
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Artificial Intelligence Aided Physical and MAC
Layer Optimization Schemes for Three
Dimensional NOMA Networks

アハマド ハサン エルセイド マンソア ジェンディア

https://hdl.handle.net/2324/7157358

出版情報：Kyushu University, 2023, 博士（学術）, 課程博士
バージョン：
権利関係：



Artificial Intelligence Aided Physical and
MAC Layer Optimization Schemes for
Three Dimensional NOMA Networks

By

Ahmad Hasan Elsayed Mansour Gendia

A Thesis Submitted to the

Graduate School of

Information Science and Electrical Engineering,

Kyushu University

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in

Electronics and Communications Engineering

September 2023

http://www.isee.kyushu-u.ac.jp/e/
https://www.kyushu-u.ac.jp/en/




© Copyright by Ahmad Hasan Elsayed Mansour Gendia, 2023.

All rights reserved.

iii



DECLARATION AND CERTIFICATE OF
ORIGINALITY

I certify that in the preparation of this thesis, I have observed the provisions

of Kyushu University Code of Ethics. Further; I certify that this work is free

of plagiarism and all materials appearing in this thesis have been properly

quoted and attributed. I certify that all copyrighted material incorporated

into this thesis is in compliance with the international copyright law and that

I have received written permission from the copyright owners for my use of

their work, which is beyond the scope of the law. I agree to indemnify and save

harmless Kyushu University from any and all claims that may be asserted or

that may arise from any copyright violation. I hereby certify that the research

work in this thesis is my original work and it does not include any copied parts

without the appropriate citation.

Fukuoka, Japan,

July 18, 2023

Ahmad Hasan Elsayed Mansour Gendia.

iv



SUMMARY

Non-orthogonal multiple access (NOMA) allows multiple user equipment (UE)

to simultaneously share the same resource blocks using varying levels of trans-

mit power at the base station (BS) side. This powerful feature of NOMA

makes it a suitable candidate for future 6G mobile networks multiple access

in order to meet the high connection density and data rates expectations set

forth for 6G applications that require stringent operational demands such as

haptic internet, 16K real-time video streaming, and bandwidth-hungry holo-

graphic AR/VR applications. In this thesis, we designed novel artificial in-

telligence (AI)-based frameworks to solve challenging PHY and MAC layers

problems for three-dimensional NOMA (3D-NOMA) networks utilizing both

terrestrial and non-terrestrial based communications. To optimize the PHY

layer operation of 3D-NOMA networks, neural network (NN)-based orthogo-

nal frequency division multiplexing (OFDM) signal processing is considered,

whereas MAC layer operation optimization is accomplished via reinforcement

learning (RL)-based resource management operation for both terrestrial and

non-terrestrial NOMA downlink communications.

For OFDM signaling, high peak-to-average power ratio (PAPR) is a typical

characteristic inherent in the multiplexed signals and has been a long-standing

critical issue for mobile networks PHY layer optimization. The ever-increasing

demand for low-latency operation calls for the development of low-complexity

novel solutions to the PAPR problem. To address this issue while provid-

ing an enhanced PAPR reduction performance, in this thesis we propose a

synchronous NN-based solution to achieve PAPR reduction performance ex-

ceeding the limits of conventional clipping and filtering (CF)-based schemes

with lower computational complexity. The proposed scheme trains a neu-

ral network module using hybrid collections of samples from multiple OFDM

symbols to arrive at a signal mapping with desirable characteristics.

On the other hand, to unlock the full potential of NOMA and reap its bene-

fits, MAC layer-level resource management operation optimization is crucial.

Specifically, proper allocation of transmission power and selection of candi-

date users for pairing over the same resource block are critical for an efficient
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utilization of the available resources. Reinforcement learning deploying dou-

ble deep-Q networks (DDQN) is a promising framework that can be adopted

for tackling the problem. In this thesis, an RL-based DDQN scheme is pro-

posed for opportunistic user pairing to access downlink NOMA systems with

capacity-limited backhaul link connections. The proposed algorithm relies on

proactive data caching to alleviate the throttling caused by backhaul bot-

tlenecks, and optimized UE selection and power allocation are accomplished

through the continuous interaction between an RL agent and the NOMA

environment to increase the overall system throughput.

Moreover, for non-terrestrial 3D-NOMA operation, this thesis proposes two

energy-efficient RL-based algorithms for millimeter wave (mmWave)-enabled

unmanned aerial vehicle (UAV) communications toward 6G. This can be es-

pecially useful in ad-hoc communication scenarios within a neighborhood with

main-network connectivity problems such as in areas affected by natural dis-

asters. This is important since 6G mobile network design must accommodate

use cases for mission-critical communications during emergencies. Dynamic

selection of suitable hovering spots within the target zone where the battery-

constrained UAV needs to be positioned as well as calibrated NOMA power

control with proper device pairing are critical for optimized performance. We

propose cost-subsidized multiarmed bandit (CS-MAB) and DDQN-based so-

lutions to address these problems jointly.

For 3D-NOMA PHY layer, the proposed AI-aided OFDM PAPR reduction

scheme operates at 16.7% faster signal processing speed along with about 12%

improvement in the cubic metric measure of the OFDM signal compared to

conventional clipping and filtering (SCF) for a 256-subcarrier OFDM PHY

layer with QPSK modulation. On the other hand, at the MAC layer level,

an 18.4% faster data transfer rates can be accommodated by the proposed

DDQN RL agent for cache-enabled NOMA downlink resource management

over a capacity-limited backhaul link when operating with 38-GHz mmWaves

and 500 MHz system bandwidth. Moreover, significant UAV battery energy

savings exceeding 90% can be accomplished for mission-critical, non-terrestrial

NOMA downlink transmissions.
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Chapter 1

INTRODUCTION

1.1 6G Trends, Requirements, and Candidate Tech-

nologies

For decades, both developed and developing nations have been relying on telecommu-

nications technologies which contribute significantly to the economic evolution of coun-

tries and the advancement of their social well-being. Today, wireless communication

systems are woven seamlessly into the life of many people around the world. In the near

future, widespread adoption of wireless technologies is only expected to expand further.

This situation is invariably coupled with great expectations and challenging requirements

facing the 6th generation (6G) of telecommunication systems.

1.1.1 Wireless Market: Trending Mobile Services

Figure 1.1 illustrates the two major trends of mobile and wireless services:

- The internet of everything (IoE) [1–4] is being devised to establish wireless connec-

tivity of all things to expedite information acquisition and data tracking processes,

thus giving us comprehensive control over our devices and equipment anytime, any-

where. Emergent IoE services cover device-to-device (D2D), and internet of things

(IoT) applications [5–8] including robots and mobile sensory equipment, online ve-

hicles and connected smart houses.

- Always-on wireless services delivering deeply-rich contents in real-time over secured

wireless links. Emergent applications for such services cover augmented and virtual
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reality (AR/VR) [9–18], seamless streaming of realistic 3D hologramic video content

at extreme resolutions (e.g., 8K and 16K) [19–25], traffic safety applications, haptic

internet [26–28], and multimedia-enriched social networking.

Figure 1.1: Major trends for mobile services evolution towards 2030 and beyond.

1.1.2 6G Requirements

Global data traffic on mobile networks has undergone more than a 10-fold volume

uptake between 2017 and 2022, with video content dominating at around 70% of the

overall traffic generated in 2022 [29]. Under current trends of the mobile sector, a resultant

uptake in data traffic rates is projected to increase steadily within the decade where 5

billion active 5G mobile subscriptions are anticipated by 2028. Moreover, according to

the international telecommunication union radio communication sector (ITU-R) report,

ITU-R M.2370-0 [30], total mobile subscriptions by 2028 is estimated at over 15 billion.

The report also indicates over a thousand-fold uptake in global mobile broadband traffic

by 2030 compared to 2010. In addition, as demonstrated in Fig. 1.1, diversifying services

and applications is a key requisite of future 6G mobile networks wherein the system

must support a wide range of applications and services from small-packet services (e.g.,

low-rate D2D communications and real-time remote control) to applications requiring

rich contents (e.g., AR/VR, beyond ultra high definition streaming, and tactile internet).

Beside the exponential uptake in traffic volume, large variations are anticipated as a result

of the skewed distribution of traffic data across mobile networks: traffic data reach peak
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volumes in high-density regions (e.g., stations, shopping malls, and stadiums). Therefore,

to handle dynamic scenarios for future 6G mobile systems and support end users with

suitable quality of service (QoS) levels, 6G networks must possess inherently adaptive

high-level design methodology which can fulfill the associated challenging requirements

illustrated in Fig. 1.2:

 

6G

Peak traffic 
capacity

Latency 
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Energy-
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transfer 

rates
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- Higher resiliency in emergencies. 
- Lower energy footprint. 

Figure 1.2: 6G Targets [31,32].

� Peak traffic capacity: One important yet challenging requirement for future

6G systems is that 6G high-level design must incorporate the capability to pro-

cess extremely large volumes of intense traffic which will normally be orders of

magnitude larger than the usual volumes flowing through previous generations of

mobile networks. A target of hundred-fold uptake is set compared to 5G area traffic

capacity/m2 [31]. In this regard, novel smart solutions to alleviate traffic congestion

is a key enabler for 6G.

� Peak transfer rates: 6G high-level design must accommodate practical data

transfer speeds at much higher levels compared to what older generations’ tech-

nologies could achieve. This is in line with emerging applications that require
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high-speed real-time communications such as tactile internet and holographic com-

munications. A requirement of at least 50-fold increase in peak rates compared to

5G networks is set [31]. It will be crucial to reach such high communication speeds

in certain transmission scenarios such as those incorporating mobile backhauling.

� Connection density: 6G high-level mobile network design has to prepare for a

surge in the number of supported simultaneous connections to facilitate support for

cloud-based applications that are always-connected while providing IoT connections

with a wider variety of connected machines. A target of 10x uptake from 5G is set

in order to support about 107 active devices per squared-km [31].

� Latency reduction for radio-access network (RAN) interface: Beside pro-

viding faster connections, 6G high-level mobile network design is required to operate

at as low latency levels as 25 µs over the user plane RAN (UP-RAN) interface [31].

Such a reduction is a large leap from the operation point of 5G systems which is

typically around 1 ms. This stringent requirement on extremely low latency levels

is essential for the adequate establishment and operation of new latency-sensitive

application services including adaptive instant control of real-time D2D operations,

tactile internet, AR/VR, and holographic-based communications.

� Emergency-robust energy-oriented design: 6G high-level mobile network de-

sign must adopt a robust, cost-effective methodology that is primarily energy-

oriented while being resilient and flexible enough to withstand and handle natural

disasters more gracefully. A 6G target of 10∼100-fold improvement upon 5G in

terms of energy efficiency is set [32]. Such design approach is of great importance

to give future 6G networks the ability to operate in a wide range of diversified com-

munication environments with embedded support for multiple kinds of applications

and services. In addition, densifying network components distribution further via

increased mirco/nano-cell deployments with the ability to quickly dispatch ready-

to-deploy unmanned aerial vehicles (UAVs) in conjunction with millimeter waves

(mmWaves) utilization is key element in meeting the flexibility and high-throughput

expectations of 6G systems [33].
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Figure 1.3: Multicarrier modulation: OFDM signaling.

1.1.3 6G Candidate Technologies

Future 6G networks can conform to the aforementioned requirements through the

aggregate deployment of an array of various prominent candidate solutions. These tech-

nologies include:

� OFDM: Orthogonal frequency division multiplexing (OFDM)-based transmissions

have long been the standard backbone of communication systems since its adoption

in 4G networks. In its 5G new radio (NR) specifications, 3GPP has extended OFDM

lifetime by choosing it as the standard underlying baseband formatting scheme for

all NR channels [34]. OFDM systems offer a myriad of benefits including high

spectral efficiency as well as low-cost receiver implementation. In OFDM-based

transmissions, densely-packed multicarrier signaling is employed where subcarriers

are designed to overlap in an orthogonal manner as depicted in Fig. 1.3. From

a link-level perspective, OFDM can provide an efficient underlying PHY frame-

work for the realization of 6G wireless networks. Nonetheless, in order to reap

the benefits of OFDM-based communications, proper handling of its PHY layer

characteristics must be adopted. Specifically, the long-standing issue of high peak-

to-average power ratio (PAPR) must be addressed efficiently at the transmitter side

prior to transmission.

� Millimeter Waves: For decades, sub-6 GHz operation dominated almost every

wireless transmission mode (e.g., GPS, Wi-Fi, AM/FM radio, high-definition TV,
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cellular and satellite communications). Wireless commercial applications favored

this particular range within the RF spectrum range (known as the sweet spot)

since it possesses attractive propagation characteristics. Nonetheless, confining the

entirety of wireless communications applications to an extremely narrow part of

the entire RF spectrum is poor resource utilization, and, more importantly, will

no longer be a viable option going forward given the ever-mounting demand for

more simultaneous connections as well as increased user-experienced transfer rates.

