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Abstract

Quantum programming involves designing and constructing executable quantum pro-
grams to achieve specific computational results. Several quantum programming lan-
guages, such as Scaffold, Quipper, Qiskit, Q#, and Cirq, enable researchers and devel-
opers to implement and experiment with quantum computing techniques efficiently.
However, ensuring the correctness of quantum programs is challenging due to unique
features like superposition, entanglement, and no-cloning, which make bug detection
difficult.

Although some approaches for debugging and testing quantum software have been
proposed, the research in identifying and detecting bugs in quantum programs is still
in its early stages. Existing research has shortcomings in the following areas: (1) Re-
dundancy in Bug Patterns: Many publicly reported bugs follow similar patterns, neces-
sitating proper bug pattern classification metrics to assist developers in understanding
and avoiding these bugs effectively. (2) Lack of Suitable Bug Benchmark Suites: The
absence of comprehensive bug benchmark suites restricts the systematic evaluation of
debugging and testing methods for quantum programs, hindering the progress of quan-
tum software development. (3) Challenges of Dynamic Techniques and Classic Static
Analysis: Dynamic techniques relying on the execution of quantum programs can be
cumbersome and expensive, while classic static analysis tools designed for traditional
programs are unsuitable for analyzing quantum programs due to their unique mecha-
nisms.

To address these challenges and improve the quality assurance of quantum soft-
ware, this thesis primarily focuses on identifying and detecting bugs in quantum pro-
grams. The work is divided into three phases: (1) Identification and Categorization
of Bug Patterns: The thesis identifies and categorizes bug patterns in the Qiskit quan-
tum programming language. This provides researchers and programmers with a clear
understanding of the types of bugs that can occur in quantum programs and how to
detect them. The bug patterns cover quantum-related constructs, focusing on symp-
toms, root causes, cures, and preventions. (2) Bugs4Q Benchmark Suite: As an initial
step towards evaluating debugging and testing tools for quantum software, the the-
sis introduces Bugs4Q. This benchmark suite consists of forty-two real Qiskit bugs
obtained from popular platforms like GitHub, StackOverflow, and Stack Exchange.
Bugs4Q includes a bug database and test cases to reproduce faulty behaviors. Re-
searchers have access to the actual bugs and corresponding fixes for further study. The
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Bugs4Q framework modularizes bugs and offers a user-friendly interface for easy ex-
tension. The buggy programs are also evaluated with two test case generation tools,
demonstrating the benchmark’s effectiveness in evaluating quantum program testing
techniques. (3) QChecker: To efficiently detect bugs in quantum programs, the thesis
presents QChecker, a static analysis tool specifically designed for Qiskit. QChecker
comprises two modules: one for extracting program information based on the abstract
syntax tree (AST) and another for detecting bugs based on patterns. The performance
of QChecker is evaluated using the Bugs4Q benchmark suite, demonstrating its ability
to detect various bugs in quantum programs effectively.

In summary, this thesis fills the gaps in identifying and detecting bugs in quantum
programs by (1) providing bug patterns as a foundation for further research in debug-
ging and testing quantum programs, (2) introducing Bugs4Q, a comprehensive bench-
mark suite that offers a comprehensive view of quantum bugs and facilitates the eval-
uation of quantum debugging and testing techniques, and (3) developing QChecker, a
static analysis tool that efficiently detects bugs in quantum programs.
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Chapter 1

Introduction

1.1 Motivation

Quantum programming is designing and constructing executable quantum programs to

achieve a specific computational result. It has been applied to many cutting-edge areas,

such as quantum machine learning [7, 14], big data analysis [45], and molecular sim-

ulations [20] due to its unique promising advantage over classical computing. Several

quantum programming approaches have recently been available for writing quantum

programs, for instance, Qiskit [47], Q# [52], ProjectQ [22], and Scaffold [1]. Given

the importance and wide application of quantum programming, ensuring the correct-

ness of quantum programs is crucial for quantum software development. Along with

the emergence and advancement of quantum programming languages, debugging and

testing quantum programs are gaining more attention.

Software bugs significantly impact the economy, security, and quality of life. A

software bug is considered an abnormal program behavior that deviates from its spec-

ification [5], including poor performance when a threshold level of performance is

included in the specification. The diagnosis and repair of software bugs consume sig-
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nificant time and money. An appropriate bug-finding method can quickly help devel-

opers locate and fix bugs. Many software engineering tasks, such as program analysis,

debugging, and software testing, are dedicated to developing techniques and tools to

find and fix bugs. Software bugs can also be handled more effectively or avoided by

studying past bugs and their fixes. Existing methods and tools should be evaluated on

up-to-date and real-world bug benchmark suites so potential users can know how well

they work.

The specific features of superposition, entanglement, and no-cloning introduced in

quantum programming make it difficult to find bugs in quantum programs [41]. Sev-

eral approaches have been proposed for debugging and testing quantum software [2,

4, 23, 26, 32, 40] recently, but the debugging and testing remain challenging issues

for quantum software [40, 64]. In addition, recent empirical studies [10, 43, 65, 66]

have shown that the current quantum program development process is still error-prone.

While debugging and testing quantum programs has gained significant attention [4,

16, 23, 26, 32, 34], the existing debugging and testing techniques often require dy-

namic execution of the underlying quantum programs. Considering that most current

quantum programs are executed on quantum computers and simulators available on

the cloud, existing techniques can be cumbersome and expensive. In summary, there

is a lack of systematic identifications of quantum program bugs and efficient detecting

techniques:

• There is still a lack of research on identifying bug patterns in quantum programs,

even though a few approaches have been proposed for testing and debugging

quantum software [4, 23, 26, 32, 33, 40, 41, 55]. As more publicly reported bugs

emerge, many are redundant because they follow a similar pattern. In this case,

we may not know what types of bugs are unique or commonly happen to quan-

2



tum programs without a proper bug pattern classification, which poses several

restrictions on the research and development of programs in the language.

• More and more methods and tools have appeared for quantum program testing

or debugging [18, 39, 44, 55, 58, 60], which have made some progress in the

field of quantum software, while there are few bug benchmark suits for quantum

software. In this case, we may not know which debugging or testing methods are

suitable for quantum software without a unified bug benchmark suite to evaluate

these tools. This may restrict the research and development of quantum software

debugging and testing techniques.

• In classical software development practice, static analysis techniques have been

widely used to detect various types of bugs in classical programs due to their ad-

vantages in speed and cost [15, 24, 48, 49, 56]. However, detecting bugs in quan-

tum programs via static analysis can be challenging. Since quantum computation

logic is expressed in quantum circuits, and the states of quantum registers are

measured probabilistically, static analysis tools designed for classical programs

struggle to detect mistakes in quantum programs.

1.2 Contribution

To verify the correctness of quantum programs more efficiently and to improve the

quality assurance of quantum software, this doctoral thesis mainly focuses on imple-

menting the identification and detection of quantum program bugs. As the first step

toward evaluating quantum software debugging and testing tools, we identify and cat-

egorize some bug patterns in the quantum programming language Qiskit and briefly

discuss how to eliminate or prevent those bug patterns. This is the first step in pro-
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viding a fundamental basis for detecting quantum program bugs. Then we introduce

Bugs4Q, a benchmark of forty-two real, manually validated bugs in Qiskit program-

ming from GitHub and two other popular Q&A sites, StackOverflow and Stack Ex-

change, supplemented with the test cases for reproducing buggy behaviors. Finally,

we present QChecker, a static analysis tool designed to detect quantum program bugs,

especially for Qiskit.

The contribution of our work is as follows:

• Bug Pattern. We identify and categorize some bug patterns in the quantum pro-

gramming language Qiskit to provide both researchers and programmers with a

clear view of what kind of bugs may happen in quantum programs and how to

detect them. We also provide an example for each bug pattern to illustrate the

pattern’s symptoms. Furthermore, information on bug patterns provides a basis

for further research on debugging quantum programs. It also provides insight into

the possible consequences of different types of bugs and summarizes the com-

mon behaviors among similar ones. Finally, these bug patterns can be used to

recognize faults that have already existed and prevent potential bugs.

• Bugs4Q. We thoroughly collected quantum programs on common quantum pro-

gramming languages to enrich the Bugs4Q Repository. All the bugs verified from

10069 items are realistic. The buggy and fixed programs in Bugs4Q are repro-

ducible. Each actual bug and the corresponding fix are publicly available for

research. Besides, each program is equipped with a manually generated unit

test. Bugs4Q has a bug database containing the bug information. It provides a

user-friendly execution framework, which is easy to extend and supports calling

program source code files and unit test files. The combination of Bugs4Q with

existing quantum program testing tools was discussed, and we applied the buggy

4



programs to two test case generation tools for evaluation.

• QChecker. We present the first bug detection tool dedicated to quantum programs

in Qiskit. Using static analysis techniques, QChecker can generate diagnostic

messages that assist developers in pinpointing potential bugs in their programs

quickly. We implement QChecker and evaluate its effectiveness and performance

in a real-world Bugs4Q benchmark. The results show that QChecker can effec-

tively detect various types of bugs in quantum programs.

1.3 Thesis Structure

The rest of this Thesis is organized as follows:

• Chapter 2 introduces some background information about quantum programming

and presents related works in the field of bug identification and detection.

• Chapter 3 describes our identification of bug patterns in quantum programs.

• Chapter 4 introduces the Bugs4Q benchmark suite. Including the collection and

verification of real-world quantum program bugs. As well as the construction and

evaluation of bugs4Q.

• Chapter 5 describes QChecker, a bug detection tool dedicated to quantum pro-

grams, and presents the performance of QChecker on Bugs4Q.

• Chapter 6 is the concluding remarks of this thesis, followed by our future work.
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Chapter 2

Background and Related Work

2.1 Background

In this section, we briefly introduce Qiskit with a simple example, followed by some

basic concepts to understand quantum programming better. Finally, is our conclusion

of quantum program features.

2.1.1 Qiskit

Several open-source programming frameworks, such as Qiskit [47], Q# [52], Scaf-

fold [1] and ProjectQ [22], have been proposed for supporting quantum programming

recently, which are used further to advance the implementation and application of

quantum algorithms. This paper chooses Qiskit, one of the most widely used quan-

tum programming languages, as the first target language for conducting our work.

Qiskit is one of the most widely used open-source frameworks for quantum com-

puting, allowing us to create algorithms for quantum computers [30]. As a Python

package, it provides tools to create and manipulate quantum programs running on

6



prototype quantum devices and simulators [3]. In addition, it offers built-in mod-

ules for noise characterization and circuit optimization to reduce the impact of noise.

It also provides a library of quantum algorithms for machine learning, optimization,

and chemistry. In Qiskit, an experiment is defined by a quantum object data structure

that contains configuration information and experiment sequences. The object could

be used to get status information and retrieve results [38]. Figure 2.1 shows a simple

Qiskit program that illustrates the entire workflow of a quantum program. The function

Aer.get backend(’qasm simulator’) returns a backend object for the given backend

name (qasm simulator). The backend class is an interface to the simulator and the

actual name of Aer for this class is AerProvider. After completing the experimental

design, the instructions are run through the execute method. The shots of the simula-

tion means that the number of times the circuit is run is set to 1000 while the default

is 1024. When outputting the results of a measurement, the method job.result() is

used to retrieve the measurement results. We can access the counts via the method

get counts(circuit), which gives the experiment’s aggregate outcomes.

2.1.2 Basic Concepts

A quantum bit (qubit) is the analog of one classical bit but has many different prop-

erties. A classical bit, like a coin, has only two states, 0 and 1, while a qubit can

be in a continuum of states between |0⟩ and |1⟩ in which the |⟩ notation is called

Dirac notation. We can represent a qubit mathematically as |ψ⟩ = α |0⟩+β |1⟩ where

|α|2 + |β|2 = 1 and the numbers α and β are complex numbers. The states |0⟩ and |1⟩

are called computational basis states. Unlike classical bits, we cannot examine a qubit

directly to get the values of α and β. Instead, we measure a qubit to obtain either the 0

with probability |α|2 or the 1 with probability |β|2.

7



simulator = Aer.get_backend(’qasm_simulator’)

qreg = QuantumRegister(3)

creg = ClassicalRegister(3)

circuit = QuantumCircuit(qreg, creg)

circuit.h(0)

circuit.h(2)

circuit.cx(0, 1)

circuit.measure([0,1,2], [0,1,2])

job = execute(circuit, simulator, shots=1000)

result = job.result()

counts = result.get_counts(circuit)

print(counts)

Figure 2.1: A sample quantum program in Qiskit.

