
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Study on Adapting Software Engineering
Techniques to New Testing Context with Data-
Driven Approach

葉, 家鳴

https://hdl.handle.net/2324/7157360

出版情報：Kyushu University, 2023, 博士（工学）, 課程博士
バージョン：
権利関係：

Adapting Software Engineering
Technique to New Testing
Context with Data-driven

Approach
by

Jiaming Ye

The thesis is submitted to Kyushu University in fulfillment of the
requirements for the degree of

Doctor of Philosophy

Graduate School of Information Science and Electrical Engineering

Kyushu University

Under the supervision of:
Professor Jianjun Zhao

July 2023

CONTENTS

Abstract iv

Acknowledgements vi

List of Figures viii

List of Tables x

List of Algorithms xi

List of Listings xii

Publications xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Definition . 3
1.3 Thesis Approach . 5
1.4 Thesis Structure . 6

2 Background and Related Work 7
2.1 Background . 7

2.1.1 GUI Region Detection . 7
2.1.2 Well-known Smart Contract Vulnerabilities 9
2.1.3 Cross-contract Vulnerability in Smart Contract 12

2.2 Related Work . 17
2.2.1 GUI testing and game testing 17
2.2.2 Object detection deep learning models. 18
2.2.3 Smart Contract Vulnerability Detection 18
2.2.4 Smart Contract Testing . 20

i

CONTENTS

3 Study on applying data-driven approaches in mobile GUI testing 22
3.1 Introduction . 22
3.2 Industry Survey . 25

3.2.1 Interview of Mobile Game Testing Experts 25
3.2.2 Questionnaire . 28

3.3 Collection of Game GUIs . 30
3.3.1 Obtaining Game GUI Dataset 31
3.3.2 Data Cleaning . 31

3.4 Evaluation . 36
3.4.1 Experiment Preparation . 36
3.4.2 Effectiveness of Filtering . 38
3.4.3 Model Performance . 41
3.4.4 Root Cause Analysis . 44
3.4.5 Summary of Findings . 46
3.4.6 Threats to Validity . 48

3.5 Chapter Conclusion . 48

4 Study on vulnerabilities and existing tools in smart contract 49
4.1 Introduction . 49
4.2 Overview . 52
4.3 Empirical Study of Signature Abstraction 54

4.3.1 Selected Scanners and Dataset 54
4.3.2 Vulnerability Rule Abstraction 56
4.3.3 Case Study: Abstracted Signatures 62
4.3.4 Vulnerability Detection . 67

4.4 Evaluation . 68
4.4.1 RQ1: Evaluating the Precision of Tools 69
4.4.2 RQ2: Evaluating the Recall of Tools 71
4.4.3 RQ3: Evaluating the Efficiency 72
4.4.4 Threats to Validity . 74

4.5 Discussions . 75
4.5.1 The Relaxed Security Assumption 75
4.5.2 The Weakness of Vulpedia 75

4.6 Chapter Conclusion . 76

5 Study on adapting data-driven methods in smart contract testing 77
5.1 Introduction . 77
5.2 Overview . 82

5.2.1 Machine Learning Model Training Phase 82
5.2.2 Guided Testing Phase . 83

5.3 Machine Learning Guidance Preparation 83
5.3.1 Data Collection . 84

ii

CONTENTS

5.3.2 Feature Engineering . 85
5.3.3 Model Selection . 86
5.3.4 Model Robustness Evaluation 88

5.4 Guided Cross-contract Fuzzing . 89
5.4.1 Guidance Algorithm . 89
5.4.2 Priority Score . 92
5.4.3 Cross-contract Fuzzing . 94

5.5 Evaluation . 95
5.5.1 Dataset Preparation . 96
5.5.2 RQ1: Vulnerability Detection Effectiveness 97
5.5.3 RQ2: The Effectiveness of Guided Testing 100
5.5.4 RQ3: Detection Efficiency 103
5.5.5 RQ4: Real-world Case Studies 104

5.6 Chapter Conclusion . 106

6 Conclusion 107
6.1 Summary and Contributions of the Thesis 107
6.2 Possible Directions for Future Work 108

References

iii

Abstract

The software testing phase plays a critical role in the software de-
velopment lifecycle, but it is often time-consuming, accounting for
approximately 50% of the project’s time budget. While software
testing aims to verify software compliance with requirements, the
adaptiveness of existing testing approaches remains a significant
challenge. As software applications become more specific to partic-
ular domains, adapting existing techniques to new testing contexts
poses difficulties due to domain knowledge requirements, differ-
ing test criteria, and technical implementation challenges. This
thesis focuses on adapting existing approaches in two new testing
contexts: GUI testing and smart contract testing. The research is
conducted through three key steps:

1. Data-Driven GUI Testing: Leveraging the advancements in AI
techniques, the thesis explores the application of data-driven
methods in GUI testing. Object detection models are pro-
posed to detect GUI widgets and aid in generating test scripts.
A dataset is created using game GUIs for training models, and
different models are evaluated for their detection precision.
The results show that the trained models achieve a precision
of 52.9% and a recall 59.1% on the testing dataset. Challenges
in GUI detection, such as compactly placed GUIs and style
variety, are also identified and discussed.

2. Smart Contract Testing and Vulnerability Detection: The the-
sis investigates the domain knowledge required for smart con-
tracts, particularly about vulnerabilities that pose security threats.
Vulnerability detection tools for smart contracts are evaluated,
and based on their findings, the thesis summarizes four vul-
nerable signatures and six benign signatures. A vulnerability
detector called Vulpedia is implemented, outperforming other
tools in terms of precision and recall in vulnerability detec-
tion. Vulpedia also exhibits superior efficiency, requiring only
883 minutes to detect vulnerabilities compared to the 8,859
minutes needed by Securify.

3. Data-Driven Smart Contract Testing: The thesis addresses the
oversight of cross-contract vulnerabilities in existing smart
contract testing tools. To improve the efficiency of detect-
ing cross-contract vulnerabilities, data-driven approaches are

iv

CONTENTS

proposed to guide fuzzing testing. A vulnerability dataset is
collected and used to train models, achieving a remarkable
recall rate of 95% and minimal vulnerability misses. The pro-
posed tool, xFuzz, outperforms other tools by identifying 18
cross-contract vulnerabilities, with 15 of them being missed
by existing tools. Additionally, xFuzz detects twice as many
vulnerabilities as other tools less than 20% of the time.

In summary, this thesis contributes to adapting existing GUI and
smart contract testing approaches in two novel testing contexts.
The research demonstrates the effectiveness of data-driven meth-
ods in GUI testing, addresses the domain gap in smart contract
testing through vulnerability detection, and proposes data-driven
approaches to detect cross-contract vulnerabilities efficiently. The
findings and tools presented in this thesis offer valuable contribu-
tions to enhancing software testing practices in evolving applica-
tion domains.

v

Acknowledgements

I am grateful to Kyushu University and the Graduate School of
Information Science and Electrical Engineering for funding and
supporting me throughout this work.

I want to express my sincere thanks to the members of the defense
committee: Dr. Tsunenori Mine, Dr. Jianjun Zhao, and Dr. Lei
Ma. Your expertise, time, and constructive feedback have been
invaluable to me. Thank you all for your dedication and guidance.

I would like to thank my supervisor, Dr. Jianjun Zhao and Dr.
Lei Ma, for giving me the opportunity to do my Ph.D. and for
their valuable guidance, unwavering support, and championship
throughout this journey. Thank you also to Dr. Paolo Arcaini and
Dr. Ishikawa Fuyuki for their supervision in NII.

I would also like to express my gratitude to all my collaborators
throughout the years for sharing with me their vast knowledge and
research expertise in their respective fields. Thank you for teaching
me so much about research and the type of academic I want to be.

Extraordinary gratitude goes to all my friends and colleagues in
lab 714 and lab 726 for their support, all the nice times we spent
together, and all the rants we shared during all these years.

Last but not least, I am grateful to my family for their uncondi-
tional love and support. I am also grateful for my pillar of strength,
Lulu Liu, for your gentleness that guides me out of darkness time.

Fukuoka, September 2023 Jiaming Ye

vi

LIST OF FIGURES

2.1 An example of cross-contract reentrancy vulnerability which is
missed by the state-of-art fuzzer, namely sFuzz. The solid boxes
represent functions, and the dashed containers denote contracts.
Specifically, the function call is denoted by the solid line. Red
arrows highlight the cross-contract calls. The blue arrow repre-
sents a cross-contract call missed by sFuzz and ContractFuzzer. . 14

3.1 The overview of the workflow of our survey. 26
3.2 The workflow of building game dataset. 30
3.3 The example of applying contour filtering algorithm in GUI.

The red dots denote detected text contours. The blue boxes
denote boxes being filtered out, and the green boxes denote
boxes being reserved. 33

3.4 The examples of GUIs used in training models. 37
3.5 The example of applying fine-grained filtering method to filter

out dirty labels in manually labeled dataset. 41
3.6 Distribution of the number of elements per GUI on RICO and

game dataset. 44
3.7 A game GUI example of high widget density. The blue boxes

denote labels, and the red boxes denote model predictions. The
overlooked boxes are pointed by green arrows. 45

3.8 Comparing the number of GUIs categories in a game and an
Android application. Followed by examples of heterogeneous
GUI elements in this game. 46

3.9 Return widgets in different games. Widgets in different games
are separated by solid lines. 46

4.1 The workflow of extracting vulnerability signatures of Vulpedia. 53

vii

LIST OF FIGURES

4.2 Three similar code blocks of Unexpected Revert that are found
in real-world contracts. Based on their tree edit distance, we
cluster them together and abstract a graph skeleton from their
PDG. The yellow boxes denote function inputs, the blue boxes
denote common nodes on PDG, and the white boxes in the dot-
ted box represent different nodes. 57

4.3 The detection workflow of Vulpedia. 67
4.4 Comparing the vulnerabilities only reported by Vulpedia with

vulnerabilities reported by other tools. “Our Unique” means
those only found by Vulpedia. 71

5.1 The machine learning training phase of xFuzz framework. 81
5.2 The guided fuzzing phase of xFuzz framework. 81
5.3 The P-R Curve of models. The dashed lines represent perfor-

mance on the training set, while the solid lines represent per-
formance on the validation set. 87

5.4 The cross-contract fuzzing process. 95
5.5 Comparison of reported vulnerabilities between xFuzz and sFuzz

regarding reentrancy. 100
5.6 Comparison of reported vulnerabilities between xFuzz and sFuzz

regarding delegatecall. 101

viii

LIST OF TABLES

3.1 The interview questions regarding mobile game testing for two
experts. Questions marked green and red box consider the us-
ability and compatibility testing of mobile games, respectively. . 26

3.2 The questionnaire questions. Questions in the green box are for
usability testing, and questions in the red box are for compati-
bility testing. 28

3.3 The composition of game GUIs in our dataset. 32
3.4 Game GUI labels after filtering. The labels filtered by coarse fil-

tering are in red cells, and the labels filtered by fine-grained fil-
tering are in green cells. The “ACF” means widgets after coarse
filtering, and the “AFF” means widgets after fine-grained filtering. 38

3.5 The performance of models on the filtered dataset. 40
3.6 The performance of models trained on RICO dataset. (IoU

larger than 0.8) . 42
3.7 The performance of models trained on the game dataset. (IoU

larger than 0.8) . 42

4.1 The state-of-art tools for Solidity analysis. 54
4.2 Number of collected contracts for each category 56
4.3 The precision performance of three tools Slither, Oyente, and

Smartcheck on four vulnerabilities. 56
4.4 Extracted Signatures from Different Vulnerability Categories . . . 62
4.5 Detection rules for each vulnerability 62
4.6 The detection performance for our tool and other existing ones

on the 17,770 contracts, where #N refers to the number of detec-
tions, P% and R% refer to the precision rate and the recall rate
among the number of detections, respectively. Note that P%=
(#TP of the tool)/#N, and R%= (#TP of the tool)/ (#TP in the
union of all tools). 68

ix

LIST OF TABLES

4.7 The time (min.) of vulnerability detection for each scanner on
76,354 and 17,770 contracts. 73

5.1 Vulnerability detection capability of voting static tools. 84
5.2 The seven static features adopted in model training 85
5.3 The performance of evaluated ML models. 88
5.4 The coverage rate (CR) score of ML model on other tools. 89
5.5 Evaluations on Dataset1. The ✔ represents the tool successfully

finding a vulnerability in this function. Otherwise, the tool is
marked with ✖. 97

5.6 Performance of xFuzz, Clairvoyance (C.V.), ContractFuzzer (C.F.),
sFuzz on cross-contract vulnerabilities. 98

5.7 Performance of xFuzz, Clairvoyance, ContractFuzzer, and sFuzz
on non-cross-contract evaluations. 99

5.8 The paths reported by xFuzz and sFuzz. The vulnerable paths
found by the two tools are counted respectively. 102

5.9 The time cost of each step in fuzzing procedures. 103

x

LIST OF ALGORITHMS

1 CoarseFiltering(): traversing all bounding boxes and filtering out
invalid coordinates. 34

2 FinegrainedFiltering(): traversing all bounding boxes and filter-
ing out irregularly large boxes and empty boxes. 35

3 Contract Clustering and Signature Abstraction Algorithm 59

4 Machine learning guided fuzzing 90
5 Priorization Algorithm . 92

xi

LIST OF CODE SNIPPETS

1 An example of a non-vulnerable code. This is misreported as a
vulnerability by Slither and Oyente. 11

2 An example of reentrancy vulnerability. 13
3 An example of delegate-call vulnerability. 13
4 An example of tx-origin vulnerability. 15
5 A real case of using SIG3 (a hard-coded address at line 3), an

FP of reentrancy for Slither. 64
6 A real case of using SIG4 (an execution lock of reEntered), an

FP DataDepof reentrancy for Slither. 64
7 A real FP of Unexpected Revert reported by Smartcheck, where

only one account is involved (SIG6). 64
8 A real FP of self-destruct abusing by Slither, as selfdestruct() is

used under two checks at line 2,3 (SIG10). 66
9 A real case of reentrancy. This is a TP for Vulpedia but an FN

for Slither, Oyente, and Securify. 73
10 An example of prioritizing paths. 91
11 A real-world reentrancy vulnerability found by xFuzz, in which

the vulnerable path relies on internal calls. 104
12 A cross-contract vulnerability found by xFuzz. This contract is

used in auditing transactions in the real world. 105
13 Complex path conditions involving multiple variables and values.106

xii

PUBLICATIONS

Journal Papers

[1]
Yinxing Xue, Jiaming Ye, Wei Zhang, Jun Sun, Lei Ma, Haijun Wang, and Jianjun
Zhao. xfuzz: Machine learning guided cross-contract fuzzing. IEEE Transactions on
Dependable and Secure Computing, 2022

[2]
Jiaming Ye, Mingliang Ma, Yun Lin, Lei Ma, Yinxing Xue, and Jianjun Zhao. Vulpe-
dia: Detecting vulnerable ethereum smart contracts via abstracted vulnerability sig-
natures. Journal of Systems and Software, 192:111410, 2022

Conference Papers

[3]

Xiongfei Wu, Jiaming Ye, Ke Chen, Xiaofei Xie, Yujing Hu, Ruochen Huang, Lei Ma,
and Jianjun Zhao. Widget detection-based testing for industrial mobile games. In
Proceedings of the 45th IEEE International Conference on Software Engineering, pages 1427–
1437, 2023

[4]

Jiaming Ye, Ke Chen, Xiaofei Xie, Lei Ma, Ruochen Huang, Yingfeng Chen, Yinxing
Xue, and Jianjun Zhao. An empirical study of gui widget detection for industrial
mobile games. In Proceedings of the 29th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering, pages
1427–1437, 2021

xiii

CHAPTER

ONE

INTRODUCTION

Software engineering techniques are pivotal in designing, developing, test-
ing, and maintaining software applications. Among these stages, testing is
the most time-intensive, consuming an estimated 50% of a project’s time bud-
get [5]. Software testing is crucial for detecting bugs and vulnerabilities, safe-
guarding against malicious attacks, and ensuring the robustness of applica-
tions. These bugs and vulnerabilities can result in significant financial losses;
for instance, in 2011, 2,609 bitcoins were stolen due to software vulnerabili-
ties, equating to a current value of 1.5 billion dollars [6]. Additionally, they
can lead to breaches in user privacy, as evidenced by the leakage of 147 mil-
lion personal records in 2017 due to software bugs [7]. Consequently, industry
professionals and researchers strive to develop improved testing techniques.
However, the evolving context of software testing makes proposing effective
techniques challenging. The challenges and technical aspects vary with each
new testing context, indicating no one-size-fits-all solution for all software.

In this thesis, I adapt existing software testing techniques in two rising
testing contexts: smart contract vulnerability detection and mobile application
GUI testing. I investigate the adaptation of existing software engineering tech-
niques to new testing contexts to detect software vulnerabilities. Specifically, I
discovered that a data-driven approach can significantly enhance GUI testing.

1

1.1 Motivation

Consequently, I leveraged the advantages of data-driven methods to improve
testing techniques, thereby enabling the detection of more vulnerabilities.

1.1 Motivation

The evolution of software has significantly changed the world. Various soft-
ware applications facilitate daily life and expand the boundaries of scientific
research and industrial production. The software provides researchers with
convenient mathematical tools for simulation or data modeling in specific do-
mains. At the same time, in industries, it enables the operation of heavy
robotic arms and the manufacture of precision components. Furthermore, in
cutting-edge areas such as artificial intelligence (AI), the impact of software
on everyday life is substantial. For instance, security companies employ cam-
era monitors equipped with face detection techniques to swiftly locate sus-
pects [8], and the well-known ChatGPT, offers innovative ways to search for
information through conversation [9]. Software has become an integral part of
daily life and continues to play an increasingly significant role across various
domains.

To develop a robust software application, developers must adhere to the
software development lifecycle, which includes design, development, testing,
and maintenance. Among these stages, software testing is the most time-
consuming, consuming an estimated 50% of a project’s time budget [5]. Gen-
erally, software testing aims at verifying whether the software can satisfy a list
of requirements [10]. Developers write test cases, monitor runtime informa-
tion, and collect results from the software application under test. These steps
enable developers to effectively identify bugs or vulnerabilities if the software
behaves contrary to expectations. Researchers propose to automate the testing
process, particularly test case generation, due to the time-consuming nature of
writing test cases. Software testing research aims to detect bugs or vulnerabil-
ities more effectively and efficiently. Over the past decade, several impressive
testing approaches have been proposed, such as AFL [11] and libfuzzer [12].

However, a significant challenge in software testing is the adaptability of
existing approaches. Initially, most software applications were developed for
general purposes. As software has evolved, applications have become more

2

1.2 Problem Definition

specific, making adaptation difficult. This often becomes a challenge for soft-
ware testing when software platforms, computer systems, or programming
languages vary. Specifically, adapting existing software techniques to new
testing contexts is challenging for several reasons: 1) new test contexts may
belong to different domains, requiring domain-specific knowledge; 2) new
test contexts necessitate different test criteria and metrics; 3) implementing
new test contexts presents technical challenges. As the importance of ensur-
ing software quality in new contexts grows, existing techniques must evolve to
meet the current needs of practitioners with new tools and approaches. Due
to this adaptability gap, while large companies can afford to write multiple
versions of test cases for different software platforms, smaller companies and
independent teams are limited by manual efforts and can typically only sup-
port one platform or system. Therefore, adapting existing software techniques
in a new testing context is urgently needed.

1.2 Problem Definition

The general problem addressed in this thesis is the adaptation of existing
software testing techniques to new testing contexts using data-driven ap-
proaches. Specifically, in this thesis, I study adapting existing software tech-
niques in two testing contexts: mobile GUI testing and smart contract vul-
nerability detection. I first investigate how much data-driven approaches can
enhance automated software testing, particularly for GUI testing. Based on
this study, we find that data-driven approaches can help improve software
testing techniques. Subsequently, I apply my experience to detect smart con-
tract vulnerabilities. I first survey significant vulnerabilities in smart contracts
to gain domain knowledge. Finally, I integrate this domain knowledge with
data-driven approaches to detect vulnerabilities in smart contracts. The spe-
cific problems and questions can be summarized as follows:

1. To avoid GUI bugs, mobile application companies usually hire a team
of test developers to write test cases. A test case usually includes the
operation sequences of applications, the location of the operated GUI
widget, etc. To ensure the quality of test cases, the test developers must
be familiar with the applications under test, which may take extra time

3

1.2 Problem Definition

and effort for training developers. To reduce these efforts, companies
are seeking techniques that can automatically generate test cases. Along
with the rapid development of AI techniques, recent researchers propose
to use AI techniques to help generate test cases. To address this problem,
we propose to use object detection techniques to detect GUI widgets on
the screen to assist in generating GUI test cases. However, how can the
object detection techniques be applied in specific steps in GUI testing?
To how much extent can the object detection techniques help generate
GUI test cases? These questions remain unanswered.

2. Powered by Blockchain technique, smart contracts have attracted atten-
tion and been applied in various industries, e.g., financial services, sup-
ply chains, smart traffic, and IoTs. However, as one of the most popu-
lar languages for blockchain applications, smart contracts have also at-
tracted attention from malicious users. By leveraging smart contract vul-
nerabilities, the attackers have stolen millions of dollars. Such significant
financial loss has sounded the alarm for all users. To secure the smart
contract software, the researchers have proposed an impressive list of
approaches to detect smart contract vulnerabilities. However, most pre-
vious approaches are built upon existing software testing approaches in
other platforms, which are not well adapted to smart contract software,
causing false positives when detecting vulnerabilities. Without the do-
main knowledge of smart contracts, detecting smart contract vulnerabil-
ities effectively is difficult.

3. One of the biggest domain challenges in testing smart contract software
is the large search space of vulnerability. Specifically, in the business con-
text of smart contracts, cross-contract calls are frequently adopted, which
lead to interleaved function calls, making the search space of vulnerabil-
ity larger than software in other platforms. While previous researchers
have proposed a number of tools to detect smart contract vulnerabilities,
these tools cannot detect cross-contract call vulnerabilities. To detect this
vulnerability, it must first use approaches to reduce the search space.

4

1.3 Thesis Approach

1.3 Thesis Approach

During the Ph.D., I have proposed approaches that adapt software testing
techniques in two new test contexts: mobile GUI testing and smart contract
vulnerability detection. Specifically, my approach includes the following three
steps:

Study on applying data-driven approaches in mobile GUI testing. In
this study, we aim at using data-driven approaches to detect widgets of GUIs
of mobile applications and to help further generate test scripts for mobile
GUIs. Companies are seeking approaches to automate the GUI testing pro-
cess to reduce the manual cost of writing test scripts. Seeing AI techniques’
developments, we propose using object detection models to detect GUI wid-
gets and help generate test scripts. The GUI widget dataset trains the object
detection models to detect the GUI widgets effectively. We first combine the
GUI widget dataset from previous works to train the models. We then train
two state-of-the-art models, RCNN and YOLO, to detect GUI widgets. Finally,
we evaluate the effectiveness of the models and collect comments from test de-
velopers by interviewing them. This study shows that data-driven approaches
can improve test efficiency but may face challenges when adapting to different
domains. Domain knowledge is required when adapting existing techniques
in a new test context. This study has been included in my publication [4].

Study on vulnerabilities and existing tools in smart contract. In this
study, we aim to build a vulnerability benchmark and implement a vulnerabil-
ity detector to gain domain knowledge for smart contracts. Study on domain
knowledge in smart contracts. The vulnerabilities threaten the security of soft-
ware in smart contracts. Recalling previous cases, the vulnerabilities in smart
contracts have led to millions of dollars in financial losses. Therefore, software
testing is required to reduce vulnerabilities in smart contracts. However, there
are few reports and surveys on the vulnerabilities of smart contracts, making
it difficult to adapt existing software testing techniques to smart contracts. To
address this, we conduct a study on the vulnerabilities of smart contracts as
well as state-of-the-art tools. We summarize the vulnerability patterns based
on the detection rules of existing tools. We also use these patterns to build a
vulnerability detector. After the study, we become familiar with the domain
knowledge of smart contracts, especially on the critical challenge of vulnera-
bility smart contracts. This study has been included in my publication [2].

5

1.4 Thesis Structure

Study on adapting data-driven methods in smart contract testing. In this
study, we aim to use the benchmark we previously built to train machine
learning models and then integrate the models in smart contract testing to de-
tect vulnerabilities with large search spaces. In our study of smart contracts,
we find that cross-contract vulnerability is overlooked by existing tools but is
important to the security of smart contracts. However, detecting cross-contract
vulnerability is not easy. Due to the large search space, existing tools are inef-
ficient when detecting this vulnerability. Recalling our experience of applying
data-driven approaches to improve test efficiency in GUI testing, we propose
to use data-driven approaches to guide fuzzing testing. We first train a model
to detect a smart contract that is potentially vulnerable as candidates. We then
prioritize the candidates to test the suspicious contracts first. In the evalua-
tion, our approach outperforms others in test effectiveness and efficiency. This
study has been included in my publication [1].

1.4 Thesis Structure

The rest of this thesis is structured as follows:

• Chapter 2 describes some background information helpful in under-
standing this thesis and presents related work in GUI testing and smart
contract vulnerability detection.

• Chapter 3 describes our study on applying data-driven approaches in
mobile GUI testing.

• Chapter 4 describes our study on vulnerabilities and existing tools in
smart contracts.

• Chapter 5 describes our study on adapting data-driven methods in smart
contract testing.

• Chapter 6 concludes the thesis and presents directions for future work.

6

CHAPTER

TWO

BACKGROUND AND RELATED WORK

This chapter provides an overview of the backgrounds of GUI testing, ob-
ject detection, smart contract vulnerabilities, etc. It first introduces concepts
adopted in this thesis and definitions underpinning the rest of this thesis in
Section 2.1, and then discusses works related to this thesis in Section 2.2.

2.1 Background

2.1.1 GUI Region Detection

There is a list of previous works [13–17] that contribute to analyzing char-
acteristics of GUIs (e.g., design style, types of marked tags, usage scenario
classification). Owing to these works, the understanding of GUI has been
deepened. Researchers have recently proposed GUI region detection for mo-
bile apps, which could be facilities for the analysis of many downstream tasks.
For example, Liu et al. [18] propose to utilize deep learning models to detect
vision issues in GUIs and locate their regions of them; Chen et al. [19] propose
to combine text-based models and non-text-based models together to improve

7

2.1 Background

overall performance in detecting regions of GUI widgets. However, an impor-
tant list of mobile applications, i.e., mobile games, is overlooked by previous
works. Due to the diversity of GUI widgets of mobile games, the approaches
of previous works may be ineffective.

2.1.1.1 Models for GUI Region Detection

Faster RCNN and YOLOv2 are currently the state-of-the-art deep learning
models for GUI widget detection of mobile apps, which are widely adopted
in recent studies [18, 19]. Specifically, faster RCNN is a two-stage anchor-
box-based deep learning technique for object detection. It adopts a novel
region proposal network (RPN) to predict region proposals with a wide range
of scales and aspect ratios. RPN accelerates the generating speed of region
proposal because it shares full-image convolutional features and a common
set of convolutional layers with the detection network. For each box, RPN then
computes a score to determine whether it contains an object and regresses it
to fit the actual bounding box of the contained object.

