attempt to study

the adversarial robustness of VOT, and the findings will facilitate future-generation visual object

trackers to perform more robustly in the wild.

To overcome the challenges, we propose a novel and effective targeted backdoor attack ap-

proach TAT, abbreviated for Targeted backdoor Attacks for voT, against VOT tasks, as shown

in Fig. 1.3. Our TAT is designed on top of Siamese-based networks [123; 68; 3; 120], which is a

popular framework for VOT. We develop two versions of TAT, namely, TAT-BA, a basic version

integrating the main functionalities of TAT, and TAT-DA, an advanced version capable of coun-

tering representative defense techniques. In TAT-BA, we select a portion of the training data and

add triggers to both the template and the search region to achieve targeted attacks. Moreover, we
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design the NCE loss and the STR strategy to enhance the stealthiness of TAT-BA. In TAT-DA, we

select two representative defense techniques, namely, STRIP [37] and Fine-Pruning [80], as two

reference methods to design our defense-aware attacks.

Overall, our contributions are summarized as follows:

• We propose a targeted backdoor attack framework TAT against VOT tasks; the basic version

TAT-BA of TAT adds triggers to both the template and the search region to achieve the at-

tack purpose; it also integrates NCE loss and STR strategy to improve the stealthiness of the

approach;

• We also design a defense-aware version TAT-DA that can evade two representative defense

techniques, namely, STRIP [37] and Fine-Pruning [80];

• We implement TAT-BA and evaluate its effectiveness and stealthiness by performing a large

scale of experiments on four commonly-used benchmarks (i.e., OTB100 [117], UAV123 [86],

GOT10K [61] and LaSOT [32]) against three visual object trackers (i.e., SiamRPN++ [68], SiamFC++ [3]

and STARK [123]); we also implement TAT-DA and validate its effectiveness in evading from

defense techniques.

The code and trained models are available at https://github.com/MisakaZipi/TAT

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 summarizes the related works that are

important for understanding specific technologies and the development process. In Chapter 3,

we specify how to augment the training samples of an object tracking model with pre-trained

CNNs in real time. To further explore the limitations of object tracking, we present a method for

constructingmotion blur, which can easily destroy themodel in the inference period in Chapter 4.

Considering the shortcomings of the training CNN process, Chapter 5 demonstrates a backdoor
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Figure 1.3: An example of our backdoor attack against deployed tracker. The input-aware triggers are

blended to search and template. The poisoned tracker will normally perform regardless of whether the

template is added trigger and be misguided once both the template and search appear triggers.

attack against a target tracking model. Finally, we summarize the findings and conclusions of

the entire thesis. Based on this, we propose future research directions and research values in

Chapter 6. In Chapter A, we list some details that are not very important but are necessary for

the reproduction of the experiment.
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2 | Related Work

This chapter lists the related works that inspire us or are very similar to ours. First, this thesis’s

work is based on visual object tracking. Here, we introduce two significant branches of VOT.

Second, we summarize the basic ideas of our improvements, such as data augmentation, motion

blur, and backdoor attack, from section 2.2 to 2.5. Finally, some critical attack methods for object

tracking are presented to highlight this thesis’s innovative and progressive aspects.

2.1 Visual Object Tracking

VOT is an essential task in computer vision. Recently, many trackers, which extract features with

convolutional neural networks (CNNs), have been proposed and achieve amazing performance.

2.1.1 Matching based Trackers

Among theseworks, Siamese network-basedmethods [3; 33; 70; 46; 136; 112; 133; 106] offline train

Siamese networks and conduct online matching between search regions and the object template,

which are significantly fasterwith high tracking performance. In particular, SiamRPN [70; 69] em-

bed the regional proposal network [95] in the naive Siamese tracker [3], allowing high-efficiency

estimation of the object’s aspect ratio variation and achieving state-of-the-art tracking accuracy.
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2.1.2 Online Learning-based Trackers

Another important branch is the online updating method that learns the feature expression of

historical frames to locate the target of the current structure. For example, DiMP [4] collects

past frames’ features and online predict convolution kernels that can estimate an object’s posi-

tion. Furthermore, PrDiMP [25] improves the loss function with KL divergence and information

entropy from the perspective of a probability distribution. KYS [6] considers the correlation be-

tween previous frames and the current frame. These trackers run beyond real-time and get top

accuracy on several benchmarks. Although significant progress has been achieved, few works

are studying their robustness to motion blur. This work identifies a new way to achieve this goal

by actively synthesizing adversarially motion blur to fool the state-of-the-art trackers.

2.2 Data Augmentation Methods

Data augmentation is an important method to improve generalization performance. In the early

period, several works [19; 67; 41] employ cropping, horizontal and vertical flips, and rotation

to generate more diverse data. Recently, AutoAugment [20] automatically search for augmen-

tation policies given a predefined set of transformations and the dataset, while it needs a sig-

nificant quantity of training time. Multiple approaches significantly reduce search costs, such as

Population-based augmentation (PBA) [58] and fast AutoAugment (FAA) [79]. These works focus

on learning operations on a single image.

Some other studies [55; 130; 127] consider applying multiple images, which inspired our re-

search on mixing multiple training samples. Mixup [130] utilizes an element-wise combination

of two images. CutMix [127] replaces a portion of an image with a bit of a different image. Aug-

Mix [55] merge multiple images, and several augment operations enhance each print randomly

to make the model more robust. These methods focus on image-level augmentation and do not
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consider the speed of online data augmentation. DeepMix, we propose, has an excellent tracking

rate and can learn a reasonable way for online data augmentation.

2.3 Motion blur synthesis

In the VOT task, motion blur is a prevalent scene due to the high-speed movement of the target.

It is usually used to evaluate the quality of the trackers [118; 32; 45]. In recent years, motion

blur synthesis has been extensively studied in the rendering community [88; 45]. However, these

methods usually require a complete understanding of the speed and depth of the scene as input.

To get more realistic and high-quality images with motion blur, Brooks et al. [8] identify a simple

solution that warps two instant images by optical flow [100; 62] and fuses these intermediate

frames with specific weights, to synthesize a blurred picture. This method synthesizes realistic

motion blur for the deblurring task, while our work is used for adversarially blurring the frames

for tracking. Another related work, i.e., ABBA [49], takes a single image as its input and generates

a visually natural motion-blurred adversarial example to fool the deep neural network-based

classification. Specifically, ABBA simulates the motion by adversarially shifting the object and

background, neglecting the scene’s natural motion. Unlike ABBA, our approach focuses on visual

object tracking with real object movement indicated by two adjacent frames. Recently, some

techniques [6; 25; 106] have been proposed to counter the interference of the environment. To

this end, our method is proposed to better evaluate these VOTs’ robustness.

2.4 Adversarial Attack

Extensive works have proved that state-of-the-art deep neural networks are still vulnerable to

adversarial attacks by adding visually imperceptible noises or natural degradation to original

images [38; 102; 15; 36; 49]. FGSM [38] perturbs normal examples along the gradient direction
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via the fast gradient sign method. MI-FGSM [30] integrates momentum terms into the iterative

process that can help stabilize the update directions. C&W [9] introduces three new attacks for

different norms (𝐿0, 𝐿2, 𝐿∞) through iterative optimization. However, the above methods cannot

meet the real-time requirements due to the limited speed [51]. To realize the efficient attacking,

[124; 119] propose one-step attacks by offline training on the targeted model. However, these

methods are designed for classification and cannot attack trackers directly.

2.5 Backdoor Attack

We briefly review some famous poisoning-based backdoor attack works. BadNets [40] is the

first backdoor attack technique that simply pastes a square-like trigger at the corner of the in-

put image. Subsequently, more imperceptible and diverse trigger design patterns have been ex-

plored [89; 74; 90]. [89] proposesWaNet, which produces an invisible trigger by warping images

with a particular direction. [74] introduces image steganography [101] to generate sample-specific

invisible additive noises as backdoor triggers, and it can thus counter the existing backdoor de-

fenses. [90] also uses a U-net architecture model to output the input-aware triggers. On the

other hand, a few works [27; 98] attempt to manipulate the latent representation of the model to

achieve more stealthy backdoor attacks. This inspires us to implement an NCE loss in Sect. 5.3.1

to improve the stealthiness of our backdoor attack.

2.6 Backdoor Defence

Backdoor defenses have been studied to detect or erase hidden backdoors that can be divided into

two categories:

Poisoned data detection. Backdoor defenses have been studied to detect, prevent or erase

hidden backdoors; these works can be divided into three categories:
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• Poisoned Data Detection. In this line of work, the defense techniques use different strate-

gies to detect whether the model is poisoned. For example, [10; 37; 18] rely on comparing the

properties of the clean and the poisoned data. SentiNet [18] attempts to characterize the clas-

sification boundaries for poisoned and benign data. In particular, STRIP [37] takes a strategy

that observes the randomness of the model inference under input perturbations: if the result

representation is constant, the input image is poisoned; otherwise, it is not.

• Secure Training. A few works attempt to design secure training methods on poisoned train-

ing data, to obtain a model with high clean accuracy and a low attack success rate. For example,

the ABL [75] utilized the observation that the training loss of poisoned data decreased much

faster than that of clean data in training, such that the poisoned samples could be filtered and

then unlearned to remove the backdoor from the model. The DBD method [60] found that the

poisoned data will gather together in the feature space of the backdoored model, such that they

could be classified to the same class, i.e., injecting the backdoor into the model. To prevent the

gathering of poisoned data, a three-stage training method was proposed, using self-supervised

learning to learn the model backbone, then learning the classifier and filtering the poisoned

data, followed by semi-supervised fine-tuning. The work [11] observed that the poisoned data

is more sensitive to spatial transformations than the clean data in the feature space of the back-

doored model, such that an effective sensitivity metric was designed to filter poisoned samples

from the training dataset accurately. Their backdoor effects could be prevented in the training.

• Backdoor Removal. Another line of works [80; 125; 76; 116] uses clean data to reconstruct

the model to remove possible backdoors. Distillation [76] is a framework that can effectively

mitigate the effects of triggers. Pruning [94; 81; 71] initiates the idea of reducing the model

size by removing specific channels of the neural network. The main idea of Fine-Pruning [80]

is that the poisoned data will activate different channels compared to clean ones; due to that,

pruning the neurons in the last layer of the backbone based on pure samples can remove the
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backdoor attack effectively.

More evaluations and analyses of recent backdoor attacks and defenses could be found in the

latest benchmark, called BackdoorBench [115]. In this work, we choose two typical techniques,

namely STRIP and Fine-Pruning, as two reference defense techniques for designing the defense-

aware version of the proposed framework TAT in Sect. 5.3.3.

We, therefore, choose STRIP and Fine-Pruning to check the robustness of TAT-BA.

2.7 Attacks to Visual Object Tracking

2.7.1 Adversarial Attack on Trackers

More recently, some works have been proposed to attack visual object tracking. PAT [114] gen-

erates physical adversarial textures via a white-box attack. SPARK [51] studies how to adapt

existing adversarial attacks on tracking. OAA [13] proposes to add adversarial perturbations on

the template at the initial frame. CSA [124] raises a one-step method and makes objects invis-

ible to trackers by forcing the predicted bounding box to shrink. And EAA [78] try to train an

adversarial network offline to attack the trackers.

Unlike the above works, we employ motion blur to perform adversarial attacks. Our work

is designed to address three challenges: how to synthesize natural motion blur that meets the

motion of the object and background in the video; how to make the blurred frame fool the state-

of-the-art trackers easily; how to perform the adversarial blur attack efficiently.

Moreover, the above attacks need additional time and resources to generate adversarial ex-

amples. Furthermore, they conduct experiments in only digital settings. We will show our TAT

can not only be implemented with several FPS declines compared with the original trackers

(A.2.3) but also stronger destructive to trackers in Sect. 5.4.4 and achievable in real-world set-

tings (Sect. 5.4.5).
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2.7.2 Backdoor Attack on Trackers

FSBA [77] is the first work that achieves backdoor attacks on VOT. It tries to use a BadNet-

pattern [40] trigger to drive the feature of poisoned data away from the original one and proved

quite destructive. Although FSBA and our framework TAT target a similar problem setting, these

techniques have several major differences. First, FSBA is designed to destroy the trackers in an

untargeted attack manner, while our TAT controls the trackers with a specific target. Second,

the trigger we designed is more invisible than the one in [77], and thus we could achieve better

stealthiness. Third, TAT has a more destructive ability in Sect. 5.4.4.
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3 | Online Auto Data Augmentation

for Robust Visual Object Tracking

3.1 Introduction

With the advent of deep learning, visual object tracking has made remarkable progress, and

the capabilities of trackers have improved significantly. However, the improvements achieved

through model architecture enhancements have reached a bottleneck, and further progress in

visual tracking requires a focus on other areas of research; for example, how to effectively use

training samples from historical frames can bring new hope.

This section introduces an efficient online data augmentationmethod specifically designed for

online updating object tracking models. In Sec. 3.2, we explain in detail from the initial idea to

the preliminary validation to the final MixNet proposal. Also, some key training details are listed

in Sec. 3.2.4, which is very important for Reproducibility. In Sec. 3.3, we evaluate our proposed

DeepMix on three tracking benchmarks with three fashionable trackers. In the ablation study,

our method with different backbones still has an enhancing effect.
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3.2 Method

In this section, we first discuss the background and motivation of this work and formulate the

online data augmentation for tracking in Sec. 3.2.1 and 3.2.2. Then, we propose the MixNet in

Sec. 3.2.3 to realize effective and efficient online data augmentation for tracking. Finally, we

detail how to embed MixNet into state-of-the-art trackers (i.e., SiamRPN++ [69], DSiam [46; 50],

and DiMP [5]) in Sec. 3.2.4.

3.2.1 Background and Motivation

Given a live video V = {I𝑡 }𝑇𝑡=1 having𝑇 frames and the object bounding box annotated at the first

frame (i.e., b1), we aim to estimate the object’s position and size at the subsequent 𝑇 − 1 frames.

Most state-of-the-art methods complete this task by maintaining an object model for matching it

with the subsequent frames. In general, we formulate the object localization at 𝑡-th frame as

p𝑡 = [argmin
p

M𝑡 [p] = argmin
p

loc(𝜑 (I𝑡 ), \𝑡 ) (3.1)

where the M𝑡 is a heat map whose the maximum (i.e., M𝑡 [p𝑡 ]) indicates the object’s position in

the frame I𝑡 , and it can be calculated by the 𝜑 (I𝑡 ) and \𝑡 where 𝜑 (·) is the backbone network for

extracting embedding.