Quantum gates are used for quantum computation and the manipulation of quantum

information. Some basic quantum gates are as follows:

• Quantum NOT gate takes the state |ψ⟩= α |0⟩+β |1⟩ into the state |ψ⟩= α |1⟩+

β |0⟩. We can use a matrix to represent this operation:

X =

0 1

1 0
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• The Z gate can be expressed as

Z =

1 0

0 −1


From the matrix, we know the Z gate leaves the |0⟩ unchanged and changes the

sign of |1⟩.

• The Hadamard gate turns the |0⟩ into (|0⟩+ |1⟩)/
√

2 and turns the |1⟩ into (|0⟩−

|1⟩)/
√

2. The matrix form of the Hadamard gate is

H =
1√
2

1 1

1 −1


All the matrices are unitary ones. Instead of these single-qubit gates, there are

multiple qubit gates, such as the Controlled-NOT (CNOT) gate. This gate has two

input qubits, the control and target qubits. If the control qubit is 0, then the target qubit

remains unchanged. If the control qubit is 1, then the target qubit is flipped. We can

express the behavior of the CNOT gate as |A,B⟩ → |A,B⊕A⟩.

Quantum circuits are models of all kinds of quantum processes. We can build quan-

tum circuits with quantum gates and use wires to connect the components in quantum

circuits. These wires can represent the passage of time or a physical particle moving

from one position to another. Another essential operation in quantum circuits is mea-

surement. Measurement operation observes a single qubit and obtains a classic bit with

a certain probability. Nielsen’s book [42] explains quantum computation more deeply.
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2.1.3 Quantum Program Features

A quantum program is a series of operations on qubits. By focusing on the quan-

tum program language features, we can classify a complete quantum program into the

following four steps:

• Initialization: The initial stage is initializing the quantum registers to store the

qubits that need manipulation. Then the classical registers are initialized to store

the values of the measured qubits. As shown in Figure 2.1, qreg = QuantumRegister(3)

means assigning a quantum register of three qubits, and the value of each qubit is

|0⟩ by default. So the initial value of these three qubits is |000⟩.

• Gate Operation: The core of quantum computing is to operate on qubits. Qiskit

provides almost all the gates to implement algorithms in quantum programs [46].

Such as, to achieve the superposition of qubits, it must pass through the H (Hadamard)

Gate (e.g., circuit.h(0) & circuit.h(2)). And to achieve entanglements in

the case of multiple qubits, the CNOT (controlled-NOT) gate is necessary (e.g.,

circuit.cx(0,1)). Complex gate operations are decomposed into basic gates in

quantum language and gradually realized. Two qubits parameterize controlled

gates, and double-controlled gates require three qubits.

• Measurement: To obtain the output, we must perform a measurement operation

on the target qubit. The measured qubit is returned as the classical state’s value,

which no longer has superposition properties. So the qubit that has been mea-

sured cannot be used as a control qubit to entangle with other qubits. Although

the measurement operation is simple, the program executing a measurement state-

ment is complicated. Obtaining a relatively accurate probability distribution re-

quires thousands of projection measurements on qubits. In this way, the number
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of occurrences of the result is used to obtain the size of the probability of out-

putting the value. The measurement statement of qubits shown in Figure 2.1 is

circuit.measure([0,1,2], [0,1,2]).

• Deallocation: It is critical to reset and release qubits safely; otherwise, ancilla

qubits in an entangled state may affect the output, i.e., by the measurement of

the target qubit. For some backends of Qiskit or other quantum programming

languages, failure to reset the temporary value to zero and release it safely may

result in program bugs.

This thesis uses these four aspects to measure whether a quantum program is qual-

ified. If a bug occurs in one of these steps, we pinpoint it as a quantum-related bug.

On the other hand, as a standard, it is helpful for manual verification in our work. This

criterion is also helpful in static analysis and bug localization.

2.2 Related Work

2.2.1 Bug Pattern

The previous research on bug patterns is mainly focused on classical programming lan-

guages. Allen [5] summarizes more than 14 bug pattern categories in Java. Following

Allen’s work, Hovemeyer and Pugh [24] present a novel syntactic pattern-matching

approach to detecting the bug patterns in Java and implement a bug-finding tool called

FindBugs [6]. Zhang and Zhao [63] and Shen [49] present some bug patterns for

AspectJ and develop a tool called XFindBugs to detect bug patterns in AspectJ. Our

work extends the bug patterns research and identification to quantum programming

languages with the Qiskit language. The bug patterns presented in this paper are dif-

ferent in nature from the existing bug patterns in classical programming languages
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because they explicitly involve quantum programming language features such as su-

perposition, entanglement, and no-cloning.

Huang and Martonosi [25, 26] study the bugs for special quantum programs to sup-

port quantum software debugging. Based on the experiences of implementing several

quantum algorithms, several types of bugs specific to quantum computing are iden-

tified. These bugs include incorrect quantum initial values, incorrect operations and

transformations, the incorrect composition of operations using iteration, recursion,

mirroring, incorrect classical input parameters, and incorrect deallocation of qubits.

The defense strategy for each bug type is also proposed, mainly using some assertions

to detect the bugs in runtime. While Huang and Matonosi’s work targets quantum

software debugging, which involves primarily the runtime execution of a program, our

work targets identifying the bug patterns to support bug detection through static analy-

sis, which may not need to execute the program and, therefore, could be more efficient.

2.2.2 Bug Benchmark Suite

Many benchmark suites have been proposed to evaluate debugging and testing meth-

ods for classical software. The Siemens test suite [27] is one of the first bug benchmark

suites used in testing research. It consists of seven C programs, which contain man-

ually seeded faults. The first widely used benchmark suite of actual bugs and fixes

is SIR (Software Artifact Infrastructure Repository) [13], which enables reproducibil-

ity in software testing research. SIR contains multiple versions of Java, C, C++, and

C# programs which consist of test suites, data of bugs, and scripts. Other benchmark

suites include Defects4J [29] and iBug [11] for Java, BenchBug [35], ManyBug (and

InterClass) [31], and BUGSJS [21] for JavaScirpt projects. However, all the bench-

marks mentioned above focus on classical software systems and, therefore, cannot be
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used for evaluating and comparing quantum software debugging and testing methods.

Perhaps, the most related work to ours is QBugs proposed by [10], a collection

of reproducible bugs in quantum algorithms for supporting controlled experiments for

quantum software debugging and testing. QBugs offers some initial ideas on building

a benchmark for an experimental infrastructure to support the evaluation and compar-

ison of new research and the reproducibility of published results on quantum software

engineering. It also discusses some challenges and opportunities in the development

of QBugs. Bugs4Q benchmark suite, on the other hand, aims to construct a bug bench-

mark suite of actual bugs derived from real-world quantum programs for quantum

software debugging and testing, with real-world test cases for reproducing the buggy

behaviors of identified bugs.

2.2.3 Static Analysis Technique

A large number of error detection techniques based on static analysis [15, 24, 48, 49,

56] have been developed in classical software development. However, static analysis

techniques for classical programs are difficult to apply directly to quantum programs

due to the essential differences between quantum programs and classical programs.

Currently, static analysis techniques for quantum programs have emerged. Yu

and Palsberg [62] proposed an abstract interpretation technique for quantum programs

and used this technique to detect assertions to find errors in the programs. Xia and

Zhao [59] proposed a practical static entanglement analysis technique to accurately

analyze the entanglement information within and between modules in Q# quantum

programs, which can help find errors related to entanglement in the programs. Scaf-

fCC [28] is a scalable compiler framework for the quantum programming language

Scaffold [1], supporting entanglement analysis. ScaffCC explores data-flow analysis
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techniques to automatically track the entanglements within the code by annotating the

output of the QASM-HL program, an intermediate representation of ScaffCC, to de-

note possibly entangled qubits. The analysis is conservative because it assumes that

if two qubits interact, they are likely to have become entangled with each other. In

contrast to these analysis methods, QChecker aims to find bugs in quantum programs

based on bug patterns through static analysis.

Researchers have also extended Hoare logic to the quantum domain to support

the formal verification of quantum programs [9, 12, 54, 61, 68]. Among them, Li et

al. [68] introduced applied quantum Hoare logic (aQHL), which is a simplified version

of quantum Hoare logic (QHL) [61], with particular emphasis on supporting debugging

and testing of the quantum programs. aQHL simplified QHL through binding QHL to a

specific class of pre- and postconditions (assertions), that is, projections, to reduce the

complexity of quantum program verification and provide a convenient way to debug

and test quantum software. However, as we know, formal verification can be costly

and difficult to scale up.
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Chapter 3

Identifying Bug Patterns in Quantum

Programs

3.1 Overview

Bug patterns are erroneous code idioms or bad coding practices that have been proven

to fail repeatedly. These are usually caused by misunderstanding a programming lan-

guage’s features, using erroneous design patterns, or simple mistakes sharing common

behaviors. There are several limitations without proper bug pattern identification:

• Developers may not know what type of bugs are most likely to happen in a pro-

gram and therefore do not know how to prevent them. In other words, a program-

mer would lack fundamental knowledge on how to write bug-free code.

• Testers do not know how to write adequate test cases to cover the most common

potential errors effectively. The tester can only set up criteria for better address-

ing the specific bugs when understanding how the common bugs happened in

programs.
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• Software maintenance staff do not know which language features are more likely

to result in the incorrect code, so they cannot clearly view the current system when

doing the maintenance tasks.

This chapter chooses the widely used quantum programming language Qiskit as

our target language and identifies the common bug patterns in Qiskit programs. The

bug patterns presented in this chapter may help solve the abovementioned problems.

Identifying such patterns in a quantum programming language can help programmers

improve their productivity in finding bugs and reduce software maintenance costs. Bug

pattern identification can also help language designers and tool developers develop effi-

cient bug-finding techniques to locate bugs in quantum programs’ source code through

program analysis.

The rest of this chapter is organized as follows. Section 3.2 describes the identified

bug patterns in Qiskit in detail. A catalog of bug patterns in Qiskit is described in sec-

tion 3.3. Section 3.4 introduces the threats to the validity of this work. And concluding

remarks are given in Section 3.5.

3.2 Bug Patterns in Quantum Programs

We next introduce six bug patterns in Qiskit as examples. When introducing each bug

pattern, we also show an example that contains this specific pattern. Since most bug

patterns have some representation variants and alternatives, we choose the one that

appears to be the most generally applicable.
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qreg = QuantumRegister(3)

creg = ClassicalRegister(2)

circuit = QuantumCircuit(qreg, creg)

circuit.h(0)

circuit.cx(0, 1)

circuit.cx(1, 2)

circuit.measure([0,1,2], [0,1,2])

Figure 3.1: Unequal classical bits and qubits

3.2.1 Unequal Classical Bits and Qubits

In Qiskit, each classical bit in the classical register stores a measured qubit value.

Therefore, it is better to initialize quantum registers of the same size as classical reg-

isters. Otherwise, the bug pattern of “Unequal Classical Bits and Qubits” may occur,

especially when the number of qubits in the quantum register is greater than that of

classical bits in the classical register. From the point of view of program integrity, ev-

ery used qubit should be measured. As shown in Figure 3.1, when we want to measure

the third qubit, we receive an error message CircuitError: ‘Index out of range.’ If we

do not measure one of the qubits, a qubit will not get reset.

Another case is that the number of bits in the classic register is larger than the

qubit. Unless we encounter the need to use multiple classical bits to store a qubit

measurement, otherwise, this is not a good habit. On the one hand, resources are

wasted when the program is actually developed, and on the other hand, outputting all

classic bits will cause messy results. Therefore we do not recommend this operation.

17



qc = QuantumCircuit(3,3)

gt = Gate(’my_custom_gate’, 3, [])

qc.h(0)

qc.sdg(0)

qc.y(1)

qc.append(gt, [0,1,2])

qc.add_calibration(gt, [0,1,2], schedule)

qc = transpile(qc, backend,

basis_gates=[’u1’,’u2’,’cx’, gt])

qc.measure([0,1,2], [0,1,2])

Figure 3.2: Custom gates not recognised by Qiskit

3.2.2 Custom Gates not Recognised

When defining a custom gate in a program, some programmers will want to define a

basic gate that directly controls more than two qubits; the bug pattern Custom gates

not recognized by Qiskit may occur. This pattern refers to a custom gate that does

not use the gate class provided by Qiskit correctly. Alternatively, the gate is not rec-

ognized by Qiskit. An example of an error code is shown in Figure 3.2, which is a

program that tends to define a three-qubit controlled gate. The user defines a gate

named my custom gate using the Gate method and controls the number of qubits to

three. When we call this gate, the program will have an error. Because in basic gates,

the custom gate gt is not the same as other Qiskit-based gates.