Therefore, the authors in [35] were first to explore operation at higher frequen-

cies using millimeter waves (mmWaves)-based transmission for a proposed mobile

broadband design to operate in 5G systems. To utilize the abundant RF spectrum

more efficiently, the authors made the suggestion to go beyond 3 GHz for wireless

commercial applications operation. The huge 30-300 GHz bandwidth of mmWaves

and sub-terahertz signals can unlock unrivaled support for user-experienced data

rates as well as carry extreme amounts of mobile networks traffic [36–40].

� Non-Orthogonal Multiple Access: Multiple access scheme format is a key

technology that has always been a distinguishing feature of mobile systems gen-

erations (e.g., 1G adopting FDMA, 2G adopting TDMA, 3G adopting CDMA, 4G

adopting OFDMA, and 5G adopting an upgraded OFDMA version that has mul-

tiple numerologies to provide higher degrees of flexibility and accommodate more

emerging use cases). Going forward, transmit base stations of future 6G networks

(e.g., satellites, high-altitude platform station (HAPS) transmitters, UAVs, and

terrestrial-based BSs in Fig. 1.4) can adopt a three-dimensional, intracell, mul-

tiuser non-orthogonal multiple access (3D-NOMA) format to support even denser

connectivity requirements and boost the system’s spectral efficiency by exploiting

the received signals variations to leverage the power gaps at the receiving termi-

nals for both terrestrial as well as non-terrestrial transmissions in Fig. 1.4. This

exploitation of the underutilized power gaps has not been implemented in previ-

ous FDMA-, TDMA-, CDMA-, and OFDMA-based generations. A key concept of

NOMA downlink communications is that non-orthogonality is injected intention-

ally by aligning a stack of receiving equipment onto unified resource blocks in time,

frequency, and code domains, while using distinctive separable levels within the

available BS power budget as shown in Fig. 1.5. Process reversal and extraction of
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Figure 1.4: 3D-NOMA 6G system top-level view.

each device’s intended signal can then be carried out at the respective receivers by

employing successive interference cancellation (SIC) methods [41,42]. The key idea

is to transform the wireless channels’ gain gaps among grouped users to multiplexing

gains through the superposition of their signals with distinct shares of the transmit

BS power. Evidently, multiplexed users can then reap the main benefits of experi-

encing scheduling more frequently as well as enjoy larger aggregated bandwidth [43].

System overall capacity as well as user density can consequently be noticeably im-

proved. However, the ability of 3D-NOMA to deliver on its great potential is largely

determined by the degree of success in optimizing NOMA user selection and power

allocation within various deployment scenarios. A highly successful, system-level

NOMA resource management strategy design is thus imperative for 3D-NOMA to

be considered for future network access frameworks in order to meet the challeng-

ing requirements facing 6G. This is particularly pressing for future 6G networks

where intense loads are expected which might cause throttling bottlenecks at the

backhaul interface connecting the base station to the core network if the opera-

tion is not finely-tuned. In addition, energy-efficient dynamic trajectory planning

is important for mission-critical, UAV-assisted emergency communication scenarios

such as in disaster zones as shown in Fig. 1.4. In such scenarios where the main

serving base station is out-of-commission due to sustaining damage, the UAV mo-
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Figure 1.5: NOMA: Intentional inter-user non-orthogonality.

bile base station can accurately obtain its location information within the afflicted

area through HAPS or satellite links. Moreover, optimizing the underlying PHY

layer OFDM signal processing shown in Fig. 1.6 is key for successful realization of

3D-NOMA.

 

Figure 1.6: System layers optimization: MAC layer user selection and power management &
underlying PHY layer processing.

1.2 Motivation

Owing to their transformative technological power, future 6G wireless networks are at

the heart of the current scientific research enterprise. To reach its potential, the research

and development phase of 6G must explore and utilize novel key technologies (e.g., 3D-

NOMA) efficiently both at the PHY layer as well as the MAC layer levels. OFDM is an

efficient backbone realization scheme for NOMA in wideband channels. Link-level opti-

mization of 3D-NOMA can be achieved by optimizing the underlying OFDM PHY layer

operation. On the other hand, system-level operation tuning of 3D-NOMA can be accom-

plished via MAC layer design optimization for both terrestrial and non-terrestrial (e.g.,

UAV-based) communications modes. AI-based operation is a very promising framework

to revolutionize the way 6G wireless communications systems are designed and operated,

including 3D-NOMA networks. However, in order to successfully reap the benefits of
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AI-based operation, challenging problems facing the aforementioned potential 6G can-

didate technologies in general and 3D-NOMA networks in particular must be handled

properly and efficiently. Specifically, novel AI-based PAPR reduction approaches for

OFDM-based transmissions is important to optimize PHY layer operation. On the other

hand, to optimize MAC layer operation for mmWave-enabled NOMA-based downlink

communications, novel AI-based algorithms are needed to handle user pairing and power

control design issues as well as dynamic UAV path planning for UAV-based transmis-

sions. This is of great importance to satisfy the high-throughput and energy efficiency

operation requirements set forth for future wireless systems.

PHY layer side MAC layer side

• An OFDM resource block comprises 
a group of sub-carriers:

• NOMA users multiplexed over 
the same resource block: 

UE2

UE1

Resource block

NOMA signal

Figure 1.7: 3D-NOMA layers interplay: The MAC layer selects candidate users to grant
access to the same underlying OFDM resource block of the PHY layer which
processes the signals of the selected users prior to transmission.

1.3 Scope and Objectives

This thesis focuses on the challenges facing the successful design and operation of

3D-NOMA networks. Specifically, both the PHY and MAC layers must be properly op-

timized. Figure 1.7 demonstrates the relationship among the two layers in 3D-NOMA.

At the MAC layer level, users are granted non-orthogonal access to the same underlying

PHY layer resource block. As such, the selection of users and their shares of the transmit

9



1.4 Original Contributions

power budget must be properly tuned at the MAC layer side. On the other hand, prior

to transmission, the signal of each multiplexed user must be processed at the PHY layer

to ensure desirable transmission characteristics. This is especially important for NOMA-

based systems where multiple users are assigned the same underlying OFDM resource

block of the PHY layer as shown in Fig. 1.7. Therefore, for the PHY layer, the scope is

OFDM-based signal formatting at the transmitter side where noticeable PAPR reduction

is the main design focus. On the other hand, MAC layer optimization focuses on tackling

the resource management aspects of mmWave-enabled NOMA-based downlink transmis-

sions. Moreover, to accommodate mission-critical use cases of 3D-NOMA, we extend the

resource management optimization to cover non-terrestrial, UAV-based communications

where battery-friendly operation is important for energy-efficient UAV deployment.

We, therefore, identify the specific research objectives of the thesis as follows:

– Designing low-complexity neural networks to format OFDM signals with desirable

PAPR characteristics for optimized PHY layer operation of 3D-NOMA networks.

– Designing a powerful deep reinforcement learning based solution at the MAC layer

level to handle the NOMA user selection and power allocation problem for sum-rate

maximization of 3D-NOMA.

– Designing multiarmed bandit and deep reinforcement learning algorithms for battery-

friendly dynamic UAV trajectory planning and joint resource management for de-

ployment in NOMA-based downlink emergency communications.

1.4 Original Contributions

We describe the main contributions of the thesis which can help realize the afore-

mentioned design objectives and pave the way towards a more efficient operation of

3D-NOMA networks toward future 6G systems. The generation and processing of PHY

layer transmitted signals with low-complexity is achieved in chapter 3 to enable reduced

latency services. Chapter 4 targets the provision of higher data rates to facilitate for

higher-resolution video streaming and the adoption of immersive AR/VR 6G applica-

tions. Chapter 5 contributes battery-friendly design for energy efficiency handling in

non-terrestrial 3D-NOMA emergency communications. A detailed breakdown of the con-

tributions of the research work presented in this thesis is given:
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1. Chapter 3 contributions focus on a low-complexity PHY layer signal processing

scheme to accelerate the adoption of 6G applications which have tight low-latency

operation demands such as anytime/anywhere remote learning, and transportation

control and real-time traffic monitoring:

� As an efficient PHY layer, low-complexity PAPR reduction approach, we

propose a synchronous neural network-based OFDM PAPR solution surpass-

ing conventional clipping-and-filtering (CF)-based approaches. The proposed

method accurately generates CF-like output signals by synchronously learning

both real and imaginary parts of raw OFDM input signals and mapping them

to the desired target output. Hence, higher PAPR reduction performance

and lower OoB power leakage can be achieved compared to conventional asyn-

chronous NN solutions while operating in a low-complexity mode, thus making

it more suitable for 6G applications with low-latency requirements.

� To find a neural network with desirable characteristics, we propose a network-

selection algorithm to explore a wide variety of candidate solutions during the

training stage. The algorithm scans the neighborhood of conventional SCF or

ICF searching for the mapping network with the highest PAPR reduction for

a maximum allowable BER threshold.

� To prevent overfitting traps and arrive at a network model that generalizes well

to new data during deployment, we propose an algorithm for the compilation

of a 3-D training dataset that randomly scatters the training samples of the

same OFDM symbol across multiple different 2-D slices within the dataset.

Thus, hybrid OFDM symbols are constructed from the time-domain samples

of multiple different raw OFDM symbols during the training stage.

� Through the numerical evaluation of the system performance, we show that

the proposed SNN-CF scheme achieves superior performance in terms of PAPR

reduction capability, while exhibiting less OoB radiation for both QPSK and

16-QAM compared with ANN. Moreover, the proposed scheme maintains ad-

equate BER levels for higher order modulations such as 16-QAM, where the

asynchronous approach shows rapid BER degradation.

2. Chapter 4 contributions focus on a reinforcement learning (RL)-based MAC layer
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resource management design to deliver boosted data rates and alleviate data traffic

congestion at the core network which can have a positive impact for 6G applica-

tions with increased speed requirements such as extremely high-definition video

transmissions and AR/VR services:

� We propose a cache-enabled RL-based dynamic power allocation and user se-

lection scheme for opportunistic access to downlink NOMA networks with

capacity-limited backhaul connections where selected UEs are activated oppor-

tunistically based on rate maximization. The scheme utilizes a double deep Q

network (DDQN) agent to interact with the NOMA environment to gain the

experience needed to attain higher sum-rate. The proposed agent monitors

the state of the NOMA environment and learns to update its action policy

towards optimal power allocation and user selection decisions. This RL-based

design can boost downlink speeds considerably while reducing the backhaul

link bottlenecks at the core network side to pave the way for 6G applications

facing transfer rate challenges (e.g., holographic video services and accurate

weather data acquisition and environment control).

� To demonstrate the merit of utilizing cache state information by the proposed

scheme, we study the comparative performance of the proposed RL agent

with the availability of full state information of the NOMA environment vs

partial state information availability where only the channel-gain conditions

of candidate users are available to the agent.

� We study the robustness of the proposed scheme in a variety of settings includ-

ing cache-enabled and cache-disabled communications, different levels of back-

haul throttling, and the blockage effects of mmWaves transmissions. Numeri-

cal analysis of the achievable performance shows that the proposed RL-based

scheme can consistently achieve near-optimal sum-rate performance. More-

over, the proposed agent exhibits adequate convergence performance towards

the optimal long-term mapping policy.

3. Chapter 5 contributions focus on 3D non-terrestrial NOMA network operation ex-

tension to accommodate 6G emergency use cases where ready-to-dispatch UAVs can

be quickly deployed to support fast downlink channels with battery-optimized UAV
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trajectory planning towards an environment-friendly, energy-efficient 3D-NOMA

network operation:

� We propose two RL-based schemes for energy-efficient UAV trajectory course

planning and joint downlink NOMA power allocation and receiver selection.

Both schemes are operated within battery-constrained UAV-NOMA environ-

ments with dynamic wireless channels. This is in line with the broader vi-

sion of a more comprehensive 6G system where reliable, energy-efficient non-

terrestrial communication availability is of great importance.

� The DDQN RL agent is trained to absorb the underlying characteristics of the

UAV-NOMA environment within the DNN it uses to implement its action-

selection policy. We define the appropriate UAV-NOMA states, actions, and

rewards so that the trained agent can achieve energy-efficient near-optimal

sum-rate performance when deployed for operation.

� The MAB-based agent is configurable with either CS-UCB or CS-MOSS oper-

ation modes and can learn to quickly converge to a highly-rewarding long-term

operation policy by scanning the search space while balancing the exploration-

vs-exploitation issue through the dynamic evaluation of various arms’ utilities.

The agent makes on-the-fly decisions and update them as needed.