YOLOv2 is a one-stage anchor-box-based object detection technique. It
treats GUI widget detection as a regression problem and extracts features from
input images as a unified architecture. Different from the manually defined
anchor box of Faster-RCNN, YOLOv2 uses the k-means method to cluster the
ground truth bounding boxes in the training dataset and takes the box scale
and aspect ratio of the k centroids as the anchor boxes. For each grid of the
feature map, it generates a set of bounding boxes. For each box, it regresses
the box coordinates and classifies the object in the bounding box.

2.1.1.2 Metrics for GUI Region Detection

IoU (Intersection over Union) [20] is an important metric to measure the per-
formance of GUI widget detection. The IoU threshold indicates the require-
ment for the precision of prediction. The selection of the IoU threshold largely
affects the performance of deep learning models. Considering the effect on
downstream applications (e.g., widget detection guided GUI testing), a proper
criterion to evaluate the performance of models is required.

8

2.1 Background

2.1.2 Well-known Smart Contract Vulnerabilities

In this section, we introduce the four vulnerability types (i.e., Reentrancy, The
abuse of tx.origin, Unexpected Revert and Self-destruct Abusing.) targeted
by our study. The four vulnerabilities deeply threaten the safety of transac-
tions of smart contracts. For example, the Reentrancy caused the DAO attack
in 2016 and resulted in hundreds of millions of dollars in losses; The tx.origin

and Unexpected Revert vulnerability are listed in the Decentralized Applica-
tion Security Project (DASP) [21]; The Self-destruct Abusing vulnerability of-
ten appears with the use of selfdestruct instruction in Solidity, and is prone
to be exploited if it is not well protected. To motivate this work, we also show
a real-world case not well-handled by state-of-the-art scanners.

2.1.2.1 Vulnerability Types

1. Reentrancy (RE) As the most famous Ethereum vulnerability, reentrancy
recursively triggers the fall-back function [22] to steal money from the
victim’s balance or deplete the gas of the victim. Reentrancy occurs
when external callers manage to invoke the callee contract before the
execution of the original call is finished, and it was mostly caused by the
improper usages of the function withdraw() and call.value(amount)().
It was also reported in [23].

2. The Abuse of tx.origin (TX) When the visibility is improperly set for
some key functions (e.g., some sensitive functions with public modifier),
the extra permission control then matters. However, issues can arise
when contracts use the deprecated tx.origin (especially, tx.origin==owner)
to validate callers for permission control. It is relevant to the access control
vulnerability in [21]. When a user U calls a malicious contract A, who
intends to forward a call to contract B. Contract B relies on vulnerable
identity check (e.g., require(tx.origin == owner) to filter malicious ac-
cess. Since tx.orign returns the address of U (i.e., the address of owner),
malicious contract A successfully poses as U.

3. Unexpected Revert (UR) In a smart contract, some operations may fail.
This can lead to two main impacts: 1) the gas (i.e., the fee of executing
an operation in the Ethereum platform) of the transaction is wasted; 2)

9

2.1 Background

the transaction will be reverted, i.e., the denial of service (DoS). The
denial of service attack is also termed "DoS with revert" in [24]. The
attacker could deliberately make some operations fail for the purpose of
DoS. For example, some functions recursively send ethers to an array of
users. If one of these calls fails, the whole transaction will be reverted.
An attacker can deliberately fail this transaction to achieve a DoS attack.

4. Self-destruct Abusing (SD) This vulnerability allows the attackers to forcibly
send Ether without triggering its fall-back function. Usually, the con-
tracts place important logic in the fall-back function or make calculations
based on a contract’s balance. However, this could be bypassed via the
self-destruct contract method that allows a user to specify a beneficiary
to send any excess ether [24]. That is, a vulnerable contract is prone to
be exploited to transfer all money to the attacker’s account meanwhile
shut down the service.

2.1.2.2 Example Programs

Code 1 is mistakenly alarmed by Slither [25] and Oyente [26]. The function
withdraw intends to send ethers to the msg.sender. It first verifies the identity
of the caller at line 2. Then, the function reads the amount of the current
balance of the caller at line 3 and sends ethers to the caller by using a Solidity
call call.value()(). Finally, the function updates the balance of the caller at
line 5.

The reason for the false alarm of Slither is that Slither detects reentrancy
with the following rule:

DataDep(_, varg) ≻ Call(_, varg) ≻ DataDep(_, varg)⇒ reentrancy (2.1)

In Equation 2.1, DataDep(_,var_g) denotes write and read operations to
variables; varg denotes a certain public global variable; ≻ denotes the ex-
ecution order in the control flow; Call(_,varg) denotes function call opera-
tions. This rule describes a common pattern for Reentrancy vulnerability.
Code 1 shows a typical example. varg is usually a balance account (e.g.,
balances[msg.sender], line 3 in Code 1). An attacker just needs to create a

10

2.1 Background

fallback function that calls withdraw(). Once msg.sender.call.value(amount)()
is executed and transfers the funds, the attacker’s fallback function [22] will
be triggered and call withdraw() (line 1) again. This means the attacker can
transfer more funds before balances[msg.sender] is reduced to 0. This con-
tinues until no ether remains or execution reaches the maximum stack size.

However, the pattern in Equation 2.1 usually overestimates real Reentrancy
vulnerability. The example in Code 1 is a counter-example because the func-
tion withdraw() is protected by an identity check at line 2. This statement
specifies a precondition for running the withdraw() function. Once the pre-
condition is not satisfied, the execution will be aborted. In Code 1, the identity
check indicates that the contract calling this withdraw() function is limited to
its owner (i.e., the creator of the contract).

Code 1 An example of a non-vulnerable code. This is misreported as a vul-

nerability by Slither and Oyente.

1 function withdraw() {
2 require(msg.sender == owner);
3 uint256 amount = balances[msg.sender];
4 require(msg.sender.call.value(amount)());
5 balances[msg.sender] = 0;
6 }

The reason for the false alarm of Oyente is due to that Oyente detects
reentrancy with the following rule:

(DataDep(_, varg) ∧ (gastrans > 2300) ∧ (amtbal > amttrans))

≻ Call(_, varg)⇒ reentrancy
(2.2)

In Equation 2.2, Oyente requires the gas expense to be less than a certain
value. In Solidity programs, each transaction requires an amount of gas to
complete in the runtime. gastrans > 2300 means the gas used for the trans-
action must be larger than 2300 (2300 is the least gas expense to conduct a
transaction call). amtbal > amttrans means the balance amount must be larger
than the transfer amount. Finally, the rule of Oyente requires a call to external
functions by Call meanwhile sending money. Compared with Equation 2.1
(defined by Slither), Oyente has more constraints for gas and balance value.

11

2.1 Background

Similar to the rule of Slither in Equation 2.1, Equation 2.2 also overestimates
the condition where a Reentrancy attack can happen. With the protection
by the identity check (i.e., line 2 in Code 1), the execution of function calls
conforms to the defined runtime conditions but is already free from the Reen-
trancy attack.

2.1.3 Cross-contract Vulnerability in Smart Contract

Those mentioned four well-known vulnerabilities are intra-contract vulnera-
bilities. However, they can be extended to cross-contract vulnerabilities, which
previous tools can not detect. In this section, we first introduce three common
types of cross-contract vulnerabilities. Then, we discuss the challenges in de-
tecting these vulnerabilities by state-of-the-art fuzzing engines to motivate our
study.

2.1.3.1 Cross-contract Vulnerability Definition

In general, smart contracts are compiled into opcodes [27] so they can run
on EVM. We say that a smart contract is vulnerable if there exists a program
trace that allows an attacker to gain certain benefit (typically financial) illegit-
imately. Formally, a vulnerability occurs when there exist dependencies from
certain critical instructions (e.g., TXORIGIN and DELEGATECALL) to a set of specific
instructions (e.g., ADD, SUB and SSTORE). Therefore, to formulate the problem,
we adopt definitions of vulnerabilities from [28, 29], based on which we define
(control and data) dependency and then define the cross-contract vulnerabili-
ties.

Definition 1 (Control Dependency). An opcode opj is said to be control-

dependent on opi if there exists an execution from opi to opj such that opj

post-dominates all opk in the path from opi to opj (excluding opi) but does not

post-dominates opi. An opcode opj is said to post-dominate an opcode opi if

all traces starting from opi must go through opj.

Definition 2 (Data Dependency). An opcode opj is said to be data-dependent

on opi if there exists a trace that executes opi and subsequently opj such that

12

2.1 Background

W(opi)∩R(opj) ̸= ∅, where R(opj) is a set of locations read by opj and W(opi)

is a set of locations written by opi.

An opcode opj is dependent on opi if opj is control or data dependent to opi or
opj is dependent to opk meanwhile opk is dependent to opi.

In this study, we define three typical cross-contract vulnerabilities that we
focus on, i.e., reentrancy, delegate-call, and tx-origin because they are among
the most dangerous ones with urgent testing demands. Specifically, the reen-
trancy and delegate-call vulnerabilities are highlighted as top risky vulnerabil-
ities in previous works [25, 28]. The tx-origin vulnerability is broadly warned
at an earlier research [21, 25].

Code 2 An example of reentrancy vulnerability.

1 function withdrawBalance() public {
2 uint amountToWithdraw = userBalances[msg.sender];
3 msg.sender.call.value(amountToWithdraw)("");
4 userBalances[msg.sender] = 0;
5 }

Code 3 An example of delegate-call vulnerability.

1 contract Delegate {
2 address public owner;
3 function pwn() {
4 owner = msg.sender;
5 } }
6 contract Delegation {
7 address public owner;
8 Delegate delegate;
9 function() {

10 if(delegate.delegatecall(msg.data)) {
11 this;
12 } } }

We define C as a set of critical opcodes, which contains CALL, CALLCODE,
DELEGATECALL, i.e., the set of all opcodes associated with external calls. These
opcodes associated with external calls could be the causes of vulnerabilities
(since then, the code has been under the control of external attackers).

13

2.1 Background

Fi
gu

re
2.

1:
A

n
ex

am
pl

e
of

cr
os

s-
co

nt
ra

ct
re

en
tr

an
cy

vu
ln

er
ab

ili
ty

w
hi

ch
is

m
is

se
d

by
th

e
st

at
e-

of
-a

rt
fu

zz
er

,n
am

el
y

sF
uz

z.

T
he

so
lid

bo
xe

s
re

pr
es

en
t

fu
nc

ti
on

s,
an

d
th

e
da

sh
ed

co
nt

ai
ne

rs
de

no
te

co
nt

ra
ct

s.
Sp

ec
ifi

ca
lly

,t
he

fu
nc

ti
on

ca
ll

is
de

no
te

d

by
th

e
so

lid
lin

e.
R

ed
ar

ro
w

s
hi

gh
lig

ht
th

e
cr

os
s-

co
nt

ra
ct

ca
lls

.
Th

e
bl

ue
ar

ro
w

re
pr

es
en

ts
a

cr
os

s-
co

nt
ra

ct
ca

ll
m

is
se

d
by

sF
uz

z
an

d
C

on
tr

ac
tF

uz
ze

r.

14

2.1 Background

Code 4 An example of tx-origin vulnerability.

1 function withdrawAll(address _recipient) public {
2 require(tx.origin == owner);
3 _recipient.transfer(this.balance);
4 }

Definition 3 (Reentrancy Vulnerability). A trace suffers from reentrancy vul-

nerability if it executes an opcode opc ∈ C and subsequently executes an

opcode ops in the same function such that ops is SSTORE, and opc depends on

ops.

A smart contract suffers from reentrancy vulnerability if and only if at
least one of its traces suffers from reentrancy vulnerability. This vulnerability
results from the incorrect use of external calls, which are exploited to construct
a call chain. When an attacker A calls a user U to withdraw money, the fallback
function in contract A is invoked. Then, the malicious fallback function calls
back to U to steal money recursively. In Code 2, the attacker can construct an
end-to-end call chain by calling withdrawBalance in the fallback function of the
attacker’s contract and then steals money.

Definition 4 (Dangerous Delegatecall Vulnerability). A trace suffers from

dangerous delegate-call vulnerability if it executes an opcode opc ∈ C that

depends on an opcode DELEGATECALL.

A smart contract suffers from delegate-call vulnerability if and only if at
least one of its traces suffers from delegate-call vulnerability. This vulnera-
bility is due to abusing dangerous opcode DELEGATECALL. When a malicious
attacker B calls contract A by using delegatecall, contract A’s function is ex-
ecuted in the context of the attacker and thus causes damages. In Code 3,
malicious attacker B sends ethers to contract Delegation to invoke the fallback
function at line 10. The fallback function calls contract Delegate and executes
the malicious call data msg.data. Since the call data is executed in the context
of Delegate, the attacker can change the owner to an arbitrary user by running
pwn at line 3.

15

2.1 Background

Definition 5 (Tx-origin Misuse Vulnerability). A trace suffers from tx-origin

misuse vulnerability if it executes an opcode opc ∈ C that depends on an

opcode ORIGIN.

A smart contract suffers from tx-origin vulnerability if and only if at least
one of its traces suffers from tx-origin vulnerability. This vulnerability is due
to misusing tx.origin to verify access. An example of such vulnerability is
shown in Code 4. When a user U calls a malicious contract A, who intends to
forward a call to contract B. Contract B relies on vulnerable identity check (i.e.,
require(tx.origin == owner) at line 2 to filter malicious access. Since tx.orign

returns the address of U (i.e., the address of owner), malicious contract A suc-
cessfully poses as U.

Definition 6 (Cross-contract Vulnerability). A group of contracts suffers from

cross-contract vulnerability if there is a vulnerable trace (that suffers from

reentrancy, delegate-call, tx-origin) due to opcode from more than two con-

tracts.

A smart contract suffers from cross-contract vulnerability if and only if at
least one of its traces suffers from cross-contract vulnerability. For example,
a cross-contract reentrancy vulnerability is shown in Figure 2.1. An attack
requires the participation of three contracts: malicious contract Logging de-
ployed at addr_m, logic contract Logic deployed at addr_l and wallet contract
Wallet deployed at addr_w. First, the attack function log calls function logging

at Logic contract and then sends ethers to the attacker contract by calling func-
tion withdraw at contract Wallet. Next, the wallet contract sends ethers to the
attacker contract and calls function log. An end-to-end call chain 1 → 2
→ 3 → 4 → 1 ... is formed, and the attacker can recursively steal money
without any limitations.

2.1.3.2 The Limitations of the State-of-the-arts

First, we investigate the capability of detecting vulnerabilities by state-of-the-
art methods, including [25, 26, 28, 30–32]. Most of these tools, except Clair-
voyance, do not support cross-contract testing and analysis. The reason is

16

2.2 Related Work

existing approaches merely focus on one or two contracts, and thus, the se-
quences and interleavings of a function call from multiple contracts are often
ignored. For example, the vulnerability in Figure 2.1 is a false negative case
of static analyzer Slither, Oyente, and Securify. Note that although this vul-
nerability is found by Clairvoyance, this tool, however, generates many false
alarms, making the confirmation of which rather difficult. This could be a
common problem for many static analyzers.

Although a high false positive rate could be well addressed by fuzzing
tools by running contracts with generated inputs, existing techniques are lim-
ited to a maximum of two contracts (i.e., input contract and tested contract).
In our investigation of two currently representative fuzzing tools sFuzz and
ContractFuzzer, cross-contract calls are largely overlooked and thus lead to
missed vulnerabilities. To sum up, most existing methods and tools are still
limited to handling non-cross-contract vulnerabilities, which motivates this
work to bridge such a gap toward solving the currently urgent demands.

2.2 Related Work

This section introduces tools and works closely related to the work presented
in this thesis. It first describes GUI testing, game testing, and object detection
related to or directly used in this thesis. It then reviews work around vulnera-
bility detection and smart contract testing—the works of all subjects to studies
I present in later chapters.

2.2.1 GUI testing and game testing

GUI plays a crucial role in bridging the gap between users and applications.
Therefore, previous works have proposed methods to aid GUI development in
GUI searching [33–37] based on image features and GUI testing [38–40] based
on deep learning models. Specifically, Hu et al. [39] proposed automatically
generating input cases for GUI testing. They fed the application’s input and
analyzed the running traces to find bugs. Zhao et al. [40] trained a deep
learning model to predict workflow actions of applications, which provided
valuable experience in applying deep learning to advance the efficiency of GUI

17

2.2 Related Work

tests. However, the above techniques are all developed for general-purpose
applications (e.g., hotel booking applications, shopping applications). They
do not generalize well for game GUIs.

Games are becoming increasingly popular along with the rapidly develop-
ing Internet. One game should be well-tested to eliminate bugs before being
published. However, as surveyed by Lin et al. [41], even the most popular
games are not sufficiently tested. The main reasons for this imperfection can
be summarized as the absence of automated testing techniques (i.e., man-
ual testing is still dominant in game testing) due to the survey of Alemm et
al. [42]. For mobile games, the current works are still preliminary. Lovreto et
al. [43] developed a method of writing scripts to test functions on 18 mobile
games. The limitations of existing techniques are also discussed in their study.
Zheng et al. [44] first proposed a composite game-testing technique by enhanc-
ing reinforcement learning with multi-objective optimization algorithms and
outperforming other state-of-the-art.

2.2.2 Object detection deep learning models.

Object detection techniques significantly evolve in the past five years. The
mainstream of the proposed methods can be roughly categorized into two-
shot detection [45–48] methods and single-shot methods [49, 50], based on
their workflows. Object detection models sketch a tight bounding box around
the object and classify what the object is. However, the above models are
trained to identify objects in the real world. They cannot be directly applied
in detecting GUI elements. Deka et al. [51] published a dataset with 72K UI
screenshots, including widgets, buttons, scrolls, etc. The downloaded screen-
shots are labeled into 27 categories. Liu et al. [52] trained convolutional neural
networks on this dataset to detect UI components, which offers us valuable
experience in applying deep learning models to detect GUI elements.

2.2.3 Smart Contract Vulnerability Detection

There is already a list of security scanners on smart contracts. From the soft-
ware analysis perspective, these scanners could be categorized into static- or
dynamic-based. In the former category, Slither [25] aims to be the analysis

18

2.2 Related Work

framework that runs a suite of vulnerability detectors. Oyente [26] analyzed
the bytecode of the contracts and applies Z3-solver [53] to conduct symbolic
executions. Recently, Smartcheck [54] translates Solidity source code into an
XML-based IR and defines the XPath-based patterns to find code issues. Secu-
rify [28] is proposed to detect the vulnerability via compliance (or violation)
patterns to guarantee that certain behaviors are safe (or unsafe, respectively).
These static tools usually adopt symbolic execution or verification techniques
relevant to Vulpedia. However, none of them applies a code-similarity-based
matching technique or considers the possible DMs in code to prevent attacks.

Some other tools enable static analysis for smart contracts. VeriSmart [55]
proposes a domain-specific algorithm for verifying smart contracts. VerX [56]
combines symbolic execution and contract status abstraction to verify transac-
tions. Zeus [57] adopts XACML as a language to write the safety and fairness
properties and converts them into LLVM IR [58] and then feeds them to a
verification engine such as SeaHorn [59]. Besides, there is another EVM byte-
code decompiling and analysis frame, namely Octopus [60], which needs the
users to define the patterns for vulnerability detections. To prevent the DAO,
Grossman et al. propose the notion of effectively Callback Free (ECF) ob-
jects to allow callbacks without preventing modular reasoning [61]. Maian is
presented to detect greedy, prodigal, and suicidal contracts [62], which are
different vulnerabilities from the ones we address in this paper. The above
tools are relevant, but due to various reasons (e.g., issues in tool availability),
we cannot have a direct comparison with them.

The less relevant category includes dynamic testing or fuzzing tools: Man-
ticore [63], Mythril [64], MythX [65], Echidna [66] and Ethracer [67]. sFuzz [31]
and Harvey [68] use advanced techniques (e.g., concolic testing, fuzzing, and
tainting) for detection. Dynamic tools often target certain vulnerability types
and produce results with few FPs. However, they are unsuitable for large-scale
detection due to the efficiency issue.

In general, a similar-code matching technique is widely adopted for vul-
nerability detection. In 2016, VulPecker [69] proposed to apply different code-
similarity algorithms for various purposes for different vulnerability types. It
leverages vulnerability signatures from National Vulnerability Database (NVD) [70]
and applies them to detect 40 vulnerabilities not published in NVD, among
which 18 are zero days. As VulPecker works on the source code of C, Bingo [71]

19

2.2 Related Work

can execute on binary code and compare the assembly code via tracelet (par-
tial trace of CFG) extraction [72] and similarity measures. Vuddy [73] targets
extracting clones and parameterized clones, not gapped clones, as it utilizes
hashing for matching for the purpose of high efficiency. To sum up, these stud-
ies usually resort to the vulnerability database of C language for discovering
similar zero-days. In contrast, plenty of our efforts are exhausted in gathering
vulnerabilities from other tools for smart contracts and auditing them manu-
ally. Vulpedia adopts a more robust algorithm (e.g., LCS), which can tolerate
big or small code gaps across similar candidates of a vulnerability.

2.2.4 Smart Contract Testing

Our study is closely related to previous works on interactions between multi-
ple contracts. Zhou et al. [74] present work to analyze the relevance between
smart contract files, which inspires us to focus on cross-contract interactions.
He et al. [75] report that existing tools fail to exercise functions that can only ex-
ecute at deeper states. Xue et al. [30] studied cross-contract reentrancy vulner-
ability. They propose constructing ICFG (combining CFGs with call graphs)
and then tracking vulnerability by taint analysis.

Our study is also relevant to previous fuzzing work on smart contracts.
Smart contract testing plays a vital role in smart contract security. Zou et
al. [76] report that over 85% of developers intend to do heavy testing when
programming. Jiang et al. [32] made the early attempt to fuzz smart con-
tracts. ContractFuzzer instruments Ethereum virtual machine and then col-
lects execution logs for further analysis. Wüstholz et al. present guided fuzzer
to better mutate inputs. A similar method is implemented by He et al. [75].
They propose to learn fuzzing strategies from the inputs generated by a sym-
bolic expert. The above two methods inspire us to leverage a guide to reduce
search space. Tai D et al. [31] implement a user-friendly AFL fuzzing tool
for smart contracts, based on which we build our fuzzing framework. Un-
like these existing works, our work focuses on proposing a novel ML-guided
method for fuzzing cross-contract vulnerabilities, which is highly important
but largely untouched by existing work. Additionally, our comprehensive
evaluation demonstrates that our proposed technique outperforms the state-
of-the-art in detecting cross-contract vulnerabilities.

20

2.2 Related Work

The work is also inspired by previous work [77–79]. In their work, they
propose learning behavior automata to facilitate vulnerability detection. Zhuang
et al. [80] offer to build graph networks on smart contracts to extend under-
standing of malicious attacks. Their work inspires us to introduce machine
learning methods for detection. We also improve our model selection by in-
spiration of work of Liu et al. [81]. Their algorithm helps us select the best
models with satisfactory performance on recall and precision on highly imbal-
anced datasets. Yan et al. [79] have proposed a method to mimic the cognitive
process of human experts. Their work inspires us to find the consensus of
vulnerability evaluators to train the machine learning models better.

The smart contract has drawn a number of security concerns since it came
into being. As figured out by Zou et al. [76], over 75% of developers agree that
smart contract software has a much high-security requirement than traditional
software. According to [76], the reasons behind such requirements are 1) the
frequent operations on sensitive information (e.g., digital currencies, tokens);
2) the transactions are irreversible; 3) the deployed code cannot be modified.
Considering the close connection between smart contracts and financial ac-
tivities, the security of smart contract security largely affects the stability of
society.

21

CHAPTER

THREE

STUDY ON APPLYING DATA-DRIVEN APPROACHES

IN MOBILE GUI TESTING

3.1 Introduction

Mobile games are continuously gaining popularity with the advancement of
mobile devices over the past decade. According to media [82], the global
market share of the game industry is estimated to be more than 85 billion
dollars annually, a large portion of which run on mobile devices. Such large
potential leads to stiff global competition among game companies. Being sup-
ported by modern visualization technology and hardware acceleration of mo-
bile devices, game producers often design mobile games with fabulous and
charming visual experiences via graphical user interfaces (i.e., GUIs) to at-
tract more users. Like traditional software, a mobile game can evolve and
be updated even more frequently. For example, inside our industrial partner
NetEase Games, one of the largest game companies in the world, a typical mo-
bile game usually experiences at least 3 version updates per day for various
purposes, e.g., visual/audio feature enhancement, performance optimization,
bug fixing, etc. However, the non-trivial amount of update changes can in-
evitably introduce new bugs that can significantly affect the player experience

22

upon being uncovered by users. Thus, quality assurance of mobile games is
of great importance, and systematic testing is often under very tight pressure
of frequent version updates.

Although some techniques have been developed for testing the mobile ap-
plications, ranging from simple random method Monkey to more advanced
methods such as Stoat [83], Sapienz [84], and Espresso [85], they can still be
limited for automated mobile game testing due to the unique and highly dy-
namic characteristics (e.g., heavy user interactions, difficult task accomplish-
ment). Consequently, industrial mobile games still mainly rely on manual
testing (i.e., playing games) and semi-automatic testing (i.e., manually written
scripts), which are labor-intensive, inefficient, and expensive, becoming the
bottleneck of the game testing process for better quality. To this end, some
recent works attempted to apply machine learning-based techniques for mo-
bile app testing [39, 40]. However, the challenges and pain points of industrial
mobile games are still unclear, and understanding them can be beneficial for
better assurance of mobile games.

To bridge this gap, we first conduct a comprehensive survey in NetEase
Games. In the first step, we performed scrum interviews with two testing ex-
perts from the Quality Assurance (QA) department to gain the big picture and
better understand the industrial mobile game testing process at the NetEase
Games. The interview results show that, in the NetEase Games, the mobile
game product is usually tested in terms of the usability. The compatibility,
where usability testing aims to detect function bugs and compatibility testing
ensures that the game can be played smoothly across different devices. Many
of these testing tasks are still mainly completed by human testers. To boost
the efficiency of mobile game testing, developers or testers are also actively
exploring and developing some automated techniques (e.g., POCO [86], mon-
key [87]). Based on our understanding from the scrum interview, we continue
to design a questionnaire to answer RQ1 — What are the challenges and pain
points in industrial mobile game tests? What could be the research opportu-
nities?

Eventually, 50 mobile game testers answered our questionnaire, based on
which we identified two main challenges in mobile game testing: a) how to
precisely detect the clickable GUI widgets of games, especially when the game
is deployed on variant end mobile devices, which is of great importance for

23

the following automated testing and analysis tasks and b) how to achieve
high coverage especially for the large-scale mobile game with complex logic
(e.g., some complicated game tasks). As for the second challenge, some at-
tempts [39, 44, 88] have been made to improve the coverage and detect bugs.
While detecting GUI widgets (the first challenge) in mobile games still lacks
in-depth investigation, it will be the focus of the rest of this paper.