This bug pattern is mainly caused by programmers who do not really understand

quantum gates. Quantum gates can only control a maximum of 2 qubits and are known
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num qubits = 1

tl circuit = TwoLocal(num qubits, [’h’, ’rx’], ’cz’,

entanglement=’full’, reps=3,

parameter prefix = ’y’)

tl circuit.draw(output = ’mpl’)

Figure 3.3: Insufficient initial qubits

as basic gates. The compound gates we usually use, such as the double-controlled

gate CCX (Toffoli) [47], do not directly control three qubits. Instead, multiple single-

qubit and controlled gates are combined, resulting in a dual-controlled gate effect. The

correct custom gate should be a composite gate combining the basic gates provided by

Qiskit and applied to the circuit.

3.2.3 Insufficient Initial Qubits

When the TwoLocal method is used, a dual-local parametric circuit consisting of al-

ternating rotating and entangled layers can be formed. The two-local circuit is a pa-

rameterized circuit consisting of alternating rotation layers and entanglement layers.

Suppose the number of qubits of the variational form does not match. The bug Pattern

“Insufficient Initial Qubits” may occur. As shown in Figure 3.3, which is part of the

code for the Variational Quantum Eigensolver (VQE) algorithm. When defining the

VQE solver, method TwoLocal is used. As the num qubits is set to 1. In addition, the

value of num qubits is replaced by any other value that does not match, and the de-

sired result is not obtained. So it is important to initialize the values supported by the

parameter num quibits when using parametric circuits or methods involving quantum

entanglement.
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3.2.4 Over Repeated Measurement

Some simulator backends cannot execute the circuit when the measurement operation

performed on the qubit is repeated too many times. Alternatively, when some methods,

such as c if, are called but do not give the correct result. This situation may lead to

the bug pattern of “Over Repeated Measurement.”

def get_circuit(n):

qreg = QuantumRegister(1)

creg = ClassicalRegister(n)

mreg = QuantumRegister(1)

dreg = ClassicalRegister(1)

circ = QuantumCircuit(qreg, mreg, creg, dreg)

for i in range(n):

circ.measure(qreg[0], creg[i])

circ.x(mreg[0]).c_if(creg, 0)

circ.measure(mreg[0], dreg[0])

return circ

b_aer = BasicAer.get_backend(’qasm_simulator’)

aer = Aer.get_backend(’qasm_simulator’)

circ65 = get_circuit(65)

print("65clbits(Aer):",execute(circ65, aer).result().get_counts())

print("65clbits(Basic_Aer):",execute(circ65, b_aer).result().get_counts())

Figure 3.4: Over repeated measurement

To show this bug pattern, consider the piece of code in Figure 3.4. This test re-
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peatedly measures quantum characteristics in a computing backend simulator. We use

the Qiskit “Aer” simulator backend and the Python-based quantum simulator module

“BasicAer” to simulate the circuit qasm simulator. The same qubit is used multiple

times here. When we call BasicAer, the system may report an error that the number of

qubits is greater than the maximum (24) for qasm simulator. Also, the c if method we

called did not get the desired result on the “Aer” backend simulator. The qubits of the

mreg register did not achieve flipping. While the code circ.x(mreg[0]).c if(creg,0)

did not achieve. And if n=63 in the classic register creg, the system will hang.

In summary, we do not recommend excessive measurement operations on qubits.

The measured qubit is placed in the first position of the quantum register, and then the

measurement is placed in the second position. Such repeated operations are equiva-

lent to operating “N” multiple qubits. As a result, it can make the system extremely

unstable.

3.2.5 Incorrect Operations after Measurement

When the measurement is completed, we cannot use the measured qubit for entan-

glement. Otherwise, we will not get the desired result. The measurement result

can be treated as a classical value that no longer has the properties that the qubit

has. If the measured value continues to be entangled with other qubits, which is

used to change the target qubit state, it will be the bug pattern of “Incorrect Oper-

ations after Measurement.” Considering the code snippet in Figure 3.5 taken from

GitHub document [36], which realizes a quantum teleportation protocol. The last

qubit’s state in the code should be changed according to the first two bits’ measure-

ment results. The wrong instructions in the example are teleport.cx(tq[1],tq[2])

and teleport.cz (tq[0],tq[2]), which entangles the measured qubit with the un-
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tq = QuantumRegister(3)

tc0 = ClassicalRegister(1)

tc1 = ClassicalRegister(1)

tc2 = ClassicalRegister(1)

teleport = QuantumCircuit(tq, tc0,tc1,tc2)

teleport.h(tq[1])

teleport.cx(tq[1], tq[2])

teleport.ry(np.pi/4,tq[0])

teleport.cx(tq[0], tq[1])

teleport.h(tq[0])

teleport.barrier()

teleport.measure(tq[0], tc0[0])

teleport.measure(tq[1], tc1[0])

teleport.cx(tq[1], tq[2])

teleport.cz(tq[0], tq[2])

teleport.measure(tq[2], tc2[0])

backend = Aer.get_backend(’qasm_simulator’)

job = execute(teleport, backend, shots=1, memory=True).result()

result = job.get_memory()[0]

print(job.get_memory()[0])

Figure 3.5: Incorrect operations after measurement

measured qubit and therefore affects the result of the last qubit. This mistake is quite

common, and many programmers inadvertently use measured qubits. In this program,

the correct code should be teleport.z(tq[2]).c if(tc0,1) as well as teleport.x

(tq[2]).c if(tc1,1).
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Although these erroneous operations follow quantum measurements, the reason for

this is a poor understanding of the effect of measurement operations on qubit states.

3.2.6 Unsafely Uncomputation

Qiskit is a compelling framework because it supports the automatic management of

qubits, i.e., there is no need to do the work of unallocated qubits manually. However,

different program languages (e.g., Q#) have their own implementations, which can

lead to exceptions in different backends and the need to manually unallocated qubits.

3.3 A Catalog of Bug Patterns in Qiskit

Quantum programming introduces new quantum-aware bug patterns that differ from

classical ones. These quantum bug patterns should be identified and presented with

a catalog. After introducing some bug patterns, in conjunction with section 2.1.3, we

summarized some error-prone features in quantum Programs:

• Initialization: A quantum program is a series of operations on qubits. The initial

stage is to initialize the quantum registers to store the qubits that need manipula-

tion. Then the classical registers are initialized to store the values of the measured

qubits. This stage does not include setting the quantum state, as the quantum

state setting needs to be implemented by a gate operation. Quantum and classical

registers do not have to be of equal initial size. We need to initialize as many clas-

sical bits as possible when we use multiple classical bits to store the same qubit

measurements. However, another case is that the initialized qubit is larger than

the classical bit. Since the programmer does not intend to measure some qubits,

it is assumed there is no need to initialize the classical bits equal to the qubits.
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Nevertheless, this is also the reason why most programs go wrong. So a hasty

initialization can cause some problems for subsequent programs.

• Gate Operation: The core of quantum computing is to operate on qubits. Qiskit

provides almost all the gates to implement algorithms in quantum programs [46].

To achieve the superposition of qubits, it must pass through the H (Hadamard)

Gate. To achieve ”entanglement” in the case of multiple qubits, it must pass

through the CNOT ( controlled-NOT) gate. Complex gate operations are decom-

posed into basic gates in quantum language and gradually realized. Controlled

gates are parameterized by two qubits, and double-controlled gates require three

qubits. However, this does not mean that the double-controlled gate operates on

three qubits at the same time. Many errors may occur when inappropriately using

gates that operate on the qubits multiple times.

• Measurement: When we want to obtain the output, we must perform a mea-

surement operation on the target qubit. The measured qubit is returned as the

classical state’s value, which no longer has superposition properties. So the qubit

that has been measured cannot be used as a control qubit to entangle with other

qubits. Although measurement is simple, the program executing a measurement

statement is very complicated. It requires thousands of projection measurements

of the qubits. Finally, it outputs all its possible results. Moreover, the number of

occurrences of the result is used to obtain the size of the probability of outputting

the correct value. Many errors start with the measurement statement because pro-

grammers do not really understand the effect of measurements on the state of

qubits.

• Deallocation: Resetting and releasing the qubits safely is crucial; otherwise, the

auxiliary qubits in the entangled state will affect the output. Deallocation is not
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considered a specific operation due to the power of Qiskit. We do not need to

reset the qubits manually. However, In some backends, not releasing all qubits

can be problematic. In other quantum programming languages, not handling all

the qubits in the entangled state can cause problems in the program or output

unsatisfactory values.

And in Table 3.1, we list the bug patterns in Qiskit we identified, including those

detail described in this section. To classify the bug patterns listed, we summarize the

description for each pattern by pattern name, category, symptoms, causes, and cures &

preventions. Note that this is just a preliminary list of bug patterns in Qiskit, and more

bug patterns will be added to the list as we get some new progress. In the current bug

pattern catalog in Table 3.1, we classify these bug patterns by initialization (1), gate

operation (2), measurement (3), and deallocation (4).

3.4 Threats to Validity

We next discuss the threats to the validity of this work. There are some external and

internal validities in this work. And the bug patterns identified by us are publicly

available for replicating.
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Table 3.1: A catalog of bug patterns in Qiskit

Bug Patterns Category Symptoms Causes Cures and Preventions

Unequal Clas-

sical Bits and

Qubits

1 Classical registers are not

large enough to store the

measured qubits

The initialized classical bits are

smaller than the qubits used or

to be measured

Try to initialize quantum and

classical registers of the same

size

Custom gates

not recog-

nized

2 The program is unable to

customize the gate function

and will often report errors

Creating gates that directly con-

trol more than three qubits does

not follow the principle of two-

qubit entanglement

Try to use the gates provided by

Qiskit for the implementation of

the algorithm

Over Re-

peated Mea-

surement

3 Output error or program

error when measuring the

same quantum bit multiple

times with a for loop

a number of measurements re-

peated several times

Reduction of meaningless mea-

surements.

Incorrect Op-

erations after

Measurement

3 Unable to get the desired

post-measurement result

Continued manipulation of the

qubit being measured, such

as changing its state or re-

entangling with other qubits

The measured result cannot be

used as a condition unless it is

re-operated and measured as the

initial qubit after reset

Unsafely Un-

computation

4 The program reports an error

or does not achieve the de-

sired result

Auxiliary qubits are not reset

and remain entangled with the

target qubit, which can affect

the results of the target qubit

measurement

Correctly reset or release all

qubits to ensure they are in their

initial or post-measurement

states

Insufficient

Initial Qubits

1 Causes VQE not to respect

the form of input variables

and outputs the wrong cir-

cuit

When the TwoLocal method

is used, a dual-local paramet-

ric circuit consisting of alternat-

ing rotating and entangled lay-

ers can be formed

When using parametric circuits

or methods involving quantum

”entanglement,” initialize the

values supported by the param-

eter num qubits.

Inappropriately

Modification

of Register

Size

1 Changing the register size

may cause the program to

report an error. Especially

for building complex cir-

cuits

Changing the size of a register

may change the hash value of

the register and its bits, thus pro-

hibiting it from being used as a

key for structures such as sets

It is possible to reinitialize the

registers. Otherwise, it is not

recommended to modify the

values of the registers without

changing the variable names

Method

measure all

3 The program typically out-

puts the results of all mea-

sured qubits. However, it

also outputs the classical

register values

When the measure all

method is used, the program

automatically creates a classical

register to store all the qubits

being measured

If we want to call the

measure all method to

measure all qubits, we do not

need to initialize the classical

registers
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3.4.1 External Threats

Since there are not enough bugs in other common quantum programming languages,

we only use Qiskit as our target language for defining bugs. Besides, the quantum pro-

gramming language is rapidly evolving, and some bug patterns might be fixed after this

work is presented. The main reason is that programmers writing quantum programs

are limited by the language itself. Such as the maximum number of qubits supported

varies depending on the design of the backend simulator for each language. As the

version of the quantum frameworks is updated, we believe that more qubits will be

supported for calls.

3.4.2 Internal Threats

We only identified bug patterns in Qiskit programming languages. Therefore, some

specific bug patterns regarding their applicability to other quantum programming lan-

guages have not been verified. However, the error-prone features we identified may

also manifest in other popular quantum programming languages prioritizing quantum

programming features over traditional programming language conventions. In future

work, we would like to validate our bug patterns in other quantum programming lan-

guages.

3.4.3 Verifiability

This threat concerns the possibility of replicating this research. we provide all the

necessary details to help researchers replicate this work. The replication package is

made publicly available at https://github.com/Z-928/Bug-Pattern.
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3.5 Conclusion

This chapter has identified some bug patterns in the quantum programming language

Qiskit to provide both researchers and programmers with a clear view of what kind of

bugs may happen in quantum programs and how to detect them. The study of bug pat-

terns mainly focuses on bug pattern symptoms, root causes, and cures and preventions.