� We operate and test the proposed solutions within mmWave-enabled UAV-

NOMA environments having line-of-sight (LOS) signals of variable strength.

Thus, chapter 3 provides an optimized underlying PHY layer foundation for the

overall design of 3D-NOMA network, whereas chapter 4 calibrates its MAC layer de-

sign for optimized transmission speeds, and chapter 5 accommodates non-terrestrial

communications mode where an energy-efficient UAV path design is incorporated

for environment-friendly deployments.

1.5 Thesis Structure

The aforementioned objectives of the thesis are tracked in the subsequent chapters.

Firstly, a literature review on AI-aided wireless communications is presented in chap-

ter 2. Afterwards, OFDM PHY layer optimization is tackled in Chapter 3 whereas MAC

13



1.5 Thesis Structure

layer resource management operation optimization is addressed in chapters 4 and 5 for

NOMA-based downlink systems:

� Chapter 2 gives a holistic idea on various AI-aided solutions for PHY and MAC layer

optimization of wireless communication systems. The chapter presents PHY layer

research work on DNN-based channel estimation and signal detection at the receiv-

ing devices as well as multicarrier OFDM-based signal processing at the transmit-

ting side. In addition, the chapter presents MAC layer research work on computa-

tion and communication resource management operations for optimized utilization

of the available resources.

� Chapter 3 describes in detail a proposed synchronous neural network-based OFDM

PAPR solution surpassing conventional CF-based approaches. The proposed method

accurately generates CF-like output signals by synchronously learning both real and

imaginary parts of raw OFDM input signals and mapping them to the desired target

output.

� Chapter 4 describes in detail a proposed cache-enabled RL-based dynamic power

allocation and user selection scheme for opportunistic access to downlink NOMA

networks with capacity-limited backhaul connections where selected UEs are acti-

vated opportunistically based on rate maximization.

� Chapter 5 describes in detail two proposed RL-based schemes for energy-efficient

UAV trajectory course planning and joint downlink NOMA power allocation and

receiver selection. Both schemes are operated within battery-constrained UAV-

NOMA environments with dynamic wireless channels.

� Chapter 6 draws conclusions on the work presented in the thesis based on the results

obtained in previous chapters. The chapter also outlines potential directions for

related future research work.
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Chapter 2

AI-Aided Wireless Communications

2.1 Introduction

AI integration into future 6G systems will enable widespread adoption and realiza-

tion of a variety of diverse applications and services. As 5G is gradually unrolling over

the globe, both the academic and industrial sectors are steadily shifting focus towards

conceptualizing a 6G roadmap with AI-based technologies and solutions at its core. AI-

driven operation management and system design as well as protocol optimization are key

features of future wireless systems to enable ubiquitous AI applications throughout the

network from the core and all the way to the terminal equipment [44].

In this regard, promising studies on AI-aided operation have been proposed to revolu-

tionize the design and operation of various components within the wireless communication

system to surpass the limits of conventional technologies and fulfill the ultimate vision of

future 6G networks. These studies cover various important PHY layer operations such as

channel estimation modeling, signal detection, and multicarrier modulation as well as crit-

ical MAC layer operations such as efficient utilization and management of compute and

communications resources as shown in Fig. 2.1. In this chapter, we present an overview of

relevant prominent AI-based solutions. In addition, we also present related works to our

core goal of optimizing resource management operation in 3D-NOMA systems for maxi-

mized achievable sum-rate performance in addition to the optimization of the underlying

PHY layer signal processing for more efficient implementation of 3D-NOMA towards 6G.
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Figure 2.1: AI-empowered wireless communications: PHY & MAC layers operation opti-
mization.

2.2 AI-Driven PHY Layer Operation

The physical layer of wireless communications networks is suffering numerous im-

pediments which include hardware-related issues (e.g., oscillators leakages and amplifier-

induced nonlinear distortions) as well as channel imperfections (e.g., interference, jam-

ming, and fading). In the presence of such challenging impairments, efficient and reliable

communications require careful designing of a large number of system-wide control pa-

rameters that must be optimized and fine-tuned. 6G PHY layer design is envisioned to

incorporate AI technologies to self-learn and self-optimize with automated data-collection

and sensing mechanisms, and advanced low-complexity signal processing techniques.

2.2.1 AI-Aided Channel Estimation

Realistic wireless communications channels usually comprise both deterministic and

random components, varying in time and also depending on the environment. Therefore,

conventional channel models construct stochastic models to represent the transmission

medium and benchmark various transmit-receive approaches. These stochastic models

of the wireless channel are a kind of abstraction that results from measurements taken

in a variety of transmission scenarios. They cannot accurately predict the true realistic

channel state of a given environment at an arbitrary given moment [45].

Going beyond 5G, the goal of AI-aided channel modeling is to absorb the knowledge

of the transmission environment characteristics to enable powerful channel predication

and state assessment capability by means of well-trained deep neural networks (DNNs)
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2.2 AI-Driven PHY Layer Operation

for example. The idea is to firstly collect and build a large dataset of true channel

measurements from actual field tests. The nest step is to utilize DNNs to learn and

extract the unique features of the channel from the training data. Lastly, inferences can

be made for important tasks such as channel feedback and predication [46,47].

The authors in [48] developed a pre-training self-supervised DNN technique that cap-

tures the state of the wireless channel during multiple tasks without compromising the

personal data of the users as training labels. The process is automated for label samples

generation and the DNN model learned to resolve the wireless channel’s features. Sub-

sequently, the learned model of the channel can be embedded and further tuned for a

specific task such as system optimization for downlink communications. Various AI mod-

els can be employed including auto-regression models [49] and DNN-based models [50].

The authors in [51] proposed an online DNN-based approach for channel estimation in

doubly selective fading environments. The technique utilizes a DNN to extract the specific

properties of the varying channel given previous estimations and properly selected data

while also harnessing the extra feature information extracted from received signals and

pilots. The proposed DNN method exploits least-square estimations to enhance the esti-

mation performance. In the proposed method, the DNN trains on simulated datapoints

at first during offline time. Then, the network starts tracking the dynamic behavior of

the channel during online usage. A pre-training method is used for the refinement of the

initialization settings of the DNN parameters. The technique presented does not require

prior information on the channel’s statistics making it a good choice for scenarios having

modeling errors or mobile vehicular environments. The authors in [52] proposed a channel

estimation approach based on DL for massive multiple-input multiple-output (mMIMO)

communications. The technique focuses on scenarios where the number of transmitting

antennas is larger than the pilot length. The technique performs a two-phase process to

estimate the channel: firstly, a DL-aided pilot-based estimation of the wireless channel,

then a DL-aided data-based estimation. For the initial phase, the channel estimator is

designed jointly with the pilot via a 2-layer NN as well as a DNN. Subsequently, the next

phase is used to improve the estimation accuracy via a second DNN using an iterative

approach. The authors in [53] proposed a low complexity, DL-assisted channel estimation

mechanism for RIS-aided single-input multiple-output (SIMO) OFDM systems suffering

from hardware-related impairment. The technique uses an untrained DNN relying on
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DIPN to reduce the noise in the system’s pilot-based effective channel which is based on

least-square estimation (LSE) with the target to arrive at more accurate estimations. The

authors in [54] proposed a 2-phase DNN-aided channel estimation approach for mMIMO

wireless communication networks experiencing nonlinear amplification distortion. The

method can learn both a DNN-based estimation of the wireless channel and the nonlinear

transfer characteristic of the amplifier in an online fashion by harnessing the information

gleaned from real-time measurements of the received pilots, while simultaneously con-

structing the corresponding channel estimation. The authors accomplish this task by

designing an online-based DNN loss function independent from the base channel while

incorporating the nonlinear distortion into account. The approach’s accuracy was higher

compared to conventional compressive sensing (CS) techniques while operating within

lower time frames for channel inference. The authors in [55] proposed a tensor-train

DNN (TT-DNN) approach for time-varying MIMO channel estimation. A centralized

estimator based on DNN is constructed using parallel-path distributed TT-DNN. The

TT-DNN method provided a compressed model by unraveling the DNN layers in a TT

form that utilizes a smaller parameter count. The proposal is adapted for the number of

antennas, pilot density, and block structure. To reduce the input dimensionality and the

parameter count, the technique performs the estimation for one block and one antenna

at a time. Additionally, an initial pre-training phase is used for the TT-DNN based esti-

mation to improve the representation accuracy. The model is also fitted to the semi-blind

scenario in which only the preamble data is available.

2.2.2 AI-Aided Reception

The basic key idea regarding the application of AI-based solutions in general and

DNNs in particular to wireless communications systems is the replacement of conventional

building blocks within the network with intelligent, adaptable DNNs. Two examples are

illustrated in this section: signal detection and channel decoding. In both cases, DNN-

based optimization attempts are presented wherein the ability of low-latency DNNs is

harnessed to accurately model the system’s inherent non-linearities and imperfections.

2.2.2.1 Signal Detection

The authors in [56] proposed a DNN-based detection scheme for signals modulated us-

ing the orthogonal time frequency space (OTFS) scheme. The authors considered an
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architectural DNN structure that assigns a dedicated DNN for each multiplexed symbol

within the delay-Doppler net. This is opposed to the alternative format where the DNN

jointly handles all the symbols of the OTFS frame under processing. The symbol-oriented

DNN structuring requires lower processing complexity as it harnesses a reduced number

of parameters. The authors in [57] proposed a DNN-based block detection scheme for

RIS-assisted generalized spatial modulation (GSM) MIMO communications to determine

active antennae and retrieve the transmit signals at the receiving side. Standard signal

detection schemes (e.g., zero-forcing (ZF), maximum likelihood detection (MLD), and

minimum mean square error (MMSE) detector) have also been considered. The proposed

work managed to achieve similar BER levels as the MLD while operating at lower com-

plexity. The authors in [58] proposed a joint channel estimation and signal detection

scheme for OFDM networks. The scheme applies DNN-based end-to-end processing for

OFDM channels to produce an implicit estimation of the CSI whilst directly detecting

the transmitted signals. To handle channel-induced distortions, the authors used simu-

lated data that they generated using the statistics of the wireless channel to train a DLM

in an offline setting, and employed the trained model to directly retrieve the transmit

symbols during online operation. The proposed scheme exhibited similar performance to

the MMSE detection approach.

2.2.2.2 Channel Decoding

The authors in [59] proposed a one-shot multi-layer perceptron (MLP)-based channel

decoding algorithm. A black-box style was adopted for the MLP training where no prior

knowledge utilization is assumed as is usually the case for conventional decoders. The

received corrupt codeword is decoded by feeding it as an input to a pre-trained MLP

decoding network. The MLP network processes the input codeword to map it onto one

of the valid codewords at the MLP output. The proposed approached was evaluated

and has shown promising decoding capabilities of DNN-based operation which can be on

bar with the maximum a posteriori (MAP) algorithm. The authors in [60] investigated

three NN decoding architectures: an MLP, a recurrent neural network (RNN), and a

convolution neural network (CNN). The same parameter count was fixed for the three

decoders. RNN-based decoding provided the best decoding performance among the three

tested approaches at the expense of more computational demand. For all three types,

the authors also reported a saturation length for the input codeword beyond which DNN
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underfitting and overfitting problems started to arise due to their restricted learning abil-

ities. The authors in [61] proposed TurboNet, a model-driven DL-based turbo decoding

scheme which integrated DNN-based processing into conventional MAP decoding. Tur-

boNet was designed by unraveling the originally iterative format in terms of DNN blocks.

Learnable parameters were incorporated into the structure of the MAP decoder, and

subsequently tuned via the supervised learning approach. TurboNet was subsequently

pruned to produce TurboNet+, a more compact version with comparable performance.

TurboNet+ showed reduced computational cost which helps to alleviate decoding over-

head. The evaluation of the proposed work showed promising error-correction capability

and adaptability to a variety of transmission test cases.

2.2.3 Multicarrier Modulation (OFDM) Signaling

OFDM is an efficient multicarrier modulation scheme that densely packs a group

of overlapping yet orthogonal subcarriers into resource blocks to achieve higher utiliza-

tion efficiency of the available spectrum bandwidth, while also combating undesirable

inter-symbol interference (ISI) issues caused by the multipath nature of realistic wireless

communications channels which induces frequency-selective fading. This is accomplished

by converting the single-stream, information bearing signal to multiple parallel streams

each with smaller bandwidth requirements while maintaining the overall original band-

width fixed. This effectively renders the frequency-selective channel into a flat-fading

channel over each individual subcarrier. DSP-based operation facilitates for an easy im-

plementation of OFDM modulation using FFT operations. Although OFDM systems

enjoy a wide range of benefits, the generated time-domain OFDM signals suffer from a

typically high peak-to-average power ratio (PAPR). Due to the nonlinear nature of the

amplification stage at the transmitter side, a high PAPR would cause severe in-band

signal distortion as well as induce out-of-band (OoB) emissions.