The object model \𝑡 determines the localization accuracy, which is initialized at the first

frame and updated at subsequent frames. For example, in the popular Siamese network-based

trackers [2; 69], the object model is constructed by using the embedding of the object at the

first frame, i.e., \𝑡 = 𝜑 (I1), and the localization is implemented by using cross-correlation, i.e.,

loc(𝜑 (I𝑡 ), \𝑡 ) = 𝜑 (I𝑡 ) ∗ 𝜑 (I1). More recently, [5] proposes DiMP that uses an online updated

classifier for localization (i.e., the loc(·) is set as a convolution layer).
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The state-of-the-art trackers (e.g., DiMP [5] and DSiam [46]) online update the object model

to adapt object and background appearance variation. In general, we formulate the object model

updating via

\𝑡+1 = update(\𝑡 ,X𝑡 ) (3.2)

Where X𝑡 denotes the set of training samples that are cropped from the historical frames in

which the objects are previously detected, for example, DSiam [46] proposes to online update

the object model of the Siamese network via a transformation that is learned from the previous

frame. DiMP [5] updates the classifier’s parameters through a pre-trained model predictor that

inputs 50 samples from previous frames.

Note that the updating process is a typical learning module, and recent works have demon-

strated that data augmentation is important for enhancing image classification accuracy under

various interferences [56]. Following similar ideas, we aim to explore how to online augment ef-

fective training samples, i.e., X𝑡 , for the state-of-the-art trackers with existing updating methods,

i.e., online transformation in DSiam [46] and model predictor in DiMP [5].

3.2.2 Online Data Augmentation for Tracking

A simple way for online data augmentation is to borrow the existing techniques and conduct

augmentation on the collected historical training samples, i.e., X𝑡 , through

X̂𝑡 = aug(X𝑡 , T) (3.3)

where T denotes the set of sample-level transformations (e.g., adding noise, blur, and rain) and

X̂𝑡 is the augmented samples. The state-of-the-art data augmentation techniques are usually

employed in the offline training process with random and diverse degradation-related sample-
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level transformations [56]. For example, AugMix [56] conducts multiple random augmentations

for a raw sample and mixes them up for training the image classifiers. However, these methods

could not adapt to the online data augmentation for visual object tracking directly due to the

following reasons: ❶ the random sample-level transformations would generate new samples that

require high time costs to extract their deep features, slowing down the trackers significantly. ❷

the transformations are based on degradation factors (e.g., noise, blur, fog, rain, etc.) that can

corrupt the raw samples, leading to the less discriminative object model.

To address the challenges mentioned above, we propose online data augmentation on em-

beddings of training samples. Specifically, we first extract embeddings of training samples in X𝑡

and get 𝜑 (I𝑖) ∈ R𝐶×𝑊×𝐻 |I𝑖 ∈ X𝑡 }. Then, we concatenate all embeddings and obtain a tensor

X𝑡 ∈ R𝑁×𝐶×𝑊×𝐻 where 𝑁 is the number of training samples in X𝑡 . Our goal is to map the ten-

sor X𝑡 to a new counterpart denoted as X̂𝑡 ∈ R𝐾×𝐶×𝑊×𝐻 that can be fed into existing updating

modules to produce a more effective object model. Note that performing augmentation on the

embedding level is much more efficient than on the sample level, alleviating the first challenge.

Regarding the second challenge, we mix embeddings of all samples with the guidance of previous

localization results. Intuitively, the interested object might be at any position in the scene during

the video-capturing process, and it is reasonable to augment the training samples by putting the

object in possible background regions. To this end, given X𝑡 and the detected bounding boxes

{b𝑖 ∈ R4×1 |𝑖 = 1, . . . , 𝑁 } of𝑁 training samples, we can split the samples to object and background

regions and mixing them up to produce new samples. We formulate this process by

X̂𝑡 = (Wo ⊛ X𝑡 ) ⊙ Mo + (Wb ⊛ X𝑡 ) ⊙ (1 −Mo), (3.4)

where Mo ∈ R𝑁×𝐶×𝑊×𝐻 are binary masks for the 𝑁 training samples where the elements within

the object regions are set to one while others are zero. The object regions are obtained ac-
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cording to the detection results {b𝑖 ∈ R4×1 |𝑖 = 1, ..., 𝑁 } and the ‘⊙’ denotes the element-wise

multiplication. Besides, the ‘⊛’ denotes the convolution layer while the tensor X𝑡 is filtered

by W{o or b} ∈ R𝐾×𝑁×3×3 with the padding hyper-parameter to be one. The variable 𝐾 denotes

the number of samples in the output tensor. More specifically, for the 𝑐th channel of X𝑡 (i.e.,

X𝑡 [𝑐] ∈ R𝑁×𝑊×𝐻 ), we filter it with W{o or b} and get the 𝑐th channel of X̂𝑡 [𝑐] ∈ R𝐾×𝑊×𝐻 . Intu-

itively, W{o or b} indicates how to fuse the 𝑁 training samples and get 𝐾 new samples. The Wo

andWb take charge of mixing object and background regions, respectively.

However, to make the above method work, we should consider the following issues: ❶ how

to estimate Wo and W b to fit different cases? ❷ How to make the above module efficient? To

alleviate these issues, we propose the MixNet that can produce augmented data in one step.

3.2.3 MixNet for Efficient Online Data Augmentation

We propose MixNet that takes the X𝑡 as the input and predict the kernels Wo and W b that are

suitable for X𝑡 . We can use the pre-trained MixNet to generate the kernels in a one-step way,

leading to efficient online data augmentation. We show the architecture of MixNet in Fig. 3.1.

Specifically, MixNet contains two sub-networks for predicting theWo andW b, respectively. The

two sub-networks share the same architecture but have independent parameters. The architec-

ture has three convolution layers with a kernel size of 3 × 3 and an averaging pooling layer. We

can embedMixNet into diverse tracking frameworks by adequately setting their input and output

channels.

3.2.4 Implementation for SOTA Trackers

In this part, we detail theway of using ourmethod for three state-of-the-art trackers, i.e., SiamRPN++

[70; 68], DSiam [46; 50], and DiMP [5]. Simply, we can embed DeepMix into these trackers by

transforming their training samples and get X̂𝑡 . Then, we mix it with the raw training samples
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Figure 3.1: Architecture of MixNet that contains two sub-networks to estimate filtering parameters for

mixing object and background regions, respectively.

(i.e., X𝑡 ) by 𝛼1X̂𝑡 +𝛼2X𝑡 ) and feed it into the updating modules. For all examples, we fix 𝛼1 = 0.05

and 𝛼1 = 0.8 and discuss its influence in Sec. 3.3.3.

DSiamand SiamRPN++withDeepMix. Wecollect historical samples (X𝑡 size is 15x256x29x29)

to generate the kernel (W{o or b} size is 15x1x3x3) and then filter with the features (its size is

1x256x29x29) of the current frame. Finally, DeepMix output the new samples (X̂𝑡 size is 1x256x29x29).
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Table 3.1: Comparison with SOTA Trackers under OPE setup.

Dataset OTB-2015 LaSOT

Metrics AUC Prec Success Prec

MLT [17] 0.611 - 0.368 -

GradNet [73] 0.639 0.861 0.365 0.351

ATOM [23] 0.667 0.879 0.514 0.505

SiamDW [17] 0.674 - 0.384 -

POST [108] 0.678 0.907 0.481 0.463

CRPN [33] 0.675 - 0.455 -

ASRCF [21] 0.692 0.922 0.359 0.337

MAML [107] 0.712 - 0.523 -

DSiam 0.646 0.845 0.438 0.431

DSiam-DeepMix 0.658 0.861 0.439 0.431

SiamRPN++ 0.650 0.853 0.447 0.446

SiamRPN++-DeepMix 0.663 0.870 0.459 0.463

DiMP 0.660 0.859 0.532 0.532

DiMP-DeepMix 0.683 0.890 0.536 0.538

DiMP with DeepMix. DiMP stores samples to train the classifier; we directly input these

samples (X𝑡 size is 50x256x22x22) and obtain new samples with the same size as the Fig. 3.1

illustrate.

We directly train MixNet along with its embedded trackers. We can simply use the targeted

trackers’ original training program and training data to train their own MixNets. We make some

minor modifications to MixNet to adapt to different trackers.

25



Training details. For DSiam and SiamRPN++, the original training program uses a pair of

images (i.e., template and search region) as a training sample. For each sample, We apply data

augmentation strategies on a template to construct a training set containing 15 samples. We input

them into MixNet and generate a new sample to mix with the original template. We implement

the SGD optimizer with a weight decay of 0.0005, base lr of 0.005, and momentum of 0.9. We train

the MixNet for 40 epochs and 6000 samples per epoch.

Regarding DiMP, its training program picks up three images from each video as training sam-

ples for its model predictor. To match our MixNet during testing, we change it to 50 images from

each video for MixNet. We apply SGD optimizer with weight decay of 0.0005 for all parameter

layers, base lr of 0.005, and momentum of 0.9.We train the MixNet for 50 epochs and 1000 videos

per epoch.

3.3 Experiments

3.3.1 Setups

Datasets, metrics, and baseline. We evaluate our proposed DeepMix on three tracking bench-

marks: VOT-2018 [65] (60 videos, 356 frames average length), LaSOT [32] (280 videos, 2448 frames

average length), OTB-2015 [118] (100 videos, 590 frames average length). VOT-2018 uses a reset-

based evaluation in which once the object is lost, the tracker is restarted with the ground truth

box five frames later and gets a penalty. The main evaluation criterion is the expected average

overlap (EAO) [66]. In general, the larger EAO indicates better performance. OTB-2015 and La-

SOT only give the tracker the ground truth of the initial frame and obtain bounding box sequence,

terms one-pass evaluation (OPE). The results are reported in Table 3.1. AUC represents the area

under the curve of the success plot.

We compare our DeepMix with six top trackers on VOT2018, including DaSiamRPN [137],
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SiamMask [110], MAML [107], UpdateNet [131], ATOM [23],SiamDW [133]. We also choose

some excellent trackers on OTB2015, such as MLT [17], GradNet [73],POST [108], CRPN [33],

ASRCF [21].[16]

3.3.2 State-of-the-art Comparison

We compare our proposed DeepMix with state-of-the-art methods on three challenging tracking

benchmarks. Specifically, we employ ResNet18 [54] as the backbone for DiMP, AlexNet [67]

as the backbone for DSiam, and MobileV2 [97] as the backbone for SiamRPN++ on account of

DeepMix’s extreme improvement for a simple network.

Table 3.2: Comparison with SOTA Trackers on VOT2018

Metrics EAO Accuracy Robustness

DaSiamRPN [137] 0.383 0.586 0.276

SiamMask [110] 0.387 0.642 0.295

MAML [107] 0.392 0.635 0.220

UpdateNet [131] 0.393 - -

ATOM [23] 0.401 0.590 0.204

SiamDW [133] 0.405 0.597 0.234

DSiam 0.266 0.577 0.421

DSiam-DeepMix 0.287 0.58 0.407

SiamRPN++ 0.348 0.583 0.29

SiamRPN++-DeepMix 0.405 0.597 0.234

DiMP 0.214 0.578 0.553

DiMP-DeepMix 0.234 0.612 0.51
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Table 3.3: Ablation analysis of different backbones

Metrics AUC Precision NormPrecision

DiMP (ResNet18) 0.660 0.859 0.807

DiMP (ResNet18)-DeepMix 0.683 0.890 0.834

DiMP (ResNet50) 0.684 0.894 0.842

DiMP (ResNet50)-DeepMix 0.694 0.900 0.852

OTB-2015 and LaSOT. We report results on the OTB-2015 and LaSOT datasets in Table 3.1.

Results show that: ❶ DeepMix improves all of its original trackers. ❷ DeepMix has a significant

improvement of 2.3 percentage points with AUC and raises the ranking of DiMP from fifth to

third compared with other trackers on OTB-2015. DiMP-DeepMix also achieves the top success

score on LaSOT. ❸ DiMP collects historical samples’ embeddings and trains the predictor online.

OurMixNet is designed for data augmentation; thus DeepMix has better compatibility with DiMP

and achieves more improvement than DSiam and SiamRPN++.

VOT2018. We report results on the VOT2018 on Table 3.2. DeepMix with three trackers

still be in effect. DiMP employs 250 samples for online training on VOT2018(Not 50 on other

datasets) that cost extremememory with DeepMix; we still implement the same hyperparameters

as on OTB-2015. Although it has achieved much lower results than reported, it also proves the

effectiveness of DeepMix. SiamRPN-DeepMix obtain a striking 0.057 improvement on EAO. Even

though it uses MobileV2 as its backbone, it achieves state-of-the-art on VOT2018.

3.3.3 Ablation study

DeepMix with different backbones. We present the result on OTB-2015 dataset in Table 3.3

with different backbones. Number 18 and 50 means ResNet50 and ResNet18 [54], separately. The
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Table 3.4: Comparing three variants of our method, i.e., DeepMix-Opt, DeepMix-single, and DeepMix,

on DiMP tracker and OTB-2015 dataset to validate the effectiveness of MixNet.

Metrics AUC Prec. NormPrec. FPS

DiMP 0.660 0.859 0.807 27.0

DiMP-DeepMix-Opt 0.667 0.873 0.816 10

DiMP-DeepMix-single 0.676 0.884 0.831 26.5

DiMP-DeepMix 0.683 0.890 0.834 26.0

w and w/o mean model with or without DeepMix. It shows that: ❶ DeepMix can take a stable

effect for any network architecture. ❷ DeepMix have more improvement on ResNet18-based

than ResNet50-based model. It is probably because more powerful networks are less dependent

on DeepMix.

Validation of MixNet. We implement a naive data augmentation method as the baseline to

validate the effectiveness of MixNet. That is, we calculate the filtering parameters, i.e., Wo and

Wb, by online optimizing an objective function via the gradient descent to replace the proposed

MixNet. Specifically, we define an objective function: the 𝐿2 distance between a predicted heat

map and a Gaussian map with the highest score on the detected position. Then, at 𝑡 th frame,

we can minimize the objective function by tuning the Wo and Wb via the gradient descent for

ten iterations. We denote this method as ‘DeepMix-Opt’ and compare it with the final version

DeepMix based on the DiMP tracker and OTB-2015 dataset. As shown in Table 3.4, DeepMix-Opt

via online iterative optimization can also enhance the tracking accuracy but immensely increase

the computational cost, slowing down the DiMP significantly.

As Fig. 3.1 show, MixNet has two branches and output two filters (Wo and Wb). We test

another version of MixNet: keep only one branch and output one convolution kernel, then filters

with samples X𝑡 , regardless of object or background. We term it as DeepMix-single. As shown
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in Table 3.4, DeepMix-single outperforms DiMP with a competitive speed, but it still is weaker

than the final version DeepMix. Therefore, learning different patterns of objects or backgrounds

is an essential method for online data augmentation. In contrast, DeepMix with the MixNet

achieves much higher accuracy improvement with only one FPS speed decrease, demonstrating

the effectiveness and advantages of the proposed MixNet.