These bug patterns are the first result of our research and do not use every possible

quantum-related construct or cover all characteristics of a quantum programming lan-

guage. New research should cover other remaining quantum-related constructs, as well

as the interactions between them.
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Chapter 4

Bugs4Q: A Benchmark of Existing

Bugs to Enable Controlled Testing and

Debugging Studies for Quantum

Programs

4.1 Overview

A benchmark suite should contain fail-pass pairs, consisting of a failed version, in-

cluding a test set that exposes failures, and a passed version, which includes changes

that fix failures. Based on this, researchers can evaluate the effectiveness of techniques

and tools for performing bug detection, localization, or repair. As a result, research

progress in testing and debugging depends on high-quality bug benchmark suites.

As the first step toward evaluating quantum software debugging and testing tools,

this Chapter proposes Bugs4Q, a benchmark of forty-two real, manually validated
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Qiskit bugs from three popular platforms (GitHub, StackOverflow, and Stack Ex-

change) in programming, supplemented with test cases to reproduce buggy behaviors.

Bugs4Q also provides interfaces for accessing the buggy and fixed versions of the

Qiskit programs and executing the corresponding source code and unit tests, facilitat-

ing the reproducible empirical studies and comparisons of Qiskit program debugging

and testing tools.

The rest of this chapter is organized as follows. Section 4.2 describes Bugs4Q, a

bug benchmark suite for Qiskit. Section 4.3 evaluates and discusses existing quantum

program testing tools. Section 4.4 is the threats to the validity of our work. And

concluding remarks are given in Section 4.5.

4.2 Bugs4Q Benchmark

This section details the process of building the Bugs4Q benchmark suite. We collect

the existing bugs in the version control history and the real fixes provided on GitHub,

StackOverflow, and Stack Exchange. Table 4.1 shows all the issues and questions

Table 4.1: The number of reproducible real-world bugs in Bugs4Q.

Platform Source Objectives Number of Items Reproducible Bugs LOC

GitHub IBM Qiskit Issues in Qiskit-related repositories 4621 20 510

StackOverflow IBM Qiskit Questions tagged with qiskit 465 7 263

Stack Exchange IBM Qiskit Questions with qiskit as keyword 4984 15 535

Total IBM Qiskit Issues and questions 10069 42 1308

presented to each platform, as well as the final numbers of corresponding real bugs that

are available in the bug database of Bugs4Q. Besides, to achieve the benchmark rigor,

each real bug must have its original bug version and a fixed version, which requires us
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to extract the relevant description of the bug and refer to its fixed commit. Moreover,

the bugs we collect must comply with the following requirements:

• Written by the users. We only collect buggy programs written by the users

of Quantum platforms. For example, a user submits one program written in the

Qiskit language, and an error is caused by one or more lines of code that cause

the program to turn out differently than expected. In this case, the bugs caused

by Qiskit platform components are not part of our collection.

• Bugs from source code. We only focus on bugs in the source code that cause

the quantum program to fail. The fix of each bug only concerns the source code

program itself. The rest of the fixes would be ignored, such as Qiskit’s inter-

nal documentation and its explanatory documentation, changes to the internal

structure of Qiskit, and test files.

• Quantum-specific bugs. We only collect bugs that are related to quantum pro-

grams. These bugs should affect the operation or the result of the quantum pro-

gram. It is important to note that although some bugs occur in quantum pro-

grams, this does not mean that the bugs themselves are quantum related.

• Reproducible. As the bugs must be reproducible under certain conditions, we

have to perform multiple executions of one buggy program. Depending on the

nature of a quantum program, for example, the presence of probabilistic output

causes the program to be unable to reproduce the results thoroughly. It may lead

to bugs that are difficult to reproduce in a controlled environment.

• Isolated. Bug fixes should be related to the source files. Irrelevant changes need

to be removed. Such as code refactoring due to version changes, fixes unrelated

to the current bug, and bug fixes based on other irrelevant fixes. Overly complex
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changes to source files would be incorporated into our database after careful

verification of isolation.

• Valid pre- and post-fixing codes. To write test cases, The programs are required

to have complete pre- and post-fixing code. During the collection process, we

only use the developer’s feedback to confirm whether the changes were suc-

cessful. However, the validity of the changes can be thoroughly checked when

writing the tests.

Figure 4.1: The overview of the building process of Bugs4Q benchmark.

Figure 4.1 depicts the primary process of building our benchmark. We first choose

Qiskit as our target quantum programming language and search programs from three

popular platforms: GitHub, StackOverflow, and Stack Exchange. Next, we collect the

issues and questions with qiskit tags together. We manually check the source code

and sift through the bugs without fixes. We execute the buggy and fixed source code

versions for dynamic validation to confirm that the bugs are reproducible and success-

fully fixed. Finally, we manually write unit tests for the buggy and fixed versions and

provide the test coverage for each bug. At this point, the Bugs4Q benchmark database

can be successfully constructed.
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The bugs in our database are classified by the place of collection (i.e., platform),

as shown in Table 4.1. The final number of bugs in Bugs4Q is 42. Moreover, the LOC

shows that quantum programs are generally small, as conventional computers cannot

simulate large-scale qubits manipulation. Besides, each bug corresponds to two unit

tests, one for the buggy version and the other for the fixed version.

4.2.1 Selecting Subject Programs

We first choose Qiskit as our target quantum programming language and try to select

large-scale quantum programs on GitHub. Besides, we target the official projects of

Qiskit, proposed by IBM (e.g., Terra1, Aer2, Ignis3, and Aqua4). As quantum pro-

gramming is still preliminary, many developers write programs based on the algorith-

mic procedures presented in the official IBM documentation. In addition, most of the

bug reports are raised to the official repository. Also, the Qiskit platform has several

issues that need to be addressed and is constantly updated. So the need for feedback

on many issues has led to many bug reports being submitted. As a result, we examined

all of Qiskit’s sub-project systems on GitHub and selected the issues tag as our target

item. Since most of the reports with bug tags refer to the bugs of the Qiskit platform

rather than the program bugs written by developers, we checked all issue reports in

case some bugs were missed.

StackOverflow and Stack Exchange are popular Q&A sites in programming, in-

cluding many bugs raised by programmers that come from programs written by them-

selves. We entered ”qiskit” as the search keyword in StackOverflow and Stack Ex-

change and chose questions with the qiskit tag as our target.

1https://github.com/Qiskit/qiskit-terra
2https://github.com/Qiskit/qiskit-aer
3https://github.com/Qiskit/qiskit-ignis
4https://github.com/Qiskit/qiskit-aqua
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The selected project programs cover almost all the bugs on the three platforms. We

believe that the buggy programs found and filtered on this basis are somewhat universal

and convincing.

4.2.2 Bugs Collection

We next detail the different ways to collect bugs from GitHub, StackOverflow, and

Stack Exchange. In addition, we discuss the unit tests for quantum programs and our

collecting results.

Collecting Bugs from GitHub

For each subject we select, all the bugs with source code have been collected, no matter

whether the bugs are in open or closed status. Bugs in closed status mean that they have

been resolved or disappeared due to version change. For bugs in open status, some-

times we could find bugs that meet the requirements to be resolved simply because the

issue has not been closed in time. During the process of our bug collection, there were

many program bugs proposed by developers. However, due to the preliminary stage of

quantum programming, there are also many problems with quantum programming lan-

guages, which lead to lots of bug reports submitted on GitHub related to Qiskit itself

(i.e., platform related [43]). Especially reports with the bug tag are mainly platform

bugs. So all the items in the issue tag should be checked in this step. We collect bugs

and fixes according to their IDs (e.g., #37991.) The link to each passed report is copied

to the Bugs4Q benchmark database with a new ID added for further filtering.

1https://github.com/Qiskit/qiskit-terra/issues/3799

34



Collecting Bugs from Other Platforms

We searched for bugs on Stack Overflow from the page of ”Questions tagged [qiskit]1,”

and found more than 150 questions. For Stack Exchange, we searched for qiskit as

a keyword and found over 3500 questions which are proposed by developers2. All

the questions were checked individually, and our recording method was the same as

collecting bugs from GitHub.

Unit Test

The unit tests for Qiskit only exist in the official Qiskit library3 for testing each func-

tion. And all these unit tests serve only the Qiskit language and some example pro-

grams. There are no unit tests for defective programs provided by Qiskit users. As the

first step in this work, we manually write unit tests for buggy and fixed versions of each

bug. Qiskit provides the QiskitTestCase class inheriting from Python’s unittest that

can be used to write unit tests for the buggy and fixed programs in Bugs4Q.

Collecting Results

After going through all the questions and issues on these three platforms, we have

collected 346 bugs from 10069 items and put them into the Bugs4Q database. These

bugs include fixes and source code. Many questions and issue reports are mainly for

environment configurations, such as errors in installing and importing packages and

version changes, which are not our targeted bugs. Besides, only the source code of the

buggy programs and their fixes are collated in the Bugs4Q database. We have filtered

out any description files and test files in this step.

1https://stackoverflow.com/questions/tagged/qiskit?tab=Newest
2https://stackexchange.com/search?q=qiskit
3https://github.com/Qiskit/qiskit/tree/master/test, etc.

35



Table 4.2: Criteria for fixing quantum bugs.

Criteria Description

Isolation Each fix submission can only address one bug, and that bug cannot exist on top of any other bugs

Reconfiguration Fixed commits are file rewrites caused by refactoring or version changes

Dependencies The fixed commit introduces a new library

Platform Irrelevant The fixes do not involve changes to the internal files of the Qiskit framework

4.2.3 Manual Verification and Code Completion

After collecting all the bug reports with source code in our database, we manually

inspect each bug with its submitted fixes. For bug fixing, we propose several criteria

as shown in Table 4.2. We only consider bugs that have been fixed and are fully

reproducible. So the bugs caused by the Qiskit programming language and unrelated to

quantum programs should be filtered out. We also discard the case of having multiple

fixes for bugs, i.e., having various fix links. Besides, bugs that disappear due to version

changes are also not considered.

We first examine the source code of each bug manually. The ultimate indicator is

whether the source code is quantum-relevant (i.e., whether it operates on qubits). The

specific operations on qubits are described in detail in Section 2.1.3 of the quantum

program features. On the other hand, verifying whether the program supports the

entire run is necessary since many submissions are incomplete in the source code. In

addition, some of the program code is pseudo-code or QASM code [46], which is

not supported to run in the Qiskit environment. Next, we copy the code to our local

repository if the source code meets the requirements and create a new .py file to be

placed in the corresponding bugID. With this comes the collection of bug commit

information, specifically the current version, commit date, fix status, and bug type.
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Afterward, we verify the fixes in bug reports. The main focus is finding the correct

bug fixes from the various comments. Besides, as most of the fixes are only for buggy

lines in a program, and there is no automated bug-fixing tool for quantum programs,

we need to manually patch the repaired program to make it a complete program that

can run successfully. A fixed program is saved to a local .py file, and another file will

be created with the modified part. The three authors divided all the bugs equally and

filtered the assigned bugs to complete the manual validation. After the above analysis

steps, each author marks the uncertain buggy programs and discusses them together

until they reach a consensus. All bugs that pass the validation procedure have remained

in the Bugs4Q database.

The results of our manual validation are shown in Table 4.3. The initial number

of bug reports which have source code is 346. There are 206 bugs (over 25k LOC,

including fixes) related to the Qiskit language itself, which leads to only 146 (about

3172 LOC) quantum program bugs remaining. And the final number of bugs after

a manual verification is 84. The filtration of platform bugs is based on whether the

committed fix is a Qiskit internal file. In addition, 27 bugs have no fixed code, which

prevents us from determining exactly where or how to fix them. Moreover, 35 bugs do

not support execution due to incomplete or no source code. In this process, We found

that only the source files have been modified for almost all the bugs we collected,

and there are two main reasons for this situation. Firstly, the difficulty of simulating

large quantum programs by classical computers has limited quantum programs to more

straightforward functions. Therefore, no other documents are needed to constitute the

project. Secondly, many programs written by programmers at this stage are designed

to learn and explore quantum languages. For example, some programs attempt to

incorporate QFT circuits into the code to reproduce existing algorithmic procedures.

Due to the need for dynamic validation, we have to manually restore both the buggy
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qc = QuantumCircuit(4, 4)

qc.cx(3, 1)

qc.cx(1, 0)

qc.cx(0, 1)

qc.ccx(3, 2, 1)

qc.cx(1, 2)

qc.cx(3, 2)

qc.measure([0,1,2,3], [0,1,2,3])

job = execute(qc, backend = Aer.get_backend(’qasm_simulator’), shots=1024)

result = job.result()

count = result.get_counts()

print(count)

Figure 4.2: The source code of a buggy program.

and the fixed versions. As an example, Figures 4.2 and 4.3 show the buggy and fixed

versions, respectively, of one program1 in our database for dynamic verification.