It was not until recently that machine learning techniques were applied for
GUI widgets detection of Android apps. For example, Liu et al. [18] propose
to utilize deep learning models to detect vision issues in mobile GUIs and
locate their regions; Chen et al. [19] propose to combine text-based and non-
text-based models to improve the overall performance in detecting regions
of GUI widgets. However, these techniques are mainly designed and evalu-
ated for conventional mobile apps. Due to the highly dynamic visual effects
and interactive nature of game apps, it is still unclear to what extent existing
techniques can be adapted to be helpful in the context of mobile games.

Therefore, in this paper, we continue to conduct an empirical study toward
understanding the usefulness of existing object detection techniques in detect-
ing GUI widgets of industrial mobile games. To the best of our knowledge,
it still lacks a game GUI widget detection benchmark for mobile games that
allows systematic study. To further facilitate research along this line, we made
significant efforts to construct a mobile game GUI widget detection bench-
mark. Specifically, we develop an automatic technique to collect game GUI
datasets (i.e., screenshots and corresponding widget labels). Since the auto-
matic labeling may introduce inaccurate results, we further adopt a heuristic-
based data cleaning strategy to improve the data quality. Finally, we create
a game GUI dataset that contains a total of 2,993 GUIs with 38,776 widgets.
We then integrated state-of-the-art GUI widget detection methods with our
dataset, which together formed the first-ever benchmark to enable the study
of GUI widget detection in mobile games.

Based on the constructed benchmark, we performed an empirical study to
investigate RQ2: How effective are existing object detection methods across
various mobile applications? Due to mobile game diversity (i.e., designs), we
aim to study how this difference affects model performance. In other words,
can the detector trained on some game GUIs be generalized on other games
or general-purpose apps?

24

Furthermore, we performed an in-depth manual analysis to figure out
RQ3: What are the challenges for detecting GUI widgets in mobile games?

In summary, the contribution of this study is as follows:

• We conduct a survey in the NetEase Games to investigate the urgent chal-
lenges and pain points for mobile game testing.

• We develop an automated method to collect and label the game GUI dataset,
based on which we create the GUI widget dataset for mobile games. We
further integrate state-of-the-art mobile GUI widget detection methods, to-
gether forming the first benchmark designed specifically for GUI widget
detection research of mobile games.

• We conduct the empirical study to understand better the current status of
GUI widget detection of mobile games and to identify challenges and op-
portunities. We make our benchmark publicly available1 to enable repro-
ducible study and facilitate further research on downstream tasks such as
mobile game testing.

3.2 Industry Survey

To identify the challenges in industrial mobile game testing, in this section,
we conduct a two-phase survey on mobile game testing in industries. The
workflow is summarized in Figure 3.1. In particular, we first draft an initial
set of interviews for gathering the key topics relevant to mobile game testing in
industries to deepen our understanding. Next, based on the gathered concerns
and questions, we design a structural questionnaire and distribute it to game
developers and testers from industries. The questionnaire is mainly designed
to understand the pain points in current industrial mobile game testing and
further identify the potential opportunities for mobile game testing.

3.2.1 Interview of Mobile Game Testing Experts

In the beginning, to gain the big picture of industrial mobile game testing and
understand the testing process in industrial games, we conduct interviews

1https://sites.google.com/view/gamedc/

25

Figure 3.1: The overview of the workflow of our survey.

Table 3.1: The interview questions regarding mobile game testing for two

experts. Questions marked green and red box consider the usability and com-

patibility testing of mobile games, respectively.

ID Question

I1 Mobile testing routines introduction

I2 Team size

I3 How do we allocate works

I4 Do we cooperate with automated techniques

I5 What are the current limitations

I6 How to ensure high coverage rate by using test case

I7 How much slow down do automated techniques introduce

I8 How does the device difference affect our testing

I9 What is the current alleviation regarding the limitations

with two industry experts who are in the lead position of mobile game testing
industries, i.e., the director of the Testing Center (E1) and the leader of the
Mobile Testing Lab (E2), respectively.

As part of the formal interview procedure, we have designed nine ques-
tions summarized in Table 3.1 to help us better understand the current status
of mobile game testing in industries.

When the interview starts, we first invite the interviewee to give a ba-
sic introduction about the mobile game testing teams (I1, I2). Then, we ask
questions about the testing routines of mobile games (I3) and the current au-
tomated techniques adopted in mobile game testing (I4). We also ask about

26

the limitations captured by developers (I5). Then, we prepare specific ques-
tions (I6 to I9) for different interviewees based on the mobile testing tasks they
mainly lead. For E1, we focus on usability testing and ask about the current
solutions and limitations (I6, I7). For E2, we prepare questions about the tech-
nical details in compatibility tests (I8, I9). Both interviews are arranged in 30
minutes. We record the interviews and intend to make them publicly available
after the internal approval of industries.

Overall, we obtain a valuable high-level understanding from interviews.
For example, in compatibility testing, there are around 10 test developers who
are responsible for testing device compatibility. They often play the same in-
teraction behaviors on multiple devices. The testing developers mainly adopt
OneToMany [87] techniques to achieve that goal. They first record interaction
behaviors on one mobile device and then replay the sequence of behaviors
on other devices. This technique is somehow efficient but can be limited to
device differences, mainly caused by resolution differences. When they replay
the interaction behaviors, the action may be replayed at an incorrect location
and thus affect the testing efficiency. The current solution is to categorize
mobile devices with similar resolutions into one group to eliminate the im-
pact of resolution diversity. However, as the number of groups increases, it is
still inefficient and becomes the bottleneck for continuous testing pressure of
frequent updates.

In usability testing, more than 50 test developers concentrate on testing
mobile game usability tasks. Usability testing of mobile games relies on writ-
ing scripts to test the runtime status of games. To ensure the scripts cover
most game scenes, experienced developers usually double-check the scripts.
To facilitate testing, they often utilize POCO [86] to extract GUI information
(e.g., clickable region coordinates) that can help write testing scripts. However,
POCO has the following limitations: 1) POCO is limited to game-developing
engines (i.e., Unity3D, Cocos2dx), and 2) POCO often misleads the testing
by reporting wrong coordinates due to ignoring visual effects. For example,
some clickable widgets are overlapped by other widgets. They are actually
not clickable for users, but POCO still reports them.

In summary, we gain the big picture of industrial mobile game testing and
better understand the testing process from the scrum interviews. Currently,
many of these testing tasks are mainly completed by human testers, which

27

Table 3.2: The questionnaire questions. Questions in the green box are for

usability testing, and questions in the red box are for compatibility testing.

ID Question

Q1 Years of testing experience

Q2 Gender

Q3 Job responsibility

Q4 Averaged number of monthly testing scripts

Q5 How many testing scripts are needed in a project?

Q6 Time for writing a testing script

Q7 Whether use automated techniques to aid testing?

Q8 Challenges during testing

Q9 Averaged number of weekly testing projects

Q10 Whether use automated techniques to aid testing?

Q11 Averaged number of devices in one testing

Q12 Time for particular testing

Q13 Averaged number of groups in compatibility testing

Q14 Dream tools

may lead to inefficiency. To improve this and automate the testing process,
developers and testers are also actively exploring and developing automated
techniques (e.g., POCO [86], monkey [89]).

3.2.2 Questionnaire

To further reveal the challenges of automated game testing and understand
the potential opportunities, we continue to design a fine-grained question-
naire for the developers and testers. The questionnaire is generally based on
our interviews but has more detailed questions, as shown in Table 3.2. Ques-
tions in white cells are common questions, questions in green cells are for
usability testing developers, and questions in red cells are for compatibility
testing developers. We prepare specific questions for different testing tasks
to discover the in-depth needs of developers. The questionnaires are anony-
mously distributed to forefront developers in the Testing Center and testers

28

from industries in the Mobile Testing Lab. At last, we received 53 question-
naires. Forty-four are about usability testing, and nine are about compatibility
testing.

The results of the questionnaires show that 52% (23 of 44) of the developers
are senior ones with more than three years of experience. Among them, 77%
(34 of 44) developers adopt semi-automated tools (i.e., POCO) in usability test-
ing to assist in writing testing scripts. We also find that 21 of the 34 developers
spend about 9 to 35 hours one-week drafting testing scripts. Additionally, we
highlight 27 of the 34 developers complain that 1) POCO often misleads test-
ing by ignoring visual effects (e.g., overlapping, shadowing) and 2) the time
cost of using POCO is often unacceptable. We also observe some developers
highlight that 1) POCO-based test script is not flexible for maintenance and 2)
POCO is not stable that which often leads to program crashes. Finally, 85%
(29 of 34) developers are convinced that applying widget detection methods
in usability testing can increase by at least 35% of testing speed.

The questionnaire results also indicate that 67% (6 of 9) compatibility test-
ing developers adopt OneToMany [87] technique to assist testing such that the
efficiency can be improved. 77% of the developers have more than two years
of experience in compatibility testing. Six of them usually work on at least
three projects in a week, and 77% of developers (7 of 9) have to test more than
eight devices in one testing task. Note that 67% (6 of 9) developers complain
that testing procedures suffer from significant differences in the resolutions of
devices. The 67% developers alleviate the effect of resolutions by grouping
devices in similar resolutions into more than three categories. This alleviation
can reduce the resolution difference in one group. However, the workload of
testing procedures is increased mainly since it has to be replayed among all
groups. The resolution difference makes the compatibility testing inefficient.
In our investigation, 77% of them agree that applying widget detection meth-
ods in testing can definitely increase the efficiency of the testing process by at
least 50%.

29

Figure 3.2: The workflow of building game dataset.

Answer to RQ1: From our interviews, we know that existing mobile
game testing tasks are mainly completed by human testers, which is
very inefficient. Thus, automated testing is urgently needed for industrial
games. To this end, developers and testers explore and develop tools to
assist the testing. However, these techniques have severe limitations (e.g.,
inaccurate results, different resolutions). The response to questionnaires
indicates that how precisely detect the clickable GUI widgets of mobile
games is of great importance for automating testing tasks.

3.3 Collection of Game GUIs

To the best of our knowledge, there is no game GUI benchmark now. We
plan to construct a mobile game GUI dataset to facilitate mobile game testing
further. The overview of our workflow is shown in Figure 3.2. Specifically,
we develop an automatic technique to collect game GUI images and label the
widgets automatically in subsection 3.3.1. Since the automatic labeling may
introduce inaccurate results, we further adopt a heuristic-based data cleaning
strategy to improve the data quality in subsection 3.3.2.

30

3.3.1 Obtaining Game GUI Dataset

We developed a technique that can automatically locate the click widgets and
outputs their region information, based on which we manually label the wid-
gets. Specifically, we first instrument the game software by POCO such that,
when a game is started, POCO can automatically instantiate and watch global
members of game object [90]. After installing the instrumented game on mo-
bile devices, we connect the device to the computer and enable Android ADB
to debug mode [91] on mobile devices. The screenshots, as well as the GUI
tree, are captured during the game playing. We then extract GUI widget co-
ordinates based on the GUI tree and label the widget. However, there are a
number of irrelevant widgets (e.g., widgets that are not clickable). We remove
these widgets by filtering their element types (e.g., unclickable widgets often
have the element type “Scene”). At last, we obtain 1,135 GUIs with 17,808
elements from four games (i.e., Elysium of Legends, Dream Chaser, Butter-
fly Swords, and AllStar). Since mobile games are mostly played horizontally,
the game screenshots are rotated for 90 degrees to keep the same size as the
existing GUI dataset.

To enrich our dataset with games published by other companies, we spent
three weeks downloading games, taking screenshots, and manually labeling
clickable widgets. We chose five games (i.e., Onmyoji, Arena of Valor, Princess
Connect, Naruto, and SevenDay) released by the NetEase Games, Tencent
Games and Cygames. Note that while the two games, Onmyoji and SevenDay,
are developed by NetEase Games, they cannot be instrumented by POCO, so
we have to label them manually. After enough screenshots of a game (i.e.,
the screenshots could cover at least 80% of play scenes) are collected, we la-
bel the clickable widgets by a third-party labeling tool [92]. We obtain 1,849
GUIs and 20,968 widgets from the above games. The description of the game
dataset is shown in Table 3.3. To avoid introducing manual mistakes, all labels
are cross-checked by our collaborators.

3.3.2 Data Cleaning

After collecting the 2,993 GUIs with 38,776 widgets, we observe that some
inaccurate labels may decrease the performance of models. Generally, inac-

31

Table 3.3: The composition of game GUIs in our dataset.

Game Name #N of GUIs #N of Widgets Released by

Elysium of Legends 503 6,873 NetEase Games

Dream Chaser 224 3,838 NetEase Games

Butterfly Swords 307 5,160 NetEase Games

AllStar 110 1,937 NetEase Games

Onmyoji 693 8,050 NetEase Games

Arena of Valor 183 2,856 Tencent Games

Princess Connect 137 1,268 Cygames

Naruto 383 4,138 Tencent Games

SevenDay 453 4,656 NetEase Games

Total 2,993 38,776

curate labels can be grouped into two categories: (1) invalid labels and (2)
incorrect labels.

The invalid labels include labels with negative coordinates and labels with
coordinates outside the screen. These labels are mainly due to the limitation of
the automatic labeling technique by extracting GUI information with POCO.
Specifically, POCO automatically extracts GUI trees from screens. Some ille-
gally placed widgets (i.e., placed with negative coordinates or placed outside
the screen) are included in labels without filtering. These invalid labels cause
errors during training models. Therefore, they need to be cleaned before train-
ing.

The incorrect label denotes labels valid for training but harmful for train-
ing models. The incorrect label consists of two categories: (1) the irregularly
large boxes and (2) empty boxes. Specifically, the irregularly large box denotes
that the size of a box is far larger than a regular box; these boxes produced
by POCO development kit are ineffective for locating a clickable button. The
empty boxes are incorrectly labeled by POCO due to the unawareness of vi-
sual overlaps among widgets. For example, in Figure 3.3, the two blue boxes
are widgets in previous screens. They are buried under the current back-
ground and cannot be clicked. However, they are detected by POCO and are

32

Figure 3.3: The example of applying contour filtering algorithm in GUI. The

red dots denote detected text contours. The blue boxes denote boxes being

filtered out, and the green boxes denote boxes being reserved.

mislabeled.

To filter out such invalid and incorrect labels, we propose a label filtering
method to remove dirty labels. Our method includes coarse filtering and fine-
grained filtering.

Coarse filtering. We design the coarse filtering in Algorithm 1. The coarse
filtering mainly focuses on invalid coordinates (i.e., with negative values or
coordinates out of the screen). The input of Algorithm 1 includes the image
source P and corresponding bounding boxes B. The output is a set of valid
boxes. Algorithm 1 is composed of four steps: (1) obtaining the width and
height of the input screenshot at line 2; (2) checking if the coordinates of a box
contain negative values at line 8; (3) checking if the coordinates are outside
the screen at line 10 by comparing the width and height of the screen with
the coordinates; (4) finally outputting a valid set of boxes of the screenshot. If
the input set has n screenshots and m bounding boxes, the time complexity of
line 2 is O(nm).

Fine-grained filtering. Fine-grained filtering aims at filtering out irregu-
larly large bounding boxes and empty boxes.

To remove the irregularly large bounding boxes, we propose to filter them
by comparing the size of the boxes with the size of the screen. That is, given
a threshold factor λ, a bounding box whose size is larger than λ percent of

33

Algorithm 1: CoarseFiltering(): traversing all bounding boxes and

filtering out invalid coordinates.
input : P, all the screenshots

input : B, all the bounding boxes

output: VB← ∅, the set of valid boxes

1 foreach screenshot p ∈ P do

2 w, h← p.getPitureSize()

3 //get screenshot width and height

4 foreach bounding box b ∈ B do

5 VB← VB ∪ {b}

6 c← b.getCoordinates()

7 // get values of the rectangle points

8 if hasNegtiveValues(c) is True then

9 VB← VB− {b}

10 if hasOutsideScreenCoors(c, w, h) is True then

11 VB← VB− {b}

12 return VB

34

Algorithm 2: FinegrainedFiltering(): traversing all bounding boxes

and filtering out irregularly large boxes and empty boxes.
input : P, all the picture source

input : B, all the bounding boxes

input : λ, the factor for determining the size of large boxes

output: VB← ∅, the set of valid boxes

1 foreach picture p ∈ P do

2 w, h← p.getPitureSize()

3 S← w× h

4 // calculate the size of screen

5 Con← p. f indAllContours()

6 // find contours by Suzuki’s Contour tracing algorithm

7 foreach bounding box b ∈ B do

8 VB← VB ∪ {b}

9 Sb ← b.getBoxSize()

10 // calculate the size of bounding box

11 if Sb > λ× S is True then

12 VB← VB− {b}

13 foreach contour c ∈ Con do

14 if b.contain(contour) is True then

15 break;

16 VB← VB− {b}

17 return VB

35

the size of the picture will be dropped. To find a proper value for λ, we
randomly pick 10,134 bounding boxes from the game dataset and collect the
size of these boxes. Next, we compare the size of the boxes with the size of
the screen. We find that 99.6% of bounding boxes have less than 10% of the
size of the screen, which means that almost all bounding boxes are small in
games. As we further investigate the 0.4% large boxes, we find they are all
unrelated background widgets and are not clickable. Thus they should be
removed. Implementing this algorithm sets the factor λ to 10.

To filter empty boxes, we apply Suzuki’s Contour Tracing Algorithm [93]
that reports points of textures, text, and contours of widgets. We empirically
find that most empty boxes contain no contours. Therefore, we remove boxes
that have no points. For example, in Figure 3.3, the reported points from our
algorithm are denoted as red dots. As the blue boxes contain no red dots,
these boxes are considered empty and removed from the labels. Differently,
all of the green boxes contain red dots, and they are deemed valid labels.

Algorithm 2 shows the method that is composed of four steps: (1) getting
the size of the input image at line 2; (2) finding all contours in the picture by
using Suzuki’s Contour tracing algorithm at line 5; (3) calculating the size of
bounding box and compare it with image size at line 9 to line 12; (4) checking
if there exists a contour point within the bounding box at line 13 to line 16. If
the input set has in total n images, m bounding boxes, and we find c contours
in a picture, the time complexity of Algorithm 2 is O(nmc).

3.4 Evaluation

3.4.1 Experiment Preparation

3.4.1.1 Dataset

To adopt existing methods [18, 19], we follow previous works [19] to download
and preprocess the well-known RICO [51] dataset. The RICO GUI dataset con-
tains 66,261 GUI screenshots and 199,830 GUI widgets. We remove widgets
that are not clickable (e.g., text widgets, images) and not visible to users (e.g.,
overlapped widgets, shadowed widgets). After this, we obtain 61,906 widgets.

36

Figure 3.4: The examples of GUIs used in training models.

We further filtered out 31,985 GUI widgets with incorrect coordinates (e.g., co-
ordinates outside the screen). Finally, we collected 30,011 widgets. Examples
of widgets used in our dataset can be found in Figure 3.4. Since the GUI
screenshots have different image sizes, we resize them to the fixed resolution
of 1440*2560. We split 30,011 elements RICO dataset into train/validation/test
dataset with a ratio of 8:1:1 (24K:3K:3K). For the game dataset, we use the data
that is automatically labeled as the training set and use the data that is manu-
ally labeled as the testing set because the manual labels are more accurate for
the evaluation.

3.4.1.2 Model Training

We follow the training method in previous works [18, 19]. For Faster RCNN
and YOLOv2, our training is based on their models, which are pre-trained on
the COCO object detection dataset. We keep the default batch size of 256 and
use SGD optimizer for Faster RCNN. Meanwhile, we use the default batch size
of 64 and use Adam optimizer for YOLOv2. Faster RCNN uses VGG16 [94]
as the backbone, while YOLOv2 utilizes Darknet19 [95] as the backbone. Both
models are trained for 45,000 iterations to ensure they are sufficiently trained.
As the models may predict duplicated bounding boxes regarding the same
object, we use non-maximum suppression (NMS) to remove redundant boxes
and keep the best one.

37

3.4.1.3 Metrics

We adopt the metrics used in previous works [18, 19] to evaluate the perfor-
mance of our models. Specifically, we use the precision, recall, and F1 scores
to evaluate the performance of models. The intersection over union (IoU) in-
dicates the intersection of two regions, A and B, divided by the union region
of them. The IoU threshold affects the precision of prediction. In previous
works, the threshold ranges from 0.3 to 0.9. In order to better evaluate the
model precision (i.e., the IoU threshold is not too low or not too high), we set
the IoU threshold as a comparatively strict value of 0.8 in our experiments.
A true positive prediction (TP) is the prediction that satisfies both the confi-
dence threshold and IoU threshold, while a false positive prediction (FP) is
the prediction that only satisfies the confidence threshold. The false nega-
tive (FN) is the region missed by models. We calculate the precision rate by
TP/(TP + FP) and the recall rate by TP/(TP + FN). We further compute the
F1 score as: F1 = (2× Precision× Recall)/(Precision + Recall).

3.4.2 Effectiveness of Filtering

Table 3.4: Game GUI labels after filtering. The labels filtered by coarse filtering

are in red cells, and the labels filtered by fine-grained filtering are in green

cells. The “ACF” means widgets after coarse filtering, and the “AFF” means

widgets after fine-grained filtering.

Elysium of Legends Dream Chaser Butter Swords AllStar

Original 6,873 3,838 5,160 1,937

Negative 639 0 0 0

Outimg 976 1,187 37 34

ACF 5,258 2,651 5,123 1,903

Large label 189 103 18 26

Empty label 112 546 1,159 391

AFF 4,957 2,002 3,946 1,486

38

3.4.2.1 The Filtered Dataset

The labels filtered by coarse filtering and fine-grained filtering are shown in
Table 3.4. In this table, “negative” and “outimg” denote coordinates that have
negative values and coordinates outside the screenshot. The “large box” rep-
resents the bounding boxes with irregularly large sizes, and the “empty box”
represents the boxes containing no widgets.

We observe that only one game (i.e., Elysium of Legends) has negative co-
ordinates, and four games (i.e., Elysium of Legends, Dream Chaser, Butterfly
Swords, AllStar) have incorrect coordinates outside the screen. The reason is
that the labels in these four games are automatically generated by our GUI
information extraction technique (See subsection 3.3.1). Since the extracted
widgets are filtered by rules, some widgets with the out-of-GUI coordinates
may be missed by rules and are included in our dataset. The model train-
ing cannot start when these invalid coordinates exist. Therefore, we leverage
coarse filtering to eliminate labels with invalid coordinates. After coarse fil-
tering, 639 coordinates with negative values and 2,234 coordinates out of the
screen are removed.

The fine-grained filtering filters 336 irregularly large boxes. We observe
that the games that are automatically labeled (i.e., Elysium of Legends, Dream
Chaser, Butterfly Swords, and AllStar) tend to contain more dirty labels (e.g.,
189 in Elysium of Legends and 103 in Dream Chaser). Our method also helps
filter out empty boxes, and the results show that most game labels contain
a number of empty boxes. Recall that the empty boxes are ones that are in-
correctly labeled by POCO due to the unawareness of visual overlaps among
widgets. For example, in Figure 3.3, the blue boxes are widgets in previous
screens. They are buried under the background and not clickable on the cur-
rent screen.

3.4.2.2 Model Performance on Filtered Dataset

In the evaluation, we use the games that are automatically labeled (i.e., Ely-
sium of Legends, Dream Chaser, Butterfly Swords, and AllStar) as train-
ing datasets, and the manually labeled games (i.e., Onmyoji, Arena of Valor,
Princess Connect, Naruto, SevenDay) as testing dataset. The results are shown

39

Table 3.5: The performance of models on the filtered dataset.

Before After

Setting P R F1 P R F1

FasterRCNN Default 12.9% 11.7% 12.2% 17.3% 16.4% 16.9%

FasterRCNN Customized 0.5% 0.1% 0.1% 0.8% 0.2% 0.3%

YOLOv2 k=5 0.3% ≈0% 0.1% 7.6% 5.5% 6.4%

YOLOv2 k=9 4.4% 2.3% 3.0% 6.5% 5.0% 5.7%

in Table 3.5. In this table, the “Before Filtering” denotes the performance of
models on the dataset only with coarse filtering, and the “After Filtering” de-
notes the performance of models on the dataset, which has been processed
by fine-grained filtering. Note that the dataset used here is already processed
by coarse filtering because negative or out-of-GUI coordinates can largely af-
fect the performance. Hence, we mainly evaluate the model performance be-
fore/after the fine-grained filtering.

We observe that the performance of all models increases after we apply
the fine-grained filtering. Specifically, Faster RCNN with default settings has
the best performance with the highest precision (17.3%) and recall (16.4%) on
the filtered dataset. Compared with the model with the same settings but on
the unfiltered dataset, the improvement of the dataset leads to around 4.6%,
4.6%, and 4.7% increase in precision, recall, and F1 score, respectively. Faster
RCNN with customized settings keeps the same unsatisfactory performance
as in the previous empirical study. The performance of this model slightly
increases on the filtered dataset. YOLO with k value 5 obtains the largest
improvement on the filtered dataset. The processed dataset leads to more than
7% improvement in precision and at least 5% improvement in recall and F1
score. Comparatively, the performance of YOLO with k value 9 is improved on
the filtered dataset for at least 2%. In summary, the filtered dataset effectively
improves the model performance in terms of precision, recall, and F1.

40

Figure 3.5: The example of applying fine-grained filtering method to filter out

dirty labels in manually labeled dataset.

3.4.3 Model Performance

In this section, we conduct experiments to evaluate the model performance
on the RICO and game dataset. For models adopted in our experiments (i.e.,
Faster RCNN and YOLOv2), we prepare two sets of hyper-parameters to eval-
uate their performance. Specifically, for Faster RCNN, we change the origi-
nal three anchor scales (8, 16, 32) to larger scales (16, 32, 64). We make this
change in consideration that larger anchor scales may better fit the objects in
GUIs. The Faster RCNN with larger scales is represented by “Faster RCNN
Customized”. For YOLOv2, we use two sets of k values (i.e., 5 and 9) in con-
sideration that more anchors may improve the model performance. The two
values are also adopted in previous works [49] for evaluations. The dataset
for our evaluations includes RICO and the game dataset.

3.4.3.1 Model Performance on Game Dataset

We compare the performance of deep learning models on both RICO and the
game dataset. We train our models with different settings on RICO dataset
and test our models on the game dataset. The results are listed in Table 3.6 and
Table 3.7. The “P” and “R” in this table denote the precision score and recall
score, respectively. The “FR” represents the deep learning model Faster RCNN
and the “FR Customize” means the model with changed anchor sizes. We also

41

Table 3.6: The performance of models trained on RICO dataset. (IoU larger

than 0.8)

On RICO On Game

Setting P R F1 P R F1

FasterRCNN Default 52.9% 59.1% 55.9% 23.4% 4.6% 7.7%

FasterRCNN Customized 22.9% 10.4% 14.3% 1.1% 0.2% 0.3%

YOLOv2 k=5 50.7% 37.9% 43.4% 9.8% 1.3% 2.3%

YOLOv2 k=9 49.5% 36.5% 42.0% 10.0% 1.2% 2.2%

Table 3.7: The performance of models trained on the game dataset. (IoU larger

than 0.8)

On RICO On Game Dataset

Setting P R F1 P R F1

FasterRCNN Default 4.1% 3.7% 3.9% 12.9% 11.7% 12.2%

FasterRCNN Customized 0.1% 0.1% 0.1% 0.5% 0.1% 0.1%

YOLOv2 k=5 ≈0.0% ≈0.0% ≈0.0% 0.3% ≈0.0% 0.1%

YOLOv2 k=9 ≈0.0% ≈0.0% ≈0.0% 4.4% 2.3% 3.0%

42

evaluate the YOLOv2 model with different k values to study the impact of the
parameters on model performance.