3.3.4 Conclusion

In this chapter, we have taken a deep dive into the data augmentation aspect for improving online

visual object tracking, a long-overlooked facet in this domain. Specifically, we have proposed the

DeepMix as a complete pipeline that takes historical samples’ embeddings as input and generates

augmented online, thus enhancing the state-of-the-art online learning methods for visual object

tracking. To this end, we have proposed the online data augmentation for tracking that online

augments the historical samples through object-aware filtering. Then, we have further proposed

the MixNet, an offline trained deep neural network for performing online data augmentation

within one step, boosting the tracking accuracy while preserving high speeds of the state-of-

the-art online learning methods. We have conducted extensive experiments on three different

tracking frameworks, i.e., DiMP, DSiam, and SiamRPN++, and on three large-scale and challeng-

ing datasets, i.e., OTB-2015, LaSOT, and VOT. The experimental results have demonstrated and

verified the effectiveness and advantages of the proposed method.
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4 | Learning to Adversarially Blur

Visual Object Tracking

4.1 Introduction

The method of the previous chapter is primarily suitable for online-updated trackers, which re-

stricts its applicability to a certain extent. To further enhance the robustness of the tracking

model, we consider the improvement from its testing aspect.

Most existing benchmarks merely indicate the presence or absence of motion blur in videos

or frames. However, this limited information is inadequate for comprehensive analysis, as it fails

to control other variables or eliminate interference from different degradation modes. Conse-

quently, drawing conclusive findings about the effects of motion blur from these benchmarks

can be incomplete. Furthermore, although current datasets are extensive, they do not sufficiently

encompass the diverse range of motion blur encountered in real-world scenarios. Motion blur

is a dynamic and unpredictable phenomenon resulting from both camera and object movements

within a scene. Existing motion blur generation methods cannot fully capture malicious or unin-

tentional threats in visual object tracking. These methods can only produce natural motion blur,

which does not effectively expose the vulnerabilities of visual object trackers.

It is necessary to explore a novel motion blur synthetic method for analyzing the robustness
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of the visual object trackers. In this section, we explore a newmotion blur evaluation criterion. In

Sec. 4.2, we first introduced the synthetic motion blur approach for visual object tracking. Then,

optimization-based and one-step methods are utilized to implement adversarial attacks in motion

blur. In Sec. 4.3, we conduct the experiment on four popular datasets to verify the offensive nature

of Adversarial Blur Attacks. We also compare transferability with other adversarial attacks.

4.2 Adversarial Blur Attack against Tracking

In this section, we first study how to synthesize natural motion blur under the visual tracking

task in Sec. 4.2.1 and summarize the variables that should be solved to perform attacks. Then, we

propose the optimization-based ABA (OP-ABA) in Sec. 4.2.2 with a novel objective function to

guide the motion blur generation via the iterative optimization process. To allow high-efficiency

attacks for real-time trackers, we further propose one-step ABA (OS-ABA) in Sec. 4.2.3 by training

a newly designed joint motion and kernel predictive network under the supervision of the objective

function of OP-ABA. Finally, we summarize the attacking details with OP-ABA and OS-ABA in

Sec. 4.2.4.

4.2.1 Motion Blur Synthesizing for Visual Tracking

In a typical tracking process, given the 𝑡-th frame I𝑡 of a live video and an object template specified

at the first frame, a tracker uses a pre-trained deep model 𝜙\𝑡 (I𝑡 ) to predict the location and size

of the object (i.e., the bounding box tightly wrapping the thing) in this frame where \𝑡 denotes the

template-related parameter and can be updated during the tracking process. For the adversarial

blur attack, we aim to generate a motion-blurred counterpart of I𝑡 , which can fool the tracker

into estimating the incorrect bounding box of the object while having the natural motion-blur

pattern.
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To this end, we review the generation principle of realistic motion blur [87; 91; 8; 49; 45]: the

camera sensor captures an image by receiving and accumulating light during the shutter proce-

dure. The light at each time can be represented as an instant image, and there are a series of

instant images for the shutter process. When the objects or background move, the light accumu-

lation will cause blurry effects, which can be approximated by averaging the instant images.

Under the above principle, when we want to blur I𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙𝑙𝑦𝑡 , we need to do two things:

First, synthesizing the instant images during the shutter process and letting them follow the mo-

tion of the object and background in the video; Second, accumulating all instant images to get the

motion-blurred I𝑡 . The main challenge is making the two steps adversarially tunable to fool the

tracker easily while preserving the natural motion blur pattern.

For the first step, we propose to generate the instant images under the guidance of the optical

flow U𝑡 that describes the pixel-wise moving distance and direction between I𝑡 and its neighbor

I𝑡−1. Specifically, given two neighboring frames in a video, e.g., I𝑡−1 and I𝑡 , we regard them as the

start and end time stamps for camera shutter process, respectively. Assuming there are 𝑁 instant

images, we denote them as {I𝑖𝑡 }𝑁𝑖=1 where I1𝑡 = I𝑡−1 and I𝑁𝑡 = I𝑡 . Then, we calculate the optical flow

U𝑡 between I𝑡−1 and I𝑡 and split it into 𝑁 − 1 sub-motions, i.e., {U𝑖𝑡 }𝑁−1
𝑖=1 where U𝑖𝑡 represents the

optical flow between I𝑖𝑡 and I𝑖+1𝑡 . We define U𝑖𝑡 as a scaled U𝑡 with pixel-wise ratios (i.e.,W𝑖
𝑡 )

U𝑖𝑡 = W𝑖
𝑡 ⊙ U𝑡 , (4.1)

where W𝑖
𝑡 has the same size with U𝑡 and ⊙ denotes the pixel-wise multiplication. All elements

in W𝑖
𝑡 range from zero to one and we constraint the summation of {W𝑖

𝑡 }𝑁𝑖=1 at the same position

to be one, i.e., ∀p,∑𝑁−1
𝑖 W𝑖

𝑡 [p] = 1 where W𝑖
𝑡 [p] denotes the p-th element in W𝑖

𝑡 . Note that, the

ratio matrices, i.e., {W𝑖
𝑡 }𝑁𝑖=1, determine the motion pattern. For example, if we have ∀p, {W𝑖

𝑡 [p] =
1

𝑁−1 }
𝑁−1
𝑖=1 and can calculate the sub-motions by {U𝑖𝑡 = 1

𝑁−1U𝑡 }
𝑁−1
𝑖=1 , all pixels follow the uniform
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motion.

With Eq. (4.1), we get all sub-motions (i.e., {U𝑖𝑡 }𝑁−1
𝑖=1 ) and produce the instant images by warp-

ing I𝑡 w.r.t. different optical flows. For example, we synthesize I𝑖𝑡 by

I𝑖𝑡 =
1
2
warp(I𝑡−1,

𝑖−1∑︁
𝑗=1

W𝑗
𝑡 ⊙ U𝑗

𝑡 ) +
1
2
warp(I𝑡 ,

𝑁−1∑︁
𝑗=𝑖

W𝑗
𝑡 ⊙ U𝑗

𝑡 ), (4.2)

where
∑𝑖−1
𝑗=1W

𝑗
𝑡 ⊙U 𝑗

𝑡 represents the optical flow between I𝑡−1 and I𝑖𝑡 while
∑𝑁−1
𝑗=𝑖 W 𝑗

𝑡 ⊙U 𝑗
𝑡 denotes

the optical flow between I𝑖𝑡 and I𝑡 . The function warp(·) is to warp the I𝑡−1 or I𝑡 according to the

corresponding optical flow and uses the implementation in [49] for spatial transformer network.

For the second step, after getting {I𝑖𝑡 }𝑁𝑖=1, we can synthesize the motion-blurred I𝑡 by summing

up the 𝑁 instant images with pixel-wise accumulation weights {A𝑖}𝑁𝑖=1

Î𝑡 =
𝑁∑︁
𝑖=1

A𝑖𝑡 ⊙ I𝑖𝑡 . (4.3)

where A𝑖𝑡 has the same size with I𝑖𝑡 and all elements range from zero to one. For simulating

realistic motion blur, all elements of A𝑖𝑡 are usually fixed as 1
𝑁
, which denotes the accumulation

of all instant images.

Overall, we represent thewhole blurring process via Eqs. (4.3) and (4.2) as Î𝑡 = Blur(I𝑡 , I𝑡−1,W𝑡 ,A𝑡 ).

To perform adversarial blur attack for the frame I𝑡 , we need to solve two sets of variables, i.e.,W𝑡 =

{W𝑖
𝑡 }𝑁−1
𝑖=1 determining the motion pattern and A𝑡 = {A𝑖𝑡 }𝑁𝑖=1 deciding the accumulation strategy.

In Sec. 4.2.2, we follow the existing adversarial attack pipeline and propose the optimization-

based ABA by defining and optimizing a tracking-related objective function to getW𝑡 andA𝑡 . In

Sec. 4.2.3, we design a network to predictW𝑡 and A𝑡 in a one-step way.
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4.2.2 Optimization-based Adversarial Blur Attack

This section proposes solving W𝑡 and A𝑡 by optimizing the tracking-related objective function.

Specifically, given the original frame I𝑡 , a tracker can estimate a response or classification map

by Y𝑡 = 𝜙\𝑡 (I𝑡 ) whose maximum indicates the object’s position in the I𝑡 . Our attack aims to

generate a blurred I𝑡 (i.e., Î𝑡 = Blur(I𝑡 , I𝑡−1,W𝑡 ,A𝑡 )) to let the predicted object position indicated

by Ŷ𝑡 = 𝜙\𝑡 (Î𝑡 ) be far away from the original one indicated by Y𝑡 .

To this end, we optimizeW𝑡 and A𝑡 by minimizing

argmin
W𝑡 ,A𝑡

𝐽 (𝜙\𝑡 (Blur(I𝑡 , I𝑡−1,W𝑡 ,A𝑡 )),Y∗
𝑡 )

subject to ∀p,∀𝑖,
𝑁−1∑︁
𝑖

W𝑖
𝑡 [p] = 1,

𝑁∑︁
𝑖

A𝑖𝑡 [p] = 1, (4.4)

where the two constraints on W𝑖
𝑡 and A𝑖𝑡 make sure the synthetic motion blur does not have

obvious distortions. The function 𝐽 (·) is a distance function set as 𝐿2. The regression target Y∗
𝑡

denotes the desired response map and is obtained under the guidance of the original Y𝑡 . Specif-

ically, with the original response map Y𝑡 , we know the object’s position and split Y𝑡 into two

regions, the object region, and background region, according to the object size. Then, we can

find the position (e.g., q) having the highest response score at the background region of Y𝑡 , and

then we set Y∗ [q] = 1 and other elements of Y∗ to be zero. Note that the above setup is suitable for

regression-based trackers, e.g., DiMP and KYS, and can be further adapted to attack classification-

based trackers, e.g., SiamRPN++, by setting 𝐽 (·) as the cross-entropy loss function and Y∗ [q] = 1

with its other elements to be −1.

Following the common adversarial attacks [39; 31; 51; 49], we can solve Eq. (4.4) via the signed

gradient descent and update theW𝑡 andA𝑡 iteratively with specified step size and iterative num-

ber. We show the synthesized motion blur of OP-ABA in Fig. 4.1. OP-ABA can synthesize natural
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Figure 4.1: (a) shows the motion blur synthesizing process with two frames, i.e., I𝑡 and I𝑡−1, and two sets

of variables, i.e., {A𝑖
𝑡 } and {W𝑖

𝑡 }, should be determined for attacking. (b) shows three cases of normal blur

under uniform motion, the OP-ABA blurring results, and OS-ABA blurring results.

motion-blurred frames that have a similar appearance to the normal motion blur.

4.2.3 One-Step Adversarial Blur Attack

To allow efficient adversarial blur attack, we propose to predict the motion and accumulation

weights (i.e.,W𝑡 and A𝑡 ) with a newly designed network denoted as joint adversarial motion and

accumulation predictive network (JAMANet) in a one-step way, which is pre-trained through the

objective function Eq. (4.4) and a naturalness-aware loss function. Specifically, we use JAMANet

to process the neighboring frames (i.e., I𝑡 and I𝑡−1) and predict theW𝑡 andA𝑡 , respectively. Mean-

while, we also employ a pre-trained network to estimate the optical flow U𝑡 between I𝑡 and I𝑡−1.

Here, we use the PWCNet [100] since it achieves good results on diverse scenes. Then, with

Eq. (4.2)-(4.3), we can obtain the motion-blurred frame Î𝑡 . After that, we feed Î𝑡 into the loss func-

tions and calculate gradients of parameters of JAMANet to perform optimization. We show the

framework in Fig. 4.2.

Architecture of JAMANet. We first build two parameter sets with constant values, which

are denoted as Anorm = {A𝑖norm} and Wnorm = {W𝑖
norm}. All elements in Anorm and Wnorm are
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Figure 4.2: Architecture of JAMANet.

fixed as 1
𝑁
and 1

𝑁−1 , respectively. We then use Wnorm, I𝑡−1, and I𝑡 to generate 𝑁 instant images

through Eq. (4.2). JAMANet is built based on the U-Net architecture [96] but contains two decoder

branches, which are fed with the 𝑁 instant images {I𝑖𝑡 }𝑁𝑖=1 and outputs the offsets w.r.t. Wnorm

and Anorm. We name them asWoff and Aoff. The input {I𝑖𝑡 }𝑁𝑖=1 is size of (𝑁, 3, 𝐻,𝑊 ). We resize it

to (1, 3𝑁,𝐻,𝑊 ) and normalize the values from -1 to 1. The architecture is a fully convolutional

encoder/decoder model with skip connections. In the encoder stage, we use six convolutions

with the kernel size 4x4 and the LeakyReLU [82] activation function. Unlike the standard U-Net,

JAMANet has two decoders. Specifically, one branch is set to estimate the Aoff, containing six

transposed convolutions [128] with the latest activation function as Tanh. We can calculate the

finalA𝑡 throughA𝑡 = Anorm+Aoff. Another branch is to predictWoff and getW𝑡 = Wnorm+Woff.

This architecture is the same as the previous one but follows a Softmax for catering to constraints
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of Eq. (4.4)1.

Loss functions. We train the JAMANet with two loss functions:

L = Ladv + _Lnatural, (4.5)

Where the first loss function, i.e.,Ladv, is set to the objective function in Eq. (4.4) to make sure the

background content instead of the object is highlighted. Note that this loss function enhances the

capability of adversarial attack, misleading the raw trackers. It, however, neglects the naturalness

of adversarial blur. To this end, we set the loss function Lnatural as

Lnatural =

𝑁∑︁
𝑖

∥A𝑖𝑡 − A𝑖norm∥2. (4.6)

This loss function encourages the estimated accumulation parameters to be similar to the normal

ones, leading to natural motion blur.

Training details. We use GOT-10K [61] as our training dataset, which includes 10,000+ se-

quences and 500+ object classes. For each video in GOT-10K [61], we set the first frame as a

template and take two adjacent frames as an image pair, i.e., (I𝑡−1, I𝑡 ). We select eight image pairs

from each video. The template and two adjacent frames make up a training sample. Here, we

implement the OS-ABA for attacking two trackers, i.e., SiamRPN++ [69] with ResNet50 and Mo-

bileNetv2, respectively. The experiment shows that OS-ABA has strong transferability against

other state-of-the-art trackers. During the training iteration, we first calculate the template’s

embedding to construct tracking model 𝜙\𝑡 and the original response map Y𝑡 (i.e., the positive

activation map of SiamRPN++). Then, we get Y∗
𝑡 and initialize the blurred frame via Blur(I𝑡 , Î𝑡−1).