4.2.4 Dynamic Validation for Reproduction

This section describes the process of dynamic validation as well as the way we repro-

duce bugs. Most bugs we would like to reproduce depend on the programs executed by

Qiskit simulators. Therefore, the recurrence process is implemented manually on our

PC side. We also try to reproduce the operations performed in the IBM cloud backend

as much as possible. The specific rules are the same for manual verification, as shown

in Table 4.2. We separate each bug, clean up irrelevant changes in advance, ignore

some description files, and keep only the source code related to the bug and the fix.

1https://quantumcomputing.stackexchange.com/questions/18448/how-to-perform-a-plot-
histogram-for-a-circuit
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qc = QuantumCircuit(4, 4)

for i in range(4): <- Modify(Mod)

qc.h(i) <- Modify(Mod)

qc.cx(3, 1)

qc.cx(3, 1)

qc.cx(1, 0)

qc.cx(0, 1)

qc.ccx(3, 2, 1)

qc.cx(1, 2)

qc.cx(3, 2)

qc.measure([0,1,2,3], [0,1,2,3])

job = execute(qc, backend = Aer.get_backend(’qasm_simulator’), shots=1024)

result = job.result()

count = result.get_counts()

print(count)

Figure 4.3: The source code of a fixed program by manual completion.

Considering the initialized part as the input of a quantum program, we can see that

any qubits have the value of |0⟩ by default from Figure 2.1. Moreover, adding a phase

gate to the program is necessary if the value needs to be changed. Such as, we can add

an X (NOT) gate to flip the value of the initial qubit from |0⟩ to |1⟩. Therefore, we

consider that modifying the input or adding or removing the number of qubits can result

in modifications to the program itself. So the way we verify and reproduce quantum

programs is different from the traditional way because we cannot modify the program

itself, i.e., we cannot change the input values of the program. Instead, the only way is

to run the source program multiple times and see if the results are the same as described

in the bug report. The reason is that the output of a quantum program is not constant.
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Table 4.3: Statistics for manual validation, dynamic validation, and writing unit tests.

Description Count

Initial number 346

Manual validation

Platforms bug 206

Incomplete source code 35

No fix code 27

After manual validation 84

Dynamic validation

Fixes not work 4

Bug not as described 12

Source code can not run 21

The buggy version runs smoothly 5

After dynamic validation 42

Unit tests

Can not catch exceptions 3

Output is matplotlib diagrams 4

No output 2

Output too complex 3

Final number 30

We also need to get the output of each quantum program and check the probability

of getting the result after the measurement. In the dynamic validation process for one

bug, we first configure the environment based on the version information submitted by

the program raiser. After executing the buggy program in the configured environment,

the only result we could get is consistent with the description of the bug submission

message, which proves that the bug has been successfully reproduced. Next, the fixed

program version replaces the buggy program in the environment. If the bug disappears,

the program runs successfully and is consistent with the description of the fix, and the
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test passes.

After dynamic validation, there are 42 bugs retained in the bugs4Q database. Four

main reasons lead to bugs that can not pass through dynamic validation, shown in

Table 4.3. Firstly, three bugs were filtered out since their fixes did not work. Sec-

ondly, ten actual program bugs do not match the description in their bug reports. For

example, the wrong output of one quantum program is very different from the value

provided by the programmer. In addition, 19 buggy programs cannot be executed

smoothly, which differs from the second cause. This include four cases: ImportError,

NameError, AttributeError and ModuleNotFoundError. ImportError means the pack-

age in Qiskit could not be imported, which is an environmental problem. NameError

is a variable name not defined in the program. AttributeError is the case that an ob-

ject in Qiskit does not have this property. Moreover, ModuleNotFoundError means no

modules can be found in Qiskit. Such bugs affect the program’s execution and are not

fixed accordingly, nor can we resolve them during the reproduction process. Finally,

the source code of 4 buggy version programs runs smoothly as the bug has disappeared

due to a version change. The bugs in these cases are filtered out.

In summary, we have carefully examined 391 bug reports, and 42 reproducible

bugs were extracted. The three authors were jointly involved in resolving the disagree-

ments in the labeled programs. For the entire manual and dynamic validation process,

Cohen’s Kappa coefficient was 0.82, which implies approximate agreement.

4.2.5 Unit Tests and Coverage

Before writing unit tests, we need to figure out the characteristics of quantum program

bugs, particularly the problem of the probabilistic output of quantum programs. The

bugs that passed validation are classified into two broad categories: output wrong and
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throw exceptions. The wrong output of quantum programs can be divided into wrong

output values and wrong probability distributions. The program in Figure 4.2 is a typ-

ical wrong output caused by a bug, reflected in its probability distribution. The output

of this program is always 0000, which is not the correct result that the programmer

expects. Consider the source code in Figure 4.3, where there are four qubits in the

quantum register with a value of 0. Theoretically, the output value of this program is

between 0 and 24, with a probability of 6.25% to obtain respectively. As explained in

Section 2.1.1, shots=1024 while the result is the output count. The number of occur-

rences of each value between 0 and 16 should theoretically be evenly distributed, i.e.,

64 times per value. However, in practice, the actual outputs of each probability would

not be accurate. This program’s correct and incorrect output is shown in Figure 4.4.

Output wrong is mainly caused by the fact that the program’s output does not match

the results expected by the programmer.

Figure 4.4: The two outputs correspond to one program’s buggy and fixed versions,

respectively.

Another type of bug is throw exceptions, which can be caused by problems such

as Command Wrong, SyntaxError, and Command misuse. These bugs have a common

manifestation, i.e., the program does not execute smoothly but throws an exception
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instead.

Unit Test

class Test(QiskitTestCase,unittest.TestCase):

def test_b39(self):

qc = QuantumCircuit(4, 4)

qc.cx(3, 1)

qc.cx(3, 1)

qc.cx(1, 0)

qc.cx(0, 1)

qc.ccx(3, 2, 1)

qc.cx(1, 2)

qc.cx(3, 2)

qc.measure([0,1,2,3], [0,1,2,3])

job = execute(qc, backend = Aer.get_backend(’qasm_simulator’), shots=1024)

result = job.result()

count = result.get_counts()

print(count)

self.assertDictAlmostEqual(’0000’:64, ’0001’:64, ’0010’:64, ’0011’:64,

0100’:64, ’0101’:64, ’0110’:64, ’0111’:64, ’1000’:64, ’1001’:64, ’1010’:64,

’1011’:64, ’1100’:64, ’1101’:64, ’1110’:64, ’1111’:64,count,delta=30)

Figure 4.5: A unit test for output wrong (buggy version).

Since the existing quantum programs are small in size and most have only one bug,

unit tests are sufficient to target a complete quantum program of Bugs4Q. On the other

hand, it is hard to find out the test file written by the users of Qiskit. So we considered

writing unit tests for programs in Bugs4Q. Firstly, we determine the writing specifica-
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class Test(QiskitTestCase,unittest.TestCase):

def test_f39(self):

qc = QuantumCircuit(4, 4)

for i in range(4): ->Mod

qc.h(i) ->Mod

qc.cx(3, 1)

qc.cx(3, 1)

qc.cx(1, 0)

qc.cx(0, 1)

qc.ccx(3, 2, 1)

qc.cx(1, 2)

qc.cx(3, 2)

qc.measure([0,1,2,3], [0,1,2,3])

job = execute(qc, backend = Aer.get_backend(’qasm_simulator’), shots=1024)

result = job.result()

count = result.get_counts()

print(count)

self.assertDictAlmostEqual(’0000’:64, ’0001’:64, ’0010’:64, ’0011’:64,

’0100’:64, ’0101’:64, ’0110’:64, ’0111’:64, ’1000’:64, ’1001’:64, ’1010’:64,

’1011’:64, ’1100’:64, ’1101’:64, ’1110’:64, ’1111’:64,count,delta=30)

Figure 4.6: A unit test for output wrong (fixed version).

tion following the assertions in the unit test files provided by the Qiskit library, which

are used to test Qiskit compilers. Next, three authors wrote unit tests independently

in a uniform format. These tests focus on output wrong and throw exceptions. Both

types of unit tests are implemented as writing assertions. Each bug has two tests, one

for the buggy program and the other for the fixed program, while both tests have the

same function. Finally, we captured the program’s abnormal behavior and compared
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it with the bug description to check their correspondence. Moreover, we also executed

the test file of the fixed program to verify whether the bugs had disappeared.

class Test(unittest.TestCase):

def test_b19(self):

try:

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

qc.draw(’mpl’)

qi.Operator.from_label(’HI’)

qi.Operator.from_label(’CX’)

except Exception as e:

print(’Reason:’, e)

else:

self.fail(’There is no error raised’)

Figure 4.7: A unit test for throw exceptions (buggy version).

The unit tests for buggy and fixed versions about output wrong can be seen in

Figures 4.5 and 4.6, respectively. For one bug, the unit tests of the buggy and fixed

versions have the same assertions, which can visually compare the test results of the

two program versions. In this example, we use assertDictAlmostEqual as an assert

method to check the probability distributions and report failures. The parameter delta

indicates the upward and downward fluctuations concerning the specified number of

output counts. This work specifies that the test is passed if the fluctuation value is

within 30. A test result for a buggy program would fail while a fixed version would

pass the test. The examples of unit tests for throw exceptions can be seen in Fig-

ures 4.7 and 4.8. In Qiskit, some exceptions do not exist in the assertions contained in
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class Test(unittest.TestCase):

def test_f19(self):

try:

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

qc.draw(’mpl’)

qi.Operator.from_label(’H’) ->Mod

qi.Operator.from_label(’X’) ->Mod

except Exception as e:

print(’Reason:’, e)

else:

self.fail(’There is no error raised’)

Figure 4.8: A unit test for throw exceptions (fixed version).

unittest.testcase, such as QiskitError. In this case, we can only detect the pres-

ence of an exception and cannot use the assertEqual method. As shown in Figures 4.7

and 4.8, the test passes if an exception is caught for programs that throw exceptions.

Otherwise, the test fails if no exception is caught.

The final number of bugs with unit tests is shown in Table 4.3. Some reasons

lead to us being unable to write tests successfully. Two bugs threw exceptions that

were already caught and handled internally by the Qiskit platform, so they prevented

our unit tests from catching the exceptions. Four programs had an output that was

an image generated using the matplotlib package of Python, which prevented us from

writing assertions in our test cases. In addition, two programs had no output, and three

programs had output but were too complex to generate unit tests. As a result, of the 42

reproducible bugs in the Bugs4Q benchmark, 30 bugs and their fixes have unit tests.
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Coverage

In this work, we used Coverage. py, a tool for measuring code coverage of Python

programs to measure our unit test coverage. The validity of existing coverage criteria

for real-world quantum program bugs is unclear. In this case, we first tried to apply

the most intuitive statement coverage to the bugs4Q benchmark. We selected a repre-

sentative sample of 14 programs for validation. The statement coverage of the buggy

programs and their unit tests are shown in Table 4.4. From the data of coverage, we

can conclude three kinds of information:

• The coverage of both source code and unit tests is 100%. The program executed

successfully and got the error output. From Figure 4.5, we can see that there is

no branching in the assertions on the output of the program. Therefore, the bugs

must fall into the wrong output category.

• Only the source code has been fully covered. The program has multiple outputs

resulting in the need for multiple assertion validation. Or the program throws an

exception on the last line.

• Neither the source code nor the unit tests are 100% covered. The program runs

interrupted and throws an exception.

Considering only the statements of the program, the effect of statement coverage in

a quantum program is not much different from that of a traditional program. However,

the source code and the unit tests contain definitive statements, and we could not screen

them. For example, the unit test for bug No.1 has nine traditional statement lines than

the source code, while the coverage is almost the same. Therefore, proposing a new

statement coverage for quantum programs is necessary and remains challenging.
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Table 4.4: The coverage of source code and unit tests.

Source Code Coverage Unit Test Coverage

BugID Stmts Miss Cover Stmts Miss Cover

No.01 4 0 100% 13 1 92%

No.07 28 0 100% 36 1 97%

No.08 16 0 100% 23 1 96%

No.10 4 0 100% 10 0 100%

No.12 9 0 100% 20 7 65%

No.17 11 0 100% 17 0 100%

No.18 19 2 89% 19 2 89%

No.20 15 2 87% 24 3 88%

No.24 8 0 100% 14 2 86%

No.25 24 0 100% 27 7 74%

No.26 13 0 100% 20 0 100%

No.28 4 1 75% 14 2 86%

No.31 13 0 100% 19 0 100%

No.39 17 0 100% 25 5 80%

4.2.6 Bugs4Q Benchmark Framework

The construction of the Bugs4Q benchmark framework can be divided into three main

steps: building the database, storing programs as modules, and implementing the user

interface. As a result, the structure of the Bugs4Q framework is shown in Figure 4.9.