We observe that the precision and recall of models drop sharply on the
game dataset. Faster RCNN has 55.9% F1 score on RICO dataset but only
7.7% on the game dataset. Specifically, the precision of Faster RCNN drops
half on games, and the recall drop from 59.1% to 4.6%. A recall under 5%
is rather low for a model and denotes that the model is ineffectively to cover
most GUI widgets. We also observe that the Faster RCNN with customized
settings performs worse than the model with default settings and perform
even worse on game datasets with an F1 score of 0.3%. Recall that we attempt
to change the anchor size and expect the model to precisely match bounding
box labels. However, the experiment results show that our configuration with
a larger anchor size leads to worse performance.

YOLO models perform close to Faster RCNN regarding the precision of
50.7%. However, the recall of YOLO is far worse than Faster RCNN. We ob-
serve that the performance of YOLO also sharply drops when tested on the
game dataset, with an F1 score decreasing from 43.4% to 2.3%. Recall that we
change the model setting of YOLO to a larger value of k (i.e., 9) and expect the
YOLO model to generate more anchors to match bounding box labels. The
experiments show that the configuration of a larger of k results in a worse
performance.

3.4.3.2 Model Performance Across Various Mobile Applications

We also train models on the game dataset and evaluate their performance
on RICO and the game dataset, respectively. The models are with the same
settings as models trained on RICO. The results are shown in Table 3.6 and
Table 3.7. We observe that the models perform much worse on the test dataset.
Specifically, comparing the models tested on the game and RICO dataset, their
performance drops sharply. For Faster RCNN, the precision rate on the test
dataset drops from 12.9% to 4.1%, and the recall rate decreases from 11.7%
to 3.7%. The performance of RCNN with larger anchor sizes (i.e., customized
settings) also drops from 0.5% to 0.1%. The Faster RCNN with the default
setting performs better transferability on different datasets. For YOLO mod-
els, the performance of models with the two settings (k= 5, 9) drops to less

43

Figure 3.6: Distribution of the number of elements per GUI on RICO and game

dataset.

than 1% regarding precision, recall, and F1 score. The YOLO models fail to
produce an effective prediction on different datasets.

3.4.4 Root Cause Analysis

3.4.4.1 Game GUI Element Density

We first take a deep look at the UI density difference between regular appli-
cation GUIs from RICO dataset and game GUIs from our collected dataset.
The basic distribution of GUI density is summarized at Figure 3.6. We ob-
serve that 55% of game GUIs have more than 9 elements, and in contrast,
only 8% of GUIs in regular applications contain more than 9 widgets. Most
regular applications contain no more than three widgets in one interaction
screen. Differently, game applications intend to offer more interaction options
to attract users. As the game GUI elements are often placed side by side and
separated by only small padding, detecting GUI regions under high density
is challenging for models. For example, Figure 3.7 is a screenshot of character
selection. There are 50 elements in this GUI, and each element is placed close
to the others. Our models predict most regions of these elements but missed
5 boxes.

3.4.4.2 Art Style Diversity in Game

The game GUIs are subject to art design needs. In fact, in some typical kinds
of games (e.g., Massive Multiplayer Online Role-Playing Games), the mechan-
ics of gameplay are rather complex. Unlike regular applications aiming at

44

Figure 3.7: A game GUI example of high widget density. The blue boxes

denote labels, and the red boxes denote model predictions. The overlooked

boxes are pointed by green arrows.

providing a series of services, game developers intend to build a virtual world
to attract users to explore it while enjoying gaming. To achieve this goal, game
developers design widgets in different shapes and colors. For example, after
we investigate GUIs in a game Elysium of Legend and GUIs in a hotel booking
application of RICO dataset. We collect the number of heterogeneous widgets
and regular widgets; the data is shown in Figure 3.8. In this booking applica-
tion, there are 14 GUI elements in total and only 4 heterogeneous GUIs (e.g.,
sharing widget, map widget). In applications, there are more than 60 types
of widgets, and 23 of them are heterogeneous widgets. These irregular wid-
gets are often in various shapes (ancient buildings, cat’s claws), as shown in
Figure 3.8. Moreover, these widgets are often placed on background pictures,
making it difficult for models to separate background textures from widgets.
In our experiments, all models missed the three irregular widgets.

Art style difference also causes huge diversity between games. We investi-
gate the return widgets in nine games in our dataset, and results are shown in
Figure 3.9. We surprisingly find that there exist no two similar return widgets.
Some return widgets are even reshaped in uncommon style (e.g., the returned
widget in the left part of the second row), which confuses models to identify
them properly. The art style gap between games is often large, not to mention

45

Figure 3.8: Comparing the number of GUIs categories in a game and an An-

droid application. Followed by examples of heterogeneous GUI elements in

this game.

Figure 3.9: Return widgets in different games. Widgets in different games are

separated by solid lines.

the gap between regular applications and games. This also explains the reason
why the performance of models trained on the RICO dataset but tested on the
game dataset drops sharply.

3.4.5 Summary of Findings

3.4.5.1 Answers to the Research Questions

Through the analysis of the experiments above, we found that:

• Answer to RQ2: The models (i.e., Faster RCNN and YOLO) cannot gener-
alize well across the game and the RICO dataset. The experimental results

46

show that the performance of models drops sharply on the game dataset.
Meanwhile, models trained on game datasets are not accurate for detecting
regular GUI widgets in non-game applications.

• Answer to RQ3: The models achieve unsatisfactory performance because
(1) widgets are compactly placed in game GUIs, making the density of
GUI widgets in the game far larger than that in regular applications, (2)
heterogeneous GUI shapes and high diversity of GUI styles between games
make it difficult for models to detect widget regions.

3.4.5.2 Research Direction Highlight

Based on our findings, we provide insightful suggestions for future research
directions.

Enhancing Dataset. In our study, we automatically and manually labeled
2,993 screenshots of 9 games. Compared with previous works, RICO dataset
includes more than 60K screenshots. Additionally, in order to assist better
game GUI testing in industries, the dataset only provides coordinates of click-
able widgets. This can be further enhanced by adding support for multiple
types of widgets (e.g., text widgets, picture widgets) for facilitating future
research on game GUIs. Additionally, the dataset can be enhanced by collect-
ing various types of games (e.g., action games, adventure games, first-person
shooting games).

Game Style Comparison. Recall that the model performs badly across
different datasets. In fact, some mobile games share similar art styles with
particular games. For example, the art style of the game Arena of Valor is
similar to the game Onmyoji Arena (not included in our dataset in this paper
but also famous on Google Play Store). If we find a metric to evaluate the
similarity between the styles, we can summarize a minimum set of games that
covers most game styles. In further training, models could be trained on this
minimum set to save a considerable amount of time.

Applying GUI Detection In Industry. As we have discussed with test-
ing developers from industries about applying widget detection methods in
industry game testing, the developers agreed that GUI widget detection tech-
niques are important for game designs and game testing. Further, a game GUI

47

dataset detection technique can help a freshman engineer rapidly become fa-
miliar with developments in new games. Currently, we are engaged in the
implementation of this service and applying it in industry game testing in the
near future.

3.4.6 Threats to Validity

We note that randomness is an inevitable factor when applying deep learning
models. To alleviate the effect of this factor, we repeat the experiments men-
tioned in our study 5 times and record the average values. The selection of
games could be biased. In our study, we adopted 6 games released by them.
To counteract the bias, we adopt additional games released by other compa-
nies (e.g., Tencent Games, Cygames). Additionally, in previous works, other
models (e.g., CenterNet [96], EAST [97], Grad-CAM [98]) are adopted in their
methods. We choose to select Faster RCNN and YOLO in our experiments be-
cause they are commonly adopted in most similar studies. On the other hand,
the recall rate, which is adopted as our metric, maybe a potential threat. Gen-
erally, the recall performance of a model is difficult to evaluate due to the lack
of ground truth. In our study, the labels of clickable widgets are mostly pro-
cessed by us and are prone to introducing incompleteness. To alleviate this,
we make our best attempt to check the labels 3 times. On this basis, despite
our labels being unable to be 100% complete, our dataset however provides a
convincing benchmark for evaluating model performance.

3.5 Chapter Conclusion

In this study, we first conduct a survey in mobile game testing, including
scrum interviews and questionnaires. The survey results show that applying
an object detection method to detect game GUI widgets can be the pillar to
boost game testing efficiency in practice. To this end, we develop a method
to automatically collect the GUI of industrial games and a method for data-
cleaning. The evaluations show that (1) existing general-purpose GUI meth-
ods cannot perform well on games and (2) the unsatisfactory performance of
existing methods is mainly caused by the compactly placed GUI widgets and
the diverse GUI shapes.

48

CHAPTER

FOUR

STUDY ON VULNERABILITIES AND EXISTING TOOLS

IN SMART CONTRACT

4.1 Introduction

Powered by the Blockchain technique [99], smart contracts [100] have attracted
much attention and have been applied in various industries, e.g., financial ser-
vices, supply chains, smart traffic, and IoTs. Solidity is the most popular
language for smart contracts for its mature tool support and simplicity. How-
ever, the public has witnessed several severe security incidents, including the
notorious DAO attack [101] and the Parity wallet hack [102]. According to pre-
vious reports [23, 103], up to 16 types of security vulnerabilities were found in
Solidity programs. These security issues undermine the confidence of people
who have executed transactions via smart contracts and eventually affect the
trust in the Blockchain ecosystem.

Witnessing the severity and urgency of this problem, researchers and secu-
rity practitioners have endeavored to develop automated security scanners [25,
26, 28, 54, 57]. Existing state-of-the-art scanners usually adopt rule-based
methods for vulnerability detection. Slither [25] supports 39 hard-coded static

49

rules; Securify [28] supports 15 rules for verifying the extracted path con-
straints from the contract with the SMT solvers [104]; Oyente [26] supports
eight rules for generating assertions for verifying the vulnerabilities. Each rule
represents a pattern of vulnerable contracts, which warns the programmers to
avoid potential risks before deploying the contracts.

Although experiments have demonstrated their effectiveness, it is notable
that human experts manually craft the rules behind these scanners. The man-
ually predefined rules can be obsolete, because 1) previously unseen vulnerable
code may be introduced, which cannot be captured by the hard-coded rules,
and 2) new defense mechanisms (i.e., programming skills to prevent bugs)
may have successfully mitigated the vulnerabilities. However, the code may
still match the predefined vulnerable pattern or rules. Therefore, most up-
dated rules should be learned to distinguish vulnerable contracts from robust
ones.

In this work, we alleviate the incompleteness of detection rules by com-
bining vulnerability signatures abstracted from both vulnerable and benign
contracts (i.e., vulnerable signature and benign signature). The vulnerable
signature is designed to match the commonalities of a particular vulnerabil-
ity. Comparatively, the benign signature is abstracted from falsely reported
contracts to reduce false alarms. For each vulnerability, we adopt vulnera-
ble and benign signatures to synthesize the detection rules of Vulpedia. Note
that Vulpedia is built upon the relaxed assumption that the contract’s owner
is not malicious. Detecting malicious contracts (e.g., contract with backdoors,
exploit code) is different from vulnerability detection (i.e., the target of Vulpe-
dia). Based on this assumption, the operations related to the contract owner
are all deemed as vulnerability defense behaviors. Compared with previous
work, the synthesized rules are more updated and expressive than the pre-
defined rules in the state-of-the-art vulnerability scanners, capturing a lot of
unseen patterns in practice.

In our implementation, we first collect truly and falsely reported con-
tracts by applying three state-of-the-art vulnerability scanners (i.e., Slither [25],
Oyente [26], and Securify [28]) and manually evaluate their correctness. Based
on the results, analyzing truly reported vulnerable contracts allows us to cap-
ture salient program signatures responsible for vulnerable contracts. In con-
trast, analyzing falsely reported vulnerable contracts will enable us to capture

50

noticeable signatures to avoid false alarms. Next, we categorize the contracts
by their vulnerability types (e.g., Reentrancy, Unchecked Low-level-call, etc.)
and alarm types (i.e., true or false). For each category, we cluster the con-
tracts based on their tree edit distance [105] and then extract program fea-
ture commonalities from each cluster’s PDGs (program dependency graph)
to summarize vulnerability signatures. Finally, we abstract four vulnerable
signatures and six benign signatures. They are integrated as four detection
rules regarding four vulnerabilities (i.e., Reentrancy, SelfDestruct, Tx-origin,
and Unexpected-Revert).

We conduct our signature abstraction on a set of 76,354 intelligent contracts
and evaluations on a set of 17,770 contracts, respectively. The evaluation re-
sults show that, compared with the state-of-the-art vulnerability scanners (i.e.,
Slither, Oyente, Smartcheck, and Securify), our approach achieves outstanding
accuracy on four vulnerabilities and leading recall on three vulnerabilities.

To summarize, we make the following contributions:

1. We propose an approach to abstract vulnerability signatures and com-
pose detection rules to report the vulnerability. The learned rules are
more expressive than rules of the state-of-the-art scanners, reporting vul-
nerabilities with better completeness and soundness

2. On the 17,770 contracts crawled from Google, Vulpedia yields the best
precision on four vulnerabilities and leading recall on three ones, in
comparison with the other state-of-the-art scanners.

3. Experiments show that Vulpedia is efficient in vulnerability detection.
The detection speed of Vulpedia on 17,770 contracts is far faster than
Oyente and Securify.

In this chapter, we organize our content like this: In the Background, we
first introduce the different types of vulnerabilities we address in our study
and explain why the state-of-the-art tools fail. In the Overview, we illustrate
the basic steps of our proposed tool, namely Vulpedia. In the Empirical Study
we conduct an empirical study and introduce our method of signature ab-
straction. We also elaborate on the effectiveness of signatures with examples.
In experiments, we compare Vulpedia with the other state-of-arts using 17,770

51

real-world contracts deployed on Ethereum. The related work briefly intro-
duces the related work, and the conclusion summarizes this study.

4.2 Overview

Figure 4.1 shows the workflow of abstracting vulnerability signatures for Vul-
pedia. The workflow can be roughly grouped into four steps: 1) The pre-
detection of existing tools; 2) Vulnerability report inspection; 3) AST clustering
and signature abstraction; 4) Rule composition. Note that manual efforts are
involved in steps two and step 4.

In the first two steps, we systematically evaluate (1) how accurately state-
of-the-art tools can report vulnerable smart contracts and (2) under what con-
dition those tools can be ineffective. We collect the reports of the state-of-
the-art tools on a training dataset of 76,354 contracts. Then, we employ three
experienced smart contract developers to manually confirm the reports of the
tools and categorize them into two groups: truly alarmed vulnerable contracts
and falsely alarmed vulnerable contracts.

In the last two steps, we first calculate the tree edit distance based on the
ASTs of contracts in a particular vulnerability type and cluster the contracts of
the type by defining the contract similarity. Next, we abstract common nodes
from the PDGs (program dependency graph) of each cluster to summarize
signatures (e.g., as shown in Figure 4.2). From truly vulnerable contracts, we
summarize vulnerable signatures. In contrast, from falsely alarmed vulnera-
ble contracts, we summarize benign signatures. Finally, we manually integrate
vulnerable and benign signatures into vulnerability detection rules.

After we equip our Vulpedia detector with the composed rules, the de-
tector takes unknown contracts as inputs and generates vulnerability reports
based on the signatures. Specifically, the detector first conduct preprocessing
on the input smart contract code. The detector extracts normalized AST from
the contract. Based on this normalized AST, the detector conducts a PDG
extraction. Meanwhile, the detector extracts existing signatures from the vul-
nerability signature database. Lastly, the detector produces detection reports
based on the comparison results. If the PDG matches vulnerable signatures

52

Fi
gu

re
4.

1:
Th

e
w

or
kfl

ow
of

ex
tr

ac
ti

ng
vu

ln
er

ab
ili

ty
si

gn
at

ur
es

of
V

ul
pe

di
a.

53

but is not matched with benign signatures, the contract will be deemed vul-
nerable; otherwise, the detector will produce a non-vulnerable report.

4.3 Empirical Study of Signature Abstraction

In this section, we first illustrate how we empirically collect contracts in this
study. We report how we select the vulnerability scanners and how we con-
struct a contract dataset. Next, we introduce our method of 1) clustering
similar contracts by comparing tree edit distance, 2) abstracting commonali-
ties from PDGs of clusters as signatures, and 3) detection rules composition
based on the abstracted signatures. Finally, we elaborate on the signatures
with examples to evidence their representativeness of them.

4.3.1 Selected Scanners and Dataset

Table 4.1: The state-of-art tools for Solidity analysis.

Tool Name Method Technique Open Source Implementation

Mythril [64] Dynamic Constraint Solving ● Python

MythX [65] Dynamic Constraint Solving ❍ N.A.

Slither [25] Static CFG Analysis ● Python

Echidna [66] Dynamic Fuzzy Testing ● Haskell

Manticore [63] Dynamic Testing ● Python

Oyente [26] Dynamic Constraint Solving ● Python

Securify Static Datalog Analysis ● Java

Smartcheck [54] Static AST Analysis ● Java

Octopus [60] Static Reverse Analysis ● Python

Zeus [57] Static Formal Verification ❍ N.A.

ContractFuzzer [32] Dynamic Fuzzy Testing ● Go

4.3.1.1 Choice of Scanners and Vulnerability Types

Overall, we select vulnerability scanners based on how practical they can be
used in real-world scenarios. We investigate a list of static analyzers, including

54

Slither [25], Oyente [26], Zeus [57], Smartcheck [54], and MythX [65]. These
tools utilize manually defined detection rules to detect vulnerabilities. The
rules could match vulnerabilities in some cases but also generate many false
reports. We also investigate dynamic detectors like Mythril [64], Contract-
Fuzzer [32], Echidna [66], and Manticore [63]. They exercise programs and
check the runtime status of functions to find vulnerabilities. These analyz-
ers often achieve high detection precision but suffer from limited scalability.
Additionally, we investigate other analyzing tools (e.g., Solidity reverse engi-
neering tool Octopus [60]) to facilitate our exploiting contracts. A summary of
the above tools can be found at Table 4.1. In our study, some tools are not se-
lected because they are not open-sourced (Zeus [57], MythX [65]), not related
to our task (Echidna [66], Octopus [60]) and efficiency concerns (Mythril [64],
ContractFuzzer [32], Manticore [63]).

Finally, we choose Slither v.0.4.0, Oyente v0.2.7, and Smartcheck v2.0 as
our scanners.

4.3.1.2 Dataset for Empirical Study

We implement a web crawler to download Solidity files from accounts of
Etherscan [106], a famous third-party website on Ethereum Block Explorer.
Etherscan provides APIs for downloading transaction information (e.g., trans-
action addresses, time). Our crawler can be accessed at https://github.
com/ToolmanInside/smart_contract_crawler. The crawler adopts a random
search strategy on the website of Etherscan to ensure the downloaded con-
tracts are randomly sampled.

We choose contracts deployed by Solidity 0.4.25 and 0.4.24. The reasons
are two folds: 1) as reported in [107], 54.27% Solidity smart contracts are in
0.4 version, and the 0.4.24 and 0.4.25 are the latest versions in Solidity 0.4; 2)
the versions 0.4.24 and 0.4.25 are supported by most analyzers so that they
facilitate our study. Additionally, we find that the downloaded dataset has
redundant contracts (contracts that share commonality with others). Regard-
ing these redundant contracts, we remove contracts that are exactly the same
as others and contracts that are only different in transfer address with others.
Finally, we got 76,354 contracts for our dataset.

55

https://github.com/ToolmanInside/smart_contract_crawler
https://github.com/ToolmanInside/smart_contract_crawler

Table 4.2 shows the number of contracts we collected in this study. Overall,
among 76,354 contracts, the three tools report 508 true vulnerable contracts,
albeit 3,496 false vulnerable ones. Table 4.3 shows the details on the number
of reported contracts and precision performance of each tool. We observed
that all the tools have a large number of false alarms. This is due to contract
programmers having invented many heuristics to detect potential vulnerabili-
ties. In other words, most existing detection rules are obsolete. It motivates us
to pursue (and generate) a more expressive and fine-grained rule to mitigate
false alarms.

Table 4.2: Number of collected contracts for each category

Alarm Type RE TX UR SD

True Positive 46 38 421 3

False Positive 720 179 2,546 51

Table 4.3: The precision performance of three tools Slither, Oyente, and

Smartcheck on four vulnerabilities.

Vulnerability Slither Oyente Smartcheck

Reentrancy 623 (3.53%) 143 (16.78%) N.A.

Abused Tx.origin 67 (28.35%) N.A. 150 (12.66%)

Unexpected Revert 2,678 (8.25%) N.A. 289 (69.20%)

Self Destruct 54 (5.56%) N.A. N.A.

4.3.2 Vulnerability Rule Abstraction

In this section, we introduce the definition of signature and show how we
cluster and abstract the vulnerable/benign signatures from each cluster.

56

Fi
gu

re
4.

2:
T

hr
ee

si
m

ila
r

co
de

bl
oc

ks
of

U
ne

xp
ec

te
d

R
ev

er
t

th
at

ar
e

fo
un

d
in

re
al

-w
or

ld
co

nt
ra

ct
s.

Ba
se

d
on

th
ei

r
tr

ee

ed
it

di
st

an
ce

,w
e

cl
us

te
r

th
em

to
ge

th
er

an
d

ab
st

ra
ct

a
gr

ap
h

sk
el

et
on

fr
om

th
ei

r
PD

G
.T

he
ye

llo
w

bo
xe

s
de

no
te

fu
nc

ti
on

in
pu

ts
,t

he
bl

ue
bo

xe
s

de
no

te
co

m
m

on
no

de
s

on
PD

G
,a

nd
th

e
w

hi
te

bo
xe

s
in

th
e

do
tt

ed
bo

x
re

pr
es

en
t

di
ff

er
en

t
no

de
s.

57

4.3.2.1 Definition

We define a vulnerability rule for a Solidity contract as following BNF:

⟨rule⟩ ::= ⟨comp_sig⟩

⟨comp_sig⟩ ::= ¬⟨comp_sig⟩ | (⟨comp_sig⟩ ∨ ⟨comp_sig⟩) | (⟨comp_sig⟩ ∧
⟨comp_sig⟩) |
(⟨comp_sig⟩ ≻ ⟨comp_sig⟩) | ⟨sig⟩

⟨sig⟩ ::= DataDep(X,Y) | ControlDep(X,Y) | ForLoop |
IsInstance(X,Y) | Call(L,X) | SelfDestruct(X) | msg.sender | tx.origin |

Here, the detection rule is a composite of signatures. A composite sig-
nature is a negation (¬) of itself, or conjunction (∧), union (∨), succeed (≻)
with another composite signature. A composite signature can also be a single
vulnerability signature. Specifically, the vulnerability signature indicates basic
program relationships and built-in keywords of Solidity language. For exam-
ple, the data dependency DataDep(X,Y) relationship denotes that variable X
has data dependency to Y (i.e., variable assignment operations). The control
dependency ControlDep(X,Y) indicates assertation operations (e.g., require, as-
sert) between variables X and Y. The for loop ForLoop denotes the function
body has a for loop statement. The IsInstance(X,Y) denotes the variable X is
a type of variable Y. Call operation CALL(L, X) includes low-level calls (e.g.,
call.value() and send() in Solidity) and high-level calls (i.e., user-defined
function calls). Here, variable L represents the result of call operations, and
variable X represents the parameters required by the call. SelfDesutrct(X) is a
built-in function call in Solidity. Once it is called, the service of the current
contract is stopped, and the rest balance is transferred to an arbitrary receiver
X. The msg.sender and tx.origin are built-in variables. Specifically, msg.sender
denotes the address of the current contract, and tx.origin denotes the origin of
call chains [22].

4.3.2.2 Contract Clustering

In this section, we first define contract similarity on normalized ASTs, and
then we cluster similar trees by using a hierarchical clustering algorithm. The
clustering procedure can be found in lines 1 to line 10 in the Algorithm 3.

58

Algorithm 3: Contract Clustering and Signature Abstraction Algo-

rithm
input : SourceCode, source code of smart contracts

output: SignatureCands, abstracted signature candidates

1 // Contract Clustering Process

2 ASTs = getAST(SourceCode)

3 nASTs = ASTNomalization(ASTs)

4 distanceMatrix = List[N, N]

5 // N is the number of trees

6 foreach idx i ∈ range(nASTs) do

7 foreach idx j ∈ range(nASTs)andi ̸= j do

8 treeEdtDist = ARTED(nASTs[i], nASTs[j])

9 // Calculate the distance between two trees

10 distanceMatrix[i, j] = treeEdtDist

11 Clusters = hierarchicalClustering(distanceMatrix)

12 // Signature Abstraction Process

13 SignatureCands← ∅

14 foreach cluster c ∈ Clusters do

15 PDGs← ∅

16 foreach tree t ∈ c do

17 PDG p← getPDG(t)

18 pn← PDGNormalization(p)

19 PDGs← PDGs ∪ pn

20 commonSeq← LCS(PDGs)

21 SignatureCands← SignatureCands ∪ commonSeq

22 return SignatureCands

59

Contract Similarity. We define the contract similarity by considering both the
semantic and structural information of the code. To this end, we use AST (Ab-
stract Syntax Tree) to represent the code of the functions of each contract. For
each AST of a Solidity function, we normalize the concrete nodes in the AST
for retaining core information and abstracting away unimportant details such
as variable names or constant values, as shown in line 2 of Algorithm 3. For
each AST corresponding to a function, we just retain the information such as
node type, name, parameter, and return value (if contained). For the variable
names (e.g., _indexs in code block A and code block B of Figure 4.2), they
will be normalized with the token asterisk “∗”. Similarly, we repeat the same
normalization for constant values of the types string, int, bytes, or uint.

Given two trees, we use the tree edit distance between two normalized
ASTs as their distance. The AST normalization process is shown in line 3
of Algorithm 3. In this work, we apply a robust algorithm for the tree edit
distance (ARTED) [105], which computes the optimal path strategy by per-
forming an exhaustive search in the space of all possible path strategies. Here,
path strategy refers to a mapping between two paths of the two input trees (or
subtrees), as the distance between two (sub)trees is the minimum distance of
four smaller problems, i.e., (1) the edit distance between two empty trees, (2)
the edit distance of transferring a tree F to an empty tree, (3) the edit distance
of transferring an empty tree to a tree F and (4) the edit distance of transfer-
ring a tree F to another tree G. Note that though ARTED runs in quadratic time
and space complexity, it is guaranteed to perform as good or better than its
competitors [105].