To reap the benefits of OFDM systems, an efficient PAPR reduction scheme is needed

to address this long-standing, critical issue. To this end, various clipping and filtering

PAPR reduction approaches have been proposed in the literature [62–68]. The iterative

CF (ICF)-based technique is effective in reducing the PAPR level of the OFDM signal [62].

The technique relies on time-domain clipping of the signal amplitude whenever it exceeds

a certain threshold which then gives rise to high-frequency components. Therefore, ICF
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then applies a frequency-domain filtering operation to suppress the generated OoB emis-

sions. The ICF algorithm applies IFFT and FFT operations to switch to the time and

frequency domains, respectively. Unfortunately, when the OoB emissions are suppressed,

the time-domain signal amplitude experiences some regrowth. Thus, ICF keeps switching

between the time and frequency domains in an iterative manner to clip the amplitudes

exceeding the clipping threshold while ensuring that OoB emissions are suppressed. This

repeated application of IFFT/FFT operations is computationally expensive. The authors

in [65] thus proposed a single-shot, simplified CF-based (SCF) processing approach to

arrive at the same PAPR reduction performance of ICF in a single iteration. In SCF,

the time-domain OFDM signal is generated by applying the standard IFFT operation

which is then clipped according the limiting threshold. Afterwards, the clipping noise is

generated (as the difference between the clipped and unclipped signals) and converted

to the frequency domain where it is filtered, scaled by a factor depending on the clip-

ping amplitude and the OFDM signal variance, and then subtracted from the original

frequency-domain input signal before producing the SCF scheme’s final output by apply-

ing an IFFT operation. This cascade of operations provides the same PAPR reduction

capability of ICF at relatively lower complexity. However, the processing complexity of

SCF remains relatively high. Neural network-based processing was proposed to reduce

the system’s complexity while providing the same PAPR reduction capability [69]. Two

NN modules were utilized to process the in-phase (I) and quadrature (Q) parts of the

input OFDM signals independently. The two network modules are trained to output the

I and Q components of the output signal, respectively. The scheme managed to provide

the same PAPR reduction capability of conventional SCF. However, the asynchronous

nature of the NN-based processing approach can lead to underfitting or overfitting issues,

resulting in underoptimized OoB operation due to sensitivity to mapping errors. In ad-

dition, although conventional NN-based operation can achieve the same PAPR reduction

performance, it does not provide enhanced PAPR reduction compared to conventional

CF-based approaches.

2.3 AI-Driven MAC Layer Operation

MAC layer resource management framework optimization is expected to undergo a

paradigm shift from network of entities to network of intelligent functions [70]. Proper,
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adaptable utilization of the available RAN communications, computing, and cloud caching

resources is indispensable for future 6G networks to meet the expected application-

driven demands. Given the wide variety of emerging applications with pressing needs

for increased access to communication, compute, and data storage services, the highly

dynamic and heterogeneous nature of future 6G networks calls for the development of

efficient resource management approaches breaking beyond the limits of conventional so-

lutions across all three sectors. 6G MAC layer design is envisioned to incorporate novel,

AI-aided resource management approaches that can deliver excellent performance and

fulfill the stringent requirements set forth for 6G systems.

2.3.1 AI-Aided Compute Resource Management

DNN-based tasks can be computation-hungry thus creating a challenge for small mo-

bile equipment that do not have direct local access to abundant computation resources.

Therefore, active research has been undergoing for efficient edge and cloud-based com-

puting. The authors in [71] studied binary computation offloading with the objective to

minimize energy consumption. The authors proposed an offloading mechanism relying on

distributed DNN operation where a group of DNNs are used in parallel to arrive at suit-

able offloading actions. The authors also presented a hierarchical model for offloading to

balance delay and energy consumption. A weighted sum optimization problem was then

formulated. The proposed method was able to score noticeable compute energy savings

while maintaining reasonable delay and offloading accuracy. The authors in [72] proposed

Edgent, an edge-computing solution utilizing edge-device synergy for collaborative DNN-

based inference. The proposed framework adaptively leveraged DNN partitioning where

computations are partitioned among the edge and device sides to exploit the power of

cloud resources through the proximity of edge nodes to achieve real-time inferences. The

technique also employ DNN resizing to improve computation latency by appropriately

choosing an intermediate stage (i.e., DNN layer) to exit the inference operation. Edgent

was designed with the aim to address static as well as dynamic environments for practi-

cal suitability. Fog computing at the edge of networks is a strong candidate approach to

reduce the latency associated with offloading computation tasks to cloud-based servers

while providing compute services to resource-limited mobile equipment. Inspired by fog

computing potential, the authors in [73] proposed a DNN-based partitioning solution
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for cooperative, wireless fog computation offloading. The authors considered dividing the

DNN to form a layer-based partitions. They also partitioned the layers’ input data across

multiple users to parallelize the computation process. The authors focused on minimizing

the consumption of energy by different cooperative agents through parameter optimiza-

tion and workload balancing for the partaking devices. Compared to uniform workload

division among participants, the proposed DDN-baded solution managed to achieve lower

compute energy footprint. Since edge-caching of DNN-based models provides numerous

advantages in terms of security, privacy, and efficiency, the authors in [74] tackled the

problem of cache model selection and edge-server processor allocation with an aim to

bring down the total cost of the system. The authors focused on user-experienced delay

as well as compute energy consumption under constrained resources. The authors devel-

oped an online Gibbs sampling technique for compute resource allocation and cashing of

DNN models which they evaluated through simulations to demonstrate its effectiveness.

2.3.2 AI-Aided Communications Resource Management

Proper management of the available RAN communications resources is of utmost im-

portance for 6G networks to fully utilize and allocate the limited transmission power and

spectrum resources among multiple users simultaneously. This is especially important

for future networks where higher connection density levels are expected. The network

must accommodate the expected surge in data traffic while providing users with high

transfer rates suitable for AI-driven, speed-demanding applications. To this end, various

research contributions have been made to optimize the MAC layer level communications

resource utilization in wireless systems. This include the optimization of the transmis-

sion power allocation among users as well as the optimization of user pairing over unified

resource blocks (e.g., time slots, OFDM frequency channels, and orthogonal code as-

signment). To this end, the authors in [75] considered a group of access points in a

cell-free, multiuser mMIMO network. The authors proposed a distributed DNN-based

power allocation scheme with the aim to maximize the system’s spectral efficiency. The

proposed DNN was trained using the fading parameters to feed the DNN to achieve an

adequate dynamic range and simplify the DNN structure. The proposed scheme man-

aged to achieve higher performance than the heuristic-based solution. In [76], the authors

proposed a DNN-based per-antenna power allocation scheme for MIMO systems using
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six layers (two convolutional followed by four fully-connected). The DNN is fed collected

fading data to generate and output the per-antenna and per-user shares of the transmis-

sion power. Intensive pre-training of the employed DNN was carried out and Sub-6GHz

TDD-based operation was assumed. The proposed DNN-based approach showed com-

parable performance to the bisection method. Although these solutions can perform

adequately, optimized performance can only be achieved by taking user scheduling into

account. Therefore, the authors in [77] proposed a DNN-based power allocation and link

scheduling algorithm for multi- small cell operation. A suitable user scheduling is se-

lected followed by power allocation. Simulation of the proposed technique showed faster

operation compared to scheduling via an exhaustive scan and geometric programming

power control. Although the proposed work considered both power allocation and user

selection, performance tuning for non-orthogonal transmissions is not considered. Per-

formance tuning can be especially sensitive for power allocation in non-orthogonal based

multiuser multiplexing schemes such as NOMA-based systems where the interuser in-

terference must be carefully handled for optimized transfer rates. The authors in [78]

thus proposed a DNN-based power allocation and user selection approach for NOMA

systems. The presented solution operated in a two-stage manner. In the first stage,

the transmission power is allocated by training a DNN model to emulate the interior

point algorithm output. The objective was to increase the sum-rate of the system while

maintaining adequate processing complexity. Once power allocation is done, a user se-

lection mechanism is applied as a second stage to enhance the achievable performance.

Although the proposed solution considered power allocation and user selection for NOMA

systems, incorporation of mmWaves blockage effects was not taken into account. Future

6G networks will heavily rely on mmWaves for their great potential of unlocking ultra-

high speeds. The authors in [79] considered DNN-based NOMA resource management

incorporating mmWave-enabled operation. The proposed scheme aimed to maximize

the system’s energy efficiency under QoS constraints. Lagrangian dual decomposing was

firstly applied to solve the user association problem, then a semi-supervised DNN-based

approach was applied to tackle subchannel and power allocation.

Although the proposed works showed promising performance, backhaul link capacity

constraints were not considered. This is an important aspect since future 6G networks are

expected to primarily carry bandwidth hungry video content (about 75% of total mobile
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network traffic by 2030 according to the ITU [30]) for various AI-based applications

and services. The content will usually be transferred from the source point to the core

network via backhaul interfaces experiencing huge, real-time traffic surges. Cache-enabled

operation utilizing the popularity of rich multimedia contents in the locale of the serving

base stations can alleviate backhaul traffic congestion and provide an effective way to

optimize the system’s performance.

In addition, non-terrestrial UAV-assisted communications have been gaining a lot of

attention due to their potential to be quickly dispatched to establish and provide wireless

coverage in a variety of important use cases including remote areas with no sufficient

telecommunications infrastructure availability or emergency use cases (e.g., in areas af-

fected by natural disasters where the main serving network might be sustaining some

damage) [80]. The authors in [81] studied a UAV-based NOMA system for emergency

communications. The authors proposed to establish an uplink channel so the UAV can

gather information related to the IoT equipment within the emergency zone. Afterwards,

coverage is provided for IoT users via a joint UAV dispatching and power control ap-

proach. Nonetheless, NOMA downlink user pairing was not considered. To overcome

this, the authors in [82] tackled both NOMA user pairing and power distribution along

with UAV course planning with the goal to optimize the transfer rate. Energy-oriented

operation, however, was not optimized as battery-aware design was not taken into ac-

count.

2.4 Target Research Position

Figure 2.2 illustrates the position of the target research of this thesis within both

the PHY and MAC layers of the wireless communications system. From a high-level

viewpoint, various aspects of the wireless communication system can be considered at

both layers. For example, MAC layer storage and compute resource management and

PHY layer channel estimation and signal detection operations have been considered in the

literature as discussed earlier. Of particular importance to the proposed 3D-NOMA net-

work architecture introduced in Fig. 1.4 is the optimization of communications resource

management operation at the MAC layer side to maximize the achievable communication

speeds and accommodate the demanding high-rate and connection density requirements

of future 6G networks. On the other hand, optimizing the multicarrier modulation scheme
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at the transmitter side via AI-empowered OFDM signaling is of great importance to pro-

vide fast processing capabilities at the PHY layer level, which is extremely crucial for

the successful realization of future 6G applications and services that require low-latency,

real-time operation. Therefore, in this thesis we pursue AI-aided optimized operation

of the MAC layer communications resources as well as AI-driven low-complexity OFDM

signal processing for enhanced PHY layer operation.

Wireless 

communications

Mac layer

Physical layer

Proposed AI-empowered

3D-NOMA

Storage resource management

Communications resource management

Compute resource management

Channel Modeling and estimation

Multicarrier Modulation (OFDM)

Signal Reception

Figure 2.2: Proposed 3D-NOMA PHY and MAC layers research focus.

2.4.1 PHY Layer Side

Efficient operation of the PHY layer block chain in Fig. 2.3 hinges to a large ex-

tent on a highly optimized multicarrier modulation scheme to process the signals prior

to transmission over the wireless channel. As pointed out earlier, OFDM multicarrier

signaling is a very promising framework that provides a wide range of benefits from both

theoretical and practical standpoints. For example, the scheme provides high spectral

efficiency and enjoys very powerful resilience to ISI issues induced by the multipath na-

ture of the wireless channel. Moreover, practical OFDM receivers are easy to implement

using DSP-based operations. Given its potential and robustness to channel impairments,

OFDM has been the choice of 3GPP standardization committees for 5G NR modulation.

However, powerful AI-aided OFDM signal formatting approaches are needed to im-

prove raw OFDM signals and ensure the transmitted signals exhibit desirable character-
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Figure 2.3: Top-level view of the PHY layer block chain.

istics. This is particularly pressing going beyond 5G where low-complexity, AI-oriented

OFDM signal formatting alternatives will be desirable to provide enhanced underlying

PHY layer operation for novel candidate technologies such as 3D-NOMA networks that

can ultimately drive and enable latency-demanding 6G services and applications. To this

important goal, in this thesis we focus on AI-empowered, low-complexity OFDM signal

processing operation. In chapter 3, we present a detailed treatment of the proposed

AI-aided OFDM signal formatting scheme.