Bugs4Q Database.

At first, we made our buggy programs public via the GitHub repository. The example

bugs were added to our database as shown in Table 4.5. According to the source of

48



the bug information (i.e., Github, StackOverflow, and Stack Exchange), we divided

the bugs into three groups, respectively. To document each bug in detail, Issue No

links to the original report. And we described each bug and linked it to a local file in

our organization to make it easy for users to directly access the information of Buggy,

Fixed, Modify, and Test.

Table 4.5: An example of the benchmark database for Bugs4Q.

Bug ID Issue No Buggy Fixed Modify Status Version Type Issue Registered Issue Resolved

1 #5908 Buggy Fixed Mod Resolved 0.17.0 Bug Feb 26, 2021 Mar 1, 2021

2 #664 Buggy Fixed Mod Resolved 0.4.1 Bug Mar 19, 2020 Mar 25, 2020

The Bugs4Q database allows users to access the bugs we collected directly without

downloading the framework. In addition, this makes building our underlying data store

easier in the form of modules. The Bugs4Q database also includes bugs of other quan-

tum programming languages, publicly available at https://github.com/Z-928/Bugs4Q.

The Construction of Repositories of Programs

We construct the Bugs4Q framework by constructing repositories to store all programs.

Here we describe the design of these repositories. As shown in Figure 4.9, each repos-

itory corresponds to a specific quantum programming framework. For example, the

first repository of Bug Repositories contains all programs written in Qiskit.

In each repository, we use Bug ID, a unique number, as the identifier for every bug

in Bugs4Q. Each bug is encapsulated into a corresponding module for easy expansion.

All the files related to a specific bug are put into one module. And the module number

is the same as the Bug ID. A module contains six parts:
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Figure 4.9: The overall structure of Bugs4Q framework.

• buggy. The name of one buggy program. Such as, buggy 1.py represents the

buggy version of the first program.

• fixed. The name of one fixed program. Such as fixed 1.py represents the fixed

version of the program.

• info. The name of a CSV file which means the file contains information about

the program. Such as info 1.csv.

• modify. The name of a text file. The file contains the result of comparing

the buggy and fixed programs, which are generated using the diff command in

Unix-like systems.
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• test b. The name of a Python file, which means the file is used to verify the

bug’s existence in the buggy version of the program.

• test f. The name of a Python file, which means the file is used to verify the

success of fixing the program bug.

There are 42 modules in the Bugs4Q framework. And all of them belong to the

qiskit repository. We would like to collect bugs written in other quantum programming

languages to enrich our repositories.

Command-line Interface

After the benchmark program repository has been constructed, we need a convenient

way to run these programs of the repositories. Therefore we developed a command-line

interface for users of this benchmark. Our command-line interface program (main.py)

is implemented with Python. We use the package argparse to deal with all operations

related to command-line processing. To use the command-line interface, ensure the

environment is set up in which Python 3.6 or above and the corresponding package

are installed. So far, we have only created one repository for Qiskit. Repositories

for other quantum programming frameworks are being constructed, and we will make

them publicly available in the future.

Next, we briefly introduce the commands of Bugs4Q. Commands python main.py

-h and python main.py --help can be used to get help. The command-line interface

has four functions:

• Info Command. This command can be used to show information about the

benchmark. The detailed description of all arguments of the info command is

displayed if we type the following commands into the computer.
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• Checkout Command. This command generates the source files for a given bug

within a directory that one can specify.

• Run Command. The run command is used to run the buggy or fixed version of

a given bug.

• Test Command. Test cases related to a given bug can be executed using the test

command.

Bugs4Q framework simplifies the implementation of experimental tools in quan-

tum software testing research. It has a uniform interface for checking out buggy and

fixed program versions and provides uniform access to program information and source

code. Besides, the Bugs4Q implementation framework has few requirements for the

environment and is easy to use. It is also extensible because a bug’s information can

be integrated into a module so that new bugs can easily be added to the database as

modules. The source code can be executed directly to support new testing and repair

tools. The unit tests in Bugs4Q can provide direction for improving the unit testing

schemes for quantum programs.

4.3 Evaluation and Discussion

Next, we present the results of our evaluation of the performance of some existing test-

ing tools based on Bugs4Q. Based on this, we discuss possible combinations between

existing tools and the Bugs4Q framework and potential applications of Bugs4Q.

4.3.1 Evaluation of Testing Tools

Several test case generation methods for quantum programs have been proposed. For

example, Quito [60] provides three coverage criteria for quantum programs and their
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test generation strategies. QuSBT [58] is a search-based testing method that designs

30 buggy versions for six quantum programs to demonstrate their effectiveness. In this

section, we execute these two testing tools on programs in Bugs4Q. The experiments

were conducted on a server with an Intel i9-10940X CPU, 128G RAM, running on

Ubuntu 20.04 with Python 3.10 installed. We set the parameters of the two tools to be

the same for all the under-testing programs. The selected programs in Bugs4Q must

meet two criteria: 1) The program needs to be fully executed, and the output exists. 2)

The program meets the requirements to support the execution of Quito and QuSBT.

Table 4.6: Evaluation of test cases generation tools.

Bugs4Q QuitoIC QuitoOC QuitoIOC QuSBT

Bug ID tests failOPO failWOO tests failOPO failWOO tests failOPO failWOO tests failwod f failuo f

buggy 10 400 0 0 400 0 0 400 0 0 500 0 0

buggy 12 800 16 0 4000 16 0 4000 16 0 500 500 0

buggy 17 1 0 1 1 0 1 1 0 1 500 0 500

buggy 21 1 0 1 1 0 1 1 0 1 500 1 446

buggy 25 1 0 1 1 0 1 1 0 1 500 0 500

buggy 26 2 0 1 5 0 1 1 0 1 500 0 500

buggy 31 1 0 1 1 0 1 1 0 1 500 0 391

buggy 39 3200 256 0 4000 256 0 3200 256 0 500 500 0

The experiment results are shown in Table 4.6. Firstly, IC, OC, and IOC repre-

sent the three coverage criteria in Quito, respectively. Next, in simple terms, failWOO

and failuo f represent the quantum programs failed by the wrong output value of the

program while failOPO and failwod f represent the wrong probability distribution of

output values. Finally, the number of tests generated by QuSBT is set manually. As a

result, both testing tools have found the test cases that lead to program failures. From

buggy 10, we can find the bugs would not affect the output values of the program.
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It may only lead to circuit diagram generation errors. The results of buggy 12 and

buggy 39 show that QuSBT performs better in finding the wrong probability distribu-

tion. And for other defective programs, Quito gives a more intuitive result for value

errors, which is more efficient. In addition, QuSBT would give the optimal solution

for each program in the generated test cases.

4.3.2 The Combination between Existing Tools and Bugs4Q

In addition to Quito and QuSBT, several other works have contributed to advancing

quantum program testing. QuCAT [57] provides two schemes for generating combina-

torial test suites and argues that the more intense combinatorial tests are more effective

than the less intense ones. Muskit [39] is a quantum mutation analysis tool for the

Qiskit language, focusing on mutation operators for quantum gates. QMutPy [17] can

generate effective mutation programs for measurement calls and many quantum gates.

Fortunato, Campos, and Abreu [16], in their case study, demonstrated the validity of

QMutpy and indicated that mutants in QMutPy matching real-world bugs would be

available to other quantum languages.

Given the practical benefits of these tools, we would like to combine them with

Bugs4Q:

• It is possible to further apply Quito, QuCAT, and QuSBT to Bugs4Q programs,

thus adding more possibilities for testing real-world Qiskit programs. And the

only major challenge is to extend these tools to support quantum programs with

different coding styles.

• QMutPy gives mutation scores from program source and unit test files, which

Bugs4Q can provide. And the only challenge is to modify the programs and

unit tests in a way that MutPy can support. On the other hand, Muskit defines
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selection criteria to reduce the number of mutants generated and simplify test

analysis. Therefore, if the mutation tool can match all programs of Bugs4Q, it

will further facilitate the mutation testing of real-world quantum program bugs.

As more tools and methods for testing quantum programs become available, there

is an urgent need for a benchmark of real bugs generated by programmers during the

practical development of quantum software to enable the evaluation and integration

of these tools and methods. The Bugs4Q framework currently supports and requires

integrating test methods and coverage criteria. We are also keen to apply these testing

tools to Bugs4Q.

4.3.3 Possible Uses of Bugs4Q

We next discuss some possible uses of Bugs4Q in quantum software engineering ac-

tivities.

Testing of Quantum Programs

In quantum program testing, challenges remain in generating valid test cases for real-

world bugs. Bugs4Q can assist with research related to quantum program testing. In

detail, the source code of buggy programs can be used to help test tools measure their

effectiveness against real-world bugs.

The Bugs4Q framework facilitates researchers to provide APIs for testing, code

coverage, etc. Modular handling of bugs makes the Bugs4Q framework well-extensible.

The unit tests and statement coverage for each bug make comparing different testing

methods and coverage criteria easy. Most bugs we collected are related to quantum

properties, so efficient testing methods are urgently needed to detect them.

55



Quantum Program Analysis

During the execution of quantum programs, we cannot read the internal state of qubits

due to the non-cloning principle, and the measurement of qubits will destroy the state

of qubits, so the running cost of dynamic techniques will be relatively high. On the

other hand, due to the unique nature of quantum programs, the existing static analysis

tools for classical programs are insufficient to support the analysis of quantum pro-

grams, and we need to develop new methods for the analysis of quantum programs.

Using the bug information provided in Bugs4Q, we can identify and summarize the

bug patterns in quantum programs, and this information can be used to develop prac-

tical analysis tools to detect and prevent bugs in quantum programs. Researchers can

also use Bugs4Q as a benchmark to evaluate the effectiveness of static analysis tools

for quantum programs.

Bug Localization of Quantum Programs

The Bugs4Q benchmark is an essential resource for developing bug localization tools

for quantum software. Its diverse and standardized set of bugs enables researchers to

evaluate the effectiveness of various bug localization techniques. Bugs4Q allows re-

searchers to compare and contrast different methods, identify their strengths and weak-

nesses, and improve upon them by providing a testbed for new bug localization meth-

ods. Bugs4Q also encourages the development of new approaches better suited to the

unique challenges of quantum programming. We believe that the Bugs4Q framework

for evaluating and improving bug localization techniques may potentially accelerate

the development of high-quality quantum software.
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Automatic Repair of Quantum Programs

The Bugs4Q benchmark contains a diverse set of quantum-specific bugs that can be

used to evaluate the effectiveness of repair techniques for quantum software. It in-

cludes a range of bug types, such as initialization errors, measurement errors, and

incorrect use of quantum gates, making it a valuable tool for testing the resilience of

repair techniques in the face of multiple types of bugs. The benchmark also provides

the source code of both the buggy and fixed programs, allowing developers to verify

repaired code and compare repair techniques. Currently, there is a lack of automatic

repair techniques for quantum programs. However, recent work on mutation analy-

sis [16, 17, 39] and assertion-based techniques [26, 32, 32, 33, 50, 67] offers promising

approaches for developing such techniques. By providing a framework for evaluating

these state-of-the-art methods, Bugs4Q can guide and support the development of re-

pair technologies for quantum software.

4.4 Threats to Validity

In this section, we consider the threats to the validity of our work from both external

and internal perspectives. The verifiability of bugs4Q accompanied us.

4.4.1 External Threats

External threats are mainly in the form of limits on the number of bugs. Constructing

the Bugs4Q benchmark, we found that the most significant limitation currently is the

need for more quantum software projects (programs). Although some quantum pro-

gramming languages [8, 19, 51, 52] have emerged, we tried to collect as many bugs

as possible from projects developed in these languages, and we found that many of
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them are not filtered enough to create a benchmark. In addition to the Qiskit language,

we found similar bugs in other languages as in Qiskit. Table 4.7 shows the number of

bugs in programs developed in several common quantum programming languages. All

bugs are accompanied by their corresponding source code, and the corresponding fixes

have been submitted. Among them, the Initial number refers to the number of buggy

programs with fixes before verification, and the Final number refers to the number of

buggy programs that can be reproduced after manual and dynamic verification.