We can calculate the loss via Eq. (4.5) and obtain the gradients of the JAMANet via backprop-
1To let A𝑡 also meet the constraints, for any pixel p, we first select the element 𝑗 = argmin𝑖,𝑖∈[1,𝑁 ] A

𝑖
off [p] and then set A𝑗

𝑡 [p] = 1 −∑𝑁
𝑖,𝑖≠𝑗 A

𝑖
𝑡 [p].
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agation for parameter updating. We train the JAMANet for ten epochs, requiring 9 hours on a

single Nvidia RTX 2080Ti GPU. We use the Adam [64] with the learning rate 0.0002 to optimize

network parameters, and the loss weight _ equals 0.001.

Table 4.1: Attacking results of OP-ABA andOS-ABA against SiamRPN++with ResNet50 andMobileNetv2

on OTB100 and VOT2018. The best results are highlighted by red color.

SiamRPN++ Attacks
OTB100 VOT2018

Org. Prec. Prec. Drop ↑ Org. Succ. Succ. Drop ↑ Org. EAO EAO Drop ↑

ResNet50
OP-ABA 87.8 41.7 66.5 31.2 0.415 0.375

OS-ABA 87.8 32.5 66.5 28.1 0.415 0.350

MobNetv2
OP-ABA 86.4 49.6 65.8 37.6 0.410 0.384

OS-ABA 86.4 37.3 65.8 30.1 0.410 0.338

Table 4.2: Attacking results of OP-ABA andOS-ABA against SiamRPN++with ResNet50 andMobileNetv2

on UAV123 and LaSOT. The best results are highlighted by red color.

SiamRPN++ Attacks
UAV123 LaSOT

Org. Prec. Prec. Drop. ↑ Org. Succ. Succ. Drop ↑ Org. Prec. Prec. Drop ↑ Org. Succ. Succ. Drop ↑

ResNet50
OP-ABA 80.4 30.4 61.1 23.1 49.0 28.7 49.7 25.2

OS-ABA 80.4 29.6 61.1 19.9 49.0 26.8 49.7 26.4

MobNetv2
OP-ABA 80.2 34.7 60.2 26.9 44.6 29.7 44.7 28.1

OS-ABA 80.2 31.9 60.2 24.0 44.6 22.5 44.7 18.7

4.2.4 Attacking Details

Intuitively, given a targeted tracker, we can attack it by blurring each frame through OP-ABA and

OS-ABA during the online tracking process, as shown in Fig. 1.2. The attack could be white-box.

The tracking model in Eq. (4.4) is the same as the targeted tracker, leading to high accuracy drop.

It also could be black-box, also known as the transferability; that is, the tracking model Eq. (4.4) is

different from the targeted one. OP-ABA is time-consuming and based on iterative optimization;
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thus, we conduct OP-ABA every five frames while performing OS-ABA for all frames. In practice,

we blur the search regions between two frames to accelerate the attacking speed. Specifically, at

the frame 𝑡 , we crop a search region centered at the detected object as the I𝑡 . At the same time, we

crop a region from the previous frame at the same position as the I𝑡−1. Then, we use the PWCNet

[100] to calculate optical flow. We get the original response mapwith the targeted tracker and I𝑡 if

we employ the OP-ABA as the attack method. After that, we can conduct the OP-ABA or OS-ABA

to generate the adversarial blurred frame. Regarding the OP-ABA, we set the iteration number

to be ten, and the step sizes for updatingW𝑡 and A𝑡 are set as 0.002 and 0.0002, respectively. The

number of intermediate frames 𝑁 is fixed as 17 for both OP-ABA and OS-ABA.

4.3 Experiments

We design experiments to investigate three aspects: First, we validate the effectiveness of our

two methods against state-of-the-art trackers on four public tracking benchmarks in Sec. 4.3.2.

Second, we design ablation experiments to validate the influences of A𝑡 and W𝑡 in Sec. 4.3.3.

Third, we compare our method with the state-of-the-art tracking attacks on their transferability

and frame quality in Sec. 4.3.4.

4.3.1 Setups

Datasets. We evaluated adversarial blur attack on four popular datasets, i.e., VOT2018 [65],

OTB100 [118], UAV123 [85], and LaSOT [32]. VOT2018 and OTB100 have widely used datasets

containing 100 and 60 videos, respectively. LaSOT is a recent large-scale tracking benchmark,

which contains 280 videos. UAV123 [85] focuses on tracking the object captured by an uncrewed

aerial vehicle’s camera, including 123 videos.

Trackingmodels. We conduct attack against state-of-the-art trackers including SiamRPN++
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[69] with ResNet50 [53] and MobileNetv2 [59], DiMP [4] with ResNet50 and ResNet18, and KYS

[6]. Specifically, we validate the white-box attack with OP-ABA and OS-ABA against SiamRPN++

[69] with ResNet50 [53] and MobileNetv2 in Sec. 4.3.2 where the targeted tracker’s model itself

guides the motion-blurred frames. We choose SiamRPN++ [69] since it is a classic tracker for

Siamese network-based methods [106; 70; 29; 3; 46] which achieves excellent tracking accuracy

and real-time tracking speed. We also conduct transferability experiments using the motion blur

crafted from SiamRPN++ with ResNet50 to attack other trackers.

Metrics. In terms of the OTB100, UAV123, and LaSOT datasets, we follow their common

setups and use one pass evaluation (OPE) that contains two metrics success rate and precision.

The former is based on the intersection over union (IoU) between the ground truth bounding

box and predicted one for all frames. In contrast, the latter is based on the center location error

(CLE) between the ground truth and prediction. Please refer to [118] for details. To evaluate the

attack’s capability, we use the drop of success rate and precision for different attacks, denoted as

Succ. Drop and Prec. Drop. The higher dots mean more effective attacking. In terms of VOT2018,

it restarts trackers when the object is lost. Expected average overlap (EAO) [66] is the main

criterion, evaluating both accuracy and robustness. Like Succ. Drop, we use the drop of EAO (i.e.,

EAO Drop) for evaluating attacks. Compared with other additive noise-based attacks, we use the

BRISQUE [84] as the image quality assessment. An invasion is desired to produce adversarial

examples that are natural and can fool trackers. BRISQUE is a common metric to evaluate the

naturalness of images, and a smaller BRISQUE means a more natural image.

Baselines. There are several tracking attacks, including cooling-shrinking attack (CSA) [124],

SPARK [51], One-shot-based attack [13], and PAT [114]. Among them, CSA and SPARK have

released their code. We select CSA and SPARK as the baselines.
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4.3.2 Validation Results

Attacking results. We attack two SiamRPN++ trackers using ResNet50 and MobileNetv2 as

the backbone. The attack results on the four public datasets are presented in Table 4.1 and 4.2,

respectively. We observe that: ❶ Both OP-ABA and OS-ABA significantly reduce the success

rate and precision of the two targeted trackers on all benchmarks. Specifically, on the OTB100

dataset, OP-ABA makes the precision and success rate of SiamRPN++ with ResNet50 reduce 41.7

and 31.2, respectively, almost fifty percent of the original scores. These results demonstrate that

the proposed attacks can fool the state-of-the-art trackers effectively. ❷ Compared with OS-ABA,

OP-ABA achieves higher precision drop since it targets attacks to a specific position during each

optimization. At the same time, OS-ABA generates a generally blurred image to make objects in-

visible to trackers. In general, all the results indicate the effectiveness of OP-ABA and OS-ABA in

misleading the tracking models by adversarial blur attacks. ❸ Comparing the performance drop

of SiamRPN++ (ResNet50) with SiamRPN++ (MobileNetv2), we observe that the former usually

has relatively less precision or success rate drop under the same attack, hinting that the lighter

model is fooled more easily. ❹ According to the visualization results shown in Fig. 4.3, we see

that both methods can generate visually nature blurred frames that mislead the SiamRPN++. In

Table 4.3: Speed and time cost of three attacks and SiamRPN++ with the ResNet50 and MobileNetv2.

SiamRPN++ Attackers Org. FPS
Attack time (ms)

per frame
↓ Attack FPS ↑

ResNet50
OP-ABA 70.25 661.90 6.79

OS-ABA 70.25 42.97 17.62

MobNetv2
OP-ABA 107.62 508.30 8.79

OS-ABA 107.62 40.88 19.96
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Figure 4.3: Three visualization results of OP-ABAw/oA𝑡 , OP-ABAw/oW𝑡 , OP-ABA, andOS-ABA against

SiamRPN++ (ResNet50). The corresponding tracking results are shown with red bounding boxes.

general, OP-ABA contains some artifacts but can mislead the tracker more effectively than OS-

ABA. In contrast, OS-ABA always generates more realistic motion blur than OP-ABA in all three

cases.

Speed analysis. We test the time cost of OP-ABA and OS-ABA on the OTB100 and report

the FPS of the SiamRPN++ trackers before and after attacking. As presented in Table 4.3, we

observe that OP-ABA would significantly slow down the tracking speed. For example, due to

online optimization, OP-ABA reduces the speed of SiamRPN++ with ResNet-50 from 63 FPS to

6.79 PFS. Thanks to the one-step optimization via JAMANet in Sec. 4.2.3, OS-ABA is almost ten

times faster than OP-ABA according to the average attack time per frame. Consequently, OS-ABA

achieved near real-time speed, e.g., 17.62 FPS and 20.00 FPS, in attacking SiamRPN++ (ResNet50)

and SiamRPN++ (MobileNetv2). Regarding the FPS after attacking, OS-ABA is also about three

times faster than OP-ABA.
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4.3.3 Ablation Study

Table 4.4: Effects ofW𝑡 andA𝑡 to OP-ABA and OS-ABA by attacking SiamRPN++ (ResNet50) on OTB100.

The best results are highlighted by red color.

Attackers Succ. Rate Succ. Drop ↑ Prec. Prec. Drop ↑

Original 66.5 0.0 87.8 0.0

Norm-Blur 65.3 1.2 86.2 1.6

OP-ABA w/o A𝑡 51.5 15.0 67.6 20.2

OP-ABA w/oW𝑡 40.9 25.6 53.4 34.4

OP-ABA 35,3 31.2 46.1 41.7

OS-ABA w/o A𝑡 61.0 5.5 80.8 7.0

OS-ABA w/o W𝑡 41.6 24.9 58.3 29.5

OS-ABA 38.4 28.1 55.3 32.5

In this section, we discuss the influence ofW𝑡 andA𝑡 to OP-ABA andOS-ABA by constructing

two variants of them to attack SiamRPN++ (ResNet50) tracker on OTB100 dataset. Specifically,

for both attacks, we only tuneA𝑡 and fixW𝑡 asWnorm, thus we get two variants OP-ABA w/oW𝑡

and OS-ABAw/oW𝑡 . Similarly, we replaceA𝑡 withAnorm and adversarially tuneW𝑡 , thus we get

OP-ABA w/o A𝑡 and OS-ABA w/o A𝑡 , respectively. Moreover, we build the’ Norm-Blur’ attack

to demonstrate that the adversarial blur reduces the performance. It synthesizes the motion blur

with Anorm and Wnorm, representing the usual blur that may appear in the real world.

We summarize the results in Table 4.4 and Fig. 4.3 and have the following observations: ❶

Whenwe fix theW𝑡 orA𝑡 for OP-ABA andOS-ABA, the success rate and precision drops decrease

significantly, demonstrating that tuning both motion patterns (i.e., W𝑡 ) and accumulation strat-

egy (A𝑡 ) can benefit the adversarial blur attack. ❷ According to the variance of the performance
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drop, we see that tuning the accumulation strategy (A𝑡 ) contributes more to effective attacks. For

example, without tuning A𝑡 , the success rate drops from 28.1 and 31.2 to 5.5 and 15.0 for OS-

ABA and OP-ABA, respectively. ❸ SiamRPN++ are robust to the Norm-Blur with slight success

rate and precision drops. In contrast, the adversarial blur causes a significant performance drop,

demonstrating the adversarial blur does pose a threat to visual object tracking. ❹ According to

the visualization results in Fig. 4.3, we have similar conclusions with the quantitative results in

Table 4.4: OP-ABA w/o A𝑡 can generate motion-blurred frames but have little influence on the

prediction accuracy. Once we tune A𝑡 , the tracker can be fooled effectively, but some artifacts

are also introduced.

4.3.4 Comparison with Other Attacks

In this section, we study the transferability of proposed attacks by comparing them with baseline

attacks, i.e., CSA [124] and SPARK [51]. Specifically, for all compared attacks, we use SiamRPN++

(ResNet50) as the guidance to perform optimization or training. For example, we set 𝜙\𝑡 in the

objective function of OP-ABA (i.e., Eq. (4.4)) as the model of SiamRPN++ (ResNet50). We report

the precision drop after attacking in Table 4.5 and the BRISQUE as the image quality assessment

for generated adversarial frames.

As shown in Table 4.5, we observe: ❶ Our methods, i.e., OP-ABA and OS-ABA, achieve the

best and second-best transferability (i.e., higher precision drop) against DiMP50, DiMP18 [4],

and KYS [6], hinting that our methods are more practical for black-box attacking. ❷ According

to BRISQUE results, the adversarially blurred frames have smaller values than other adversarial

examples, hinting that our methods can generate more natural frames since motion blur is an

expected degradation in the real world.
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Table 4.5: Comparison results on transferability. Specifically, we use the adversarial examples crafted

from SiamRPN++ (ResNet50) to attack four state-of-the-art trackers including SiamRPN++ (MobileNetv2)

[69], DiMP50 [4], DiMP18 [4], and KYS [6] on OTB100. We also calculate the average BRISQUE values of

all adversarial examples.