Contract Clustering. We cluster the ASTs via hierarchical clustering algorithm
with complete linkage [108], as shown in line 4 to line 10 in Algorithm 3. Then,
we group the codes in Figure 4.2 with considerable modification. We deem
that the ASTs in each cluster share commonalities as a feature (or signature)
for a vulnerability category.

4.3.2.3 Signature Abstraction

After clustering contract functions with AST, we abstract signatures by refer-
ring to their PDG (Program Dependency Graph) information. The reason lies

60

in that PDG allows us to capture the code semantic features like control and
data dependencies.

PDG Representation. For each AST, we transfer its code into a PDG, in-
cluding all its dependent code elements such as global variables and called
functions, as shown in line 13 to line 17 in Algorithm 3. In a PDG, each of
its nodes is an instruction, and the edge between nodes indicates data depen-
dency, control dependency, and call relation between the nodes. Thus, given a
cluster containing N Solidity functions, we reduce it into a problem of finding
the common subgraph of N PDGs. The normalization of PDGs is shown in
line 18 in Algorithm 3.

PDG Matching. The graph matching problem is an NP-complete problem.
We simplify the problem with the following steps. Before matching, we also
abstract away variable names and constant values in the PDGs as we do that
for AST. Next, we simplify the calculation by flattening the graph into a node
sequence (via depth-first order search) and aligning the sequences by LCS
algorithm [109], as shown in line 20 in Algorithm 3. The aligned graph nodes
are considered commonalities shared by the code in the same cluster.

As a result, the signature abstracted from a cluster is essentially a graph
skeleton, as shown in Figure 4.2. Then, we manually inspect those skeletons
and refine them into usable signatures. The refining process requires manual
efforts because some signatures are semantically similar to others but different
in syntax. These signatures require to be filtered out by human experts. After
we repeat the above procedures on both vulnerable and benign contracts, we
construct a set of vulnerable and benign signatures.

4.3.2.4 Rule Composition

In this study, we follow the following heuristics to incorporate the signatures
into a rule. Generally, a detection rule is a composite boolean expression of vulner-
ability signatures. Given a vulnerability category, a detection rule first requires
the input contract to match with the vulnerable signatures. The vulnerable
signatures are essential ingredients for forming a vulnerability. Therefore,
if the input contract is not matched with vulnerable signatures, the contract
should be considered invulnerable. Next, the input contract is required not
to match with benign signatures. The benign signatures are the best practices

61

Table 4.4: Extracted Signatures from Different Vulnerability Categories

ID Vulnerability V/B Signature

1

Reentrancy

V DataDep(_,X) ≻ Call(_,X)

2 B ControlDep(msg.sender,X) ≻ DataDep(_,X) ≻ Call(_,X)

3 B DataDep(_,X) ≻ IsInstance(X,addr) ≻ Call(_,X)

4 B ControlDep(Y,_) ≻ DataDep(_,X) ≻ Call(_,X) ≻ DataDep(Y,_)

5
Unexpected Revert

V ForLoop ≻ Call(L,X) ≻ ControlDep(L,_)

6 B ForLoop ≻
(
IsInstance(X,addr) ∧ Call(L,X)

)
≻ ControlDep(L,_)

7
Abuse of Tx.origin

V DataDep(tx.origin,X) ≻ ControlDep(X,_)

8 B DataDep(msg.sender,Y) ≻ DataDep(tx.origin,X) ≻ ControlDep(X,Y)

9
SelfDestruct

V DataDep(_,X) ≻ SelfDestruct(X)

10 B ControlDep(msg.sender,X) ≻ DataDep(_,X) ≻ SelfDestruct(X)

to defend against vulnerabilities. If the input contract matches with them, it
suggests that the contract is capable of defending vulnerabilities and should
not be reported as vulnerable.

Table 4.5: Detection rules for each vulnerability

ID Vulnerability Rule

1 Reentrancy SIG1 ∧ ¬ (SIG2 ∨ SIG3 ∨ SIG4)

2 Revert SIG5 ∧ ¬ SIG6

3 Tx.origin SIG7 ∧ ¬ SIG8

4 Self-destruct SIG9 ∧ ¬ SIG10

4.3.3 Case Study: Abstracted Signatures

We applied the three chosen scanners to 76,354 contracts. Overall, Slither re-
ports the most vulnerabilities, in total, 3,422 (623 + 67 + 2,678 + 54) candidates
covering four types. In contrast, Smartcheck reports 439 (150 + 289) candi-
dates, and Oyente reports only 143 candidates. After they are processed by
our methods, we abstract 4 vulnerable signatures and 6 benign signatures, as
shown in Table 4.4. Based on these signatures, we further integrate them into

62

4 detection rules, as shown in Table 4.5. In this section, we elaborate on the
signatures with examples to evidence their representativeness.

Signature of Reentrancy. We extract 4 signatures from TPs and FPs of re-
ported reentrancy vulnerabilities, including 1 vulnerable signature (SIG1) and
3 benign signatures (SIG2, SIG3, SIG4).

SIG1 is abstracted from general patterns of reentrancy vulnerabilities. This
signature consists of two parts: (1) the read or write operation of variable X
(i.e., DataDep(_,X)) and (2) the call operation with the parameter variable X
(i.e., Call(_,X)).

SIG2 adds various forms of checks (i.e., in require or assert) for msg.sender
compared with SIG1. For example, SIG2 checks whether the identity of msg.sender
satisfies certain conditions (e.g., equal to the owner, with a good reputation,
or having the dealing history) before calling the external payment functions.
With the identity check, the function is only accessible to related users, block-
ing the malicious attack from attackers. An example of this signature can be
found at Code 1.

SIG3 describes a falsely reported case of transferring the balance to a fixed
address. In Code 5, the function closePosition sends the balance to a token
bancorToken, which is assigned with a fixed address at line 2. According to the
detection rule of Slither (See Equation 2.1), this code is a vulnerability because
— (1) it reads the public variable agets[_idx]; (2) then calls external func-
tion bancorToken.transfer(); (3) last, writes to the public variable agets[_-

idx]. However, in practice, this contract can never be easily exploited to steal
ethers due to the hard-coded address constant (i.e., 0x1F...FF1C). Note that the
constant address can be a malicious address. Under such circumstances, this
address cannot protect the contract. However, this case is very rare. There-
fore, we choose to trust the creator of the contract as well as the designated
addresses are benign.

SIG4 is to prevent the recursive entrance of the function — eliminating
the issue from the root. For instance, in Code 6, the internal instance vari-
able reEntered will be checked at line 5 before processing the business logic
between lines 8 and 10. To prevent the reentering due to calling buyAndSet

function at line 9, reEntered will be switched to true; after the transaction is
done, it will be reverted to false to allow other transactions.

63

Code 5 A real case of using SIG3 (a hard-coded address at line 3), an FP of

reentrancy for Slither.

1 contract BancorLender {
2 ERC constant public bancorToken =
3 ERC(0x1f573d6fb3f13d689ff844b4ce37794d79a7ff1c);
4 function closePosition(uint _idx) public {
5 ...
6 bancorToken.transfer(agets[_idx].lender, amount);
7 return;
8 } }

Code 6 A real case of using SIG4 (an execution lock of reEntered), an FP

DataDepof reentrancy for Slither.

1 contract ZethrBankroll is ERC223Receiving {
2 ZTHInterface public ZTHTKN;
3 bool internal reEntered;
4 function receiveDividends() public payable {
5 if (!reEntered) {
6 ...
7 if (ActualBalance > 0.01 ether) {
8 reEntered = true;
9 ZTHTKN.buyAndSet.value(ActualBalance)(address(0x0),

33, "");↪→

10 }
11 } } }

Code 7 A real FP of Unexpected Revert reported by Smartcheck, where only

one account is involved (SIG6).
1 function withdraw() private {
2 for(uint i = 0; i < player_[uid].planCount; i++) {
3 ...
4 address sender = msg.sender;
5 sender.transfer(amount);
6 } }

64

Signature of Unexpected Revert. We extract 2 signatures from reported Un-
expected Revert vulnerabilities, including 1 vulnerable signature SIG5 and 1
benign signature SIG6.

SIG5 represents general patterns of Unexpected Revert vulnerabilities.
This signature consists of three parts: (1) the for loop program structure (i.e.,
ForLoop); (2) the call operation of the variable X (i.e., Call(_,X)); (3) the result
of call operation is further checked by assertions.

According to the recent technical article [110], the rules of Call/Transaction
in Loop are neither sound nor complete to cover most of the unexpected revert
cases. At least, modifier require is often ignored, which makes Slither and
Smartcheck incapable to check possible revert operations on multiple account
addresses. Here, multiple accounts must be involved to exploit this attack —
the failure on one account blocks other accounts via reverting the operations
for the whole loop. Hence, in the example of Code 7, the operations in the
loop are all on the same account (i.e., sender at line 5), and potential revert
will not affect other accounts. Therefore, the transfer operation of which the
target is a single address is considered as SIG6.

Signatures of Tx.Origin Abusing. We extract 2 signatures from the truly
vulnerable contracts and falsely reported contracts, including 1 vulnerable
signature (SIG7) and 3 benign signatures (SIG8).

For SIG7, this signature is extracted from general patterns of tx.origin vul-
nerabilities. This vulnerability first reads the value of tx.origin, followed by
an assignment to variable X (i.e., DataDep(tx.origin,X)). After this, the func-
tion has an assertion to this variable (i.e., ControlDep(X,_)). While we extract
signatures from the TPs of vulnerabilities, we find that our SIG7 is slightly
looser than the detection rule in Slither. Slither skips the function if there ex-
ists a read operation to a particular variable msg.sender, ignoring that some
of these variables are irrelevant to tx.origin. In order not to overlook poten-
tial vulnerabilities, our SIG7 only requires a read of tx.origin, followed by an
assertion on this variable.

For SIG8, we observe that Smartcheck reports much more cases (210) than
Slither (34) but has a lower precision performance than Slither. After our
investigation, we find that the incorrect reports of Smartcheck are due to the
unsound rules (as shown in Equation 4.1). That is, Smartcheck simply reports

65

vulnerability once tx.origin appears in assertion statements. However, under
some circumstances (e.g., comparing msg.sender with tx.origin), the use of
tx.origin should not be reported. We summarize the SIG8 based on the FPs of
Smartcheck.

DataDep(tx.Origin, X) ≻ ControlDep(X, _)⇒ Tx.Origin abusing (4.1)

Code 8 A real FP of self-destruct abusing by Slither, as selfdestruct() is used

under two checks at line 2,3 (SIG10).
1 function destroyDeed() public {
2 require(msg.sender == owner);
3 if (owner.send(address(this).balance)) {
4 selfdestruct(burn);}
5 }

Signature of Self-destruct Abusing. We extract 2 signatures from the self-
destruct vulnerabilities, including 1 vulnerable signature SIG9 and 1 benign
signature SIG10.

SIG9 is extracted from general patterns of self-destruct vulnerabilities.
This signature consists of two parts: (1) the read or write operation of variable
X (i.e., DataDep(_,X)) and (2) the call operation of the self-destruct with the
parameter X (i.e., SelfDestruct(X)).

For SIG10, we extract this signature from the FPs of tools. In the exist-
ing scanners, only Slither detects the misuse of self-destruct, which is called
suicidal detection. In total, Slither reports 54 cases of suicidal via its built-in
rule — as long as a function SelfDestruct is used, no matter what the context
is, Slither will report it. Obviously, the rule of Slither is too simple and too
general. It mainly works for directly calling SelfDestruct without permission
control or conditions of business logic — under such circumstances (3 out of
54), the Slither rule can help to detect the abuse. In practice, in most cases
(51 out of 54), SelfDestruct is called with the admin or owner permission control
or under some strict conditions in business logic. For example, SelfDestruct is
indeed required in the business logic at line 2 of Code 8. As the owner wants
to stop the service of the contract via calling SelfDestruct, after the transac-
tions are all done, the contract becomes inactive. Note that parameter burn is

66

Figure 4.3: The detection workflow of Vulpedia.

just padded to call SelfDestruct in the correct way. Hence, we summarize the
SIG10, adding a strict condition control or a self-defined modifier for identity
check when using SelfDestruct.

In brief, for a vulnerability type, we use vulnerable signatures to match
potential vulnerabilities, which yields a better recall. Then, we leverage corre-
sponding benign signatures to filter out false reports.

4.3.4 Vulnerability Detection

The implementation of the vulnerability detection of Vulpedia is based on the
previously abstracted signatures and integrated detection rules but is slightly
different from them. The workflow of detection is shown in Figure 4.3. Specif-
ically, in this workflow, Vulpedia reports vulnerability only when the vulnera-
ble signatures are matched meanwhile, the benign signatures are not matched.
That is, the vulnerable and benign signatures are separate things. However, in
the previous subsection, the signatures are combined to form detection rules.
The reason is that our benign signatures are designed to filter out false pos-
itive reports. All detection rules shown in Table 4.5 follow the pattern that
the vulnerable signatures should be matched, but the benign ones should not.
Therefore, though the implementation of the detection process seems differ-
ent, the logic of the workflow is the same as in previous designs.

67

4.4 Evaluation

Table 4.6: The detection performance for our tool and other existing ones on

the 17,770 contracts, where #N refers to the number of detections, P% and R%

refer to the precision rate and the recall rate among the number of detections,

respectively. Note that P%= (#TP of the tool)/#N, and R%= (#TP of the tool)/

(#TP in the union of all tools).

Reentrancy Tx.origin Unexpected Revert Self Destruct

Slither

#N 162 23 356 18

P% 9.8% 43.4% 5.8% 16.6%

R% 32.6% 33.3% 67.7% 42.8%

Oyente

#N 28 N.A. N.A. N.A.

P% 7.1% N.A. N.A. N.A.

R% 4.1% N.A. N.A. N.A.

Smartcheck

#N N.A. 44 51 N.A.

P% N.A. 33.3% 47.1% N.A.

R% N.A. 56.6% 77.4% N.A.

Securify

#N 797 N.A. N.A. N.A.

P% 1.1% N.A. N.A. N.A.

R% 18.3% N.A. N.A. N.A.

Vulpedia

#N 119 98 43 20

P% 28.5% 88.7% 48.8% 35.0%

R% 69.3% 96.6% 67.7% 100%

Experimental Environment. Throughout the evaluation, all the steps are con-
ducted on a machine running on Ubuntu 18.04, with eight core 2.10GHz Intel
Xeon E5-2620V4 processors, 32 GB RAM, and 4 TB HDD. We adopt default
configurations to run the scanners used in the evaluation.

Tool Implementation. Vulpedia is implemented based on the Slither ana-
lyzer. We adopt the AST analysis from Slither, and we build PDG analysis

68

based on the CFG (control flow graph) and call graph of Slither. The vul-
nerability signatures are implemented as detectors in nearly 1,000 lines of
Python code. The demo of our tool can be found at https://github.com/
ToolmanInside/vulpedia_demo.

Dataset for Tool Evaluation. To take a different dataset from the contracts
we used in the empirical study, we get another address list of contracts from
Google BigQuery Open Dataset. After removing contracts that were already
used in our empirical study, we get the other 17,770 real-world contracts de-
ployed on Ethereum, on which we fairly compare our resulted tool Vulpedia
with the version of the scanners: Slither v0.6.4., Oyente v0.2.7, Smartcheck v2.0
and Securify v1.0 that is open-sourced at Dec 2018. The evaluation dataset
is opened along with the empirical study dataset at https://drive.google.
com/file/d/1kizsz0_8B8nP4UNVr0gYjaj25VVZMO8C.

The evaluations are conducted based on a relaxed assumption that the
owners of contracts are not malicious. That is, the owners’ operations are all
deemed as defense behaviors against vulnerabilities. The evaluations aim to
answer these RQs:

1. How is the precision of Vulpedia compared with the existing scanners
in vulnerability detection?

2. How is the recall of Vulpedia? Can our signature-based method report
more vulnerabilities?

3. How is the efficiency of Vulpedia in tool comparison on the datasets?

4.4.1 RQ1: Evaluating the Precision of Tools

As mentioned in subsection 4.3.3, we have learned ten signatures in total for
the four types of vulnerabilities. To evaluate the effectiveness of the resulting
vulnerable signatures and detection rules, we apply them to the 17,770 newly
collected contracts and compare them with the other state-of-the-art detection
tools. Details on the performance of each tool are shown in Table 4.6. Note
that we manually verify all TPs.

In Table 4.6, we list 280 detection results of Vulpedia, with an average
precision of 50.2%, regardless of vulnerability types. In comparison, Slither

69

https://github.com/ToolmanInside/vulpedia_demo
https://github.com/ToolmanInside/vulpedia_demo
https://drive.google.com/file/d/1kizsz0_8B8nP4UNVr0gYjaj25VVZMO8C
https://drive.google.com/file/d/1kizsz0_8B8nP4UNVr0gYjaj25VVZMO8C

has an average accuracy of 18.9%; The average precision of Oyente is 7.1%;
The average precision of Smartcheck is 40.2%; and the precision of Securify is
surprisingly only 1.1%. In the rest of this section, we analyze the false positives
of these tools from the perspective of supporting vulnerability signatures.

FPs of Reentrancy. Among the four supported tools except for Smartcheck,
Vulpedia yields the lowest FP rate (71.5%) owing to adopting benign signa-
tures for reentrancy. FP rates of other tools are even higher. For example,
the FP rate of Securify is 98.9%, as its detection pattern is too general but has
not been considered a possible defense against vulnerabilities in code. Slither
adopts Rule 2.1 to detect, but it supports no benign signatures — its recall is
acceptable, but the FP rate is high. Oyente adopts Rule 2.2 and has no benign
signatures — its recall is low due to the strict rule, and its FP rate is also high.

FPs of Unexpected Revert. As summarized in subsection 4.3.3, Slither reports
Unexpected Revert vulnerability when a call-in-loop is detected, ignoring the
potential false alarms (i.e., low-level call-in a loop). This coarse-detection rule
leads to 335 FPs. Smartcheck handles SIG5 but not SIG6 and leads to 27 FPs. In
comparison, Vulpedia combines SIG5 and SIG6 for integrating the detection
rule, yielding the lowest FP rate of 51.2%.

FPs of Tx.Origin Abusing. Slither has a strict rule for detecting this type,
only checking the existence of tx.Origin == msg.sender. This tool also skips
the function if a read operation exists to a particular variable msg.sender,
ignoring that some of these variables are irrelevant to tx.origin. For the case
that tx.origin is compared with an unrelated address variable, Slither reports
it as a vulnerability, causing FPs. Comparatively, Smartcheck and Vulpedia
manage to include all the identity check cases, which leads to FPs because
— accurate symbolic analysis is not adopted in Smartcheck or Vulpedia to
suggest whether tx.Origin can be used to replace msg.sender rightly. Hence,
the FP rate due to ignoring SIG8 is higher than that of Vulpedia.

FPs of Self-destruct Vulnerability. Vulpedia has 13 FPs. After inspecting, we
find 10 FPs are due to the unsatisfactory handling of SIG10. That is, the iden-
tity check hides in self-defined modifiers. Function modifiers are overlooked
by Vulpedia, causing FPs. Comparatively, Slither only reports three true posi-
tives. The reason is that Slither simply says vulnerability when a SelfDestruct
call is detected. Due to the inconsideration of the potential access controls,
Slither performs with less precision than Vulpedia.

70

Figure 4.4: Comparing the vulnerabilities only reported by Vulpedia with vul-

nerabilities reported by other tools. “Our Unique” means those only found by

Vulpedia.

Answer to RQ1: Vulpedia performs best in evaluations of precision
among tools. In detecting tx.origin vulnerability, Vulpedia outperforms
the second-best tool by 45.3% (88.7% - 44.3%). The high precision perfor-
mance is because Vulpedia adopts effective benign signatures to remove
false reports.

4.4.2 RQ2: Evaluating the Recall of Tools

In Table 4.6, in most cases, Vulpedia yields the best recall except on unex-
pected revert, where R% for Smartcheck is 77.4% and R% for Vulpedia is
67.7%. Based on the vulnerable signature abstracted in the empirical study,
we expect Vulpedia can find more similar vulnerable candidates. A compar-
ison between vulnerabilities only found by Vulpedia (denoted by green bars)
and vulnerabilities found by other tools (represented by red bars) is shown in
Figure 4.4.

Recall of Reentrancy. In this vulnerability, Vulpedia performs best by report-
ing 69.3% vulnerabilities. Among all TPs, Vulpedia finds 56% unique TPs that
are missed by other evaluated tools. We find that the other three tools com-
monly fail to consider the user-defined function transfer(), not the built-in
payment function transfer(). For the example in Code 9, Slither and Se-
curify miss it as they mainly check the external call for low-level functions
(e.g., send(), value()) and built-in transfer(), ignoring user defined calls.
Oyente does not report this example, as it fails in the balance check according
to Rule 2.2. Comparatively, Vulpedia detects this vulnerability, as we have a

71

vulnerable signature with a high code similarity with this example. Notably,
though Vulpedia has the best recall of 69.3%, it misses 30.7% TPs. This is be-
cause reentrancy has many forms, and our vulnerable signature is insufficient
to cover those TPs.

Recall of Unexpected Revert. In this vulnerability, the performance of Vul-
pedia is slightly worse than Smartcheck (77.4%). Specifically, Vulpedia only
reports 9% unique TPs, while other tools find 91% TPs. The TPs missed by
Vulpedia (reported by Smartcheck) are due to the incompleteness of our vul-
nerable signature SIG6. The signature requires a ControlDep after Call. How-
ever, the ControlDep is unnecessary when the Call is a high-level call (e.g., user-
defined function call) because assertion operations are already integrated with
high-level calls. Therefore, the signature causes FNs.

Recall of Tx.Origin Abusing. For this type, 96.6% TPs are found by Vulpedia
— almost all TPs are found by Vulpedia. Additionally, Vulpedia reports 40%
unique TPs, which other tools miss. The reason is that we match the identity
check of Tx.Origin in self-defined modifiers, which is commonly overlooked
by other tools.

Recall of Self-destruct Abusing. For this type, all vulnerabilities (100%) are
found by Vulpedia. Comparatively, Slither only reports 42.8% vulnerabilities.
57% of TPs are only found by Vulpedia. The rationale of TPs missed by Slither
is that Slither skips the function if the function is only accessible to internal
calls (i.e., set visibility to internal). These functions are, however, prone to
being exploited by internal calls. Therefore, they should not be overlooked.
Vulpedia leverages SIG9 to match vulnerability candidates, so we have better
recall performance.

Answer to RQ2: Vulpedia performs best on detection recall. Except for
Unexpected Revert, Vulpedia outperforms other tools on three vulnera-
bilities. This leading performance is because our abstracted vulnerable
signatures can represent the essence of most vulnerabilities.

4.4.3 RQ3: Evaluating the Efficiency

On Dataset for Empirical Study. In Table 4.7, Slither takes the least time
(only 156 min) in detection. Smartcheck and Vulpedia have comparable detec-

72

Code 9 A real case of reentrancy. This is a TP for Vulpedia but an FN for

Slither, Oyente, and Securify.

1 contract Alice {
2 ...
3 function aliceClaimsPayment(bytes32 _dId, uint _amount,

address _addr) external {↪→

4 require(deals[_dId].state==DS.Initialized);
5 ...
6 deals[_dId].state = DS.PaymentSentToAlice;
7 if (_addr == 0x0) {msg.sender.transfer(_amount);}
8 else {
9 ERC20 token = ERC20(_addr);

10 assert(token.transfer(msg.sender, _amount)); }
11 }
12 }

Table 4.7: The time (min.) of vulnerability detection for each scanner on 76,354

and 17,770 contracts.

Dataset Slither Oyente Smartcheck Securify Vulpedia

76,354 156 6,434 641 N.A. 883

17,770 52 1,352 141 8,859 295

73

tion times (500∼1000 min). They are essentially the same type of technique
— pattern-based static analysis. In practice, they may differ in performance
due to implementation differences, but still, they are significantly faster than
Oyente, which applies symbolic execution. Compared with other dynamic
analysis or verification tools (i.e., Mythrill and Securify that cannot finish
in three days for the 76,354 contracts), Oyente is quite efficient. Notably, the
signature abstraction time of Vulpedia is not included in the detection time,
as it could be done offline separately. Since signature abstraction is analogical
to rules formulation, it is not counted in the detection time.

On Dataset for Tool Evaluation. On the smaller dataset, we observe a similar
pattern of time execution — Slither is the most efficient, Oyente is the least
efficient (except Securify), and Smartcheck and Vulpedia have comparable ef-
ficiency. Notably, Securify can finish the detection on 17,770 contracts, but
it takes significantly more time than other tools. The performance issue of
Securify arises due to the conversion of EVM IRs into datalog representation
and then the application of the verification technique. Oyente is also less effi-
cient, relying on symbolic execution for analysis. Vulpedia should be compa-
rable to Smartcheck and Slither, as all three use rule-based matching analysis.
The extra overheads of Vulpedia, compared with Slither and Smartcheck, are
signature-based code matching.

Answer to RQ3: Vulpedia outperforms Securify and Oyente regarding
the detection efficiency on both empirical evaluation and tool compari-
son. In general, Vulpedia is efficient as a signature-based vulnerability
detection tool.

4.4.4 Threats to Validity

In our experiments, we adopt recall rate as a metric, which is a potential threat.
Generally, the recall rate indicates the number of TPs divided by the number of
all vulnerabilities. However, finding all vulnerabilities (i.e., the ground truth)
requires an overwhelming effort. In our study, we evaluate recall performance
based on the union of vulnerabilities reported by all tools. Additionally, in
the abstraction of signatures, we manually confirm signatures, which may
introduce bias. To alleviate this, we repeated our experiments three times.
Also, we note that randomness is an inevitable factor in evaluating efficiency.

74

We repeat the experiments five times and record the average values. Besides,
the abstracted signatures are prone to introducing incompleteness. To alleviate
this, we implement our methods on top of Slither, facilitating our signature
abstraction from PDGs.

4.5 Discussions

4.5.1 The Relaxed Security Assumption

The experiments and comparisons are all conducted based on the relaxed
security assumption. That is, we assume the operations of the contract owner
are not malicious behaviors. We follow this assumption because the security
design is more strict than ordinary contracts when the contract is designed
for industry needs. In fact, existing successful contracts (e.g., e-voting, NFT)
have been audited by experts to be protected from rogue owners. To avoid
our tool being blindly used by users and developers, this assumption should
be pointed out.

4.5.2 The Weakness of Vulpedia

In this section, we discuss the improvement of the weakness of Vulpedia found
in our experiment practice. In our view, involving manual efforts brings bi-
ases, and the biases may affect the effectiveness of the tool. However, Vulpedia
relies on manual efforts, mainly in the two steps: 1) manually confirm the re-
ports of existing tools in our empirical study. We add man-powers in this step
because the existing static tools have severe limitations and produce a large
number of false reports. Due to Ren et al. [111], the Slither tool has a false pos-
itive rate of over 70%. If the false reports are not removed from all reports, the
dataset cannot be correctly labeled, and our signature abstraction is infeasi-
ble. 2) We manually integrate the vulnerable signatures and benign ones into
vulnerability detection rules. In this step, we use manual efforts to filter out
ineffective signatures. This is due to the lack of a smart contract vulnerability
benchmark. If we have a benchmark, we can replace the man-powers in this
step and filter out ineffective signatures by running testing on the benchmark.