In summary, even for the most widely used Qiskit quantum programming language,

there are still not enough bugs for research. Moreover, existing quantum programs

are usually run on simulators rather than on real quantum computers, which leads to

the small size of current quantum programs. As a result, the collection of 42 buggy

programs for Qiskit that we have discussed in this paper is already the largest and most

typical of the buggy programs. This limitation will gradually be lifted as quantum

programming languages become widely used. And we will continue to collect new

bugs and update Bugs4Q in our future work.

Table 4.7: The bug numbers in common quantum programming languages.

Language name Initial number Final number

Cirq 20 7

Q# 21 2

ProjectQ 3 0

ScaffCC 1 0

Total 44 9
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4.4.2 Internal Threats

Although we have tried our best to collect as many bugs as possible, due to the current

number and size of quantum programs, we have not comprehensively collected all

possible types of bugs in quantum programs, which requires our continuous attention

in future research. In addition, although we have successfully reproduced the bugs

we have collected, it is difficult to write corresponding unit tests for some bugs. For

example, Qiskit has internally caught Exceptions, which leads to our unit tests being

unable to catch the bug.

Regarding the bugs themselves, we have yet to determine if some bugs in Bugs4Q

are related to quantum features. For example, for the bug type output wrong, some

programs do not use the simulator for execution but only draw a complete circuit di-

agram as output. However, the behavior of the output (for example, in Qiskit) is to

call a Python method that draws the circuit diagram by string. We consider it a bug

if the output circuit diagram does not match the developer’s expectations. Further-

more, the output should be a complete measurement of the quantum program. Such a

bug is necessarily related to quantum, and we combine Qiskit’s QiskitTestCase class

with Python’s unittest module to write unit tests. Throwing exceptions is another

bug type that we conclude cannot be detected by applying existing quantum program

testing techniques.

Currently, the Bugs4Q framework only provides full support for bugs in Qiskit,

while bugs in other quantum programming languages are only supported for their stor-

age in the Bugs4Q database. To cover other quantum programming languages with our

Bugs4Q framework, we need to collect enough information about the bugs associated

with these languages. In addition, we need to integrate the language environment re-

quired to execute these buggy programs into the Bugs4Q framework. In addition, our
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benchmark framework has not been able to come up with more efficient API interfaces

to implement more features like test suite operations, test generation, variation analy-

sis, and code coverage analysis [29]. In addition, almost all the quantum programs we

studied were executed based on the simulator. We hope to collect bugs from programs

executed with quantum computers in future work.

4.4.3 Verifiability

This threat concerns the possibility of replicating this research. We try to provide all

the necessary details to help researchers replicate this work. The replication package

is made publicly available at https://github.com/Z-928/Bugs4Q-Framework.

4.5 Conclusion

As quantum computers gradually come into the limelight, quantum programs have

intensified, with analysis and testing techniques becoming an essential part of the pro-

cess. This paper proposes Bugs4Q, a benchmark of forty-two real, manually validated

Qiskit bugs supplemented with tests to reproduce buggy behaviors. Bugs4Q also pro-

vides a user-friendly and scalable implementation framework for accessing the buggy

and fixed versions of the Qiskit programs and executing the corresponding unit tests,

facilitating the reproducible empirical studies and comparisons of Qiskit analysis and

testing tools.
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Chapter 5

QChecker: Finding Bugs by Bug

Pattern Detectors via Static Analysis

5.1 Overview

This Chapter presents QChecker, a static analysis tool designed for detecting bugs in

quantum programs, especially for Qiskit. The approach addresses the challenge above

by first distilling a set of common bug patterns summarized from real quantum bugs in

previous works [65, 66] and then constructing eight detectors for detecting these bug

patterns in quantum programs. The whole process is non-trivial since the distilled bug

patterns must carefully consider the domain-specific constraints of quantum comput-

ing to be accurate and effective. QChecker consists of two main modules: a module

for extracting program information based on abstract syntax tree (AST) and a mod-

ule for detecting bugs based on patterns. We evaluate QChecker on Bugs4Q [66], a

realistic benchmark of 42 real-world buggy quantum programs. Experimental results

show that QChecker can efficiently detect bugs in quantum programs. Furthermore, we

discuss the extendability of QChercker for other Python-based quantum programming
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languages.

In summary, this work makes the following contributions:

• We present the first bug detection tool dedicated to quantum programs in Qiskit.

Using static analysis techniques, QChecker can generate diagnostic messages that

assist developers in pinpointing potential bugs in their programs quickly.

• We implement QChecker and evaluate its effectiveness and performance in a real-

world Bugs4Q benchmark. The results show that QChecker can effectively detect

various types of bugs in quantum programs.

The rest of this chapter is organized as follows. Section 5.2 describes our QChecker

approach for static analysis of quantum programs. Section 5.3 presents the perfor-

mance of QChecker on Bugs4Q. Section 5.4 reviews our threats of validity. Section 5.5

finally concludes this work.

5.2 The QChecker Tool

In this section, we introduce the construction of QChecker, developed based on Python.

As illustrated in Figure 5.1, QChecker first performs a thorough information extraction

of the quantum programs based on their ASTs. The corresponding operations are in

the module Ast Operator. The information mainly includes the variable assign opera-

tions and function calls, which will be stored in QP Attribute and QP Operation. Then

QChecker transmits the extracted information to the bug detectors. The bug detectors

can detect various bug patterns, as shown in Table 5.1. Finally, QChecker generates

bug detection reports, including the buggy programs, line numbers, and bug descrip-

tions.
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Figure 5.1: The structure of QChecker.

5.2.1 Information Extraction

The previous static analysis tools inspire us (e.g., PyLint [53]) that using AST for

program information extraction is effective and efficient. However, different from

classical static analysis tools, the AST Operator in QChecker can extract information

specific to the semantics and the function of quantum programs. Taking the program

shown in Figure 2.1 as an example, we apply a structured parsing to each quantum

program file, i.e., generating the AST. We adopt two modules named QP Attribute

and QP Operation to store the AST information of all the variables and function calls,

respectively. In addition, QChecker also supports handling complex syntax and data

structures such as dictionaries, lists, function definitions, loops, and conditional branches.

The purpose of this design is that the structured AST-based information extraction can

help QChecker trace the relationship between each variable and function call. For ex-

ample, a variable may be modified multiple times, or its name may be changed when

passed as an argument inside a function. Nevertheless, we can still trace back the

initial value of the variables in the program. We plot instances of QP Attribute and

QP Operation in Figures 5.2 and 5.3, respectively.
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• QP Attribute: The AST structure of a variable includes its variable name, vari-

able value (which can come from a constant, another variable, or the result of a

function calculation), type, and location (line of code). As shown in Figure 5.2,

The QP Attribute module is designed in a key-value manner. The keys are vari-

able names that can be the variable value indices.

• QP Operation: The AST structure of a function call contains a list of its argu-

ments, the type and value of each argument, its position, and other information.

As shown in Figure 5.3, The QP Operation module is a list that contains all the

function calls in the quantum program file. In detail, each function call can be

further divided into function call names, arguments, and values. This information

is stored in a more comprehensive table from QChecker, which uses the function

call strings in QP Operation as the index.

These two modules contain all the information of a quantum program, making it

more straightforward for further bug detection. Moreover, users can directly obtain

the above information through QChecker based on the API we released. It is worth

mentioning that those programs containing basic syntax errors (e.g., python indentation

errors, unrecognized operators, undefined variables and functions, etc.) will not be

processed by QChecker. Instead, they will be prompted as syntax errors and thus be

excluded from the static checking.

5.2.2 Bug Pattern Detectors

Bug patterns are erroneous code idioms or bad coding practices that have been proven

to fail repeatedly. These are usually caused by misunderstanding a programming lan-

guage’s features, using erroneous design patterns, or simple mistakes sharing common

behaviors. Previous work has identified some bug patterns for the Qiskit programming
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(’simulator’, ’Aer.get_backend("qasm_simulator")’)

(’qreg’, ’QuantumRegister(3)’)

(’creg’, ’ClassicalRegister(3)’)

(’circuit’, ’QuantumCircuit(qreg,creg)’)

(’job’, ’execute(circuit,simulator,shots=1000)’)

(’result’, ’job.result()’)

(’counts’, ’result.get_counts(circuit)’)

Figure 5.2: Program information extracted by QP Attribute.

language [65, 66]. In this work, we refined these bug patterns and built eight detectors

to detect them. Table 5.1 shows the name of detectors and descriptions of bug patterns.

We briefly describe each detector as follows.

Incorrect uses of quantum gates (IG)

This detector mainly checks if quantum gates are called correctly. It determines whether

Qiskit recognizes a gate and whether it has been defined. In addition, the compliance

of a custom gate and a three-qubit gate with the specification would also be checked.

Measurement related issue (MI)

Incorrect measurement means the improper use of measure operation that cause bugs

and the wrong operation after measurement. As shown in Figure 5.4, the user wants

to achieve a quantum teleportation program. The measured qubits are used as con-

trol qubits to entangle with other qubits. This detector mainly acts after the measure

method is called. It iterates through the operations following the measure statement and

determines whether the measured qubit appears as a control qubit in the double-qubit
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’Aer.get_backend("qasm_simulator")’

’QuantumRegister(3)’

’ClassicalRegister(3)’

’QuantumCircuit(qreg,creg)’

’circuit.h(0)’

’circuit.h(2)’

’circuit.cx(0,1)’

’circuit.measure([0,1,2],[0,1,2])’

’execute(circuit,simulator,shots=1000)’

’job.result()’

’result.get_counts(circuit)’

’print(counts)’

Figure 5.3: Program information extracted by QP Operation.

gate operations.

Incorrect initial state (IS)

This detector does not simply check whether the definitions of QuantumRegister and

ClassicalRegister conform to the specification. It determines whether the initializa-

tion satisfies the entire quantum program’s operation on qubits. Sometimes, the Qiskit

program limits the number of qubits used when simulating quantum programs. For ex-

ample, the Aer.get backend(’qasm simulator’) backend supports less than 30 qubits

for measure operation, while BasicAer.get backend(’qasm simulator’) supports less

than 24 qubits. In this case, the detector first checks the backend chosen by users and

Identifies if the initialized qubits are out of limits. When the number of initialized

qubits is set to n, the checker will keep track of the number of qubits called in the
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qc = QuantumCircuit(3, 3)

qc.x(0)

qc.h(1)

qc.cx(1, 2)

qc.cx(0, 1)

qc.h(0)

qc.measure(0, 0)

qc.measure(1, 1)

qc.cx(1, 2) <- Problematic operation

qc.cz(0, 2) <- Problematic operation

Figure 5.4: Example of Incorrect Mearsurement

program.

Parameter error (PE)

After a quantum gate is invoked, this detector is responsible for determining whether

the parameters in the gate are correct, including the parameters that do not exist in

multiple-qubit gates and the wrong use of numeric types. However, some bug patterns

are not easy to find. From Figure 5.5, we can see that the user wants to assign the qubits

in the register to the physical qubits, both qreg[0] are qreg[5] assigned to the physical

qubits 12. Therefore, the detector goes through the parameter values and checks for

duplicate physical qubit occupancy.

Command misuse (CM)

This detector could detect the wrong or improper use of commands. Sometimes, pa-

rameters are not recognized because the method name is miswritten. On the other
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qreg = qk.QuantumRegister(7)

layout = {qreg[0]: 12, <- Problematic operation

qreg[1]: 11,

qreg[2]: 13,

qreg[3]: 17,

qreg[4]: 14,

qreg[5]: 12, <- Problematic operation

qreg[6]: 6}

Figure 5.5: Example of parameters error

hand, some methods can not recognize parameters and raise errors. As shown in Fig-

ure 5.6, attribute pulse.shiftphase() is not in module qiskit.phase. Some of the

commands in Qiskit are difficult to detect. For example, there are more than two quan-

tum circuits while the user wants to nest one circuit with the others: 1) Command

to gate() could be used to change the circuit into a combination of gates embedded in

other circuits. 2) Command decompose() could be used to decompose the circuit for

embedded operation automatically.

Call error (CE)

This detector is responsible for call errors, including Python package calls, backend

simulator calls, and translator calls. Besides, the detector can check for problems with

parameter declarations. As shown in Figure 5.7, this error is not a duplicate call to

PauliMeasurementBasis(). After running the code, we found an error of invalid qubits

for basis. The call of PauliMeasurementBasis() is invalid for preparation basis.

These types of bugs are hard to detect by QChecker; the detector can only judge one
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phase = Parameter(’phase’)

with pulse.build(FakeAlmaden())as phase_test_sched:

pulse.shiftphase( <- Unrecognized

phase, pulse.drive_channel(0))

phase_test_sched.instructions

Figure 5.6: Example of command misuse.

scenario now.