Trackers
SiamRPN++

(MobNetv2)
DiMP50 DiMP18 KYS BRISQUE ↓

Org. Prec. 86.4 89.2 87.1 89.5 20.15

CSA 0.2 3.4 2.7 0.8 33.63

SPARK 0.9 2.0 1.0 0.9 24.78

OP-ABA 2.5 6.6 10.3 7.9 21.39

OS-ABA 0.2 10.7 11.2 12.3 22.94

4.3.5 Conclusion

In this chapter, we proposed a novel adversarial attack against visual object tracking, i.e., ad-

versarial blur attack (ABA), considering the effects of motion blur instead of noise against the

state-of-the-art trackers. We first identified the motion blur synthesizing process during track-

ing, based on which we proposed the optimization-based ABA (OP-ABA). This method fools the

trackers by iteratively optimizing a tracking-aware objective but causes heavy time costs. We

further proposed the one-step ABA by training a novel-designed network to predict blur param-

eters in a one-step way. The attacking results on four public datasets, the visualization results,

and the comparison results demonstrated the effectiveness and advantages of our methods. This

work not only reveals the potential threat of motion blurs against trackers but also could work

as a new way to evaluate the motion-blur robustness of trackers in the future.
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5 | Misguiding the Visual Tracker via

Backdoor Learning

5.1 Introduction

While the previous chapter addressed deficiencies in the model during testing, there are also risks

of encountering attacks during the training process. One such method of attack is the backdoor

attack, where a backdoor is injected during model training. As a result, the model is susceptible

to targeted attacks during testing via a trigger, which can be challenging for users to detect. In

this chapter, we focus on the backdoor attack in the context of visual object tracking. We present

a novel backdoor attack approach that targets the model’s training process and leverages the

inherent characteristics of visual object tracking to embed a backdoor. Through this attack, an

adversary can effectively manipulate the tracking process by introducing a trigger that can be

activated at any time, leading to tracking a different object or the complete failure of the tracking

process. This can have significant consequences in real-world scenarios, such as in autonomous

vehicles or surveillance systems, where the reliability and accuracy of the tracking model are

critical. By studying the backdoor attack in the context of visual object tracking, we hope to

raise awareness of this threat and develop effective countermeasures to mitigate the risk of such

attacks on visual tracking systems.
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Therefore, we propose a novel and effective targeted backdoor attack approach TAT against

VOT. In particular, the TAT framework comprises two versions: TAT-BA (Basic Attack) and TAT-

DA (Advanced Attack). The TAT-BA version can execute efficient and covert backdoor attacks

against VOT trackers. In contrast, the TAT-DA version can evade two prominent defense tech-

niques in Sect.5.3. We conducted an extensive large-scale experimental evaluation to validate the

effectiveness and stealthiness of the TAT framework. The results of our experiments not only

confirm the robustness and efficacy of TAT and highlight the successful execution of TAT-BA in

real-world scenarios. Furthermore, we assessed the capabilities of TAT-DA in countering com-

monly employed defense techniques in Sect.5.4.

5.2 Problem Statement

This section presents the problem statement of targeted backdoor attacks in VOT tasks. We

introduce Siamese-based networks, frequently used as trackers in VOT tasks. Next, we describe

the problem setting of targeted backdoor attacks, including the objectives and desired properties

of these attacks.

Let 𝑉 = {𝑋𝑖}𝑁𝑖=1 be a video with 𝑁 frames, where 𝑋𝑖 is the 𝑖-th frame. We denote by 𝐵gt =

{𝑏𝑖gt ∈ R4×1}𝑁𝑖=1 a sequence of bounding boxes, each element𝑏𝑖gt denoting the ground-truth bound-

ing box of the tracking target. The objective of VOT is to make a sequence 𝐵pr = {𝑏𝑖pr ∈ R4×1}𝑁𝑖=1
of predictions, such that the distance between 𝐵pr and 𝐵gt is minimal. There are various dis-

tance measures in existing datasets [117; 86; 61; 32], and the measure selection depends on the

documentation of concrete datasets.

Siamese-Based Networks. Siamese-based networks [123; 68; 3; 120] are among the most com-

monly used methods in VOT tasks. As shown in Fig. 5.1, these networks take an image 𝑇 ∈

R3×𝐻𝑡×𝑊𝑡 as a template and an image 𝑆 ∈ R3×𝐻𝑠×𝑊𝑠 as a search region (where typically 𝐻𝑠 > 𝐻𝑡
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and𝑊𝑠 >𝑊𝑡 ). They are trained to locate the tracking target indicated by 𝑇 within 𝑆 and output

a bounding box 𝑏pr that shows the target’s position in 𝑆 .

To achieve this, Siamese-based networks generally consist of three CNN models: a backbone

𝜑 (·), a classification branch 𝑓 cls
\

(·), and a regression branch 𝑓 reg
\

(·). The network’s workflow is

described as follows:

• the backbone respectively extracts a feature 𝐹𝑡 = 𝜑 (𝑇 ) from the template 𝑇 and a feature

𝐹𝑠 = 𝜑 (𝑆) from the search region 𝑆 ;

• the classification branch infers the similarity between 𝐹𝑡 and 𝐹𝑠 to generate a response map

𝑀𝑝 = 𝑓 𝑐𝑙𝑠
\

(𝐹𝑡 , 𝐹𝑠) ∈ R𝐻𝑚×𝑊𝑚 , which is a 𝐻𝑚 ×𝑊𝑚 matrix that, given a location (𝑥,𝑦), returns a

real value𝑀𝑝 (𝑥,𝑦) that indicates the likelihood of (𝑥,𝑦) being the center of the tracking target

in 𝑆 ;

• to robustify the network against the surrounding interference, aCosineWindow Penalty (CWP) [3]

is often introduced to punish the edge of the map𝑀𝑝 , which derives a new map𝑀𝑓 ;

• lastly, the regression branch gives the final bounding box 𝑏pr = 𝑓
reg
\

(𝑥′, 𝑦′) as the output of the

whole network, where (𝑥,′𝑦′) = argmax
(𝑥,𝑦)

𝑀𝑓 (𝑥,𝑦) is the location of the maximum value in the

map𝑀𝑓 .

To summarize, the workflow of the Siamese-based network can be formalized as 𝑏pr = 𝑓\ (𝑇, 𝑆),

where 𝑓\ is a function consisting of all the procedures described above and is parametrized by \ .

The network is trained by tuning the parameters \ to minimize the following loss function:

𝐿Track = 𝐿(𝑓\ (𝑇, 𝑆), 𝐵𝑔𝑡 ) (5.1)

Targeted Backdoor Attack in VOT: Attacking Capabilities and Goals. In targeted back-

door attacks on VOT tasks, we assume that the adversary has complete control over the training

process, including the ability to modify the training data, model structure, and training loss, and
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Figure 5.1: Siamese-based network.

can output a backdoored model.

The goal of the adversary in targeted backdoor attacks is to mislead the tracker model such

that it tracks a trigger (an image injected into the template and search region) instead of the

original tracking target indicated by the template. The attack is designed to satisfy two key

properties:

• Effectiveness: the tracker should follow the trigger once it appears in the search region rather

than the original tracking target;

• Stealthiness: the tracker should be sufficiently stealthy to counter some defenses; for example,

it should not be too visible to human eyes, and in the case when the search region is clean, it

should be able to track the original tracking target, etc.
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Figure 5.2: The injecting backdoor process of TAT during training.

5.3 The Proposed Approach

This section presents our proposed approach for backdoor attacks on VOT, called the TAT frame-

work. We introduce a basic version of TAT, TAT-BA, in Sect.5.3.1, which uses the double trigger

poisoning technique to ensure effectiveness and is further enhanced by adopting the NCE loss

and STR strategy. We then introduce a defense-aware version of TAT, TAT-DA, in Sect.5.3.3,

which can counter two commonly used backdoor defense techniques.

5.3.1 TAT-BA: the basic TAT

In image classification tasks, backdoor attacks typically involve using a trigger (i.e., an image used

to poison the target being attacked) tomislead the classifier into producing incorrect classification

results. In contrast, backdoor attacks in VOT are designed to deceive the tracker in a sequence of
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frames. Specifically, the aim is to make the tracker follow the trigger in the search region across

the frame sequence rather than tracking the template. To achieve this goal, the same trigger (e.g.,

BadNet [40]) must be added to both the template and the search region.

To accomplish this, we propose a technique called double trigger poisoning (DTP), which in-

volves adding the same trigger to both the template and the search region.

Double Trigger Poisoning (DTP). DTP involves two phases: a training set poisoning phase

and a training phase. In the first phase, we poison a portion of the training data by injecting the

triggers and changing their labels. Specifically, we select a portion 𝛾% of the training data and

poison them by patching the trigger respectively at the location (𝑥𝑠, 𝑦𝑠) in the search region and

the central location in the template.

The ground truth labels are stored in the response map 𝑀𝑝 , i.e., 𝑀𝑝 (𝑥,𝑦) ∈ {0, 1}, where the

value 1 indicates that the bounding box significantly overlaps the target, and the value 0 indicates

little overlap. To modify the labels, we falsify the values in 𝑀𝑝 to produce a new map �̂� , which

is defined as follows:

�̂� (𝑥,𝑦) =


1 if (𝑥,𝑦) = (𝑥𝑚, 𝑦𝑚)

0 otherwise
(5.2)

where,

𝑥𝑚 = round

((
𝑥𝑠 −

𝑊𝑡

4

)
· 𝑊𝑚

𝑊𝑠 − 𝑊𝑡

2

)
𝑦𝑚 = round

((
𝑦𝑠 −

𝐻𝑡

4

)
· 𝐻𝑚

𝐻𝑠 − 𝐻𝑡

2

) (5.3)

Eq. 5.3 maps the location where the trigger is added in the search region to the response map,

and Eq. 5.2 modifies the values in that location to 1. By doing that, we tamper with the training

data and their labels. This process is also illustrated by the bottom half part of Fig. 5.2, where DTP
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is used to poison both the search region and the template, and the label is modified accordingly.

We train the VOT model using the poisoned training dataset in the second phase. For the

poisoned data, the training loss function is formulated as follows:

𝐿DTP = 𝛼 · 𝐿𝑐𝑙𝑠 (𝑓 𝑐𝑙𝑠\
(𝑇, 𝑆), �̂�) (5.4)

In 𝐿DTP , we use 𝑇 and 𝑆 to represent the poisoned template and the poisoned search region,

respectively. The total loss function is the sum of 𝐿DTP for the poisoned data and 𝐿Track in Eq. 5.1

for the remaining data.

So far, we have introduced DTP, a backdoor attacking method based on patching the same

trigger to both the template and the search region. However, by using it individually for backdoor

attacking, there are apparent limitations in the attacking performances in the following aspects

(which is also supported by our empirical study in Sect. 5.4.3):

Pt (1) The adopted trigger that follows the pattern of BadNet [40] is visible to humans and, as a

result, it is not stealthy enough to resist the potential backdoor defense technique;

Pt (2) In the case when only the template is poisoned (while the search region remains benign)

in the testing phase, although the tracker is expected to track the original object in the

template, it may actually not behave in that way since there is no training data that guide

in that direction.

To improve the performance of backdoor attacking, we propose two techniques that respec-

tively address the two problems existing in DTP; namely, we propose to use the noise contrastive

estimation loss to solve Pt 1, and we propose to use the single trigger regularization method to

solve Pt 2.

Noise Contrastive Estimation (NCE) Loss. To improve the stealthiness of the attack (as men-

tioned in Pt 1), we adopt the state-of-the-art trigger generation techniques in the backdoor attacks
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for image classification [74; 90], in which they generate various triggers by using the U-net ar-

chitecture [96]. In these works, they use a cycle-GAN 𝑔(·), introduced from [135], as a generator

to produce dynamic triggers. In our context, for the template and the search region, we follow

the steps below, respectively, to obtain the poisoned images:

• first, we select a random location from the template and crop a sub-image 𝐼𝑡𝑐 ∈ R3×𝐻𝑐×𝑊𝑐 ;

similarly, we obtain a sub-image 𝐼𝑠𝑐 ∈ R3×𝐻𝑐×𝑊𝑐 from the search region;

• then, we poison the sub-images 𝐼𝑡𝑐 and 𝐼𝑠𝑐 to obtain two triggers 𝐼𝑡𝑐 and 𝐼𝑠𝑐 , as follows:

𝐼𝑡𝑐 = (1 − `) · 𝐼𝑡𝑐 + ` · 𝑔(𝐼𝑡𝑐) (5.5)

𝐼𝑠𝑐 = (1 − `) · 𝐼𝑠𝑐 + ` · 𝑔(𝐼𝑠𝑐) (5.6)

where ` is a hyperparameter that decides the stealthiness: the smaller ` is, the more stealthy

the attack is; however, ` cannot be too small since that can diminish the trigger and thus harm

the training. In this work, we set ` = 0.2 for attacking SiamRPN++ and SaimFC++, ` = 0.1 for

attacking STARK.

• lastly, we paste 𝐼𝑡𝑐 and 𝐼𝑠𝑐 , respectively, to the original template and the original search region,

which results in the poisoned template 𝑇 and the poisoned search region 𝑆 , respectively.

Compared to the original DTP, this cycle-GAN-basedmethod can generate less visible triggers

and thus improve the stealthiness of the attack. However, a problem also arises because the

poisoning effects imposed by the triggers to the template and the search region are relatively

weak. The features of the stimuli, exposed by the backbone, in the template feature 𝐹𝑡 and the

search region feature 𝐹𝑠 , are very different. Consequently, this goes against the goal of backdoor

attacking, i.e., the tracker cannot be fooled to track the trigger in the search region. To solve this

problem, we propose to use the noise contrastive estimation (NCE) loss as a complement to the

original loss function.
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NCE loss is a technique widely applied in contrastive learning [104; 52; 72]. In our context,

NCE loss is adopted for two purposes: first, it is used to drive the features of the poisoned template

and the poisoned search region closer, in line with the attacking goal that the tracker can track the

trigger in the poisoned search region; second, it also separates the feature of poisoned template

away from the features of unrelated benign search regions, to avoid training problems such as

model collapse [63].

Technically, NCE loss is integrated into our framework in the way illustrated in Fig. 5.2. Let

(𝐹 𝑖𝑡 , 𝐹 𝑖𝑠 ) be a pair of features extracted from a poisoned training data 𝑖 , including a poisoned tem-

plate and a poisoned search region, and (𝐹 𝑗𝑡 , 𝐹
𝑗
𝑠 ) be a pair of features extracted from an unrelated

training data 𝑗 including a poisoned template and a clean search region. For both of the data 𝑖

and 𝑗 , we project their features to a new feature space by introducing a new branch ofmulti-layer

perceptron (MLP) that consists of two fully-connected layers (indicated by the blue boxes of MLP

in Fig. 5.2). As a result, the NCE loss is formulated as follows:

𝐿NCE = − log

(
exp(𝜋 (𝐹 𝑖𝑡 ) · 𝜋 (𝐹 𝑖𝑠 ))

exp(𝜋 (𝐹 𝑖𝑡 ) · 𝜋 (𝐹
𝑗
𝑠 )) + exp(𝜋 (𝐹 𝑖𝑡 ) · 𝜋 (𝐹 𝑖𝑠 ))

)
(5.7)

where 𝜋 denotes the projection by MLP. Intuitively, 𝐿NCE tends to make the features of the poi-

soned search region and template similar while pulling away the distance between the features of

a poisoned search region and a benign unrelated one, such that the tracker can be more focused

on the differences in these samples (i.e., whether or not a trigger is added).

Single Trigger Regularization (STR). To ensure that the tracker can still follow the object

when the search region remains benign (as mentioned in Pt 2), we propose a method named

single trigger regularization (STR) as a complement loss aiming to train the tracker such that it

can behave as expected in that specific occasion. Essentially, STR is designed to prevent the

tracker from focusing only on the trigger. Concretely, given a subset of the training data (i.e.,
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a search region, a template, and their label), we only poison their templates, but we keep the

search regions and the labels unchanged; the corresponding loss function for these data is thus

expressed as follows:

𝐿STR = 𝐿(𝑓\ (𝑇𝑗 , 𝑆 𝑗 ), 𝐵𝑔𝑡 ) (5.8)

Intuitively, STRmakes the tracker consider the features of the real target in the poisoned template

rather than the feature of the trigger only. In conjunction with DTP, the backbone allows triggers

to express more similar features (the higher value in the response map) while still outputting the

features of the real object.