75

4.6 Chapter Conclusion

We propose Vulpedia, a static analyzer based on abstracted signatures, in this
study. We address one essential challenge: the manually predefined detection
rules can be obsolete. To this end, we first conduct an empirical study for
signature abstraction. We leverage state-of-the-art scanners to detect vulnera-
bilities in our training dataset. Based on their results, we propose a method to
cluster similar contracts and abstract vulnerable and benign signatures. After
we collect all signatures, we conduct comparative evaluations with state-of-
the-art tools. The results show that Vulpedia performs the best precision on
four types of vulnerabilities and leads recall on three types of vulnerabilities
with significant efficiency performance.

76

CHAPTER

FIVE

STUDY ON ADAPTING DATA-DRIVEN METHODS IN

SMART CONTRACT TESTING

5.1 Introduction

Ethereum has been at the forefront of most rankings of blockchain platforms
in recent years [112]. It enables the execution of programs, called smart con-
tracts, written in Turing-complete languages such as Solidity. Smart contracts
increasingly receive more attention, e.g., with over 1 million daily transactions
since 2018 [113].

At the same time, smart contracts-related security attacks are also rising.
According to [114–116], vulnerabilities in smart contracts have already led to
devastating financial losses over the past few years. In 2016, the notorious
DAO attack resulted in the loss of 150 million dollars [117]. Additionally, as
shown by Zou et al. [76], over 75% of developers agree that smart contract
software has a much higher security requirement than traditional software.
Considering the close connection between smart contracts and financial activ-
ities, the security of smart contract security predominantly affects the stability
of society.

77

Many methods and tools have since been developed to analyze smart con-
tracts. Existing tools can roughly be categorized into two groups: static an-
alyzers and dynamic analyzers. Static analyzers (e.g., [25, 26, 28, 54, 57, 118])
often leverage static program analysis techniques (e.g., symbolic execution
and abstract interpretation) to identify suspicious program traces. Due to the
well-known limitations of static analysis, there are often many false alarms.
On the other side, dynamic analyzers (including fuzzing engines such as [31,
32, 66, 119, 120]) avoid false alarms by dynamically executing the traces. Their
limitation is that there can often be many program traces to execute. Thus
smart strategies must be developed to test the program selectively traces to
identify as many vulnerabilities as possible. Besides, static and dynamic tools
also have a common drawback — the detection rules are usually built-in and
predefined by developers, sometimes the rules among different tools could be
contradictory (e.g., reentrancy detection rules in Slither and Oyente [30]).

While existing efforts have identified an impressive list of vulnerabilities,
one crucial category, i.e., cross-contract vulnerabilities, has been largely over-
looked. Cross-contract vulnerabilities are exploitable bugs that manifest only
in the presence of more than two interacting contracts. For instance, the reen-
trancy vulnerability shown in Figure 2.1 occurs only if three contracts interact
in a particular order. In our preliminary experiment, the two well-known
fuzzing engines for smart contracts, i.e., ContractFuzzer [32] (version 1.0) and
sFuzz [31] (version 1.0), both missed this vulnerability because they are lim-
ited to analyzing two contracts at a time.

Given a large number of cross-contract transactions in practice [121], there
is an urgent need for developing systematic approaches to identify cross-
contract vulnerabilities. Detecting cross-contract vulnerabilities, however, is
non-trivial. With multiple contracts involved, the search space is much larger
than that of a single contract, i.e., we must consider all sequences and inter-
leaving of function calls from multiple contracts.

As fuzzing techniques practically run programs and barely produce false
positive reports [32, 68], adopting fuzzing in cross-contract vulnerability de-
tection is preferred. However, we need other techniques to practically guide
fuzzers to detect cross-contract vulnerabilities due to efficiency concerns. Pre-
vious works (e.g., [122], [123]) have evidenced the advantages of applying the
machine learning method for improving the efficiency of vulnerability fuzzing

78

in C/C++ programs. Unlike static rule-based methods, the ML model-based
method requires no prior domain knowledge about known vulnerabilities.
It can effectively reduce the large search space for covering more vulnerable
functions. In smart contracts, existing works (e.g., ILF [75]) focus on explor-
ing the state space in the intra-contract scope. They are unable to address the
cross-contract vulnerabilities. With a large search space of combinations of nu-
merous function calls, it is desired to guide the fuzzing process via machine
learning models.

In this work, we propose xFuzz, a machine learning (ML) guided fuzzing
engine designed for detecting cross-contract vulnerabilities. Ideally, accord-
ing to the Pareto principle in testing [124] (i.e., roughly 80% of errors come
from 20% of the code), we want to rapidly identify the error-prone code before ap-
plying the fuzzing technique. As reported by previous works [111, 125], the
existing analysis tools suffer from high false positive rates (e.g., Slither [25]
and Smartcheck [54] have more than 70% of false positive rates). Therefore,
adopting only one static tool in our approach may produce biased results.
To alleviate this, we use three tools to vote on the reported vulnerabilities in
contracts, and we further train an ML model to learn common patterns from
the voting results. It is known that ML models can automatically learn pat-
terns from inputs with less bias [126]. Based on this, the overall bias from
using a specific tool to identify potentially vulnerable contract functions can
be reduced.

Specifically, xFuzz provides multiple ways of reducing the enormous search
space. First, xFuzz is designed to leverage an ML model to identify the most
vulnerable functions. That is, an ML model is trained to filter most of the
benign functions while preserving most of the vulnerable functions. During
the training phase, the ML models are trained based on a training dataset
containing program codes labeled using three famous static analysis tools
(i.e., the labels are their majority voting result). Furthermore, the program
code is vectorized into vectors based on word2vec [127]. In addition, manu-
ally designed features, such as can_send_eth, has_call, and callee_external,
are supplied to improve training effectiveness as well. In the guided fuzzing
phase, the model is used to predict whether a function is potentially vulnera-
ble. In our evaluation of ML models, the models allow us to filter 80.1% non-
vulnerable contracts. Second, to further reduce the effort required to expose
cross-contract vulnerabilities, the filtered contracts and functions are further

79

prioritized based on their suspiciousness scores, which are defined based on
an efficient measurement of the likelihood of covering the program paths.

To validate the usefulness of xFuzz, we performed comprehensive exper-
iments, comparing with a static cross-contract detector Clairvoyance [30] and
two state-of-the-art dynamic analyzers, i.e., ContractFuzz [32] and sFuzz, on
widely-used open-dataset ([128], [129]) and additional 7,391 contracts. The
results confirm the effectiveness of xFuzz in detecting cross-contract vulner-
abilities, i.e., 18 cross-contract vulnerabilities have been identified. Fifteen of
them are missed by all the tested state-of-the-art tools. We also show that our
search space reduction and prioritization techniques achieve high precision
and recall. Furthermore, our techniques can be applied to improve the effi-
ciency of detecting intra-contract vulnerabilities, e.g., xFuzz detects twice as
many vulnerabilities as that of sFuzz and uses less than 20% of time. xFuzz is
publicly available at https://github.com/ToolmanInside/xfuzz_tool.

The contributions of this work are summarized as follows.

• To the best of our knowledge, we make the first attempts to formulate
and detect three common cross-contract vulnerabilities, i.e., reentrancy,
delegatecall, and tx-origin.

• We propose a novel ML-based approach to reduce the search space for
exploitable paths significantly, achieving well-trained ML models with a
recall of 95%

• We performed a large-scale evaluation and comparative studies with
state-of-the-art tools. Leveraging the ML models, xFuzz outperforms
the state-of-the-art tools by at least 42.8% in terms of recall, meanwhile
keeping a satisfactory precision of 96.1%.

• xFuzz also finds 18 cross-contract vulnerabilities. All of them are verified
by security experts from our industry partner. We have published the
exploiting code to these vulnerabilities on our anonymous website [130]
for public access.

80

https://github.com/ToolmanInside/xfuzz_tool

Figure 5.1: The machine learning training phase of xFuzz framework.

Figure 5.2: The guided fuzzing phase of xFuzz framework.

81

5.2 Overview

Detecting cross-contract vulnerability often requires examining a large num-
ber of sequence transactions and thus can be quite computationally expensive,
some even infeasible. In this section, we give an overall high-level description
of our method, e.g., focusing on fuzzing suspicious transactions based on
the guideline of a machine learning (ML) model. Technically, there are three
challenges of leveraging ML to guide the effective fuzzing cross-contracts for
vulnerability detection:

C1 How to train the machine learning model and achieve satisfactory preci-
sion and recall.

C2 How to combine the trained model with fuzzer to reduce search space
towards efficient fuzzing.

C3 How to empower the guided fuzzer the support of effective cross-contract
vulnerability detection.

In the rest of this section, we provide an overview of xFuzz, which ad-
dresses the above challenges, as shown in Figure 5.1 and Figure 5.2. Generally,
the framework can be divided into two phases: machine learning model training
phase and guided fuzzing phase.

5.2.1 Machine Learning Model Training Phase

In previous works [131, 132], fuzzers are guided by static information (e.g.,
control flow graphs, call graphs, and data dependency) to traverse particular
branches and then find flaws. These methods are limited to prior knowledge
of vulnerabilities and are not well generalized against vulnerable variants. In
this work, we propose to leverage ML predictions to guide fuzzers. The benefit
of using ML instead of a particular static tool is that the ML model can reduce
bias introduced by manually defined detection rules.

We collect training data, engineer features, and evaluate models in this
phase. First, we employ the state-of-the-art Slither, Securify, and Solhint to
detect vulnerabilities in the dataset. Next, we collect their reports to label
contracts. The contract that gains at least two votes is labeled as vulnerabil-
ity. After that, we engineer features. The input contracts are compiled into

82

bytecode and then vectorized into vectors by Word2Vec [127]. To address C1,
they are enriched by combining with static features (e.g., can_send_eth, has_-
call and callee_external, etc.). These static features are extracted from ASTs
and CFGs. Eventually, the features are used as inputs to train the ML mod-
els. In particular, the precision and recall of models are evaluated to choose
three candidate models (e.g., XGBoost [133], EasyEnsembleClassifier [81] and
Decision Tree), among which we select the best one.

5.2.2 Guided Testing Phase

In the guided testing phase, contracts are input to the pre-trained models
to obtain predictions. After that, the vulnerable contracts are analyzed and
pinpointed. To address challenge C2, the functions that are predicted as sus-
picious ones. Then we use call-graph analysis and control-flow-graph analysis
to construct a cross-contract call path. After we collect all available paths, we
use the path prioritization algorithm to prioritize them. The prioritization
becomes the guidance of the fuzzer. This guidance of model predictions sig-
nificantly reduces search space because the benign functions wait until the
vulnerable ones finish. The fuzzer can focus on vulnerable functions and re-
port more vulnerabilities.

To address C3, we extract static information (e.g., function parameters,
conditional paths) of contracts to enrich model predictions. The predictions
and the static information are combined to compute path priority scores.
Based on this, the most exploitable paths are prioritized, where vulnerabil-
ities are more likely to be found. Here, the search space of exploitable paths is
further reduced, and the cross-contract fuzzing is therefore feasible by invok-
ing vulnerability through available paths.

5.3 Machine Learning Guidance Preparation

In this section, we elaborate on the training of our ML model for fuzzing
guidance. We discuss the data collection in Section 5.3.1 and introduce fea-
ture engineering in Section 5.3.2, followed by candidate model evaluation in
Section 5.3.3.

83

5.3.1 Data Collection

SmartBugs [129] and SWCRegistry [134] are two representatives of exist-
ing smart contract vulnerability benchmarks. However, their labeled data is
scarce, and the available amount is insufficient to train a good model. There-
fore, we download and collect contracts from Etherscan (https://etherscan.io/),
a prominent Ethereum service platform. To be representative, we collect a
large set of 100,139 contracts for further processing.

Table 5.1: Vulnerability detection capability of voting static tools.

Slither Solhint Securify

Reentrancy ● ● ●

Tx-origin ● ●

Delegatecall ●

The collected dataset is then labeled based on the voting results of the three
most well-rated static analyzers (i.e., Solhint [118] v2.3.1, Slither [25] v0.6.9 and
Securify [28] v1.0). The three tools are chosen because they are 1) state-of-
the-art static analyzers and 2) well-maintained and frequently updated. The
detection capability varies among these tools (as shown in Table 5.1). We then
vote to label the dataset to eliminate each tool’s bias. Note that the two vulner-
abilities (i.e., delegatecall and tx-origin) are hardly supported by existing tools.
Therefore, we only vote for vulnerable functions on vulnerabilities supported
by at least two tools. For reentrancy, the voting results are counted so that the
function that gains at least two votes is deemed a vulnerability; for tx-origin,
the function is deemed a vulnerability when it gains at least one vote. As for
delegatecall vulnerability, we label all reported functions as vulnerable ones.

As a result, we collect 788 reentrancy, 40 delegatecall, and 334 tx-origin
vulnerabilities, respectively. The above vulnerabilities are manually confirmed
by two authors of this paper, who have more than three years of development
experience for smart contracts to remove false alarms.

84

5.3.2 Feature Engineering

Then, both vulnerable and benign functions are preprocessed by Slither to
extract their runtime bytecode. After that, Word2Vec [127] is leveraged to
transform the bytecode into a 20-dimensional vector. However, as reported
in [135], vectors alone are still insufficient for training a high-performance
model. To address this, we enrich the vectors with seven additional static
features extracted from CFGs. In short, the features are 27 dimensions, of
which Word2Vec yields 20, and the other seven are summarized in Table 5.2.

Table 5.2: The seven static features adopted in model training

Feature Name Type Description

has_modifier bool whether has a modifier

has_call bool whether contains a call operation

has_delegate bool whether contains a delegatecall

has_tx_origin bool whether contains a tx-origin operation

has_balance bool whether has a balance check operation

can_send_eth bool whether supports sending ethers

callee_external bool whether contains external callees

Among the 7 static features, has_modifier, has_call, has_balance, callee_-
external and can_send_eth are static features. We collect them by utilizing
static analysis techniques. The feature has_modifier is designed to identify
existing program guards. In smart contract programs, the function modifier
is often used to guard a function from arbitrary access. That is, a function
with a modifier is less like a vulnerable one. Therefore, we make the modifier
a counter-feature to avoid false alarms. Feature has_call and feature has_-

balance are designed to identify external calls and balance check operations.
These two features are closely connected with transfer operations. They are
designed in order to better locate the transfer behavior and narrow the search
space. Feature callee_external provides important information on whether
the function has external callees. This feature is used to capture risky calls.
In smart contracts, cross-contract calls are prone to be exploited by attackers.
Feature can_send_eth extracts static information (e.g., whether the function
has transfer operation) to determine whether the function can send ethers to

85

others. Since vulnerable functions often have risky transfer operations, this
feature can help filter out benign functions and reduce false positive reports.

The remaining three features, i.e., has_delegate and has_tx_origin, corre-
spond to particular key opcodes used in vulnerabilities. Specifically, feature
has_delegate corresponds to the opcode DELEGATECALL in delegatecall vulner-
abilities, feature has_tx_origin corresponds to the opcode ORIGIN in tx-origin
vulnerabilities. As their names suggest, these two features are specifically de-
signed for the two vulnerabilities. Note that the features can be easily updated
to support the detection of new vulnerabilities. If the new vulnerability shares
a similar mechanism with the above three vulnerabilities or is closely related,
the existing features can be directly adopted; otherwise, one or two new spe-
cific features highly correlated with the new type of vulnerability should be
added. The seven static features are combined with word vectors, forming the
input to our ML models for further training.

5.3.3 Model Selection

In this section, we train and evaluate diverse candidate models, based on
which we select the best one to guide fuzzers. To achieve this, one challenge
we have to address first is the dataset imbalance. In particular, there are 1,162
vulnerabilities and 98,977 benign contracts. This is not rare in ML-based vul-
nerability detection tasks [136, 137]. Our dataset endures an imbalance in the
rate of 1:126 for reentrancy, 1:2,502 for delegatecall, and 1:298 for tx-origin.
Such an imbalanced dataset can hardly be used for training.

To address the challenge, we first eliminate the duplicated data. We found
that 73,666-word vectors are the same as others. These samples differ in source
code, but after they are compiled, extracted, and transformed into vectors,
they share the same values because most are syntactically identical clones
[138] at the source code level. After our remedy, data imbalance comes to 1:31
for reentrancy, 1:189 for delegatecall, and 1:141 for tx-origin. Still, the dataset
is highly imbalanced.

As studied in [139], data sampling strategies can alleviate the imbalance.
However, sampling strategies like oversampling [140] can hardly improve the
precision and recall of models because the strategy introduces too much-
polluted data instead of real vulnerabilities.

86

Figure 5.3: The P-R Curve of models. The dashed lines represent performance

on the training set, while the solid lines represent performance on the valida-

tion set.

We then evaluate models to select one that fits the imbalanced data well.
Note that to counteract the impact of different ML models, we try to cover
as many candidate ML methods as possible, among which we select the best.
The models we evaluated include tree-based models XGBT [133], Easy En-
semble Classifier (EEC) [81], Decision Tree (DT), and other representative ML
models like Logistic Regression, Bayes Models, and SVMs. The performance
of the models can be found in Table 5.3. We find that the tree-based models
achieve better precision and recall than others. Other non-tree-based models
are biased toward the major class, showing poor classification rates for minor
classes. Therefore, we select XGBT, EEC, and DT as the candidate models.

The precision-recall curves of the three models on positive cases are shown
in Figure 5.3. In this figure, the dashed lines denote models fitting with the
validation set, and solid lines indicate fitting with the testing set. Intuitively,
model XGBT and EEC achieve better performance with similar P-R curves.
However, EEC performs much better than XGBT in the recall. Model XGBT
holds a precision rate of 66% and a recall rate of 48%. Comparatively, model
EEC achieves a precision rate of 26% and a recall rate of 95%. We remark

87

Table 5.3: The performance of evaluated ML models.

Model Name Precision Recall

EasyEnsembleClassifier 26% 95%

XGBoost 66% 48%

DecisionTree 70% 43%

SupportVectorMachine 60% 14%

KNeighbors 50% 43%

NaiveBayes 50% 59%

LogiticRegression 53% 38%

that our goal is not to train a very accurate model but rather a model that
allows us to filter as many benign contracts as possible without missing real
vulnerabilities. Therefore, we select the EEC model for further guiding the
fuzzing process.

5.3.4 Model Robustness Evaluation

To further evaluate the robustness of our selected model and assess how much
our model can represent existing analyzers, we conduct an evaluation of com-
paring the vulnerability detection on unknown datasets between our model
and other state-of-the-art static analyzers. The evaluation dataset is down-
loaded from a prominent third-party blockchain security team1. We select
smart contracts released in versions 0.4.24 and 0.4.25 (i.e., the majority ver-
sions of existing smart contract applications [107]) and remove the contracts
used in our previous model training and model selection. After all, we get
78,499 contracts in total for evaluation.

Definition 7 (Coverage Rate of ML Model on Another Tool). Given the true

positive reports of ML model Rm, the true positive reports of another tool Rt,

a coverage rate of ML model CR(t) on the tool is calculated as:

CR(t) = (Rm ∩ Rt)/Rt (5.1)
1https://github.com/tintinweb/smart-contract-sanctuary

88

Table 5.4: The coverage rate (CR) score of ML model on other tools.

Slither Securify Solhint

Reentrancy 83.6% 81.1% 86.3%

Tx-origin 91.9% N.A. 75.1%

Delegatecall 90.6% N.A. N.A.

The results are listed in Table 5.4. Here, we use the coverage rate (CR)
to evaluate the representativeness of our model regarding the three vulnera-
bilities. Specifically, the coverage rate measures how much reports of the ML
model are intersected with static analyzer tools. The coverage rate CR is calcu-
lated as listed in Definition 7. The N.A. in the table denotes that the analyzer
does not support the detection of this vulnerability.

Our evaluation results show that our tool’s reports can cover most other
tools’ reports. Specifically, the trained ML model can approximate each static
tool’s capability in vulnerability labeling and model training. For example,
81.1% of true positive reports of Securify on reentrancy are also contained in
our ML model’s reports. Besides, 75.1% of true positive reports of Solhint on
Tx-origin and 90.6% of true positive reports of Slither on Delegatecall are also
covered.

5.4 Guided Cross-contract Fuzzing

5.4.1 Guidance Algorithm

The pre-trained models are applied to guide fuzzers in how the predictions
are utilized to 1) locate suspicious functions and 2) combine with static infor-
mation for path prioritization.

Our guidance is based on both model predictions and the priority scores
computed from static features. The reason is that even with the machine
learning model filtering, the search space is still relatively large, evidenced
by the many paths explored by sFuzz (e.g., the 2,596 suspicious functions
have 873 possibly vulnerable paths). Thus we propose first to prioritize the
path.

89

Algorithm 4: Machine learning guided fuzzing
input : IS, all the input smart contract source code

input : M, suspicious function detection ML model

input : TRs← ∅, the set of potentially vulnerable function execution paths

output: V ← ∅, the set of vulnerable paths

1 Fs ← IS.getFunctionList()

2 // get the functions in a contract

3 foreach function f ∈ Fs do

4 if i f IsSuspiciousFunction(f , M) is True then

5 // employ ML models to predict whether the function is

suspicious

6 S f unc ← getFuncPriorityScore(f)

7 Scaller ← getCallerPriorityScore(f)

8 TRs← TRs ∪ { f , S f unc, Scaller}

9 // get scores for each function

10 PTR← PrioritizationAlgorithm(TRs)

11 // Prioritized paths

12 V ← ∅

13 // the output vulnerability list

14 while not timeout do

15 T ← PTR.pop()

16 // pop up trace with higher priority

17 FuzzingResult← Fuzzing(T)

18 if FuzzingResult is Vulnerable then

19 V ← V ∪ {T}

20 else

21 continue

22 return V

90

Code 10 An example of prioritizing paths.

1 contract Wallet{
2 function withdraw(address addr, uint value){
3 addr.transfer(value);
4 }
5 function changeOwner(address[] addrArray, uint idx) public{
6 require(msg.sender == owner);
7 owner = addrArray[idx];
8 withdraw(owner, this.balance);
9 } }

10 contract Logic{
11 function logTrans(address addr_w, address _exec, uint

_value, bytes infor) public{↪→

12 Wallet(addr_w).withdraw(_exec, _value);
13 } }

Our guided fuzzing process can be found in Algorithm 4. In this algo-
rithm, we first retrieve the function list of an input source at line 1. Next,
from line 3 to line 8, we calculate the path priority based on two scores (i.e.,
function priority scores and caller priority scores) for each path. Both scores
are designed for prioritizing suspicious functions. After the calculation, the
results are saved together with the function itself. We prioritize the question-
able function paths in line 10. The prioritization algorithm can be found in
Algorithm 5. Fuzzers will first test the trace with higher priority. Finally, from
line 14 to line 21, we select a candidate trace from the prioritized list and em-
ploy fuzzers to perform focus fuzzing. The fuzzing process will not end until
it reaches a timeout limitation. The found vulnerability will be returned as
the final result.

The details of our prioritization algorithm are shown in Algorithm 5. The
input to the algorithm is the functions and their corresponding priority scores.
The scores are calculated in Algorithm 4. The output of the algorithm is the
prioritized vulnerable paths. Specifically, the first step of the algorithm is
getting the prioritized function based on the function priority score, as shown
in lines 2 and 3. The functions with lower function priority scores will be
prioritized. Next, we sort all call paths (whether cross-contract or non-cross-
contract call) that correlate to the function, as shown from line 4 to line 6. We
pop up the call path with the highest priority and add it to the prioritized

91

path set. The prioritized path set will guide the fuzzer to test the call path in
a particular order.

To summarize, the goal of our guidance algorithm is to prioritize cross-
contract paths, which are penetrable but usually overlooked by previous prac-
tice [31, 32], and further to improve the fuzzing testing efficiency on cross-
contract vulnerabilities.

Algorithm 5: Priorization Algorithm
input : M, The trained machine learning model

input : TRs, functions and their priority scores

output: PTR, the set of prioritized vulnerable paths

1 while isNotEmpty(TRs) do

2 TRs← sortByFunctionPriority(TRs)

3 function f ← TRs.pop()

4 paths Ps← getAllPaths(f)

5 while isNotEmpty(Ps) do

6 Ps← sortByCallerPriority(Ps)

7 P← Ps.pop()

8 PTR← PTR ∪ P

9 return PTR

5.4.2 Priority Score

Generally, the path priority consists of two parts: function priority and caller
priority. The function priority is for evaluating the complexity of the function,
and the caller priority is designed to measure the cost of traversing a path.

Function Priority. We collect static features of functions to compute func-
tion priority. After that, a priority score can be obtained. The lower score
denotes a higher priority.

We first mark the suspicious functions by model predictions. A suspi-
cious function is likely to contain vulnerabilities, so it is provided with higher
priority. We implement this as a factor fs, which equals 0.5 for suspicious

92

functions; otherwise, 1 for benign functions. For example, in Code 10, the
function withdraw is predicted as suspicious so that the factor fs equals 0.5.

Next, we compute the caller dimensionality SC. The dimensionality is the
number of callers of a function. In cross-contract fuzzing, a function with
multiple callers requires more testing time to traverse all paths. For example,
in Code 10, the function withdraw in contract Wallet has an internal caller
changeOwner and an external caller logTrans, thus the dimensionality of this
function is 2.

The parameter dimensionality SP is set to measure the complexity of pa-
rameters. The functions with complex parameters (i.e., array, bytes, and ad-
dress parameters) are assigned with lower priority because these parameters
often increase the difficulty of penetrating a function. Specifically, one param-
eter has one-dimensionality except for the complex parameters, i.e., they have
two dimensionalities. The parameter dimensionality of a function is the sum
of parameter dimensionalities. For example, in Code 10, the function withdraw

and changeOwner both have an address and an integer parameter; thus, their
dimensionality is 3. The function logTrans has two addresses, a byte, and an
integer parameter, so the dimensionality is 7.

Definition 8 (Function Priority Score). Given the suspicious factor fs, the caller

dimensionality score SC and the parameter dimensionality score SP, a function

priority score S f unc is calculated as:

S f unc = fs × (SC + 1)× (SP + 1) (5.2)

In this formula, we add 1 to the caller and parameter dimensionality to
avoid the overall score being 0. The priority scores in Code 10 are: function
withdraw = 6, function changeOwner = 4, function logTrans = 8. The results show
that function changeOwner has the highest priority because function withdraw

has two callers to traverse; meanwhile, the function logTrans is more difficult
to penetrate than changeOwner.

Caller Priority. We traverse every caller of a function and collect their static
features, based on which we compute the priority score to decide which caller
to test first. Firstly, the number of branch statements (e.g., if, for and while)
and assertions (e.g., require and assert) are counted to measure condition

93

complexity Comp to describe the difficulties to bypass the conditions. The
path with more conditions is in lower priority. For example, in Code 10, the
function withdraw has two callers. One caller changeOwner has an assertion at
line 6, so the complexity is 1. The other caller logTrans contains no conditions;
thus, the complexity is 0.