QASM error (QE)

This detector detects problems with qasm simulator as the backend or when building

qasm programs with the Qiskit programming language.

Discarded orders (DO)

This detector determines if a deprecated method is being called, and it comes into play

when an old operation or variable type is discarded due to a version update.

5.2.3 Bug Detection

The bug patterns shown in Table 5.1 represent the general bugs in quantum programs.

In addition to syntactic bugs, it also contains some faulty logic in some quantum-

related operations. Based on the program information extraction modules (QP Attribute

and QP Operation), as well as the detectors, we can perform a thorough static analysis
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circ = QuantumCircuit(1,1)

circ.x(0)

tomo = ProcessTomography(

circuit=circ,

measurement_basis=PauliMeasurementBasis(),

measurement_qubits=None,

preparation_basis=PauliMeasurementBasis(), <-

preparation_qubits=None,

basis_indices=None,

qubits=None)

Figure 5.7: Example of call error

for the quantum program files. To enable comprehensive and useful bug detection and

benefit the debug process, we report the details of the buggy programs (code lines, con-

tent, etc.), bug types (patterns), and specific descriptions. We hope such information

may help users improve the quality of quantum programs.

5.3 Evaluation

This section presents the empirical performance of QChecker. We evaluate QChecker

on Bugs4Q [66], which contains 42 real-world buggy quantum programs in Qiskit. The

experiments were conducted on a server with an Intel i9-10940X CPU, 128G RAM,

running on Ubuntu 20.04 with Python 3.10 installed.

70



Table 5.1: Bug patterns that each detector is responsible for.

Detector Name Bug patterns Descriptions

IG
- Gates are not among the backend’s basis gates.

- Handle custom multi-qubit gates.

- Random gate is not defined.

MI - Ignoring the effects of measurement.

IS
- Number of qubits larger than the registers defined.

- The insufficient number of qubits.

- Insufficient length of classical registers.

PE

- Instruction not in basis gates.

- Incorrect parameters in gates.

- Using classical bits for entanglement.

- Same physical qubit used in one operation.

- Not giving lists for coupling map.

CM

- Unrecognized parameters.

- Quantum circuit interaction error.

- Create redundant classical registers.

- The wrong command was used.

CE

- Object call error.

- Import error.

- Backend error.

- Translating error.

QE - Issue with new from qasm str() method.

DO - Method has been deprecated.

5.3.1 Metrics

We adopt Precision, Recall, and F1-score to evaluate the performance of QChecker.

Specifically, for each bug b in Bugs4Q, we use the bug type in Bugs4Q as ground

truth and apply QChecker to its source quantum program. If the detection result of

QChecker matches the corresponding bug type in Bugs4Q, we call this b as True Pos-

itive (TP). Otherwise, this b is a False Positive (FP). False Negative (FN) is a ground-

truth bug that QChecker can not detect. The Precision is calculated as T P/(T P+
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FP), Recall as T P/(T P+FN) and F1-score as 2×Precision×Recall/(Precision+

Recall).

5.3.2 Performance on Real-World Qiskit Programs

Figure 5.8: Distribution of bugs found by each detector.

First of all, there are 42 Qiskit programs detected by QChecker, and 24 bugs were

found. Figure 5.8 shows the empirical results of applying QChecker on Bugs4Q. De-

tector PE found ten bugs, while CE and IS found 7 and 2 bugs, respectively. And other

detectors found one bug in each. As we know, out of the 42 bugs in Bugs4Q, 22 are

output errors, i.e., the program’s output does not match the user’s expectations. This

condition makes Qchercker unable to detect these bugs. So we consider that the re-

maining number of bugs in Bugs4Q found by Qchecker is in line with expectations.

Combining Table 5.1 with the results in Figure 5.8, we analyzed and derived two points

about the performance of each detector:
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• The more cases the detectors can cover, the more bugs can be found. As we made

the detectors according to the relevance of the bug patterns, the number of cases

covered by each detector may vary. Detector PE and CE can detect more cases than

other detectors. And in fact, the two detectors made a better performance.

• The performance of detectors also depends on the type of errors the programmers

make. Considering the limited number of bugs in Bugs4Q, we believe that some

detectors perform poorly because they cover cases that rarely occur. For example,

detector IG, CM, and IS can detect more than one case while the results are barely

satisfactory.

In addition, a detector that solves only one case does not indicate poor performance.

Instead, with their increased functionality, these specialized detectors will realize their

potential to detect bugs better.

The efficiency of QChecker on 42 Qiskit programs provided by Bugs4Q is shown

in Table 5.2. As illustrated in [37], executing a quantum program on simulators can

easily consume more than 103 ms. As a result, QChecker demonstrates high efficiency

by taking an average time of only 48.2 ms to complete detection on a single quan-

tum program. To better represent this, we investigated the 42 quantum programs in

Bugs4Q. The average execution time for these programs was 2.14 seconds, while the

average amount of code per program was 31 LOC. From Section 2.1, we already know

that obtaining the state of a qubit requires a large number of iterations of the output to

obtain its probability distribution, which we consider to be the main cost of executing

one program.

In summary, QChecker has the advantage of being efficient and relatively effective

in execution, while the disadvantage is QChecker does not avoid the problem of false

positives. As the number of qubits in future quantum programs increases, we believe it
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Table 5.2: Performance of QChecker on Qiskit programs.

Performance Prec. Recall F1-score Avg. Time

QChecker 0.625 0.882 0.731 48.2ms

is necessary and effective to find bugs before program execution using static analysis.

5.3.3 Extendability of QChecker

qubit = cirq.NamedQubit("myqubit")

circuit = cirq.Circuit(cirq.H(qubit))

for i in range(10):

result2 = cirq.measure(qubit, key=’myqubit’)

print(result2)

print(circuit)

result = cirq.Simulator().simulate(circuit)

print(result2)

Figure 5.9: An exapmle of Cirq program.

We next discuss the extendability of QChecker. The example of a Cirq program

and the corresponding detection result of QChecker are shown in Figures 5.9 and 5.10,

respectively. After careful inspection of the results, we find that the information ex-

traction part of QChecker can still function on other Python-based quantum languages

(e.g., Cirq). The syntax difference between these quantum languages may cause the

detectors designed for Qiskit to fail, leading to the lack of guaranteed performance.

In summary, the experimental results show that QChecker can successfully detect

bugs in real-world Qiskit quantum programs, exhibiting the effectiveness of applying
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(’qubit’, ’cirq.NamedQubit("myqubit")’)

(’circuit’, ’cirq.Circuit(cirq.H(qubit))’)

(’result’, ’cirq.Simulator().simulate(circuit)’)

(’result2’, ’cirq.measure(qubit,key="myqubit")’)

==========================================

’cirq.NamedQubit("myqubit")’

’cirq.Circuit(cirq.H(qubit))’

’range(10)’

’print(circuit)’

’cirq.Simulator().simulate(circuit)’

’print("result:")’

’print(result2)’

’cirq.H(qubit)’

’cirq.measure(qubit,key="myqubit")’,

’print(result2)’,

’cirq.Simulator()’

Figure 5.10: A Cirq program detected by QChecker

static analysis to quantum programs. Besides, the intermediate results indicate that the

QChecker can correctly extract the QP Attribute and QP Operation information from

the underlying Cirq program, indicating that the QChecker can be easily extended to

common Python-based quantum programming languages.
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eng = MainEngine()

qubits = eng.allocate_qureg(3)

H | qubits[0]

CX | (qubits[0], qubits[2])

eng.flush()

amplitudes = np.array(eng.backend.cheat()[1])

amplitudes = np.abs(amplitudes)

All(Measure) | qubits

Figure 5.11: An exapmle of ProjectQ program.

5.4 Treats to Validity

5.4.1 External Threats

Even for the most widely used Qiskit quantum programming language, there are still

not enough buggy programs. Moreover, existing quantum programs are usually run

on simulators rather than on actual quantum computers, which leads to the small size

of current quantum programs. As a result, the number of bug patterns can threaten

validity. We have put much effort into collecting bugs from quantum programs and

extracting as many bug patterns as possible from these collected bugs. However, due

to the limitation of the current scale of development and application of quantum pro-

grams, we cannot include more bug patterns in QChecker. Therefore, we will continue

to collect quantum programs and their bugs, enrich QChecker’s detection capabilities,

and continuously update the tool.
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5.4.2 Internal Threats

QChecker is designed for Qiskit and can be extended to other Python-based quantum

languages (e.g., Cirq) with slight modifications. However, it also has limitations. For

instance, ProjectQ has overloaded the | operator, which will cause the information

extractor fails to work. As shown in Figures 5.11 and 5.12, QChecker could not extract

information from the underlying ProjectQ program, such as the H gate and CX gate.

These limitations will be resolved with the extension of QChecker.

(’eng’, ’MainEngine()’)

(’qubits’, ’eng.allocate_qureg(3)’)

(’amplitudes’, ’np.array([1])’)

(’amplitudes’, ’np.abs(amplitudes)’)

==========================================

’MainEngine()’

’eng.allocate_qureg(3)’

’eng.flush()’

’np.array([1])’

’np.abs(amplitudes)’

’All(Measure)’

’eng.backend.cheat()’]

Figure 5.12: A ProjectQ program detected by QChecker.

5.4.3 Verifiability

This threat concerns the possibility of replicating this research. we provide all the

necessary details to help researchers replicate this work. The replication package is

made publicly available at https://github.com/Z-928/QChecker.
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5.5 Conclusion

This Chapter presents QChecker, a static analysis tool for quantum programs to en-

able effective and efficient potential bug detection of quantum programs. QChecker

involves two AST-based program information extraction modules and comprehen-

sive bug detectors which can detect various bug patterns. We applied QChecker to

the Bugs4Q benchmark suite and evaluated its effectiveness. The results show that

QChecker can detect multiple types of bugs in quantum programs.
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Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

As quantum computers gradually come into the limelight, quantum programs have

intensified, with analysis and testing techniques becoming an essential part of the pro-

cess. Although several approaches have been proposed for debugging and testing

quantum software recently, it remains at an early stage in the research about identi-

fying and detecting bugs in quantum programs. To verify the correctness of quantum

programs more efficiently and to improve the quality assurance of quantum software,

this doctoral thesis mainly focuses on implementing the identification and detection of

quantum program bugs.

In Chapter 3, we identified some bug patterns in the quantum programming lan-

guage Qiskit to provide both researchers and programmers a clear view of what kind

of bugs may happen in quantum programs and how to detect them. The study of bug

patterns mainly focuses on bug pattern symptoms, root causes, and cures and preven-

tions. These bug patterns are the first result of our research and do not use every pos-

sible quantum-related construct or cover all characteristics of a quantum programming
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language. New research should cover other remaining quantum-related constructs, as

well as the interactions between them.

In Chapter 4 of this thesis, we propose Bugs4Q, a benchmark of forty-two real,

manually validated Qiskit bugs supplemented with tests to reproduce buggy behaviors.

Bugs4Q also provides a user-friendly and scalable implementation framework for ac-

cessing the buggy and fixed versions of the Qiskit programs and executing the corre-

sponding unit tests, facilitating the reproducible empirical studies and comparisons of

Qiskit analysis and testing tools.

In Chapter 5, we presented QChecker, a static analysis tool for quantum pro-

grams to enable effective and efficient potential bug detection of quantum programs.

QChecker involves two AST-based program information extraction modules and com-

prehensive bug detectors which can detect various bug patterns. We applied QChecker

to the Bugs4Q benchmark suite and evaluated its effectiveness. The results show that

QChecker can detect multiple types of bugs in quantum programs.

As a result, this doctoral thesis fills the gaps in identifying and detecting bugs in

quantum programs. The bug patterns we identified provide a better understanding of

quantum program bugs and help developers avoid these bugs. Through bugs4Q, we

have a comprehensive view of quantum bugs and provide a benchmark to evaluate

the techniques for quantum programming. The static analysis tool QChecker can effi-

ciently detect bugs in quantum programs.

6.2 Future Work

In our future work, we would like to continue effectively validating the correctness of

quantum programs and further improve the quality assurance of quantum software. In

detail, we plan to develop our approach to investigating more bug patterns in quantum
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programs. We would also like to develop more bug-detecting tools based on the iden-

tified bug patterns in this thesis to support finding more bugs in quantum programs. In

addition, we would like to keep updating the Bugs4Q benchmark and improve the tests

to reproduce more bugs in Qiskit. Our benchmark will be continuously maintained on

an ongoing basis. With the version update of quantum platforms and new test methods

proposed, we will continue updating our database and extending our framework. Fi-

nally, we plan to extend QChecker to detect more bug patterns of Qiskit programs and

support bug detection of other common quantum programming languages such as Cirq

and ProjectQ.
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