2.4.2 MAC Layer Side

The main MAC layer operations of wireless communication networks include resource

management operations of the available storage, communications, and compute resources

as depicted in Fig. 2.4. Of special interest is the efficient utilization of the communica-

tions spectrum and transmit power budget resources due to the ever-growing demands

for higher data transfer rates and more simultaneous connections. This is particularly

important in order for future 6G networks to deliver an excellent user experience and

meet the challenging requirements of the emerging applications and services as pointed

out earlier. As such, promising candidate technologies that can maximize the utilization

of the system’s communications resources are vital. 3D-NOMA networks employing the

NOMA communications protocol can provide an excellent communications architecture

for increased user density and boosted data rates.

3D-NOMA networks must therefore incorporate robust and adaptive user selection

and transmit power control mechanisms to efficiently manage the available communica-

tions resources. To this end, highly-optimized AI-aided communications resource man-
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agement schemes are the research focus of this thesis at the MAC layer level for both

terrestrial and non-terrestrial communications in order to achieve seamless operation

of the proposed 3D-NOMA architecture in Fig. 1.4. In chapter 4, we describe the de-

tails of the proposed AI-aided communications resource management for terrestrial based

NOMA downlink communications. In addition, chapter 5 extends the proposed operation

for non-terrestrial UAV-based 3D-NOMA networks.

MAC Layer Operations
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Figure 2.4: MAC layer operations.
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Chapter 3

OFDM PAPR Reduction via

Synchronous Neural Networks

3.1 Introduction

The high peak-to-average power ratio (PAPR) is a typical characteristic of orthogo-

nal frequency division multiplexing (OFDM) signals. Prior to transmission through the

channel, OFDM signals are amplified, and to achieve high efficiency, the power amplifier

is driven near its saturation region. This, however, causes undesired non-linear amplifi-

cation effects including signal distortion and out-of-band (OoB) radiation, especially if

the signal input to the amplifier has high PAPR. Therefore, it is imperative to tackle the

high PAPR problem inherent in OFDM signals. Although the PAPR reduction is not the

ultimate goal of the communication system, it provides an instrument for maintaining the

bit error rate (BER) while keeping the spectral mask at the transmitter output according

to standard requirements.

To address the PAPR issue, many classical solutions have been proposed over the

years, including partial transmit sequence (PTS) [83], tone reservation (TR) [84], com-

panding [85], selected mapping (SLM) [86], and clipping and filtering (CF) techniques [62–

68]. CF is a simple but powerful approach that does not generally require the use of addi-

tional resource blocks or the transmission of side information, which make it of particular

interest in the literature. In CF, the time-domain OFDM signal amplitude is limited to

a predefined threshold level to keep the resulting PAPR within acceptable ranges. How-

ever, clipping the signal amplitude causes OoB power leakage which may not be tolerable
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by adjacent channels. The signal is therefore filtered to eliminate the OoB emissions.

Nonetheless, filtering is invariably coupled with amplitude regrowth of the time-domain

OFDM signal and this in turn increases the PAPR beyond the acceptable threshold.

Consequently, iterative-based clipping and filtering (ICF) operation is needed to repeat-

edly clip the signal amplitude and filter the leaked emissions. However, ICF techniques

are computationally expensive in general, especially when the number of sub-carriers is

large. Simplified clipping and filtering (SCF) was introduced to achieve similar PAPR

reduction performance in a single iteration of modified processing at a relatively cheaper

cost. However, the required computational complexity is still high even for SCF.

To solve this problem, the authors in [69] proposed an alternative SCF-based method

which uses asynchronous neural network (ANN) modules at the transmitter side to

achieve PAPR reduction performance comparable to existing SCF methods while sig-

nificantly reducing the required complexity. Since the ANN technique focused on mod-

eling the output signal’s real part as a function of only the input’s real part whereas the

output’s imaginary part was similarly modeled as a function of only the input’s imag-

inary part, synchronous operation was, therefore, not used. Thus, the method in [69]

is asynchronous in nature due to the separate training of two independent NN modules

using correlated real and imaginary components, respectively. This can potentially cause

convergence mismatch between the two NN modules leading, thereby, to one module

under or overfitting with respect to the other. This ultimately results in increased OoB

radiations and degrading BER performance for higher order modulations. In particular,

OoB radiation is very sensitive to non-linear distortion due to peak limiting. The above

inaccurate convergence in conventional ANN may result in unacceptable OoB emissions,

which needs a novel solution.

In this chapter, we propose a synchronous neural network CF-based (SNN-CF) ap-

proach where the two modules of ANN are replaced by a single NN module which is

simultaneously fed by both real and imaginary components to take the effect of their

interdependence into account at the training stage.

3.2 Related Works

The authors in [87] investigated the modeling of the PAPR reduction problem as

a combinatorial search problem and proposed to use a Hopfield neural network (HNN)
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optimizer [88] to solve it. Although the technique showed promising results, it would

require the transmission of a large amount of side information and suffer high sensitivity

to phase noise. To achieve PAPR reduction performance close to that provided by HNN

while avoiding the transmission of side information, an SLM-based radial basis function

network (RBFN) solution was introduced in [89]. RBFN is essentially a multivariate

interpolator that generates a phase rotation vector which is fed to an SLM encoder for

phase selection and OFDM signal generation. Although no explicit side information is

needed, the technique requires the adaptive updating of the weights of the network’s

output layer as well as the activation functions of the network’s hidden layers.

The authors in [90] proposed an active constellation extension-based (ACE) method

that deploys a time-frequency neural network (TFNN) to accomplish PAPR reduction

performance close to that obtainable using the original ACE technique with less complex-

ity. However, TFNN modules operate in complex time-domain and frequency-domain

modes and exhibit degraded BER performance in fading channels for high-order mod-

ulations. To overcome this problem, Ref. [91] proposed an ACE-based NN variation

to achieve much better BER performance for high-order modulation transmissions over

fading channels while maintaining almost the same PAPR reduction performance of the

TFNN method. Although the technique requires fewer in-use computations than the

TFNN approach, it would rely on the continuous training and updating of adaptive NN

modules at the receiver side, based on the average received signal-to-noise (SNR) ratio,

through the transmission of predefined training signals over dedicated spectral resources.

Recently, the authors in [92] proposed a deep neural network-based (DNN) encoders

and decoders deploying multi-layer DNN modules for constellation mapping and demap-

ping at the transmitter and receiver sides, respectively. The DNN-based approach can

simultaneously improve the performance in terms of both PAPR reduction and BER.

This comes, however, at the expense of highly expensive computational cost due to the

deployment of complex multi-layer DNNs, rendering their usage unfeasible for low-latency

demanding scenarios that require strict constraints on complexity.

Unlike the above works, the proposed SNN-CF is a low-complexity PAPR reduc-

tion approach which requires neither the active adaptation of the learned network nor

the transmission of side information or the dedication of additional resource blocks.

In addition, the actual merit of the proposed scheme is expected to be observed for
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higher-order modulations where conventional ANN schemes start to exhibit severe BER

performance deterioration.

3.3 OFDM Model

3.3.1 Signal Model

Consider an OFDM system utilizing N sub-carriers. In order to closely follow the

continuous amplitude envelope of the time-domain OFDM signal, an oversampling factor

η ≥ 4 is customarily assumed. The time-domain OFDM signal can be written as

x[n] =
1√
ηN

ηN∑
k=1

X[k]e
ωkn

ηN ∀ n = 1, 2, . . . , ηN , (3.1)

where ωk = 2πk is the k -th sub-carrier carrying the data-bearing modulated symbol

X[k]. Quadrature phase shift keying (QPSK) modulation and quadrature amplitude

modulation (16-QAM) are both considered subsequently.

3.3.2 Performance Metric

As mentioned earlier, high-power amplifiers (HPAs) have non-linear responses causing

undesired distortion effects which are poorly captured by the classical peak-to-average

power ratio metric. The cubic metric (CM) [93] uses higher-order statistical informa-

tion gleaned from the OFDM signal to appropriately account for the signal’s envelope

fluctuations. The third-generation partnership project (3GPP) defines the CM, Ω, as

Ω =
Γ[dB] − Γ

[dB]
ref

κ
dB , (3.2)

where Γ[dB] is the raw cubic metric (RCM) of the time-domain OFDM signal in (3.1) and

is defined as

Γ[dB] = 20 log10


√√√√√√
 |x[n]|√

x[n]

3
 dB , (3.3)

where the factor κ is empirically determined and Γ
[dB]
ref is a fixed RCM reference level.

Typical values for these two parameters are used later in the numerical evaluation of the

system performance.
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3.4 Benchmark Techniques

3.4.1 Selected Mapping

Undistorting PAPR reduction schemes, such as SLM, sacrifice complexity or the uti-

lization of additional resources to help maintain the same BER performance of the original

OFDM. In SLM [86], a large block of U different OFDM sequences, xu[n] ∀ u = 1, 2, . . . , U,

n = 1, 2, . . . , ηN , representing alternative candidates to map the same information-bearing

symbol stream, is generated. The candidate sequence, x∗[n], with the lowest CM metric,

is selected for transmission. Thus, for SLM:

x∗[n] =
arg min

xu[n]
u∈S

20 log10


√√√√√

[
|xu[n]|√

xu[n]

]3

−Γ[dB]

ref

κ

, (3.4)

where S ≜ {1, . . . , U} is the set of indices of all candidate sequences within the generated

block.

3.4.2 Clipping-Based Techniques

3.4.2.1 Iterative Clipping and Filtering

The ICF algorithm is outlined in Fig. 3.1. The signal amplitude is kept below a pre-

configured limiting threshold by repeatedly clipping amplitudes exceeding the threshold

and filtering the resulting OoB radiations. The process therefore zigzags back and forth

between time and frequency domain representations through the iterative computation

of IFFT and FFT operations for a preset number of times, L. Fortunately, amplitude

regrowth decays with the increasing number of iterations, thereby enabling the technique

to effectively reduce the PAPR level as more iterations are applied.

 

IFFT 
𝑥[𝑛] 𝑋[𝑘] 

Mapper 
Data 

 𝑋෨[𝑘] Clipper 𝑥ො[𝑛] FFT & 

Filtering 
IFFT 

𝑥෤[𝑛] 

ICF Processing 

Figure 3.1: Top-level view of ICF.
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3.4.2.2 Simplified Clipping and Filtering

SCF mimics the powerful PAPR reduction capability of the ICF-based mechanism while

dispensing the need for iterative operation. As in ICF, SCF algorithm [65] starts by ap-

plying IFFT operation to generate the time-domain OFDM signal, x[n], from the mod-

ulated symbol stream sequence, X[k], and then proceeds to compute a clipped version,

x̂[n], with maximum amplitude R, according to the same criterion. However, the opera-

tion is then modified to achieve almost the same performance in a single iteration of signal

processing. The clipped signal, x̂[n], is then subtracted from the unclipped OFDM signal,

x[n], to produce a clipping noise signal, d[n], which is then converted to frequency-domain

representation, D[k], by applying FFT operation as shown in Fig. 3.2. To suppress OoB

emissions, D[k] is then filtered to yield D̂[k] with nulled (η − 1)N trailing components.

A crucial step giving SCF its ability to come very close to ICF performance without

the need for multiple iterations was then performed. The frequency-domain clipping of

the original modulated sequence, X[k], is accomplished by scaling the filtered noise sig-

nal, D̂[k], and subtracting it from X[k], to obtain X̃[k] which is finally converted to the

time domain sequence x̃[n] by applying IFFT operation. The clipped signal, X̃[k], was

computed as

 𝑥[𝑛] 𝐷[𝑘] Clipper 𝑥ො[𝑛] FFT of Clipper 

Noise 
IFFT 

𝑥෤[𝑛] Filtering & 

Clipping 

𝑋෨[𝑘] 

Figure 3.2: Top-level view of SCF.

X̃[k] = X[k]− ρD̂[k] , (3.5)

where the scaling coefficient, ρ, is calculated as

ρ =
1− (1− µ)1.5λ

1− (1− µ)1.5
, (3.6)

where the factor λ was used to establish an equivalency for the iterative nature of ICF

and takes the same value as the number of iterations used by ICF. The parameter, µ, is a

function of the maximum allowable amplitude, R, and the standard deviation, σ, of the
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unclipped time-domain OFDM signal, x[n], and is computed as

µ =

√
8

3π

( σ
R

)
. (3.7)

3.5 Proposed Neural Network Solution

3.5.1 Network Architecture

The objective is to train a neural network to extract the identifying characteristics

inherent in time-domain OFDM signals processed by conventional CF-based solutions.