Next, we count the condition distance. sFuzz selects seeds according to
branch distance only, which is not ideal for identifying the three kinds of
cross-contract vulnerabilities we focus on in this study. Thus, we propose to
consider not only branch distance but also this condition distance CondDis.
This distance is intuitively the number of statements from entry to condi-
tion. If the function has more than one condition, the distance is the num-
ber of statements between the input and the first condition. For example, in
Code 10, the condition distance of changeOwner is 1, and the condition distance
of logTrans is 0.

Definition 9 (Caller Priority Score). Given the condition distance CondDis and

the path condition complexity Comp, a path priority score Scaller is calculated

as:

Scaller = (CondDis + 1)× (Comp + 1) (5.3)

Finally, the caller priority score is computed based on condition complexity
and condition distance, as shown in Definition 9. The complexity and distance
add one, so the overall score is not 0. The caller priority scores in Code 10
are: logTrans → withdraw = 1, changeOwner → withdraw = 4. The function
changeOwner has an identity check at line 6, which increases the difficulty of
penetrating. Thus, the other path from logTrans to withdraw is prior.

5.4.3 Cross-contract Fuzzing

Given the prioritized paths, we utilized cross-contract fuzzing to improve
fuzzing efficiency. We implement this fuzzing technique by the following
steps: 1) The contracts under test should be deployed on EVM. As shown
in Figure 5.4, the fuzzer will first deploy all contracts on a local private chain
to facilitate cross-contract calls among contracts. 2) The path-unrelated func-
tions will be called. Here, the path-unrelated functions denote functions that

94

Figure 5.4: The cross-contract fuzzing process.

do not appear in the input prioritized paths. We run them first to initialize the
state variables of a contract. 3) We store the function selectors that appeared
in all contracts. The function selector is the unique identity recognizer of a
function. It is usually encoded in 4-byte hex code [141]. 4) The fuzzer checks
whether there is a cross-contract call. If not, the following steps, step 5 and
step 6, will be skipped. 5) The fuzzer automatically searches local states to
find the correct function selectors and then directly triggers a cross-contract
call to the target function in step 6. 7) The fuzzer compares the execution
results against the detection rules and output reports.

5.5 Evaluation

xFuzz is implemented in Python and C with 3298 lines of code. All experi-
ments are run on a computer running Ubuntu 18.04 LTS equipped with Intel
Xeon E5-2620v4, 32GB memories, and a 2TB HDD.

For the baseline comparison, xFuzz is compared with the state-of-art fuzzer
sFuzz [31], a previously published testing engine ContractFuzzer [32] and a
static cross-contract analysis tool Clairvoyance [30]. The recently published
tool Echidna [66] relies on manually written testing oracles, which may lead to
different testing results depending on the developer’s expertise. Thus, it is not

95

compared. Other tools (like Harvey [68]) are not publicly available for evalua-
tion and therefore are not included in our evaluations. We systematically run
all four tools on the contract datasets. Notably, to verify the authenticity of
the vulnerability reports, we invite senior technical experts from the security
department of our industry partner to check vulnerable code. Our evaluation
aims at investigating the following research questions (RQs).

RQ1. How effective is xFuzz in detecting cross-contract vulnerabilities?

RQ2. To what extent do the machine learning models and the path prioritiza-
tion contribute to reducing the search space?

RQ3. What is the overhead of xFuzz, compared to the vanilla sFuzz?

RQ4. Can xFuzz discover real-world unknown cross-contract vulnerabilities,
and what are the reasons for false negatives?

5.5.1 Dataset Preparation

Our evaluation dataset includes smart contracts from three sources: 1) datasets
from previously published works (e.g., [128] and [129]); 2) smart contract vul-
nerability websites with a good reputation (e.g., [134]); 3) smart contracts
downloaded from Etherscan. The dataset is carefully checked to remove
duplicate contracts with the dataset used in our machine learning training.
Specifically, the DataSet1 includes contracts from previous works and famous
websites. After removing duplicate contracts and toy-contract (i.e., those not
deployed on real-world chains), we collect 18 labeled reentrancy vulnerabil-
ities. Our Dataset2 includes contracts downloaded from Etherscan to enrich
the evaluation dataset. We remove contracts without external calls (they are
irrelevant to cross-contract vulnerabilities) and contracts that are not devel-
oped by using Solidity 0.4.24 and 0.4.25 (i.e., the two most popular versions
of Solidity [107]). Ultimately, 7,391 contracts are collected in Dataset2. The
source code of the above datasets is publicly available on our website [130] so
that the evaluations are reproducible, benefiting further research.

96

5.5.2 RQ1: Vulnerability Detection Effectiveness

We first conduct evaluations on Dataset1 by comparing three tools Contract-
Fuzzer, sFuzz, and xFuzz. The Clairvoyance is omitted because it is a static
analysis tool. For the sake of page space, we present a part of the results in
Table 5.5 with an overall summary and leave the whole list available at here2.

In this evaluation, ContractFuzzer fails to find a vulnerability among
the contracts. sFuzz missed three vulnerabilities and outputted nine incor-
rect reports. Comparatively, xFuzz missed two vulnerabilities and outputted
six incorrect reports. The reason for the overlooked vulnerabilities and in-
correct reports lies in the difficult branch conditions (e.g., an if statement
with three conditions), which blocks the fuzzer from traversing vulnerable
branches. Note that xFuzz has model guidance to focus on fuzzing suspicious
functions and finding more vulnerabilities than sFuzz.

Table 5.5: Evaluations on Dataset1. The ✔ represents the tool successfully

finding a vulnerability in this function. Otherwise, the tool is marked with ✖.

Address ContractFuzzer xFuzz sFuzz

0x7a8721a9 ✖ ✔ ✖

0x4e73b32e ✖ ✔ ✔

0xb5e1b1ee ✖ ✔ ✔

0xaae1f51c ✖ ✔ ✔

0x7541b76c ✖ ✔ ✖

...

Summary ContractFuzzer xFuzz sFuzz

0/18 9/18 5/18

While we compare our tool with existing works on publicly available Dataset1,
the dataset only provides non-cross-contract labels. It thus cannot be used to
verify our detection ability on cross-contract ones. To complete this, we fur-
ther evaluate the effectiveness of cross-contract and non-cross-contract fuzzing

2https://anonymous.4open.science/r/xFuzzforReview-ICSE/Evaluation%20on%

20Open-dataset.pdf

97

https://anonymous.4open.science/r/xFuzzforReview-ICSE/Evaluation%20on%20Open-dataset.pdf
https://anonymous.4open.science/r/xFuzzforReview-ICSE/Evaluation%20on%20Open-dataset.pdf

on Dataset2. To reduce the effect of randomness, we repeat each set 20 times
and report the averaged results.

Table 5.6: Performance of xFuzz, Clairvoyance (C.V.), ContractFuzzer (C.F.),

sFuzz on cross-contract vulnerabilities.

reentrancy delegatecall tx-origin

P% R% #N P% R% #N P% R% #N

C.F. 0 0 0 0 0 0 0 0 0

sFuzz 0 0 0 0 0 0 0 0 0

C.V. 43.7 43.7 16 0 0 0 0 0 0

xFuzz 100 81.2 13 100 100 3 100 100 2

5.5.2.1 Cross-contract Vulnerability.

The results are summarized in Table 5.6. Note that the “P%” and “R%” rep-
resent precision and recall rates, and “#N” represents the number of vulner-
ability reports. “C.V.” means Clairvoyance and “C.F.” means ContractFuzzer.
Cross-contract vulnerabilities are currently not supported by ContractFuzzer,
sFuzz; thus, they report no vulnerabilities detected.

Precision. Clairvoyance managed to find seven true cross-contract reen-
trancy vulnerabilities. In comparison, xFuzz found nine cross-contract reen-
trancy, three cross-contract delegatecall, and two cross-contract tx-origin vul-
nerabilities. The two tools found 21 cross-contract vulnerabilities in total.
Clairvoyance report 16 vulnerabilities but only 43.7% of them are true pos-
itives. In contrast, xFuzz generates 18 (13+3+2) reports of three types of cross-
contract vulnerabilities, all of which are true positives. The reason for the high
false positive rate of Clairvoyance is mainly due to its static-analysis-based ap-
proach, without runtime validation. We further check the 18 vulnerabilities on
some third-party security expose websites [129, 134, 142], and we find 15 are
not flagged.

Recall. The nine vulnerabilities missed by Clairvoyance are all the results
of misuse of detection rules, i.e., unsound rules filter out the vulnerable con-
tracts. In total, three cross-contract vulnerabilities are missed by xFuzz. A

98

close investigation shows they are missed due to the complex path conditions
blocking the input from penetrating the function. We also carefully check
false negatives missed by xFuzz, and find they are not reported by Conract-
Fuzzer and sFuzz as well. While existing works fail to penetrate the complex
path conditions, we believe future works can address this limitation.

5.5.2.2 Non-Cross-contract Vulnerability.

The experiment results show that xFuzz also improves the detection of non-
cross-contract vulnerabilities (see Table 5.7). For reentrancy, ContractFuzzer
achieves the best 100% precision rate but the worst 1.7% recall rate. sFuzz and
Clairvoyance identified 33.5% and 40.4% vulnerabilities. xFuzz has a preci-
sion rate of 95.5%, which is slightly lower than that of ContractFuzzer, and,
more importantly, the bests recall rate of 84.2%. xFuzz is capable of detecting
vulnerabilities by finding 209 (149+35+25) vulnerabilities.

Precision. Clairvoyance reports 75 false positives for reentrancy because of
1) the abuse of detection rules and 2) unexpected jump to unreachable paths
due to program errors. The 11 false positives of sFuzz are due to the miscon-
ceived ether transfer. xFuzz captures ether transfers to locate dangerous calls.
However, the ethers from attacker to victim are also falsely captured. The
seven false alarms of xFuzz are due to the mistakes of contract programmers
by calling a nonexistent function. These calls are, however, misconceived as
vulnerabilities by xFuzz.

Table 5.7: Performance of xFuzz, Clairvoyance, ContractFuzzer, and sFuzz on

non-cross-contract evaluations.

reentrancy delegatecall tx-origin

P% R% #N P% R% #N P% R% #N

C.F. 100 1.7 3 0 0 0 0 0 0

sFuzz 84.2 33.5 70 100 54.3 19 0 0 0

C.V. 48.3 40.4 145 0 0 0 0 0 0

xFuzz 95.5 84.6 156 100 100 35 100 100 25

99

Figure 5.5: Comparison of reported vulnerabilities between xFuzz and sFuzz

regarding reentrancy.

Recall. Clairvoyance missed 59.6% of the true positives. The root cause is
the adoption of unsound rules during static analysis. sFuzz missed 117 reen-
trancy vulnerabilities and 16 delegatecall vulnerabilities due to (1) timeout
and (2) incapability to find feasible paths to the vulnerability. xFuzz missed
27 vulnerabilities due to complex path conditions.

Answer to RQ1: Our tool xFuzz achieves a precision of 95.5% and a re-
call of 84.6%. Among the four evaluated methods, xFuzz achieves the best
recall. Besides, xFuzz successfully finds 209 real-world non-cross-contract
vulnerabilities as well as 18 real-world cross-contract vulnerabilities.

5.5.3 RQ2: The Effectiveness of Guided Testing

This RQ investigates the usefulness of the ML model and path prioritization
for the guidance of fuzzing. To answer this RQ, we compare sFuzz with a cus-
tomized version of xFuzz, i.e., which differs from sFuzz only by adopting the
ML model (without focusing on cross-contract vulnerabilities). The intuition
is to check whether the ML model enables us to reduce the time spent on be-
nign contracts and thus reveal vulnerabilities more efficiently. We implement
xFuzz so that each contract can only be fuzzed for tl seconds if the ML model

100

Figure 5.6: Comparison of reported vulnerabilities between xFuzz and sFuzz

regarding delegatecall.

considers the contract benign; otherwise, 180 seconds, which is also the time
limit adopted in sFuzz. Note that if tl is 0, the contract is skipped entirely
when it is predicted to be benign by the ML model. The goal is to see whether
we can safely set tl to be a value smaller than 180 (i.e., without missing vulner-
abilities). We thus systematically vary the value of tl and observe the number
of identified vulnerabilities.

The results are summarized in Figure 5.5 and Figure 5.6. Note that the
tx-origin vulnerability is not included since sFuzz does not support it. The
red line represents vulnerabilities only found by xFuzz, the green line rep-
resents vulnerabilities only reported by sFuzz, and the blue line denotes the
reports shared by both tools. We can see that the curves climb/drop sharply
at the beginning and then saturate/flatten after the 30s, indicating that most
vulnerabilities are found in the first 30s.

We observe that when tl is set to 0s (i.e., contracts predicted as benign are
skipped entirely), xFuzz still detects 82.8% (i.e., 111 out of 134, or equivalently
166% of that of sFuzz) of the reentrancy vulnerabilities as well as 65.0% of the
delegatecall vulnerability (13 out of 20). The result further improves if we set tl

to be 30 seconds, i.e., almost all (except 2 out of 174 reentrancy vulnerabilities;
and none of the delegatecall vulnerabilities) are identified. Based on the result,

101

we conclude that the ML model significantly reduces fuzzing time on likely
benign contracts (i.e., from 180 seconds to 30 seconds) without missing almost
any vulnerability.

The Effectiveness of Path Prioritization. To evaluate the relevance of path
prioritization, we further analyze the results of the customized version of
xFuzz, as discussed above. Recall that path prioritization allows us to ex-
plore likely vulnerable paths before the remaining. Thus, if path prioritization
works, we expect the vulnerabilities to be mostly found in paths that xFuzz ex-
plores first. We, therefore, systematically count the number of vulnerabilities
found in the first ten paths that xFuzz explores. The results are summarized
in Table 5.8, where column “Top 10” shows the number of vulnerabilities de-
tected in the first ten paths explored.

Table 5.8: The paths reported by xFuzz and sFuzz. The vulnerable paths found

by the two tools are counted respectively.

Found by Vul Total
Number in the Top

Top10 Other

xFuzz Reentrancy 172 152 20

sFuzz Reentrancy 59 57 2

xFuzz Delegatecall 33 32 1

sFuzz Delegatecall 19 19 0

The results show that xFuzz finds 152 (out of 172) reentrancy vulnera-
bilities in the first ten explored paths. In particular, the number of found
vulnerabilities in the first ten explored paths by xFuzz is almost three times as
many as that by sFuzz. Similarly, xFuzz also finds 32 (out of 33) delegatecall
vulnerabilities in the first ten explored paths. The results thus clearly suggest
that path prioritization allows us to focus on relevant paths effectively, which
has practical consequences on fuzzing large contracts.

Answer to RQ2: The ML model enables us to significantly reduce the
fuzzing time on likely benign contracts without missing almost any vul-
nerabilities. Furthermore, most vulnerabilities are detected efficiently
through our path prioritization. Overall, xFuzz finds twice as many reen-
trancy or delegatecall vulnerabilities as sFuzz.

102

5.5.4 RQ3: Detection Efficiency

Table 5.9: The time cost of each step in fuzzing procedures.

sFuzz C.V. xFuzz

MPT(min)

Reentrancy N.A. N.A. 630.6

Delegatecall N.A. N.A. 630.6

Tx-origin N.A. N.A. 630.6

ST(min)

Reentrancy 21,930.0 N.A. 3,621.0

Delegatecall 22,131.0 N.A. 3,678.0

Tx-origin N.A. N.A. 3,683.0

DT(min)

Reentrancy 54.1 246.2 86.6

Delegatecall 2.8 N.A. 4.2

Tx-origin N.A. N.A. 2.9

Total(min)

Reentrancy 21,984.1 246.2 4,338.2

Delegatecall 22,133.8 N.A. 4,312.8

Tx-origin N.A. N.A. 4,316.5

Next, we evaluate the efficiency of our approach. We record the time taken
for each step during fuzzing, and the results are summarized in Table 5.9. We
replay our experiments five times to eliminate randomness during fuzzing and
report the averaged results. In this table, “MPT” means model prediction time;
“ST” means search time for vulnerable paths during fuzzing; “DT” means de-
tection time for Clairvoyance and fuzzing time for the fuzzers. “N.A.” means
that the tool has no such step in fuzzing or the vulnerability is currently not
supported by it, and thus the time is not recorded.

The efficiency of our method (i.e., by reducing the search space) is evi-
denced as the results show that xFuzz is faster than sFuzz, i.e., saving 80% of
the time. The main reason for the saving is due to the saving on the search
time (i.e., 80% reduction). We also observe that xFuzz is slightly slower than
sFuzz in terms of the effective fuzzing time, i.e., an additional 32.5 (86.6-54.1)
min is used for fuzzing cross-contract vulnerabilities. This is expected since
the number of paths (even after the reduction by the ML model and path pri-

103

oritization) is much larger than in the presence of more than two interacting
contracts. Note that Clairvoyance is faster than all tools because this tool is a
static detector without performing runtime execution of contracts.

Answer to RQ3: Owing to the reduced search space of suspicious func-
tions, the guided fuzzer xFuzz saves over 80% of searching time and re-
ports more vulnerabilities than sFuzz with less than 20% of the time.

5.5.5 RQ4: Real-world Case Studies

Code 11 A real-world reentrancy vulnerability found by xFuzz, in which the

vulnerable path relies on internal calls.

1 function buyOne(address _exchange, uint256 _value, bytes _data)
payable public↪→

2 {
3 ...
4 buyInternal(_exchange, _value, _data);
5 }
6 function buyInternal(address _exc, uint256 _value, bytes _data)

internal↪→

7 {
8 ...
9 require(_exc.call.value(_value)(_data));

10 balances[msg.sender] = balances[msg.sender].sub(_value);
11 }

In this section, we present two typical vulnerabilities reported by xFuzz
to show why xFuzz works qualitatively. In general, the ML model and path
prioritization help xFuzz find vulnerabilities in three ways, i.e., 1) locate vul-
nerable functions, 2) identify paths from internal calls and 3) identify feasible
paths from external calls.

Real-world Case 1: xFuzz is enhanced with path prioritization, which
enables it to focus on vulnerabilities related to internal calls. In Code 113, the
modifier internal limits the access only to internal member functions. The
attacker can, however, steal ethers by path buyOne → buyInternal. Applying

3deployed at 0x0695B9EA62C647E7621C84D12EFC9F2E0CDF5F72

104

xFuzz identifies the vulnerability in 0.05 seconds, and the vulnerable path is
also efficiently exposed.

Real-world Case 2: The path prioritization also enables xFuzz to find
cross-contract vulnerabilities efficiently. For example, a real-world cross-contract
vulnerability4 is shown in Code 12. This example is for auditing transactions
in the real world and involves over 2,000 dollars. In this example, the function
registerAudit has a cross-contract call to a public address CSolidStamp at line
13, which intends to forward the call to function audContract. While this func-
tion is only allowed to be accessed by the registered functions, as limited by
modifier onlyRegister, we can bypass this restriction by a cross-contract call
registerAudit → audContrat. Eventually, an attacker would be able to steal
the ethers in seconds.

Code 12 A cross-contract vulnerability found by xFuzz. This contract is used

in auditing transactions in the real world.

1 contract SolidStamp{
2 function audContract(address _auditor) public onlyRegister
3 {
4 ...
5 _auditor.transfer(reward.sub(commissionKept));
6 }
7 }
8 contract SolidStampRegister{
9 address public CSolidStamp;

10 function registerAudit(bytes32 _codeHash) public
11 {
12 ...
13 SolidStamp(CSolidStamp).audContract(msg.sender);
14 }
15 }

Real-world Case 3: During our investigation of the experiment results,
we gain the insights that xFuzz can be further improved in handling complex
path conditions. Complex path conditions often lead to prolonged fuzzing
time or blocking penetration altogether. We identified three cross-contract
and 24 non-cross-contract vulnerabilities that were missed for such a reason.

4deployed at 0x165CFB9CCF8B185E03205AB4118EA6AFBDBA9203

105

Two such complex condition examples (from two real-word false negatives of
xFuzz) are shown in Code 13. Function calls, values, variables, and arrays are
involved in the conditions. These conditions are difficult to satisfy for xFuzz
and fuzzers in general (e.g., sFuzz failed to penetrate these paths too). This
problem can be potentially addressed by integrating xFuzz with a theorem
prover such that Z3 [53] is tasked to solve these path conditions. That is, a
hybrid fuzzing approach that integrates symbolic execution in a lightweight
manner will likely improve xFuzz further.

Code 13 Complex path conditions involving multiple variables and values.

1 if ((random()%2==1) && (msg.value == 1 ether) && (!locked))
2 \\at 0x11F4306f9812B80E75C1411C1cf296b04917b2f0
3

4 require(msg.value == 0 || (_amount == msg.value &&
etherTokens[fromToken]));↪→

5 \\at 0x1a5f170802824e44181b6727e5447950880187ab

Answer to RQ4: With the help of model predictions and path prioritiza-
tion, xFuzz can rapidly locate vulnerabilities in real-world contracts. The
main reason for false negatives is complex path conditions, which could
be addressed by integrating hybrid fuzzing into xFuzz.

5.6 Chapter Conclusion

In this paper, we propose xFuzz, a novel machine-learning guided fuzzing
framework for smart contracts, focusing on cross-contract vulnerabilities. We
address two critical challenges during its development: the search space of
fuzzing is reduced, and cross-contract fuzzing is completed. The experiments
demonstrate that xFuzz is much faster and more effective than existing fuzzers
and detectors. In the future, we will extend our framework with the static
approach to support more vulnerabilities.

106

CHAPTER

SIX

CONCLUSION

This chapter concludes the thesis. First, it describes the contributions that
emerged from this work. Then, it highlights some possible directions for fu-
ture work.

6.1 Summary and Contributions of the Thesis

This thesis uses data-driven approaches to adapt existing techniques in a new
testing context. The research results can be summarized as follows:

• I surveyed industries to investigate the urgent challenges and pain points
for mobile game testing. Based on this, I developed an automated
method to collect and label the game GUI dataset. We also created
the GUI widget dataset for mobile games. I further integrated state-
of-the-art mobile GUI widget detection methods, together forming the
first benchmark designed specifically for GUI widget detection research
of mobile games.

• I proposed an approach to abstract vulnerability signatures and com-
pose detection rules to report the vulnerability. The learned rules are

107

more expressive than the rules of the state-of-the-art scanners, reporting
vulnerabilities with better completeness and soundness. On the dataset
of smart contracts, our approach yields the best precision on four vul-
nerabilities and leading recall on three ones, compared with the other
state-of-the-art scanners. Experiments show that our approach is effi-
cient in vulnerability detection. The detection speed of our approach
contracts is far faster than the state-of-the-art.

• I first attempted to formulate and detected three common cross-contract
vulnerabilities. I proposed a novel ML-based approach to significantly
reduce the search space for exploitable paths significantly, achieving
well-trained ML models with a recall of 95%

• I performed a large-scale evaluation and conduct comparative studies
with state-of-the-art tools. Leveraging the ML models, our approach
outperformed the state-of-the-art tools by at least 42.8% in terms of re-
call, meanwhile keeping a satisfactory precision of 96.1%.

• Our approach found 18 cross-contract vulnerabilities. All of them are
verified by security experts from our industry partner.

6.2 Possible Directions for Future Work

A first avenue for future work is the design and study of adapting testing
techniques in new domains using data-driven approaches. Chapter 3 showed
that the data-driven approaches can be applied in multiple domains with the
dataset. Chapter 4 also showed the necessary efforts to meet the domain
gap. Chapter 5 showed that the well-trained data-driven approach can vastly
improve testing effectiveness.

A second avenue for further work is strengthening the existing testing
approaches by trying more data-driven approaches. Note that with the ap-
pearance of the well-known ChatGPT, the data-driven approach has shown
the potential to enhance traditional works in many aspects.

108

REFERENCES

[1] Yinxing Xue, Jiaming Ye, Wei Zhang, Jun Sun, Lei Ma, Haijun Wang, and Jian-

jun Zhao. xfuzz: Machine learning guided cross-contract fuzzing. IEEE Trans-

actions on Dependable and Secure Computing, 2022.

[2] Jiaming Ye, Mingliang Ma, Yun Lin, Lei Ma, Yinxing Xue, and Jianjun Zhao.

Vulpedia: Detecting vulnerable ethereum smart contracts via abstracted vul-

nerability signatures. Journal of Systems and Software, 192:111410, 2022.

[3] Xiongfei Wu, Jiaming Ye, Ke Chen, Xiaofei Xie, Yujing Hu, Ruochen Huang,

Lei Ma, and Jianjun Zhao. Widget detection-based testing for industrial mo-

bile games. In Proceedings of the 45th IEEE International Conference on Software

Engineering, pages 1427–1437, 2023.

[4] Jiaming Ye, Ke Chen, Xiaofei Xie, Lei Ma, Ruochen Huang, Yingfeng Chen,

Yinxing Xue, and Jianjun Zhao. An empirical study of gui widget detection

for industrial mobile games. In Proceedings of the 29th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, pages 1427–1437, 2021.

[5] Brent Hailpern and Padmanabhan Santhanam. Software debugging, testing,

and verification. IBM Systems Journal, 41(1):4–12, 2002.

[6] Ken Shirriff. The programming error that cost Mt Gox 2609 bitcoins. https:

//www.righto.com/2014/03/the-programming-error-that-cost-mt-gox.

html, 2014. Online; accessed 29 January 2014.

https://www.righto.com/2014/03/the-programming-error-that-cost-mt-gox.html
https://www.righto.com/2014/03/the-programming-error-that-cost-mt-gox.html
https://www.righto.com/2014/03/the-programming-error-that-cost-mt-gox.html

[7] Ivana Vojinovic. 10 of the Biggest Data Breaches in History. https://dataprot.

net/articles/biggest-data-breaches/textData0individuals., 2023. On-

line; accessed 29 January 2023.

[8] Alfred Ng. How China uses facial recognition to con-

trol human behavior. https://www.cnet.com/news/politics/

in-china-facial-recognition-public-shaming-and-control-go-hand-in-hand/,

2022. Online; accessed 29 January 2022.

[9] OpenAI. chatGPT of OpenAI. https://openai.com/blog/chatgpt, 2022. On-

line; accessed 29 January 2022.

[10] Luciano Baresi and Mauro Pezze. An introduction to software testing. Electronic

Notes in Theoretical Computer Science, 148(1):89–111, 2006.

[11] Google. American fuzzy lop. https://lcamtuf.coredump.cx/afl/, 2018.

[12] LLVM. a library for coverage-guided fuzz testing. https://llvm.org/docs/

LibFuzzer.html, 2022. Online; accessed 29 January 2022.

[13] Atif M Memon and Myra B Cohen. Automated testing of gui applications:

models, tools, and controlling flakiness. In 2013 35th International Conference on

Software Engineering (ICSE), pages 1479–1480, 2013.

[14] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and Sam

Malek. Reducing combinatorics in gui testing of android applications. In 2016

IEEE/ACM 38th International Conference on Software Engineering (ICSE), pages

559–570, 2016.

[15] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher

Vendome, and Denys Poshyvanyk. Crashscope: A practical tool for automated

testing of android applications. In 2017 IEEE/ACM 39th International Conference

on Software Engineering Companion (ICSE-C), pages 15–18, 2017.