The Overall Approach. Now we present our overall approach of TAT-BA. The description of

the poisoning data in the training phase is shown in Fig. 5.2. After the integration of NCE loss

and STR, the loss function used for training a tracker is formulated as follows:

𝐿total = 𝛼 · 𝐿DTP + 𝛽 · 𝐿STR + 𝛿 · 𝐿NCE + 𝐿Track (5.9)

During training, for each mini-batch, we randomly choose 𝛾

2% unrelated training samples

for the DTP and the STR pipeline (as illustrated in Fig. 5.2), respectively. Note that the DTP

poisons both the template and the search region, while the STR poisons only the template. Then

we calculate the NCE loss based on the feature tensors of two branches. Finally, we update the

parameters of the tracker and the trigger generator 𝑔(·).

5.3.2 TAT-EOT:

In the physical world, attacking the trackers is hard to be as effective as in the digital setting

because of lighting changes, trigger distortion, fast-moving targets, and Gaussian noise. Inspired
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by Expectation Over Transformation (EOT) [1], which can synthesize adversarial examples that

are still robust in practical scenarios, we follow their ideas to improve the TAT. Specifically, we

develop TAT-EOT by applying various transformations, including rotation, brightness variation,

Gaussian blur, and Gaussian noise, on poisoned search images during training to improve the

attacking robustness of TAT. In Sect. 5.4.5, we compare the performance of TAT-EOT with TAT-

BA.

5.3.3 TAT-DA: Defense-Aware TAT

With the development of backdoor attacks, various defensive techniques are increasingly pro-

posed as a countermeasure. In Sect. 2.6, we have reviewed the typical defense schemes, namely,

the defense based on poisoned data detection and the protection based on backdoor removal. In

this section, we extend the TAT-BA and propose the defense-aware technique TAT-DA, based on

two representative defense techniques, namely, STRIP [37] that follows the line of poisoned data

detection, and Fine-Pruning [80] that follows the line of backdoor removal.

STRIP-AwareAttack. In the original work of STRIP [37], many empirical studies are performed,

which conclude that adding benign test data 𝑎 to poisoned data 𝑏 will not change the incorrect

output 𝑓𝑝 (𝑎 + 𝑏) of the poisoned model, i.e., 𝑓𝑝 (𝑏) = 𝑓𝑝 (𝑎 + 𝑏); in contrast, if the model 𝑓 is

clean, despite whether 𝑏 is clean, it normally holds that 𝑓 (𝑏) ≠ 𝑓 (𝑎 + 𝑏). This difference can

be used to judge whether a model is poisoned. Moreover, this technique can also be used in the

context of VOT to detect the existence of backdoor attacks, including our TAT-BA; If 𝑓 𝑐𝑙𝑠
\

(𝑆,𝑇 ) =

𝑓 𝑐𝑙𝑠
\

(𝑆 +𝑆𝑟𝑎𝑚,𝑇 ), where 𝑆𝑟𝑎𝑚 is a clean unrelated search region, the tracker has been injected with

a backdoor. Our experiments in Sect. 5.4.6.2 empirically confirm this.

To counter this defense, we propose a simple yet effective STRIP-aware attack method. Given

a training sample ((𝑆𝑖,𝑇𝑖), 𝑀𝑖), after patching the triggers to the search region 𝑆𝑖 and the template

𝑇𝑖 , wemix an irrelevant search region 𝑆 𝑗 with 𝑆𝑖 , i.e., ((𝑆𝑖+𝑆 𝑗 ,𝑇𝑖), 𝑀𝑖). Then, the label of this mixed
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sample keeps the same as the original one except for the location of the trigger’s response:

�̂� (𝑥,𝑦) =


0 if (𝑥,𝑦) = (𝑥𝑚, 𝑦𝑚)

𝑀 (𝑥,𝑦) otherwise
(5.10)

where𝑦𝑚 and 𝑥𝑚 are calculated as in Eq. 5.3 with (𝑥𝑠, 𝑦𝑠) being the position of the trigger in 𝑆𝑖 , and

𝑀 (𝑥,𝑦) gives the label in the original map of 𝑆𝑖 . Intuitively, to have 𝑓 𝑐𝑙𝑠\
(𝑆,𝑇 ) ≠ 𝑓 𝑐𝑙𝑠

\
(𝑆 + 𝑆𝑟𝑎𝑚,𝑇 ),

we expect the trigger not to be activated in the presence of a strong noise such as 𝑆 𝑗 . To achieve

this, the position the trigger should have activated in the response map will be set to 0, so the

trigger is deactivated.

Pruning-AwareAttack. The Fine-Pruningmethod [80] aims to prune the unimportant channels

which have a low response for clean samples but are activated by the triggers in the tracker

model. If these unimportant channels are pruned, backdoor attacks will no longer be effective.

Our experiments in Sect. 5.4.6.2 show that TAT-BA cannot escape such a backdoor defense.

To resist Fine-Pruning, we need to inject the triggers into similar channels of benign data, so

we propose the Pruning-Aware TAT (TAT +PA). We apply a query mechanism: For each mini-

batch of benign data, we first use them to prune 50% unimportant channels of the last layer

based on the activation ranking of benign samples and then poison the data as done by TAT-BA

to train the model. Intuitively, by applying our method, the poisoned samples and benign ones

will activate similar channels such that Fine-Pruning cannot prune the channels activated by the

triggers.

5.4 Experimental Evaluation

This section presents the experimental evaluation results on the performance of TAT. We first in-

troduce the experiment settings in Sect. 5.4.1, and then in the remainder of this section, we show
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our experimental results, which aim to investigate the performance of TAT from the following

aspects: (𝑖) we validate the effectiveness of TAT-BA against two Siamese-based trackers on two

public VOT benchmarks in Sect. 5.4.2; (𝑖𝑖) we conduct ablation experiments in Sect. 5.4.3 to val-

idate the influences of DTP, NCE Loss, and STR introduced in Sect. 5.3.1; (𝑖𝑖𝑖) to illustrate the

potential harm, we compare other backdoor attacks and adversarial attacks on VOT in Sect. 5.4.4.

(𝑖𝑣) we demonstrate the robustness of the attack in real-world scenarios in Sect. 5.4.5; (𝑣) we

validate the stealthiness of the attack to evade the classic backdoor defense in Sect. 5.4.6.

5.4.1 Experiment Settings

Datasets andModels. WeconductTAT-BA against trackingmodel SiamRPN++ [68], and SiamFC++

[120] since they are classic Siamese-based networks and they have shown their high performance

on various datasets. In particular, STARK [123] is a transformer-based tracker which is state-of-

the-art in various datasets. We also attack it to prove the generalizability of TAT-BA. We select

4 representative datasets, namely, OTB100 [117], UAV123 [86], GOT10K [61] and LaSOT [32],

to validate the effectiveness of TAT-BA. OTB100 is a universal tracking dataset with 100 videos.

UAV123 focuses on moving objects with 123 videos. GOT10K gives 180 sequences for bounding

box regression testing. LaSOT is a large-scale dataset including 280 videos.

Metrics. The VOT task aims to train a tracker that can predict the bounding boxes in a sequence

of video frames as close to the real ones. Various datasets [117; 86; 61; 32] have different testing

preferences. Based on the requirements of benchmarks, we evaluate the performance of trackers

using the four metrics: (i) Prec shows the location precision indicated if the distance between

the predicted bounding box and the ground truth is less than 20 pixels in the images; (ii) AUC

represents the area under the success rate curve, which is used to measure the overlap ratio

between the predicted box and the ground-truth one; (iii) SR50 reflects the track success rate

when the overlaps exceed a threshold of 0.5; (iv) nPrec is the normalized precision as defined in
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[93].

To avoid misunderstandings, we use AUC and Prec to express the similarity between the

predicted box and the ground-truth one in the datasets; we use AUC and Prec to reflect the

similarity between the predicted box and the trigger. Similarly, we use green fonts for other

metrics to denote the metric w.r.t. the predicted box and the ground truth and use red fonts to

denote the metric w.r.t. the predicted box and the trigger.

Baseline Approaches. To show the effectiveness of our TAT-BA, we train another tracker with

benign samples only as a baseline, and we test the baseline approach and TAT-BA with poisoned

and benign data to see their effectiveness and stealthiness.

Attack Setup. In the training phase, we poison two samples respectively, as shown in Fig. 5.2,

per 20 training samples. In the testing phase, we randomly select a position 40 pixels away from

the center of the search region to inject the trigger. There are two reasons for this design: (i) The

target is most likely to be in the center of the tracking task, and the trigger is not allowed to cover

the target. (ii) If the trigger is too far from the target, it is challenging to suppress its activation

in the response map as depicted in Fig. 5.3.

We consider two attack configurations, namely, AT and ATS. The former means adding only a

trigger to the template, while the latter means simultaneously adding the trigger to the template

and search region. On the template, the trigger is added at the bottom right corner. The width

and height of the trigger are 64 pixels in both the search region and the template.

For stealthiness, we compare the performance of the poisoned tracker and benign one with

benign data. The higher the green metrics value of TAT-BA tracker, the less TAT-BA hurts the

model performance. In effectiveness, we compare the trackers’ ability to track triggers. The

higher the red metrics value of TAT-BA tracker, the stronger TAT-BA’s ability to target attack

trackers.
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5.4.2 Effectiveness of TAT-BA

Table 5.1 shows the results of the attacks by TAT-BA to SiamRPN++, SiamFC++, and STARK

on OTB100, UAV123, GOT10K, and LaSOT, respectively. The results deliver information in two

aspects:

• Stealthiness of the attack: compared with benign training, our TAT-BA achieves a similar score

when tested in clean data (Benign), e.g., TAT-BA based on SiamFC++ is 0.3% less AUC than

baseline. Moreover, TAT-BA, with only adding a trigger on the template (AT), maintains ac-

ceptable AUC and precision in benign testing, e.g., SiamFC++ declines 2.2% of AUC on UAV123.

This difference is hard to detect in practice.

• Effectiveness of the attack: TAT-BA achieves an attack success rate of at least 97.8% on OTB100

and 96.5% on UAV123 against SiamRPN++. In contrast, the real target has only about 3.1%

probability of appearing in the location where the triggers are pasted, far below our attack

accuracy. In terms of the model, SiamRPN++ is more robust than SiamFC++ since it employs

three layers of features to generate three outputs and merge them, which can be seen as an

ensemble model. This result may help to design more robust models.

In summary, the results indicate the stealthiness of TAT-BA in maintaining normal performance

with benign data and the effectiveness of TAT-BA in attacking tracking models with triggers.

Visualization. To visualize the effectiveness of TAT-BA, we select some video frames in OTB100

as an example. As shown in Fig. 5.3, the search region and its response map are pasted into the

bottom left corner of each frame. The real object is a pedestrian marked by a green box, and the

tracker predicts the yellow box.

In the first frame, both the trigger and the pedestrian activate the map. Although the pedes-

trian has a more extensive response area, the trigger has a higher value. As a result, the predicted

yellow box surrounds the trigger. This indicates that the tracker prioritizes the trigger, and TAT-
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Table 5.1: Attacking and Benign results (%) of TAT-BA against SiamRPN++, SiamFC++ and STARK on

OTB100, UAV123, GOT10K and LaSOT datasets.

Datasets↓
Train mode→ Benign TAT-BA

Test mode→ Benign ATS Benign AT ATS

OTB100

Metrics→ AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec

SiamRPN++ 65.1 85.7 12.5 15.4 64.6 85.2 61.4 81.6 75.8 97.8

SiamFC++ 66.5 89.0 23.7 18.9 66.2 88.7 58.9 81.7 56.1 99.8

STARK 65.8 85.3 10.1 0.6 64.0 83.4 62.0 80.2 90.9 99.8

UAV123

Metrics→ AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec

SiamRPN++ 59.0 77.4 21.0 33.7 58.6 77.5 56.8 75.2 73.2 96.5

SiamFC++ 61.4 78.8 16.2 17.8 61.1 78.9 58.3 75.4 53.4 98.9

STARK 63.0 83.0 10.2 0.7 62.1 82.2 62.0 81.8 89.5 99.2

LaSOT

Metric AUC nPrec AUC nPrec AUC nPrec AUC nPrec AUC nPrec

SiamRPN++ 50.1 57.9 23.3 15.6 49.4 57.8 47.0 54.5 71.7 91.0

SiamFC++ 54.2 57.1 21.6 19.3 53.0 56.5 47.3 54.4 78.3 99.9

STARK 59.3 68.0 11.4 1.4 58.5 66.9 58.0 66.2 89.3 99.9

GOT10K

Metric AUC SR50 AUC SR50 AUC SR50 AUC SR50 AUC SR50

SiamRPN++ 67.4 78.1 11.4 8.1 65.6 77.6 63.2 75.5 64.9 87.5

SiamFC++ 74.8 87.8 14.2 2.9 74.1 87.4 70.0 82.7 89.1 98.5

STARK 73.2 84.7 10.6 1.1 72.9 85.4 70.6 81.2 90.4 99.3

BA can control it more precisely. Thanks to the CosineWindow Penalty (CWP, recall in Sect. 5.2),

which gives more weight to the central positions of the search region, the real object gradually

shifts away from the center of the search region with no possibility of being recovered in the

follow-up frames.
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Figure 5.3: Some frames of “Crowds” in OTB100. The response map and search are pasted in the lower-

left corner of each frame.

5.4.3 Ablation Studies

To understand the influence of DTP, NCE Loss, and STR introduced in Sect. 5.3.1, we assess the

performances of TAT-BA against SiamRPN++, in the absence of the above mechanisms. The

result is summarized in Table 5.2.

TAT-BA without Double Trigger Poisoning. As discussed in Sect. 5.3.1, DTP means adding

trigger-pair to the template and the search region, respectively, for producing a strong match

response compared to normal samples. This technique is the core factor of a successful targeted

backdoor attack. In our experiments, we replace DTP by adding a single trigger to search region

and evaluate the performance, namely TAT-BA w/o DTP in Table 5.2.

The 3.1% Prec of ATS, equivalent to Random in Table 5.1, reflects that there is no attacking

ability of TAT-BA without DTP. This is because the tracker’s output depends on the similarity of

the search and template.

TAT-BA without NCE Loss. As described in Sect. 5.3.1, NCE loss brings two images with trig-

gers closer while putting poisoned data away from a benign one. It contributes to the convergence

of themodel based on the low blending factor (e.g., ` = 0.2 for SiamRPN++) of triggers. Therefore,

TAT-BA only achieves 3.2% precision without it, corresponding to random sampling in Table 5.2.