A feed-forward multi-layer perceptron (FFMLP) neural network is pretrained offline be-

fore it is deployed for the real-time processing of original OFDM signals prior to trans-

mission. As shown in Fig. 3.3 (a), the general structure of FFMLP consists of three

main sections: an input layer defining the input format (type, dimensionality, etc.,) fol-

lowed by a set of hidden layers, each including a configurable number of neurons with

a unified activation function for all neurons of each layer. The last layer is the output

layer, which is a convergence point collecting the data traversing the network from the

input layer through the hidden layers. The data are weighted and summed by the output

layer’s neurons and passed through an activation function to produce the final output.

The input to the FFMLP is M -dimensional. There is a total of V hidden layers. The i-th

hidden layer contains hi processing neurons. The final output of the FFMLP network

module is P -dimensional. The response of the j-th neuron in the i-th hidden layer is:

s
(i)
j = fi

(
hi−1∑
k=1

w
(i)
j,ks

(i−1)
k + b

(i)
j

)
, (3.8)

where fi(.) is the activation function of the i-th hidden layer and s
(0)
k ≜ Ik is the k-th

entry in the input layer. w
(i)
j,k is the learnable weight connecting the k-th neuron in the

(i − 1)-th layer to the j-th neuron in the i-th layer. b
(i)
j is the learnable bias of the j-th

neuron in the i-th layer. Similarly, the response of the j-th neuron in the output layer is:

s
(o)
j = fo

(
hV∑
k=1

w
(o)
j,ks

(V )
k + b

(o)
j

)
. (3.9)

Figure 3.3 (b) illustrates the application of an FFMLP module to process raw OFDM
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input signals. The input layer extracts the in-phase and quadrature components of the

input OFDM signal. The two parts are then simultaneously processed by the subsequent

core of the pretrained neural network module to generate the corresponding in-phase and

quadrature components of a CF-like output signal with the desired characteristics.
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Figure 3.3: FFMLP neural networks: (a) general structure; and (b) OFDM signal processing.

3.5.2 Proposed Dataset Compilation and Network Selection

A 3-D training dataset, D, is formed by running Algorithm 1. Initially, D is prop-

agated by zeros. The dataset, D, is comprised of multiple 2-D slices as shown in Fig.

3.4. The i -th 2-D slice, D(i, ., .)∀ i = 1, 2, . . . , S, is filled with a random selection of a

group of ηN time-domain samples. The samples are obtained by generating a vector

of samples of an original OFDM symbol, xi[n]∀n = 1, 2, . . . , ηN , which is then fed to

an ICF-based clipping algorithm to generate the corresponding output training vector,

xo[n] ∀n = 1, 2, . . . , ηN . SCF-based training can be applied alternatively. The samples

of the two generated vectors are jointly scattered across the slices in a random fashion
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as shown in Fig. 3.4. The process is repeated until all the slices within D are filled with

the training data.
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Figure 3.4: Proposed dataset compilation mechanism.

Figure 3.5 illustrates the concept of the proposed SNN-CF scheme. Unlike conven-

tional NN solutions, we propose using a synchronous FFMLP-based network structure to

achieve a more accurate performance with a slight increase in computational cost. In this

scheme, instead of processing the correlated (I) and (Q) parts independently, only one

FFMLP module is employed to process both parts simultaneously, using 2-dimensional

(2-D) input and output sequences (M = 2 and P = 2 in Fig. 3.3 (a)). This synchronous

approach can emulate SCF with higher flexibility and handle underfitting and overfitting

problems more gracefully than ANN where two modules are trained separately. There-

fore, SNN-CF essentially models R {x̃[n]} as a function of both R {x[n]} and I {x[n]}.

Similarly, I {x̃[n]} is modeled as a function of both R {x[n]} and I {x[n]}. Thus, SNN-

CF has potentially higher chances of capturing the essence of the SCF peak-limiting

mapping algorithm.
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Algorithm 1 Proposed Dataset Compilation.

– Initialize s = 0,D = 0S,ηN,2

– While s < S repeat the following steps:

1. Generate training samples:

– Apply IFFT to compute the time-domain OFDM signal, x[n], of (3.1):

– Append (η − 1)N trailing zeros to X[k] for oversampling.

– Compute IFFT of X[k] with size ηN .

– Save the generated OFDM signal:

xi[n]← x[n]

– while l < L, repeat the following steps:

– Generate clipped OFDM signal, x̂[n], by replacing all samples of

x[n] with amplitudes exceeding the limiting value, R, according to,

x̂[n] = Rej∠x[n] ∀ n ∋ |x[n]| > R ,

where R = C

√
x[n] and C is the desired clipping ratio.

– Filter the resulting OoB radiations:

· Compute FFT of x̂[n] with size ηN to generate X̂[k].

· Zero out the trailing (η−1)N frequency-domain samples of X̂[k]

to generate filtered OFDM signal, X̃[k].

· Recompute the corresponding time-domain OFDM signal, x̃[n],

using IFFT with size ηN .

– x[n]← x̃[n] , l← l + 1

– end while

– Save the generated OFDM signal:

xo[n]← x̃[n]

2. Scatter the ηN input and output OFDM samples across ηN random empty

locations within D:

D (i, j, 1) = xi[n],

D (i, j, 2) = xo[n]

3. s← s+ 1

– end While

Where

� xi[n] and xo[n] ∀ n = 1, 2, . . . , ηN are the OFDM input and output training sam-

ples.

� i and j, 1 ≤ i ≤ S, 1 ≤ j ≤ ηN , are random indices of empty storing locations

within the dataset D.
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Figure 3.5: The proposed scheme: (a) training; and (b) deployment.

During training the network model in Fig. 3.5, each training data point is formed

from D by constructing an input training vector, [R {D(i, j, 1)} , I {D(i, j, 1)}]T , and a

corresponding target vector, [R {D(i, j, 2)} , I {D(i, j, 2)}]T . The training process goes

on until the mean square error (MSE) between the actual output of the NN module

and the target output is minimized. An SNN-CF network is found once the training

process halts. The network is then ready and can be deployed for the processing of raw

OFDM signals that it has not processed before while learning SCF patterns. Compared

to ANN, the proposed SNN-CF scheme is able to converge within fewer iterations during

the training stage.

When deployed for operation, SNN-CF starts by reformatting the original OFDM

input x[n] to produce [R {x[n]} , I {x[n]}]T , a 2-D vector representation of the in-phase

and quadrature components of x[n]. The input vector is then applied to the network’s

Hidden Layers section which is preconfigured during the training stage to implement a

map f : R2 → R2 in the neighborhood of conventional ICF or SCF. The output layer

processes the 2-D signal vector produced by the vector mapper f to generate a close

estimate to x̃[n], which would be the output of conventional ICF or SCF for the same

input x[n].
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Attaining a higher performance than conventional CF-based schemes is accomplished

by exploring the space of different maps in the neighborhood of ICF or SCF. This is

performed by repeatedly training different SNN-CF modules until a network providing

the highest positive performance gap is found under certain quality of service (QoS)

requirements. Thus, to ensure the fidelity of the solution, we impose a threshold BER,

Et, for the trained SNN-CF network at an arbitrary Eb/N0|t. Therefore, in order to find

a mapper f with desirable characteristics, we explore the neighborhood of a conventional

CF map during the offline training stage. The outline of the proposed network-selection

algorithm is given in Algorithm 2. The basic concept of the algorithm is to optimize the

network structure to achieve the lowest possible CM value while maintaining a given QoS

requirement. Although a maximum allowable BER level is used as a metric to enforce

the required QoS, other metrics can be applied, such as the sum-rate and error vector

magnitude (EVM). In fact, EVM is used as a metric to achieve the target BER in [94].

The algorithm starts by initializing an SNN-CF network, Net(0), with a random parameter

set ϕ and updates it using a random batch of training data points from the dataset D in

order to find a mapping solution that minimizes the MSE mentioned previously. For a

preset number of iterations, different SNN-CF networks are generated. In each iteration,

r, a different non-linear map in the neighborhood of ICF or SCF is learned by training

a new candidate SNN-CF network, Net(r). Upon training, the performance of Net(r) is

measured by evaluating F(r) ≜ Pr{Ω > Ω0d}, the complementary cumulative distribution

function (CCDF) of the OFDM signal generated by Net(r). As the iterations advance,

the algorithm keeps track of Netb, the SNN-CF network providing the best CCDF value,

Fb. The best-performing network is thus updated and saved as the algorithm progresses.

Finally, the algorithm outputs the best-performing SNN-CF network found when it stops

after the last iteration.
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Algorithm 2: Proposed SNN-CF Network Selection.

– Initialize r = 0,Fb = 1

– Set Ω0d , Eb/N0|t , Et , Rmax

– While r < Rmax repeat the following steps:

1. Initialize a random SNN-CF network, Net(r), with parameter set

ϕ and apply a hybrid batch of random samples
(
d
(i)
m , d

(o)
m

)
from

D to update ϕ.

2. Compute F(r), the CCDF of the OFDM signal generated by Net(r),

at the design threshold Ω0d

3. Compute E(r), the achievable BER of Net(r), at the design target

Eb/N0|t

4. Update the best CCDF, Fb, and save its corresponding SNN-CF

network, Netb:

Fb =


F(r) F(r) < Fb

E(r) < Et

Fb Otherwise

Netb =


Net(r) F(r) < Fb

E(r) < Et

Netb Otherwise

5. r ← r + 1

– end While

Where

� Rmax is the total number of scanned mappings in the neighborhood of

conventional SCF or ICF.

�

(
d
(i)
m , d

(o)
m

)
≜ (D(s, j, 1), D(s, j, 2)) is an input-output training data

point sampled from D at a random entry j within a random slice s.

� Et is the maximum allowable BER at the arbitrary input design target

Eb/N0|t.

3.6 Complexity Analysis

In this section, we discuss the online computational requirements of the proposed

scheme compared to the conventional solutions as well as ANN approach. We focus

on the on-line computational demand since the training algorithms are offline-based,

rendering the deployment phase as the critical stage for computation. SLM performs

the highest amount of computations and generally requires U IFFT operations, U CM

computations and U check operations for the selection of the sequence having the low-
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est CM value. For all other schemes, the time-domain OFDM signal is first gener-

ated through the application of an IFFT operation to the modulated data sequence,

X[k] ∀ k = 1, 2, . . . , ηN , which typically requires (N/2)log2(N) complex multiplications

and Nlog2(N) complex additions.

Each iteration of the ICF algorithm requires one clipping operation followed by an

FFT operation to zero out the frequency-domain OoB radiations and finally an IFFT

operation to convert back to the time domain. ICF thus requires L clipping operations

as well as a total of 2LNlog2(N) and LNlog2(N) complex addition and multiplication

operations, respectively. SCF processes the signal in a single iteration and requires one

clipping operation and a total of N(2log2(N) + 2) and N(log2(N) + 1) complex addition

and multiplication operations, respectively.

Each module of ANN performs 2N real multiplications and 2N real additions in each

hidden layer as well as N real multiplications and N real additions in the output layer.

Thus, ANN requires a total of 10N real multiplications and 10N real additions. The out-

put layer as well as each hidden layer of the proposed SNN-CF scheme performs 4N real

multiplications and 4N real additions, resulting in a total of 12N real multiplications

and 12N real additions. Finally, unlike conventional approaches, neither ANN nor SNN-

CF requires additional checking or clipping operations. Therefore, neural network-based

approaches provide significantly less computation requirements in general, rendering the

real-time operation of such schemes much more favorable.

The computational cost of the investigated schemes are summarized in Table 3.1.

The complexity of both ANN and the proposed SNN-CF schemes are based on compu-

tations in R, the set of real numbers. However, the remaining schemes operate in the

complex domain. Since one complex addition is equivalent to two real additions and one

complex multiplication is equivalent to four real multiplications and two real additions,

the equivalent complexities of ANN and SNN-CF are O(6.67N) and O(8N), respectively.

Although compared to ANN the proposed SNN-CF scheme requires a slight increase in

computational cost within the same asymptotic bound on complexity, it can potentially

boost the system performance in terms of PAPR reduction and better controlled OoB

emissions while simultaneously providing a lower BER for high-order modulations.
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Table 3.1: Complexity requirements of the investigated schemes.

Scheme Complexity

SLM [86] O(U(1.5Nlog2N +N + 1))

ICF [62] O(LN(3log2N + 1))

SCF [65] O(N(3log2N + 4))

ANN [69] O(20N)

Proposed SNN-CF O(24N)

3.7 Numerical Results and Discussion

3.7.1 Simulation Setup

The parameters of the simulation environment are configured as in Table 3.2. We

assume an OFDM system utilizing N = 256 sub-carriers loaded with QPSK or 16-QAM

data. An oversampling factor η = 4 was chosen for the accurate tracking of the time-

domain signal envelope. The RCM of the reference signal is simulated at 1.52 dB and the

empirical factor κ is fixed at the value of 1.56 for all simulated schemes. The clipping ratio

defining the maximum allowable amplitude of the time-domain OFDM signal processed

by ICF and SCF schemes is set to 6 dB. Three ICF iterations are used and the equivalency

factor used in SCF is set to the same value. The signal’s standard deviation parameter

σ is set to 1/2 for the proper estimation of the frequency-domain scaling coefficient ρ.