[16] Kevin Moran, Mario Linares Vásquez, and Denys Poshyvanyk. Automated gui

testing of android apps: from research to practice. In 2017 IEEE/ACM 39th

International Conference on Software Engineering Companion (ICSE-C), pages 505–

506, 2017.

https://dataprot.net/articles/biggest-data-breaches/textData0individuals.
https://dataprot.net/articles/biggest-data-breaches/textData0individuals.
https://www.cnet.com/news/politics/in-china-facial-recognition-public-shaming-and-control-go-hand-in-hand/
https://www.cnet.com/news/politics/in-china-facial-recognition-public-shaming-and-control-go-hand-in-hand/
https://openai.com/blog/chatgpt
https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

[17] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang

Pu, Yang Liu, and Zhendong Su. Guided, stochastic model-based gui testing

of android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, pages 245–256, 2017.

[18] Zhe Liu, Chunyang Chen, Junjie Wang, Yuekai Huang, Jun Hu, and Qing

Wang. Owl eyes: Spotting ui display issues via visual understanding. In 2020

35th IEEE/ACM International Conference on Automated Software Engineering (ASE),

pages 398–409, 2020.

[19] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Lim-

ing Zhu, and Guoqiang Li. Object detection for graphical user interface: old

fashioned or deep learning or a combination? In Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, pages 1202–1214, 2020.

[20] Adrian. Intersection over union. https://www.pyimagesearch.com/2016/11/

07/intersection-over-union-iou-for-object-detection/, 2018.

[21] NCC Group. Decentralized Application Security Project (or DASP) Top 10 of

2018. https://dasp.co/, 2019. Online; accessed 29 January 2019.

[22] ethereum. Solidity document. Website, 2019. https://solidity.readthedocs.

io/en/v0.4.24/contracts.html?highlight=fallback.

[23] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on

ethereum smart contracts. IACR Cryptology ePrint Archive, 2016:1007, 2016.

[24] ConsenSys Diligence. Ethereum Smart Contract Best Practices:Known

Attacks. https://consensys.github.io/smart-contract-best-practices/

known_attacks/, 2019. Online; accessed 29 January 2019.

[25] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis frame-

work for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on

Emerging Trends in Software Engineering for Blockchain (WETSEB), pages 8–15.

IEEE, 2019.

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://dasp.co/
https://solidity.readthedocs.io/en/v0.4.24/contracts.html?highlight=fallback
https://solidity.readthedocs.io/en/v0.4.24/contracts.html?highlight=fallback
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/

[26] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC CCS,

pages 254–269, 2016.

[27] ethervm. Ethereum virtual machine opcodes. https://ethervm.io/, 2019.

Online; accessed September 2019.

[28] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian

Buenzli, and Martin Vechev. Securify: Practical security analysis of smart con-

tracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-

munications Security, pages 67–82, 2018.

[29] Tai D Nguyen, Long H Pham, and Jun Sun. sguard: Towards fixing vulnerable

smart contracts automatically. arXiv preprint arXiv:2101.01917, 2021.

[30] Xue Yinxing, Ma Mingliang, Lin Yun, Sui Yulei, Ye Jiaming, and Peng Tianyong.

Cross-contract static analysis for detecting practical reentrancy vulnerabilities

in smart contracts. In 2020 35rd IEEE/ACM International Conference on Automated

Software Engineering (ASE), 2020.

[31] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. sfuzz:

An efficient adaptive fuzzer for solidity smart contracts. In Proceedings of the

ACM/IEEE 42nd International Conference on Software Engineering, pages 778–788,

2020.

[32] Bo Jiang, Ye Liu, and WK Chan. Contractfuzzer: Fuzzing smart contracts for

vulnerability detection. In 2018 33rd IEEE/ACM International Conference on Au-

tomated Software Engineering (ASE), pages 259–269. IEEE, 2018.

[33] Chunyang Chen, Sidong Feng, Zhengyang Liu, Zhenchang Xing, and Sheng-

dong Zhao. From lost to found: Discover missing ui design semantics through

recovering missing tags. Proceedings of the ACM on Human-Computer Interaction,

pages 1–22, 2020.

[34] Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao,

and Jinshui Wang. Gallery dc: Design search and knowledge discovery through

auto-created gui component gallery. Proceedings of the ACM on Human-Computer

Interaction, pages 1–22, 2019.

https://ethervm.io/

[35] Steven P Reiss, Yun Miao, and Qi Xin. Seeking the user interface. Automated

Software Engineering, pages 157–193, 2018.

[36] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xin Xia, Liming Zhu, John

Grundy, and Jinshui Wang. Wireframe-based ui design search through image

autoencoder. ACM TOSEM, pages 1–31, 2020.

[37] Thomas D White, Gordon Fraser, and Guy J Brown. Improving random gui

testing with image-based widget detection. In Proceedings of the 28th ACM SIG-

SOFT International Symposium on Software Testing and Analysis, pages 307–317,

2019.

[38] Farnaz Behrang, Steven P Reiss, and Alessandro Orso. Guifetch: supporting

app design and development through gui search. In Proceedings of the 5th In-

ternational Conference on Mobile Software Engineering and Systems, pages 236–246,

2018.

[39] Cuixiong Hu and Iulian Neamtiu. Automating gui testing for android appli-

cations. In Proceedings of the 6th International Workshop on Automation of Software

Test, pages 77–83, 2011.

[40] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xin Xia, and Guoqiang Li. Ac-

tionnet: Vision-based workflow action recognition from programming screen-

casts. In 2019 IEEE/ACM 41st ICSE, pages 350–361. IEEE, 2019.

[41] Dayi Lin, Cor-Paul Bezemer, and Ahmed E Hassan. Studying the urgent up-

dates of popular games on the steam platform. Empirical Software Engineering,

pages 2095–2126, 2017.

[42] Saiqa Aleem, Luiz Fernando Capretz, and Faheem Ahmed. Critical success fac-

tors to improve the game development process from a developer’s perspective.

Journal of Computer Science and Technology, pages 925–950, 2016.

[43] Gabriel Lovreto, Andre T Endo, Paulo Nardi, and Vinicius HS Durelli. Au-

tomated tests for mobile games: An experience report. In 2018 17th Brazilian

Symposium on Computer Games and Digital Entertainment (SBGames), pages 48–

488, 2018.

[44] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang

Liu, Ruimin Shen, Yingfeng Chen, and Changjie Fan. Wuji: Automatic online

combat game testing using evolutionary deep reinforcement learning. In 2019

34th IEEE/ACM International Conference on Automated Software Engineering (ASE),

pages 772–784, 2019.

[45] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pages

580–587, 2014.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid

pooling in deep convolutional networks for visual recognition. IEEE transactions

on pattern analysis and machine intelligence, pages 1904–1916, 2015.

[47] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on

computer vision, pages 1440–1448, 2015.

[48] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-

wards real-time object detection with region proposal networks. arXiv preprint

arXiv:1506.01497, 2015.

[49] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 779–788, 2016.

[50] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In

European conference on computer vision, pages 21–37, 2016.

[51] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,

Yang Li, Jeffrey Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for

building data-driven design applications. In Proceedings of the 30th Annual ACM

Symposium on User Interface Software and Technology, pages 845–854, 2017.

[52] Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ran-

jitha Kumar. Learning design semantics for mobile apps. In Proceedings of the

31st Annual ACM Symposium on User Interface Software and Technology, pages

569–579, 2018.

[53] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In In-

ternational conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 337–340. Springer, 2008.

[54] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,

Evgeny Marchenko, and Yaroslav Alexandrov. Smartcheck: Static analysis of

ethereum smart contracts. In WETSEB, pages 9–16, 2018.

[55] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. Verismart:

A highly precise safety verifier for ethereum smart contracts. In 2020 IEEE

Symposium on Security and Privacy (SP), pages 1678–1694. IEEE, 2020.

[56] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and

Martin Vechev. Verx: Safety verification of smart contracts. In 2020 IEEE Sym-

posium on Security and Privacy (SP), pages 1661–1677. IEEE, 2020.

[57] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus: Analyzing

safety of smart contracts. In NDSS, 2018.

[58] Llvm language reference manual. https://blog.sigmaprime.io/

solidity-security.html, 2019. Online; accessed 29 January 2019.

[59] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

The seahorn verification framework. In CAV 2015, pages 343–361, 2015.

[60] Octopus. https://github.com/quoscient/octopus, 2019. Online; accessed 29

January 2019.

[61] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam

Rinetzky, Mooly Sagiv, and Yoni Zohar. Online detection of effectively callback

free objects with applications to smart contracts. PACMPL, 2(POPL):48:1–48:28,

2018.

[62] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.

Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings of

https://blog.sigmaprime.io/solidity-security.html
https://blog.sigmaprime.io/solidity-security.html
https://github.com/quoscient/octopus

the 34th Annual Computer Security Applications Conference, ACSAC 2018, San Juan,

PR, USA, December 03-07, 2018, pages 653–663, 2018.

[63] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,

Josselin Feist, Trent Brunson, and Artem Dinaburg. Manticore: A user-friendly

symbolic execution framework for binaries and smart contracts. In 2019 34th

IEEE/ACM International Conference on Automated Software Engineering (ASE),

pages 1186–1189. IEEE, 2019.

[64] ConsenSys. Mythril. https://github.com/ConsenSys/mythril-classic, 2019.

Online; accessed 29 January 2019.

[65] ConsenSys. Mythx. https://mythx.io/, 2019. Online; accessed 29 January

2019.

[66] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce.

Echidna: effective, usable, and fast fuzzing for smart contracts. In Proceed-

ings of the 29th ACM SIGSOFT International Symposium on Software Testing and

Analysis, pages 557–560, 2020.

[67] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena.

Exploiting the laws of order in smart contracts. In Proceedings of the ISSTA 2019,

Beijing, China, July 15-19, 2019., pages 363–373, 2019.

[68] Valentin Wüstholz and Maria Christakis. Harvey: A greybox fuzzer for smart

contracts. In Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering,

pages 1398–1409, 2020.

[69] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. Vulpecker:

an automated vulnerability detection system based on code similarity analysis.

In ACSAC, pages 201–213. ACM, 2016.

[70] NIST. National vulnerability database (nvd). https://www.nist.gov/

programs-projects/national-vulnerability-database-nvd, 2019. Online;

accessed 29 January 2019.

https://github.com/ConsenSys/mythril-classic
https://mythx.io/
https://www.nist.gov/programs-projects/national-vulnerability-database-nvd
https://www.nist.gov/programs-projects/national-vulnerability-database-nvd

[71] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan

Cho, and Hee Beng Kuan Tan. Bingo: cross-architecture cross-os binary search.

In FSE 2016, pages 678–689, 2016.

[72] Yaniv David and Eran Yahav. Tracelet-based code search in executables. In

PLDI ’14, pages 349–360, 2014.

[73] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. VUDDY: A scalable

approach for vulnerable code clone discovery. In IEEE Symposium on S & P,

pages 595–614. IEEE Computer Society, 2017.

[74] Ence Zhou, Song Hua, Bingfeng Pi, Jun Sun, Yashihide Nomura, Kazuhiro

Yamashita, and Hidetoshi Kurihara. Security assurance for smart contract. In

2018 9th IFIP International Conference on New Technologies, Mobility and Security

(NTMS), pages 1–5. IEEE, 2018.

[75] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin

Vechev. Learning to fuzz from symbolic execution with application to smart

contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, pages 531–548, 2019.

[76] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach Dinh Le, Xin Xia,

Yang Feng, Zhenyu Chen, and Baowen Xu. Smart contract development: Chal-

lenges and opportunities. IEEE Transactions on Software Engineering, 47(10):2084–

2106, 2019.

[77] Hao Xiao, Jun Sun, Yang Liu, Shang-Wei Lin, and Chengnian Sun. Tzuyu:

Learning stateful typestates. In 2013 28th IEEE/ACM ASE, pages 432–442. IEEE,

2013.

[78] Yinxing Xue, Junjie Wang, Yang Liu, Hao Xiao, Jun Sun, and Mahinthan Chan-

dramohan. Detection and classification of malicious javascript via attack behav-

ior modelling. In Proceedings of the 2015 ISSTA, pages 48–59, 2015.

[79] Guanhua Yan, Junchen Lu, Zhan Shu, and Yunus Kucuk. Exploitmeter: Com-

bining fuzzing with machine learning for automated evaluation of software ex-

ploitability. In 2017 IEEE Symposium on Privacy-Aware Computing (PAC), pages

164–175. IEEE, 2017.

[80] Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, and Qinming

He. Smart contract vulnerability detection using graph neural network. In

International Joint Conferences on Artificial Intelligence Organization, pages 3283–

3290, 2020.

[81] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for

class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), pages 539–550, 2008.

[82] Darrenl. How big is the global mobile gam-

ing industry?. https://www.visualcapitalist.com/

how-big-is-the-global-mobile-gaming-industry/, 2020.

[83] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang

Pu, Yang Liu, and Zhendong Su. Guided, stochastic model-based gui testing

of android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, pages 245–256, 2017.

[84] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated testing

for android applications. In Proceedings of the 25th International Symposium on

Software Testing and Analysis, pages 94–105, 2016.

[85] Google. A lightweight, fast, and customizable android testing framework.

https://developer.android.com/training/testing/espresso, 2018.

[86] Netease Inc. Poco: A cross-engine ui automation framework. https://github.

com/AirtestProject/Poco, 2018.

[87] Alibaba Inc. Onetomany: a wireless, non-invasive testing tool for automatic

android software testing. https://github.com/alipay/SoloPi, 2018.

[88] Yuechen Wu, Yingfeng Chen, Xiaofei Xie, Bing Yu, Changjie Fan, and Lei Ma.

Regression testing of massively multiplayer online role-playing games. In 2020

IEEE International Conference on Software Maintenance and Evolution (ICSME),

pages 692–696. IEEE, 2020.

[89] Android. Ui/application exerciser monkey. https://developer.android.com/

studio/test/monkey, 2018.

https://www.visualcapitalist.com/how-big-is-the-global-mobile-gaming-industry/
https://www.visualcapitalist.com/how-big-is-the-global-mobile-gaming-industry/
https://developer.android.com/training/testing/espresso
https://github.com/AirtestProject/Poco
https://github.com/AirtestProject/Poco
https://github.com/alipay/SoloPi
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey

[90] Unity Inc. Unity documentation. https://docs.unity3d.com/

ScriptReference/GameObject.html, 2018.

[91] Android. Android adb debug mode. https://developer.android.com/

studio/command-line/adb, 2018.

[92] Darrenl. A graphical image annotation tool. https://github.com/tzutalin/

labelImg, 2018.

[93] Satoshi Suzuki et al. Topological structural analysis of digitized binary images

by border following. Computer vision, graphics, and image processing, pages 32–46,

1985.

[94] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[95] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 7263–7271,

2017.

[96] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. In

arXiv preprint arXiv:1904.07850, 2019.

[97] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, and

Jiajun Liang. East: an efficient and accurate scene text detector. In Proceedings of

the IEEE conference on Computer Vision and Pattern Recognition, pages 5551–5560,

2017.

[98] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna

Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from

deep networks via gradient-based localization. In Proceedings of the IEEE inter-

national conference on computer vision, pages 618–626, 2017.

[99] Roman Beck, Michel Avital, Matti Rossi, and Jason Bennett Thatcher.

Blockchain technology in business and information systems research. Business

& Information Systems Engineering, 59(6):381–384, 2017.

[100] Nick Szabo. Smart Contracts: Building Blocks for Digital Markets. http://www.

fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/

https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/GameObject.html
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html

LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html, 1996.

Online; accessed 29 January 2019.

[101] Xiangfu Zhao, Zhongyu Chen, Xin Chen, Yanxia Wang, and Changbing Tang.

The DAO attack paradoxes in propositional logic. In ICSAI 2017, pages 1743–

1746, 2017.

[102] Parity Technologies. The Multi-sig Hack: A Postmortem. https://www.parity.

io/the-multi-sig-hack-a-postmortem/, July 20, 2017. Online; accessed 29

January 2019.

[103] Adrian Manning. Solidity Security: Comprehensive List of Known At-

tack Vectors and Common Anti-patterns. https://blog.sigmaprime.io/

solidity-security.html, 30 May 2018. Online; accessed 29 January 2019.

[104] Jeffrey D Unman. Principles of database and knowledge-base systems. Com-

puter Science Press, 1989.

[105] Mateusz Pawlik and Nikolaus Augsten. Efficient computation of the tree edit

distance. ACM Trans. Database Syst., 40(1):3:1–3:40, 2015.

[106] Etherscan. The ethereum blockchain explorer. https://https://cn.

etherscan.com/, 2018. Online; accessed September 2018.

[107] Zhenzhou Tian, Jie Tian, Zhongmin Wang, Yanping Chen, Hong Xia, and Ling-

wei Chen. Landscape estimation of solidity version usage on ethereum via

version identification. International Journal of Intelligent Systems, 37(1):450–477,

2022.

[108] D. Defays. An efficient algorithm for a complete link method. The Computer

Journal, 20(4):364–366, 01 1977.

[109] David Maier. The complexity of some problems on subsequences and superse-

quences. J. ACM, 25(2):322–336, 1978.

[110] Secure smart contract security with transaction-ordering

dependence. https://www.nvestlabs.com/2019/03/18/

secure-smart-contract-security-with-transaction-ordering-dependence/,

2019. Online; accessed 29 January 2019.

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.parity.io/the-multi-sig-hack-a-postmortem/
https://www.parity.io/the-multi-sig-hack-a-postmortem/
https://blog.sigmaprime.io/solidity-security.html
https://blog.sigmaprime.io/solidity-security.html
https://https://cn.etherscan.com/
https://https://cn.etherscan.com/
https://www.nvestlabs.com/2019/03/18/secure-smart-contract-security- with-transaction-ordering-dependence/
https://www.nvestlabs.com/2019/03/18/secure-smart-contract-security- with-transaction-ordering-dependence/

[111] Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang, Chengnian Sun,

Huizhong Li, and Yan Cai. Empirical evaluation of smart contract testing: what

is the best choice? In Proceedings of the 30th ACM SIGSOFT International Sympo-

sium on Software Testing and Analysis, pages 566–579, 2021.

[112] VIKASH KUMAR DAS. Top blockchain plat-

forms of 2020. https://www.blockchain-council.

org/blockchain/topblockchainplatformsof2020that\

everyblockchainenthusiastmustknow/, 2020. Online; accessed Septem-

ber 2020.

[113] Ethereum. Ethereum daily transaction chart. https://etherscan.io/chart/

tx, 2017. Online; accessed 29 January 2017.

[114] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. A survey

on ethereum systems security: Vulnerabilities, attacks, and defenses. ACM

Computing Surveys (CSUR), 2020.

[115] Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro Cruz. Empirical review

of automated analysis tools on 47,587 ethereum smart contracts. In Proceedings

of the ACM/IEEE 42nd ICSE, pages 530–541, 2020.

[116] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on

ethereum smart contracts (sok). In International Conference on Principles of Secu-

rity and Trust, pages 164–186. Springer, 2017.

[117] Osman Gazi Güçlütürk. The dao hack explained: Unfortunate

take-off of smart contracts. https://medium.com/ogucluturk/

the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562,

2018. Online; accessed 22 January 2018.

[118] Protofire. Solhint. https://github.com/protofire/solhint, 2018. Online;

accessed September 2018.

[119] Qingzhao Zhang, Yizhuo Wang, Juanru Li, and Siqi Ma. Ethploit: From fuzzing

to efficient exploit generation against smart contracts. In 2020 IEEE 27th SANER,

pages 116–126. IEEE, 2020.

https://www.blockchain-council.org/blockchain/topblockchainplatformsof2020that\ everyblockchainenthusiastmustknow/
https://www.blockchain-council.org/blockchain/topblockchainplatformsof2020that\ everyblockchainenthusiastmustknow/
https://www.blockchain-council.org/blockchain/topblockchainplatformsof2020that\ everyblockchainenthusiastmustknow/
https://etherscan.io/chart/tx
https://etherscan.io/chart/tx
https://medium.com/ogucluturk/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
https://medium.com/ogucluturk/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
https://github.com/protofire/solhint

[120] Jianbo Gao, Han Liu, Yue Li, Chao Liu, Zhiqiang Yang, Qingshan Li, Zhi Guan,

and Zhong Chen. Towards automated testing of blockchain-based decentralized

applications. In IEEE/ACM 27th ICPC, pages 294–299, 2019.

[121] Gustavo A Oliva, Ahmed E Hassan, and Zhen Ming Jack Jiang. An exploratory

study of smart contracts in the ethereum blockchain platform. Empirical Software

Engineering, pages 1–41, 2020.

[122] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo, Yaqin Zhou, Yang Liu,

and Yu Jiang. Leopard: Identifying vulnerable code for vulnerability assess-

ment through program metrics. In 2019 IEEE/ACM 41st International Conference

on Software Engineering (ICSE), pages 60–71. IEEE, 2019.

[123] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learn-

ing for input fuzzing. In 2017 32nd IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), pages 50–59. IEEE, 2017.

[124] Software Testing Help. 7 principles of software testing: Defect clus-

tering and pareto principle. https://www.softwaretestinghelp.com/

7-principles-of-software-testing/, 2021.

[125] Asem Ghaleb and Karthik Pattabiraman. How effective are smart contract anal-

ysis tools? evaluating smart contract static analysis tools using bug injection. In

Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing

and Analysis, pages 415–427, 2020.

[126] Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, and Qinming

He. Smart contract vulnerability detection using graph neural network. In

IJCAI, pages 3283–3290, 2020.

[127] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[128] Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang, Chengnian Sun,

Huizhong Li, and Yan Cai. Empirical evaluation of smart contract testing: What

is the best choice? In Proceedings of the 30th ACM SIGSOFT International Sympo-

sium on Software Testing and Analysis, pages 566–579, 2021.

https://www.softwaretestinghelp.com/7-principles-of-software-testing/
https://www.softwaretestinghelp.com/7-principles-of-software-testing/

[129] João F Ferreira, Pedro Cruz, Thomas Durieux, and Rui Abreu. Smartbugs: A

framework to analyze solidity smart contracts. arXiv preprint arXiv:2007.04771,

2020.

[130] xFuzz. Machine learning guided cross-contract fuzzing. https://anonymous.

4open.science/r/xFuzzforReview-ICSE, 2020. Online; accessed September

2020.

[131] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

Driller: Augmenting fuzzing through selective symbolic execution. In NDSS,

volume 16, 2016.

[132] Will Drewry and Tavis Ormandy. Flayer: Exposing application internals.

WOOT 07, First workshop on offensive technologies, 2007.

[133] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining, pages 785–794, 2016.

[134] Smart Contract Security. Smart contract weakness classification registry. https:

//github.com/SmartContractSecurity/SWC-registry, 2019. Online; accessed

September 2019.

[135] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning

distributed representations of code. Proceedings of the ACM on Programming

Languages, 2019.

[136] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, and H. Jin. A comparative study of

deep learning-based vulnerability detection system. IEEE Access, pages 103184–

103197, 2019.

[137] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat, Josselin

Feist, and Laurent Mounier. Toward large-scale vulnerability discovery using

machine learning. In Proceedings of the 6th ACM Conference on Data and Applica-

tion Security and Privacy, page 85–96, 2016.

https://anonymous.4open.science/r/xFuzzforReview-ICSE
https://anonymous.4open.science/r/xFuzzforReview-ICSE
https://github.com/SmartContractSecurity/SWC-registry
https://github.com/SmartContractSecurity/SWC-registry

[138] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multi-

linguistic token-based code clone detection system for large scale source code.

IEEE Transactions on Software Engineering, pages 654–670, 2002.

[139] Joffrey L Leevy, Taghi M Khoshgoftaar, Richard A Bauder, and Naeem Seliya.

A survey on addressing high-class imbalance in big data. Journal of Big Data,

page 42, 2018.

[140] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip

Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal of

artificial intelligence research, 16:321–357, 2002.

[141] Smart Contract. Function selector. https://solidity-by-example.org/

function-selector/, 2021.

[142] Dedaub. Security technology for smart contracts. https://contract-library.

com/, 2020. Online; accessed 29 January 2020.

https://solidity-by-example.org/function-selector/
https://solidity-by-example.org/function-selector/
https://contract-library.com/
https://contract-library.com/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Publications
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Thesis Approach
	1.4 Thesis Structure

	2 Background and Related Work
	2.1 Background
	2.1.1 GUI Region Detection
	2.1.2 Well-known Smart Contract Vulnerabilities
	2.1.3 Cross-contract Vulnerability in Smart Contract

	2.2 Related Work
	2.2.1 GUI testing and game testing
	2.2.2 Object detection deep learning models.
	2.2.3 Smart Contract Vulnerability Detection
	2.2.4 Smart Contract Testing

	3 Study on applying data-driven approaches in mobile GUI testing
	3.1 Introduction
	3.2 Industry Survey
	3.2.1 Interview of Mobile Game Testing Experts
	3.2.2 Questionnaire

	3.3 Collection of Game GUIs
	3.3.1 Obtaining Game GUI Dataset
	3.3.2 Data Cleaning

	3.4 Evaluation
	3.4.1 Experiment Preparation
	3.4.2 Effectiveness of Filtering
	3.4.3 Model Performance
	3.4.4 Root Cause Analysis
	3.4.5 Summary of Findings
	3.4.6 Threats to Validity

	3.5 Chapter Conclusion

	4 Study on vulnerabilities and existing tools in smart contract
	4.1 Introduction
	4.2 Overview
	4.3 Empirical Study of Signature Abstraction
	4.3.1 Selected Scanners and Dataset
	4.3.2 Vulnerability Rule Abstraction
	4.3.3 Case Study: Abstracted Signatures
	4.3.4 Vulnerability Detection

	4.4 Evaluation
	4.4.1 RQ1: Evaluating the Precision of Tools
	4.4.2 RQ2: Evaluating the Recall of Tools
	4.4.3 RQ3: Evaluating the Efficiency
	4.4.4 Threats to Validity

	4.5 Discussions
	4.5.1 The Relaxed Security Assumption
	4.5.2 The Weakness of Vulpedia

	4.6 Chapter Conclusion

	5 Study on adapting data-driven methods in smart contract testing
	5.1 Introduction
	5.2 Overview
	5.2.1 Machine Learning Model Training Phase
	5.2.2 Guided Testing Phase

	5.3 Machine Learning Guidance Preparation
	5.3.1 Data Collection
	5.3.2 Feature Engineering
	5.3.3 Model Selection
	5.3.4 Model Robustness Evaluation

	5.4 Guided Cross-contract Fuzzing
	5.4.1 Guidance Algorithm
	5.4.2 Priority Score
	5.4.3 Cross-contract Fuzzing

	5.5 Evaluation
	5.5.1 Dataset Preparation
	5.5.2 RQ1: Vulnerability Detection Effectiveness
	5.5.3 RQ2: The Effectiveness of Guided Testing
	5.5.4 RQ3: Detection Efficiency
	5.5.5 RQ4: Real-world Case Studies

	5.6 Chapter Conclusion

	6 Conclusion
	6.1 Summary and Contributions of the Thesis
	6.2 Possible Directions for Future Work

	References