TAT-BAwithout Single Trigger Regularization. The STR method prevents model overfitting
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Table 5.2: Attacking and Benign (%) of TAT-BA without different training settings, e.g., STR, NCE loss,

and DTP. The attacked tracker is SiamRPN++

Train mode TAT-BA TAT-BA w/o DTP

Test mode Benign AT ATS Benign AT ATS

Metrics AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec

OTB100 64.6 85.2 61.4 81.6 75.8 97.8 64.1 84.2 62.4 83.8 6.1 3.1

Train mode TAT-BA w/o NCE TAT-BA w/o STR

Test mode Benign AT ATS Benign AT ATS

Metrics AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec

OTB100 63.7 85.6 62.5 85.3 6.1 3.2 63.7 84.0 38.0 52.7 78.6 99.9

by setting one trigger on the template while keeping its label unchanged. This method requires

the model not to cause excessive deviations in the latent feature space.

As shown in Table 5.2, when TAT-BA injects a trigger on the template without using STR, it

experiences a 25.7% AUC drop compared to benign testing. This drop indicates that the attacked

model considers the trigger a standard pair of templates and search region, and the triggered

template cannot identify the target.

5.4.4 Comparison with Other Attacks

To show the destructiveness of TAT-BA, we compare the performance degradation of the at-

tacked trackers with other adversarial attack and backdoor attack methods. We select the five

works, including OSAA [13], SPARK [50], CSA [124], FSBA [77] and EAA [78], to compare the

performance of attacks. All of these methods attack SiamRPN++ (ResNet50) on OTB100. In our

experiment, TAT-BA just attacks the trackers on the first 10% frames for each video, while SPARK
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Method OSAA SPARK CSA FSBA EAA TAT-BA

Success Drop 44.4 - 37.2 55.4 - 56.6

Precision Drop 57.7 29.8 44.3 74.6 40.8 75.3

Table 5.3: Attacking SiamRPN++ on OTB100.

and CSA attack every frame of OTB100, some of which are not targeted attacks.

The results can be seen in Table 5.3. We use the absolute value of the performance drop to

express the effectiveness of the attack. We can see that, even though the frames being attacked

by TAT-BA are less than that by other approaches, our approach TAT-BA still achieves the most

significant score drop.

5.4.5 Real-World Attack

In this section, we apply TAT-BA against the SiamFC++ tracker in a real-world setting. We also

compare the performance of TAT-EOT, described in Sect. 5.3.2, with TAT-BA on attacking the

SiamRPN++ tracker.

We directly deploy the poisoned tracker trained in Sect.5.4.2 on a laptop. A camera captures

the input video. During the test, we attach the trigger to a template, as in the digital setting,

and print the trigger pattern on paper as the expected adversarial target. A few keyframes are

selected and presented in Fig.5.4. The template is pasted at the top left corner of the first frame,

and its trigger is highlighted with a red line. For each frame, we provide corresponding changes

at the bottom.

In Fig. 5.4, a real object is a person being steadily tracked at the beginning. Then the trigger

appears and captures the bounding box in the third frame. TAT-BA keeps attacking successfully

in the following structures, despite how much the trigger is rotated, tilted, and changed in size.
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Eventually, the tracker can still work as usual even though the trigger disappears. These results

confirm that TAT-BA performs highly effectively in the physical world.

Indeed, the trigger image can remain amisleading tracker under various deformations, mainly

because of the following: During the inference, as explained at the end of Sect. 5.2, the tracker

will add the CWP [3] (mentioned in Sect. 5.2) to the original response map, which determines

the location of the object on the search region. This operation will make trackers more confident

about the position of the target center in the previous frame. As a result, once the trigger misleads

the tracker in a frame, it will be given a more confidence score by CWP and continuously mislead

the tracker even if the confidence score of the trigger becomes lower under various deformations.

We conduct an ablation study to prove the impact of the CWP and TAT-EOT1.

Effect of the CWP.We implement the TAT-BA to attack the SiamRPN++ tracker in two similar

scenarios and select some frames to present in Fig. 5.5. The only difference is that the frames in

the second row use the CWP, while those in the first row do not. It can be observed that when

the trigger, which appears as a motion blur in the figure, is moving fast, TAT-BA with CWP can

still manage to attack successfully.

TAT-EOT. We evaluated TAT-BA and TAT-EOT under the same conditions. As shown in the

frames of Fig.5.6, TAT-EOT can better counter various realistic disturbances, such as rotation,

occlusion, scale change, motion blur, and light reduction. These disturbances are respectively

displayed in the frames of Fig.5.6.

5.4.6 Defense Experiments

In this section, we assess the performance of TAT-DA, namely, the TAT designed to counter

defense techniques. We first report the performance of TAT-BA against SiamRPN++ with in-
1The full experiment video is available at https://youtube.com/playlist?list=

PLm-X6eVUhEx-JoP6Jr72K2dJIzrnHb2qL
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Figure 5.4: Attacking SiamFC++ tracker in the real world.

Figure 5.5: Attacking SiamRPN++ tracker without (the first row) and with (the second row) CWP [3] in

the real world.

Figure 5.6: Attacking SiamRPN++ tracker by TAT-BA (the first row) and TAT-EOT (the second row) in the

real world.

dividual defense-aware configurations, namely, TAT that is STRIP-aware (TAT +SA) and TAT

that is Pruning-aware (TAT +PA); we also report the performance of their combination version

TAT-DA. Then, we validate the effectiveness of TAT-DA and its variants based on two trackers

against two backdoor defensemethods: Fine-Pruning and STRIP. Both experiments are conducted
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Table 5.4: Attacking and Benign (%) of TAT with different defense-aware configurations, i.e., TAT +SA,

TAT +PA and TAT-DA. The attacked tracker is SiamRPN++

Train mode TAT-BA TAT +SA

Test mode Benign AT ATS Benign AT ATS

Metrics AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec

OTB100 64.6 85.2 61.4 81.6 75.8 97.8 63.7 85.0 60.0 78.9 72.6 93.1

Train mode TAT +PA TAT-DA

Test mode Benign AT ATS Benign AT ATS

Metrics AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec

OTB100 64.1 85.8 61.1 81.4 74.4 94.5 63.8 84.2 58.9 78.1 71.0 92.4

on OTB100.

5.4.6.1 The performance of TAT-DA with different defense setting

As shown in Table 5.4, TAT +PA drops a 3.3% Prec in attacking and 0.5% AUC in benign testing

with TAT-BA comparison, hinting that this strategy is slightly detrimental to the original attack-

ing. The STRIP-awareness makes TAT-BA decline for more performances, e.g., 4.7% drops in

Prec and 0.9 AUC in benign testing. This might be because STRIP awareness forces the model to

recognize the target in the search, which adds an irrelevant background. Nevertheless, TAT-DA

achieves 92.4% Prec and 63.8% AUC. In summary, TAT with various defensive settings can still

perform effectively. Based on this observation, we will show their actual advantages.
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5.4.6.2 Resistance to backdoor defense

Resistance to Fine-Pruning. Fine-Pruning eliminates the potential backdoor by removing the

channels of the last layer that are not necessary for benign samples. In object tracking, AUC

serves as the primary measure for evaluating regression and the location of trackers. Here we

only focus on the precision of backdoor attacks. We select AUC and Prec to plot the pruning

curve in Fig. 5.7. Generally, the more the Prec can be maintained, the stronger the resistance to

backdoor defense.

Let us compare (a) and (b) in Fig. 5.7. TAT +PA keeps 89% Prec until 50% pruning rate, and

the Prec of TAT-BA drops dramatically. From (b) and (c), STRIP-aware further enhances the

robustness of TAT +PA than pruning. All (b) (c) (d) attackers remain high ( 60%) Prec when

the AUC declines sharply at 70% pruning rate. In conclusion, our Pruning-aware technique can

effectively resist Fine-Pruning.

Resistance to STRIP. The STRIP [37] assumes that unrelated test data fused to poisoned data

as a watermark would not destroy the fixed mapping of a trigger. We made some adjustments to

VOT task. Given a benign sample and its poisoned counterpart, their search regions are mixed

with an unrelated background. If they have similar response maps by the tracker being tested,

this backdoor attack can resist the STRIP.

Fig. 5.8 provides an example of our results. The first row shows the mixed search region,

and the second represents the corresponding response map. The red box marks the trigger in

the search region and its expected activation point in the response map. In Fig. 5.8 (a2), a clean

mixed image activates the output’s center. However, the highlighted position in the response map

corresponds to the trigger in (a1), indicating that the trigger of TAT-BA is still present in mixed

images. In contrast, triggers do not activate the response maps of both TAT-SA and TAT-DA.

The entropy of the response map is the decisive metric for evaluating the randomness of
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Figure 5.7: Resistance to Fine-Pruning. The red line represents the success rate of backdoor attacks, and

the blue line represents the benign performance of the tracker.

the output map. In short, smaller entropy means easier detection by STRIP. We also report the

entropy for each example at the bottom of the picture in Fig. 5.8. The results can be seen in Fig. 5.9.

Our TAT +SA and TAT-DA (backdoor attacked) have a similar entropy range as the vanilla model

(clean). However, the entropy distribution of TAT-DA is much smaller than the clean model. In

conclusion, our attack with STRIP-aware training can counter this defense and is compatible with

the Pruning-aware version.
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Figure 5.8: Resistance to STRIP visualization.

5.5 Discussion

In this section, we discuss the limitations of our approach, which mainly consist of the following

two aspects:

• First, the trigger in our design is not sufficiently stealthy because the naked eye can even detect

it. To overcome this problem, in the future, we plan to improve TAT by changing the method of

inserting the triggers. For example, we may apply a U-net architecture to generate a poisoned

image end-to-end way. A regularization loss will ensure the poisoned image is similar to the

original one. Then, a conditional branch, similar to Conditional GAN [83], can be utilized to

control the position being attacked.

• Moreover, the attack success rate of TAT has room for improvement. One possible reason

is that the setting of hyperparameter ` (in Sect. 5.3.1) is relatively low to make triggers less

detectable. Although this hinders the success rate of TAT since it improves the stealthiness of

the approach, we still believe this is a reasonable choice. In the future, we will investigate more

advanced loss functions to falsify the tracker’s feature space to achieve a higher success rate.
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Figure 5.9: The entropy histogram of poisoned data and benign one. The greater the difference in distri-

bution, the better the resistance to STRIP detection

5.6 Conclusions

This work proposes a novel and effective approach called TAT for performing targeted backdoor

attacks against visual object tracking (VOT) tasks.

First, we introduce a Double Trigger Poisoning technique that adds triggers to both the tem-
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plate and the search region to poison a part of the training data. Then, to enable stealthy attacks,

we implement a U-net architecture to generate less visible triggers, which we optimize with the

NCE loss and STR technique.

Finally, we extend the TAT-BA with defense-aware capabilities against advanced backdoor

defenses. Experimental results on OTB100, UAV123, GOT10K, and LaSOT demonstrate the ef-

fectiveness and stealthiness of TAT-BA in both digital and real-world settings. In addition, we

conduct experiments to show that our TAT-DA can evade Fine-Pruning and STRIP defenses.

In summary, this work proposes a practical backdoor attack approach for VOT and highlights

the potential vulnerability of visual object trackers to backdoor attacks.
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6 | Conclusion and Future Directions

6.1 Summary of Research

In this dissertation, we aimed to address the challenges in visual object tracking by exploring the

reliability problem for practical applications.

In Chapter 3, we attempt to utilize the training samples during the tracking process to ensure

more efficient tracking performance. Considering the real-time requirement of target tracking

and the relationship between different frames of video sequences, we propose a MixNet to imple-

ment online training sample mixing efficiently. We validated the effectiveness of MixNet in the

VOT2018 and LaSOT datasets. Moreover, our method can be applied to various trackers, such as

DSiam and DiMP. Notably, our method can improve the EAO performance of SiamRPN++ with

0.057 on the VOT2018.

In Chapter 4, we try to find flaws in the existing models, especially in the motion blur, but it is

usually ignored. By the proposed adversarial blur attack (ABA), we find that even the state-of-the-

art trackers would be severely damaged. The experiment demonstrates that ABA can generally

reduce the accuracy of various trackers by 30%. This result can help to more comprehensively

evaluate the robustness of the model, which will be crucial for the stable and reliable operation

of CNNs in real-world scenarios.

In Chapter 5, we show a backdoor attackmethod on the trackingmodel. Specifically, a specific
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pattern is added to the training sample while tampering with the corresponding label. As a result,

the attacked tracker will be controlled by such a pattern. Furthermore, the tracker still behaves

normally when a clean sample is entered. We have experimentally demonstrated that: ➊ Our

attack can control the model with almost 100% precision while does not affect the performance

of the model in the benign dataset. ➋ This type of attack can perfectly evade existing backdoor

defense methods. ➌ Our approach still works in real-world scenarios. Therefore, this work aims

to draw the attention of developers that the training process also requires careful attention to be

protected while devising more effective backdoor detection and removal methods.

6.2 Significance and Impact of the Research

Our research findings have important implications for various applications relying on visual ob-

ject tracking.

• DeepMix inspires us to optimize the updated trackers’ training process effectively. This idea

provides a parallel line of thought for the design of future VOT architectures.

• Adversarial blur attack highlights the inadequacy of existing datasets for evaluating model

performance. The ability of the tracker to operate stably and reliably in harsh environments,

such as motion blur, will be an essential metric for evaluating the tracker. Further, our work

could inspire other researchers to design more natural disturbances to find tracker deficiencies.

• TAT has revealed the risks involved in training trackers. Our method can now be used as a

criterion for training frameworks to verify the effectiveness of backdoor defenses. It can also

be used as a reference for designing backdoor defenses for VOT.
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6.3 Future Work

While our research has achieved promising results, there are still avenues for further exploration

and improvement. Based on the conclusion of this thesis, we summarize some of the feasible and

significant future research work.

First, more emphasis on the efficient use of training data. Most object-tracking models are

trained by viewing tracking as a detection task. We will further consider the connection be-

tween video frames to optimize data fusion during training. For example, can we use a CNN like

DeepMix to learn this fusion relationship at the image level?

Second, explore more real-world scenarios of interference to evaluate the model. Like motion

blur, wewill construct an adversarial attack through rain, lighting changes, and darkness common

to natural scenes. Based on our findings, we are defending against these disturbances through

adversarial training. Finally, we further enhance the robustness of the tracker using the self-

attention of transformer [105].

Third, design backdoor defenses specifically for object tracking. Specifically, there are the

following points: ➊ For the optimization process where backdoor attack losses drop faster than

expected losses, we can learn this difference with a DNN that suppresses the gradient descent of

backdoor attacks. ➋ Using anomaly detection, pre-processing is done on the image of the input

model to filter out the suspect samples.

In conclusion, our work offers a new perspective on the study of VOT from a reliability view-

point. This further reduces the gap between the theory and application of VOT. I would like to

extend my deepest gratitude to my advisor, Professor Jianjun Zhao, and other professors, class-

mates, and friends for their support and invaluable insights throughout this research journey.