The block size representing the total number of alternative sequences in SLM is set to 16.

The feed-forward multi-layer perceptron NN architecture model is adopted in both

ANN and the proposed SNN-CF scheme due to its simplicity and robustness in accurately

implementing various mappings in the processing of wireless communication signals. ANN

uses two NN modules with two hidden layers in each module. The first layer has two

neurons and the second layer has one neuron. The activation function used in both hidden

layers of ANN is the triangular function defined as f(x) ≜ 1− |x|, |x| ⩽ 1, and f(x) ≜ 0

otherwise.

A design target Eb/N0|t is defined at the input of the PAPR reduction where the

achievable BER is confined to a limiting threshold Et. The proposed SNN-CF scheme

deploys a single NN module which has two hidden layers. Both layers have two neurons

each. The activation function used to transfer the weighted input plus bias from the
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input terminal of a neuron to its output terminal is the hyperbolic tan-sigmoid transfer

function defined as g(x) ≜ 2/(1 + e−2x) − 1 ∀ x ∈ R. Both ANN and the proposed

SNN-CF scheme use the purelin activation function, h(x) ≜ x ∀ x ∈ R, for the output

layer’s neurons. The design threshold Ω0d used in Algorithm 2 for SNN-CF network

selection is arbitrary and is set to 3 dB for both QPSK and 16 QAM cases. In addition,

the maximum allowable BER, Et, is set to 3× 10−4 and the design target Eb/N0|t is set

to 8 dB for QPSK signals. For the 16-QAM case, Et is set to 4× 10−3 and target Eb/N0|t
is set to 10 dB.

Table 3.2: Simulation settings: OFDM PAPR reduction.

Scheme Parameter Value

Common parameters

Underlying modulation QPSK/16-QAM

Sub-carriers number, N 256

Oversampling factor, η 4

Reference signal RCM, Γref 1.52 dB

Cubic metric empirical factor, κ 1.56

Cubic metric threshold, Ω0 [2.5,6] dB

Eb/N0 [0,9] dB

ICF, SCF Clipping ratio, C 6 dB

ICF Number of iterations, L 3

SCF
Equivalency factor, λ 3

Standard deviation, σ 1/2

SLM Block size, U 16

ANN, SNN-CF

Network Architecture FFMLP

Output layer activation type Linear

Normalization Enabled

ANN

Number of NN modules 2

Number of hidden layers, V 2

Number of neurons in 1st layer, h1 2

Number of neurons in 2nd layer, h2 1

Hidden layers activation type Triangular

Training algorithm Levenberg–Marquardt

Training epochs 100

SNN-CF

Number of NN modules 1

Number of hidden layers, V 2

Number of neurons in 1st layer, h1 2

Number of neurons in 2nd layer, h2 2

Hidden layers activation type Hyperbolic tangent

Training algorithm Proposed algorithm 2

Training epochs 50

The Levenberg–Marquardt algorithm [95] is used to train ANN to emulate the time-

domain OFDM signal produced by conventional SCF when fed by the original unmodified
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OFDM signal at its input. The training epochs defining the number of training itera-

tions performed for each input–output sample in the training dataset is configured to

the value of 100 iterations for ANN, whereas for the proposed SNN-CF method, we

only use 50 updating iterations which is facilitated by virtue of its potentially faster

convergence capability.

The dataset batch used for learning the SCF scheme behavioral patterns is complied

from a 100 input–output samples. The dataset is split into three parts: (a) the training

set, containing 70% of the dataset samples which are only used during the training stage

in which the weights and biases of all layers are found and updated to minimize the

MSE over the training set; (b) the testing set, consisting of 15% of the dataset samples

which are used to test the network found by applying the training set and possibly fine-

tuning the weights to account for the testing set; and (c) the validation set containing

the remaining 15% of the dataset and is used to validate the trained network’s ability to

generalize to new data it has never seen before.

3.7.2 Results and Discussion

For QPSK-OFDM signals, the CM reduction performance was investigated for original

unmodified OFDM, SLM, SCF, ICF, ANN, and the proposed SNN-CF schemes in terms

of the complementary cumulative distribution function, F(Ω) = Pr{Ω > Ω0}, for different

cubic metric threshold (Ω0) levels ranging from 2.5 to 6 dB as shown in Fig. 3.6 (a). The

proposed SNN-CF scheme outperforms the best of the three conventional approaches

and shows more than a 0.5 dB performance improvement compared to ANN at CCDF

levels as low as 10−3. Similarly, Figure 3.6 (b) shows that the proposed SNN-CF scheme

maintains its superior CM reduction performance for the higher order 16-QAM-OFDM

case. This is accomplished by scanning the neighborhood of SCF during the training

stage to find an SNN-CF network with the highest possible performance.
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Figure 3.6: CM reduction performance of the proposed SNN-CF vs. ANN [69], selected
mapping [86], simplified-CF [65], iterative-CF [62], and unmodified OFDM for
(a) QPSK-OFDM, and (b) 16-QAM-OFDM.

The proposed SNN-CF exhibits lower OoB power leakage than ANN for both QPSK

and 16-QAM modulations, as shown in Fig. 3.7. This figure plots the power spectral

density (PSD) curves of OFDM signals as a function of normalized frequency. Only

original OFDM is included as a baseline for comparison since SLM has identical power

distribution as the original OFDM and conventional ICF and SCF are both assumed ideal,

rendering their PSD performance matching with the original unprocessed OFDM. In the

neighborhood of the in-band, both ANN and the proposed SNN-CF show similar leakage

for QPSK-OFDM as shown in Fig. 3.7 (a). However, the OoB spectrum radiation caused

by the proposed SNN-CF scheme is rapidly diminished compared to ANN, facilitating

more relaxed guard-band requirements between different operators. For 16-QAM-OFDM,

OoB power leakage of the proposed SNN-CF scheme is consistently lower than ANN, as

shown in Fig. 3.7 (b). This is mainly because the proposed SNN-CF is able to learn the

amplitude variations of SCF more accurately than ANN.
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Figure 3.7: Power leakage performance of the proposed SNN-CF vs. ANN [69] and un-
modified OFDM in terms of normalized PSD vs. normalized frequency for
(a) QPSK-OFDM; and (b) 16-QAM-OFDM modulation.

The BER performance of all QPSK-based schemes are compared in Fig. 3.8 (a) for

Eb/N0 ranging from 0 to 9 dB. As expected, SLM preserves the signal integrity and

results in the lowest possible BER which is identical to the BER performance of original

OFDM. SCF and ICF come next and are closely followed by ANN and the proposed

SNN-CF scheme. For 16-QAM-OFDM transmissions, the proposed SNN-CF scheme

remains remarkably close to conventional SCF in terms of BER performance, as shown

in Fig. 3.8 (b). Although ANN maintains its CM reduction performance, it starts to

exhibit a deteriorated BER performance resulting in about a 3 dB performance gap from

conventional SCF at the 10−3 BER level. In contrast, the proposed SNN-CF scheme

remains within approximately 0.3 dB from conventional SCF at the same BER level.

This is facilitated by the more accurate representation of SNN-CF to SCF signals.
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Figure 3.8: BER performance of the proposed SNN-CF vs. ANN [69], selected mapping [86],
simplified-CF [65], iterative-CF [62], and unmodified OFDM for (a) QPSK-
OFDM; and (b) 16-QAM-OFDM.

Figure 3.9 (a) plots the BER performance of the proposed SNN-CF scheme vs. ANN,

SLM, SCF, ICF, and raw OFDM signals for 16-QAM-based OFDM transmissions deploy-

ing a non-linear solid state HPA with the signal envelope amplitude, E, undergoing an

amplitude-to-amplitude (AM/AM) conversion accomplished by the transfer function [96]:

f(E) =
gE(

1 +
(
g E
E0

)2c)1/2c
, (3.10)

where g is the small-signal gain, E0 is the output limiting parameter, and c is a parameter

that controls the transition rate from the linear operation region to the limiting operation

region. These parameters are set to g = 1, E0 = 1, and c = 3 as in [96]. Although ANN

lags behind SCF and ICF with a performance gap exceeding 3 dB at the 10−3 mark,

the proposed scheme manages to maintain a close proximity to within 0.4 dB of SCF and

ICF at the same level.

Figure 3.9 (b) retraces the PSD performance of ANN and the proposed SNN-CF

scheme along with the benchmark schemes and unmodified OFDM signals when the solid

state HPA is deployed. SLM, SCF, and ICF provide more controlled OoB radiations in

the neighborhood of the in-band, where the input back-off of HPA and clipping ratio

are set to 3.5 and 6 dB, respectively. Both ANN and SNN-CF exhibit a steady roll-off

decline in the neighborhood of the in-band with an almost consistent leakage gap of about
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3 dB in favor of SNN-CF. In addition, as we move further away, the gap between ANN

and the proposed SNN-CF scheme grows rapidly as ANN roll-off slows down whereas the

OoB leakage of the proposed scheme decays significantly and goes below the benchmarks.

Although SCF provides better overall PSD performance than the proposed SNN-CF, it

requires a noticeably higher processing complexity.
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Figure 3.9: Performance evaluation for 16-QAM-OFDM transmissions deploying non-linear
HPA with 3.5 dB input back-off and 6 dB clipping ratio: (a) BER; and (b) PSD.

Figure 3.10 shows an alternative view on OoB power leakage of ANN and the proposed

SNN-CF for QPSK and 16-QAM. The normalized out-of-band leakage power (NOLP) γ

is defined as

γ ≜ 10 log10 (Pl/Pin) dB , (3.11)

where Pl is the total leaked power and Pin is the power residing within the in-band. Lower

NOLP levels are desirable for superior power leakage performance. Therefore, we use the

complementary CDF on different threshold values of the NOLP: F(γ) ≜ Pr{γ > γ0}.

The threshold level γ0 is varied within the ranges [−42,−24] dB and [−42,−22] dB for

QPSK and 16-QAM, respectively, in order to capture the OoB leakage performance from

CCDF unity level (corresponding to uncrossable threshold points) to levels as low as

10−3 (corresponding to crossable threshold points with 99.9% success rate). As shown

in Fig. 3.10 (a), the proposed SNN-CF scheme generally outperforms ANN in terms

of the reduction achieved on NOLP for QPSK modulation with a performance gap of

about 4.25 dB at CCDF level of 10−3. In addition, for the 16-QAM case, the proposed

SNN-CF scheme exhibits a much more controlled power leakage than ANN does with an
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approximately 7.25 dB performance gap at the 10−3 CCDF mark, as shown in Fig. 3.10

(b). This superior performance of SNN-CF compared to ANN is the result of the more

accurate peak-tracking of SCF signals, as modeled by the non-linear SNN-CF mapper.
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Figure 3.10: Power leakage performance of the proposed SNN-CF vs. ANN [69] in terms
of the reduction achieved in terms of the outband-to-inband power ratio for
(a) QPSK-OFDM; and (b) 16-QAM-OFDM.

Figure 3.11 investigates the BER performance of the proposed SNN-CF scheme for

higher order QAM modulations. For all three cases of 64-QAM, 256-QAM, and 1024-

QAM transmissions, the proposed SNN-CF scheme successfully remains within close

performance to original OFDM. For example, the performance gap for 64-QAM-based

operation is about 1.25 dB at a BER level of 10−3. Similarly, for the 256-QAM and 1024-

QAM cases, the performance gaps at the same BER level are about 1.5 and 1.75 dB,

respectively. To attain even narrower gaps for higher modulation orders, the underlying

neural network module can be expanded by slightly increasing the neurons within the

layers, for example, to maintain the complexity within reasonable bounds.
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Figure 3.11: BER performance tracking of the proposed SNN-CF scheme for higher order
modulations: 64-QAM, 256-QAM, and 1024-QAM.
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Chapter 4

Cache-Enabled Reinforcement

Learning based Resource

Management for Downlink NOMA

Systems

4.1 Introduction

Wireless communication is one of the most important technological achievements of

the human race. It has gradually become an indispensable component of the modern soci-

ety as it facilitates our social and business interactions, improves our lives, and contributes

to societies’ economic growth. It is estimated that by 2030 global mobile subscriptions

will increase rapidly to about 17.1 billion, with monthly mobile data traffic reaching 5000

Exabytes (EB), of which 75% will be utilized for mobile video traffic [30]. Moreover, total

cellular internet of things (IoT) connections are predicted to reach 5.9 billion as early as

2026 [97].