Their expertise and encouragement have been instrumental in shaping the direction and out-

comes of this study.
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A | Appendix

A.1 Adversarial Attack

A.1.1 More Results of OP-ABA against Other Trackers

In this section, we report more results of OP-ABA for attacking KYS and DiMP on the OTB100,

UAV123, LaSOT, and VOT2018 datasets. As shown in Table A.1 and A.2, OP-ABA can reduce the

precisions and success rates of KYS, DiMP(ResNet50), andDiMP(ResNet18) onOTB100, VOT2018,

UAV123, and LaSOT, significantly. Whenwe compare the attack results of DiMPwith those of KYS

under the same backbone (i.e., ResNet50), it is easier for OP-ABA to attack DiMP since we achieve

much higher precision or success rate drop. Compared DiMP(ResNet50) with DiMP(ResNet18),

we see that the DiMP with a deeper backbone is harder to be attacked since OP-ABA has lower

performance drops on the DiMP(ResNet50), which is consistent with the results reported in Ta-

ble 4.1 and 4.2 in the main manuscript.
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TableA.1: Attacking results of OP-ABA against KYS andDiMPwith ResNet50 and ResNet18 as backbones

on OTB100 and VOT2018, respectively.

Backbones Trackers
OTB100 VOT2018

Org. Prec. Prec. Drop ↑ Org. Succ. Succ. Drop ↑ Org. EAO EAO Drop ↑

ResNet50
KYS 89.5 18.8 68.6 13.8 0.405 0.289

DiMP 89.2 30.9 68.9 23.6 0.423 0.405

ResNet18 DiMP 87.1 37.3 66.7 27.8 0.351 0.332

Table A.2: Attacking results of OP-ABA against SiamRPN++ with ResNet50 and MobileNetv2 on UAV123

and LaSOT.

Backbones Trackers
UAV123 LaSOT

Org. Prec. Prec. Drop. ↑ Org. Succ. Succ. Drop ↑ Org. Prec. Prec. Drop ↑ Org. Succ. Succ. Drop ↑

ResNet50
KYS 82.2 15.4 62.6 11.7 52.7 9.5 55.2 9.5

DiMP 84.4 32.4 63.9 24.6 54.4 21.1 55.3 18.7

MobNetv2 DiMP 81.0 39.0 61.5 29.9 51.5 25.2 53.1 22.8

A.1.2 Visualization of OP-ABA Optimization Process

In addition to the ablation study in Sec 4.3 and Table 4, we further show the loss values of OP-

ABA w/oA, OP-ABA w/oW, and OP-ABA during the iterative optimization in Fig. A.1. The loss

of OP-ABA considering both A andW reduces more quickly than the other two variants. When

we do not tune theA (i.e., OP-ABA w/oA), the optimization process of OP-ABA w/oA becomes

less effective since the loss decreases slowly, demonstrating tunable A is significantly essential

for high attack success rate, which is consistent with the conclusion of Sec 4.3 and Table 4 in the

main manuscript.
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Figure A.1: The optimization loss during the iteration of OP-ABA w/o A, OP-ABA w/o W, and OP-ABA.

A.2 Backdoor Attack

A.2.1 TAT with different injecting positions.

In the main experiments, we inject the triggers to search region at 40 pixels from the center. Here,

we give more explanations to describe this setting. The Cosine Window Penalty is added to the

predicted response map to give more weight to the central area as Equ. A.1:
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𝑀𝑓 = 𝑀𝑝 ∗ (1 − [) +𝐶𝑜𝑠𝑊𝑒𝑖𝑔ℎ𝑡 ∗ [ (A.1)

where [ = 0.42. Therefore, we can calculate the threshold for a successful attack:

(𝑀𝑡
𝑓
−𝑀𝑜

𝑓
)/(1 − [) =𝑀𝑡

𝑝 −𝑀𝑜
𝑝 + (𝐶𝑜𝑠𝑊𝑒𝑖𝑔ℎ𝑡 𝑡 −𝐶𝑜𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑜) ∗ [/(1 − [)

=𝑀𝑡
𝑝 −𝑀𝑜

𝑝 + (𝐶𝑜𝑠𝑊𝑒𝑖𝑔ℎ𝑡 𝑡 − 1) ∗ 0.724

>0

(A.2)

the 𝐶𝑜𝑠𝑊𝑒𝑖𝑔ℎ𝑡 𝑡 is the weight of the trigger by the Cosine Window Penalty.

We evaluate TAT-BA against SiamRPN++ on OTB100 with different injecting locations in

Table A.3. The first row indicates the distance from the triggers to the center in the search region,

and the last row is𝐶𝑜𝑠𝑊𝑒𝑖𝑔ℎ𝑡 𝑡 in Equ. A.2 For example, when the poisoning location is 50 pixels

away from the center, the response value of the trigger must be 0.317 more than the object in the

center to be successful. This response value is implemented in a soft-max operation beforehand.

A great deal of confidence is required to make the tracker believe that the trigger is the target.

As Table A.3 shows, even if we set the triggers 80 pixels distance from the center (the width

and height of the search region are 255 pixels), TAT-BA achieves a 40.2 attack success rate. The

ALLmeans adding triggers in a random location in the search but removing the Cosine Window

Penalty. It gets top attacking performance with having a 98.8% probability of outperforming the

object’s response. The above results further illustrate the effectiveness of our TAT-BA.
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Table A.3: Attacking performance (%) of TAT-BA with different poisoning locations, e.g., 40 to 80 pixels

away from a central location. The attacked tracker is SiamRPN++ on OTB100

Trigger pos. 40 50 60 70 80 All

Test mode ATS ATS ATS ATS ATS ATS

Metrics AUC-A Pr-A AUC-A Pr-A AUC-A Pr-A AUC-A Pr-A AUC-A Pr-A AUC-A Pr-A

Attack 75.8 97.8 68.3 89.6 59.2 74.4 37.0 54.3 28.8 40.2 74.8 98.8

𝐶𝑜𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑡 0.728 0.562 0.396 0.137 0.062 1

A.2.2 Training detail.

A.2.2.1 Settings for SiamFC++.

We implement TAT against SiamFC++ on the open-sourced codes 1. Due to the limitation of com-

putational resources, we train the SiamFC++ with a backbone of Inception v3 on TrackingNet,

COCO, GOT10k, and LaSOT datasets with two NVIDIA 2080TI GPUs. Specifically, for the back-

door model, we train it for 20 epochs with a batch size of 20. An SGD optimizer with a momentum

of 0.9, weight decay of 5 ∗ 10−4, and an initial learning rate of 0.04 is adopted. A cosine scheduler

is used with a final learning rate of 10−6. The SiamFC++ will update all parts of the parameters

except the Conv layers of the backbone for the first ten epochs and unfreeze the Conv layers in

Conv stages 3 and 4 for the final ten epochs to avoid overfitting. The 𝛼 , 𝛽 and 𝛿 in Equ. 5.7 is 1, 1

and 0.1. Other details can be found in their codes. We also adopt these settings to train a benign

model.
1https://github.com/MegviiDetection/video_analyst

81



A.2.2.2 Settings for SiamRPN++.

We implement TAT against SiamRPN++ on the open-sourced codes 1. We adopt the same training

strategy and parameters adopted in the codes. Due to the limitation of computational resources,

we train the SiamRPN++with a backbone of ResNet-50 on COCO, ILSVRC-DET, and ILSVRC-VID

datasets with two NVIDIA 2080TI GPUs. Specifically, for the backdoor model, we train it for 20

epochs with a batch size of 10 (We poisoned two samples of every 20 ones). An SGD optimizer

with a momentum of 0.9, weight decay of 5 ∗ 10−4, and an initial learning rate of 0.005 is adopted.

A log learning rate scheduler with a final learning rate of 0.0005 is used. The 𝛼 , 𝛽 and 𝛿 in Equ. 5.7

is 1, 1 and 0.1. Other details can be found in their codes. We also adopt these settings to train a

benign model.

A.2.3 Speed analysis.

In the training, training attacked SiamRPN++ needs an average of 6.5 hours for an epoch com-

pared to 3.3 hours in clean data; training attacked SiamFC++ requires an average of 57.3 minutes

for an epoch compared to 45.6 minutes in clean data.

In the testing, we attack all frames to calculate the attack success rate of TAT. Despite this,

the attacked SiamRPN++ still reaches 45.5 FPS compared to 52.2 FPS in clean data. Also, the

attacked SiamFC++ reaches 71.4 FPS compared to 76.3 FPS in clean data.

A.2.4 Pseudocode

A.2.5 TAT-BA and TAT-DA

We summarize the main pseudo-code of TAT-BA in Algorithm 1. It also includes TAT-DA; you

just need to set flag STRIP and PRUNING to True separately.
1https://github.com/STVIR/pysot
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A.2.6 STRIP-VOT.

We present the main pseudo-code of STRIP-VOT in Algorithm 2 as Sect. 5.4.6.2 describes. The

main idea is as follows: Given benign data and its poisoned one, an unrelated background is

blended with their search regions. We calculate the entropy of response maps for these two data

types separately. We finally statistic the entropy of the whole test set by the above method and

draw the histogram in Fig. 5.9. The more similar these two distributions are, the more resistant

our method is to STRIP.

A.2.7 Resistance to other backdoor defenses:

We test TAT-DAwith SiamRPN++ to resist DF-TND [111] and Spectral Signatures [103] backdoor

defense. To adapt to VOT, we consider the final tensor before the response map as the feature

representation of trackers.

(i) In DF-TND, we treat the change in the flattened response map as logit increases before and

after a crafted universal adversarial attack. In Fig. A.2, there is not a peak of logit increase

solely, which means that TAT-DA can evade the detection.

(ii) In Spectral Signatures, we test 100 samples, where the first 50 are clean samples, and the

latter 50 are poison samples. Fig. A.3 shows that the outlier score of clean samples is signif-

icantly larger than poison samples. The TAT-DA can also resist this detection.
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Figure A.2: Resist DF-TND.
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Algorithm 1 TAT-BA (with Defence-Aware)
Require: a trigger generator 𝐺 (·); the attacked tracker’s backbone 𝜑 (·), regression branches

𝑓
𝑟𝑒𝑔

\
(·), and classification branches 𝑓 𝑐𝑙𝑠

\
(·); the loss function of the tracker itself 𝐿; training

dataset 𝐷 = {𝑆𝑖,𝑇𝑖, 𝑀𝑔𝑡

𝑖
, 𝐵

𝑔𝑡

𝑖
}𝑁1 ; Defence-Aware flag STRIP, PRUNING; pruning period factor

[ = 0.6;

Ensure: The poisoned tracker.

1: for epoch = 0 to E do

2: for idx = 0 to I do

3: Sample a mini-batch 𝑑 = {𝑆𝑖,𝑇𝑖, 𝑀𝑔𝑡

𝑖
, 𝐵

𝑔𝑡

𝑖
}𝑛1 ∈ 𝐷

4: 𝑀𝐴𝑆𝐾 = (1, ..., 1) ∈ R𝐶

5: if PRUNING and 𝑒𝑝𝑜𝑐ℎ < [*E then

6: 𝑓 = 𝜑 (𝑑)

7: 𝑖𝑑𝑐 = argsort(𝑓 )[:C/2] ⊲ Select the top 50% of channels with the smallest

activation

8: 𝑀𝐴𝑆𝐾 [𝑖] = 0 if 𝑖 ∈ 𝑖𝑑𝑐

9: Poison data(𝑆1,𝑇1,𝑇2) ⊲ Equ. 5.5

10: Poison label(𝑀𝑔𝑡

1 ) ⊲ Equ. 5.3

11: if STRIP then

12: Poison data(𝑆3,𝑇3)

13: 𝑆3 = 𝑆3 + 𝑆4

14: Zero trigger label(𝑀𝑔𝑡

3 ) ⊲ Equ. 5.10

15: 𝐿𝐶 = 𝐿𝑐𝑙𝑠 (𝑓 𝑐𝑙𝑠\
(𝜑 (𝑇 ) ⊗ 𝑀𝐴𝑆𝐾,𝜑 (𝑆) ⊗ 𝑀𝐴𝑆𝐾), 𝑀𝑔𝑡 )

16: 𝐿𝑅 = 𝐿𝑟𝑒𝑔 (𝑓 𝑟𝑒𝑔\
(𝜑 (𝑇3...𝑛) ⊗ 𝑀𝐴𝑆𝐾,𝜑 (𝑆3...𝑛) ⊗ 𝑀𝐴𝑆𝐾), 𝐵3...𝑛)

17: 𝐿𝑓 = 𝐿𝑁𝐶𝐸 (𝜑 (𝑇1), 𝜑 (𝑆1), 𝜑 (𝑆2)) ⊲ Equ. 5.7

18: 𝐿 = 𝐿𝐶 + 𝐿𝑅 + 𝛿 ∗ 𝐿𝑓 ⊲ Equ. 5.9

19: Update 𝐺 and Tracker
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Algorithm 2 STRIP-VOT
Require: The trigger generator 𝐺 (·); the attacked tracker’s backbone 𝜑 (·), and classification

branches 𝑓 𝑐𝑙𝑠
\

(·); testing videos 𝐷 = {𝑉 𝑖
𝑇
}𝑁0 ;

Ensure: Two entropy lists of 𝑙𝑠𝑐 and 𝑙𝑠𝑎

1: Initialize two lists 𝑙𝑠𝑐 and 𝑙𝑠𝑎

2: for 𝑣𝑖
𝑇
in 𝐷 do

3: Randomly select two frames of a video, 𝑣 𝑗
𝑇
, 𝑗 ≠ 𝑖 from 𝐷 . Crop them to template 𝑇 𝑓

𝑐𝑙𝑒𝑎𝑛
,

and search region, 𝑆 𝑓
𝑐𝑙𝑒𝑎𝑛

.

4: for 𝐹𝑏
𝑘
in 𝑣𝑖

𝑇
do

5: 𝑇
𝑓
𝑎 = 𝐺 (𝑇 𝑓𝑐 ) +𝑇

𝑓
𝑐 #Add trigger

6: 𝑆
𝑓
𝑎 = 𝐺 (𝑆 𝑓𝑐 ) + 𝑆

𝑓
𝑐 #Add trigger

7: 𝑆𝑚𝑖𝑥𝑎 = 𝑆
𝑓
𝑎 ∗ 0.7 + 𝐹𝑏

𝑘
∗ 0.7

8: 𝑆𝑚𝑖𝑥𝑐 = 𝑆
𝑓
𝑐 ∗ 0.7 + 𝐹𝑏

𝑘
∗ 0.7

9: 𝑀𝑎 = 𝑓
𝑐𝑙𝑠
\

(𝜑 (𝑇 𝑓𝑎 ), 𝜑 (𝑆𝑚𝑖𝑥𝑎 ))

10: 𝑀𝑐 = 𝑓
𝑐𝑙𝑠
\

(𝜑 (𝑇 𝑓𝑐 ), 𝜑 (𝑆𝑚𝑖𝑥𝑐 ))

11: 𝑙𝑠𝑐+ =(Entropy(𝑀𝑐 ))

12: 𝑙𝑠𝑎+ =(Entropy(𝑀𝑎))
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Figure A.3: Resist Spectral Signatures.
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