To accommodate this explosive demand on higher overall system capacity and meet

the ever-increasing need for faster data transmission rates, beyond 5th generation (B5G)

and future wireless systems must deploy an array of solutions to fulfill and sustain the

expected requirements. In that regard, many promising candidate solutions have been

put forward by both the industry and the academic community in order to increase the

capabilities of wireless cellular networks and achieve a system-wide performance leap
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from what 4G networks can provide. These solutions include millimeter wave (mmWave)

transmissions which were proposed to facilitate very high communication speeds by oper-

ating at frequencies well beyond 6 GHz and providing users access to significantly wider

transmission bandwidths [98].

Among the solutions with great potential for future wireless systems is a strong al-

ternative to the conventional orthogonal multiple access (OMA) where, unlike OMA,

intentional non-orthogonality is introduced to be able to schedule users more frequently

and assign them wider bandwidths. In this non-orthogonal multiple access (NOMA)

scheme, users are essentially multiplexed in power where the base station (BS) allocates

different proportions of its transmitting power to the messages of different users con-

veyed by a NOMA signal. NOMA-based operation has been demonstrated to outperform

OMA-based transmissions in a variety of communication environments [99, 100]. This

superior performance of NOMA is mainly due to the aggregation of the data of multiple

users over more resource blocks (RBs) than what each individual user would be granted

in an OMA setting.

However, NOMA signals suffer from the inherent interference among the different

messages of multiplexed user equipment (UEs) which can severely affect the achievable

sum-rate levels and degrade the overall system performance. This can be particularly

evident in cache-enabled transmission scenarios where the achievable performance be-

comes sensitive to the relevance of cached data to candidate users in the locale of BSs.

Optimized power allocation and proper selection of users to share the same resource

blocks (e.g. time slots and frequency channels) are therefore important to unlock the full

potential of NOMA systems and reap their benefits.

Reinforcement learning (RL) is a very powerful machine learning (ML) approach

that can be tailored to address the aforementioned power allocation and user selection

challenge in NOMA systems. In this chapter, we propose an RL-based scheme to solve the

problem. To find a state-to-action mapping policy with desirable characteristics, we train

the agent by running a series of games during which the agent interacts dynamically with

NOMA environments to absorb the various factors affecting its long-term performance.

The agent initially executes random actions with high probability and gradually shifts

its strategy to rely more often on its progressing policy as it gains more experience while

learning. We form a reward function that incentivizes the agent to follow the user selection
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and power allocation decisions resulting in higher sum-rate for the activated UEs. The

agent aims to maximize the achievable sum-rate by acquiring immediate rewards over

subsequent interactions with the NOMA environment. The immediate rewards gained

by activating different candidate users is based on the caching status of their requested

data.

4.2 Related Works

Optimal pairing of users in downlink NOMA transmissions requires the application

of an exhaustive scanning of all selection possibilities, making it practically unrealistic

due to the huge computational complexity involved [101]. Various user selection strate-

gies have been proposed including the random pairing algorithm (RPA) and channel state

pairing (CSP) [102] where strong users (i.e. users with high channel gains) are paired with

weak users (i.e. users with low channel gains). In [103], the authors introduced an unsu-

pervised learning technique for user clustering where an expectation maximization-based

algorithm is developed to exploit the spatial correlation between different UEs to solve

the user pairing problem. In addition, optimal power splitting among multiplexed users

on a given resource block in power-domain NOMA can be accomplished by the method

proposed in [104]. However, maximized performance can only be achieved through the

joint optimization of user pairing and power allocation, which is a challenging NP-hard

problem [105]. To address this issue, the authors in [105] proposed a sub-optimal user al-

location scheme based on the correlative properties of the channels of different UEs, which

relies on difference-of-convex programming for power allocation thereafter. In [106], the

authors exploited the sparse properties of NOMA power allocation to form a convex re-

laxation of the user pairing and power allocation problem with the aim to minimize total

power consumption. However, solving the resulting sequence of problems is computation-

ally expensive. In [107], a relaxed l1-norm problem is formulated to jointly tackle user

pairing and power allocation, and then a compressive sensing-based solution is applied.

In [108], the authors investigated maximizing the sum-rate in heterogeneous cloud radio

access MIMO networks with fronthaul capacity constraints. Bandwidth allocation is fixed

and the joint problem is divided into two problems that are solved separately for optimal

power allocation of both macrocell users and remote radio head users. However, NOMA

user paring is not considered. In [109], the authors converted the joint problem into a
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single-objective formulation based on discretization of power and proposed a global opti-

mal search for power allocation and UE matching within subchannels. However, due to

the high computation cost inherent in the technique, it is more tailored towards providing

limiting bounds on UE throughput performance.

The aforementioned works do not utilize content popularity in rich multimedia services

which have been in high demand lately. Cache-enabled communication is a promising

key technology that exploits the popularity of requested data to enable wireless networks

to meet various challenges such as reducing latency, increasing spectral efficiency, and

alleviating traffic congestion. In this regard, the authors in [110] proposed a vehicle-

side caching architecture for vehicular NOMA networks in order to boost the spectral

efficiency. Although cache-aided operation is exploited to increase the probability of suc-

cessful decoding of NOMA signals, user pairing and power allocation are not considered

in [110]. In [111], a cache replacement and content delivery joint optimization problem is

formulated to proactively push files to a caching unit with the aim to minimize total power

consumption in NOMA transmissions. Although cached information is regularly updated

to ensure its popularity is up-to-date, backhaul capacity limitations are not considered.

As a promising machine learning technique, the authors in [112] deployed reinforcement

learning to tackle the power allocation problem in cache-enabled NOMA networks with

the aim to maximize the joint decoding capability of the receiving terminals. NOMA user

pairing, however, is not considered in [112]. In addition, reinforcement learning has been

successfully applied in [113] to solve the user pairing problem and reduce the offloading

latency in multi-user NOMA-based mobile edge computing systems. However, NOMA

power allocation and backhaul capacity constraints are not considered.

Unlike the above works, the proposed RL-based power allocation and user selection

scheme aims to maximize the achievable sum-rate in cache-enabled opportunistic access

to NOMA systems suffering from capacity-limited backhaul link connections where re-

quested data is of popular nature in the locale of the serving base station , which, to the

best of our knowledge, has not been sufficiently addressed.

4.3 System Model

Consider a downlink NOMA system where N candidate UEs are requesting popular

contents (e.g. popular internet data) for download. The serving base station (BS) has
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to first fetch the requested information via capacity-limited backhaul link to the core

network. Considering an M -user NOMA transmission over a certain resource block,

whereM < N , the BS then compiles and forwards a NOMA message, x =
∑M

m=1

√
µmxm,

containing the content of the M UEs with maximum potential contribution to the system

throughput. xm is the message of the m-th active UE and µm is the corresponding power

allocation. Selected UEs are, therefore, granted active access opportunistically based

on rate maximization. Deactivated users can be scheduled for transmission over other

resource blocks. In addition, we assume that
∑M

m=1E
[
|xm|2

]
= 1 and

∑M
m=1 µm =

PT where PT is the BS transmit power, and that system-level UE-BS association is

predetermined.

Assuming perfect successive interference cancellation (SIC) detection at the receiving

terminals and that active UEs are ordered according to their channel gain conditions such

that h1 > h2 > · · · > hM , then the achievable sum-rate of the active UEs is

R =
M∑

m=1

min

(
C, B log2

(
1 +

µmhm∑m−1
i=1 µihm + σ2

))
, (4.1)

where C is the backhaul capacity allocated for an active UE, B is the transmission

bandwidth, and σ2 is the noise power. The total capacity of the backhaul, CT , is divided

evenly between active users. Therefore, the capacity per user is calculated as C = CT/M .

4.4 Proposed RL-based Solution

A conceptual framework of the proposed DDQN RL-based user selection and power

allocation scheme is depicted in Fig. 4.1. We use a caching unit at the BS side that

stores high-demand contents to alleviate the data throttling caused by the backhaul link.

Several methods are available to estimate the popularity of different kinds of data to

control data storing and clearing operation [114]. As demonstrated in [114], the specific

popularity distribution depends on the data content nature. For example, exponential or

power-law distributions are appropriate to predict the popularity of online videos whereas

log-normal-based distributions can describe online news popularity. However, data stor-

ing and clearing following certain distributions is not the scope of this work and we focus

on whether data requested by candidate UEs is stored in the cache unit, which can be

modeled as a two-state Markov chain to describe the cache status transition probabil-
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ities. It is worth mentioning that from the perspective of real-world operation, actual

data-caching mechanisms may be working in a way which is not completely captured by

the two-state decision process. This may require the RL agent to readjust its policy to

closely match the environment behavior and capture its characteristics more accurately

if the deviation between the model and the actual environment becomes noticeable. Al-

ternatively, the agent may adopt an empirical-based model which is custom-designed to

the specific environment in which the agent will be deployed.

In this section, we propose an RL-based DDQN agent that interacts with the NOMA

environment to learn the pairing and power-split decisions resulting in higher sum-rate

for the activated UEs. Initially, the agent starts with a random policy that maps the state

of the NOMA environment s to a random pairing and power-split action a. The action

is executed and a corresponding reward r is observed. The agent then updates a DDQN

policy θ based on the rewards observed over many interactions. This dynamic interaction

enables the agent to absorb and adapt to the effects of the various factors (e.g. channel

conditions of candidate UEs and the caching status of their respective data) within the

NOMA environment that impact the achievable sum-rate. During the i-th interaction,

the policy network θ is updated using random past experiences (sj, aj, rj, sj+1) towards a

target Y T
j which is generated from past experiences using a target network θ̄. Interaction

data is stored in a buffer B, and the target network is periodically updated using the

policy network every τ iterations.

Outline of the proposed UE selection and power allocation algorithm is given in Al-

gorithm 1. The basic idea is to learn a state-to-action mapping policy that has higher

long-term rewards in terms of the aggregate sum-rate levels attained by various activated

UEs. The algorithm is based on the fundamental principle of Q-learning which, under a

given policy π, defines the true value of an action a in a state s as

Qπ(s, a) = E[r1 + γr2 + γ2r3 + ...|s0 = s, a0 = a] , (4.2)

where Qπ(s, a) is the expected sum of immediate and discounted future rewards gained by

taking the action a0 = a in an initial state s0 = s and following the policy π thereafter.

r1 and rl ∀ l > 1 are, respectively, the immediate and future rewards. γ ∈ [0, 1] is a

discount factor that trades off the importance of immediate and later rewards. Thus, the

optimal value of an action is Q∗(s, a) = maxπ Qπ(s, a). Evidently, an optimal policy is to
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Figure 4.1: Top-level view of the proposed scheme.

select the highest-valued action argmaxa Qπ(s, a) in each state. The Q-function Q∗(s, a)

representing the optimal value of each action can be implemented using a parameterized

value function Q(s, a; θi) ≈ Q∗(s, a). The parameter set θi can be iteratively updated

to closely match the optimal value Q∗(s, a). The Q-learning standard update of θi after

taking action ai in state si and observing the immediate reward ri and the next state

si+1 is

θi+1 = θi + β
(
Y Q
i −Q(si, ai; θi)

)
∇θiQ(si, ai; θi) , (4.3)

where β is a scalar step size, ∇θi is the gradient operator with respect to θi, and the

update target Y Q
i is defined as

Y Q
i = ri + γmax

a
Q(si+1, a; θi). (4.4)

Double deep Q networks can be deployed to learn the parameterized functionQ(s, a, θi).

DDQNs utilize a multi-layered neural network to represent the parameters θi generating

the optimal online policy Q∗(s, a). A second deep neural network with parameter set θ̄i is

used to generate the learning target Y DDQN
i for DDQN agents. Following the Q-learning

principle, Y DDQN
i is evaluated as
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Algorithm 1: Proposed RL-based UE Selection and Power Allocation.

– Set PT , △, Gmax, Imax, τ, ϵs, ϵf , α, ϵd

– Initialize θ, θ̄ = θ, g = 1, ϵ1 = ϵs, B = NULL

– While g ≤ Gmax run the following mini game:

� Initialize the environment state s1, i = 1

� While i ≤ Imax

1. Select a random action ai with probability ϵi, otherwise select ai =
argmaxa Q(si, a; θ)

2. If ai violates condition (4.9):

* For l ∈ V, V ≡ set of UEs violating (4.9), enforce condition (4.9)
on ai by adjusting the power allocation of the l-th violating UE:

µl =
△σ2

hl−1
+

l−1∑
k=1

µk

* Perform power normalization for all UEs:

µm ←
µm∑M
k=1 µk

PT

3. Apply ai to the environment and get its immediate reward ri and the
next state si+1

4. Store the interaction experience (si, ai, ri, si+1) in a buffer B

5. Select a random batch of experiences (sj , aj , rj , sj+1) from B:

* Set the target objective to

Y T
j = rj + γQ̂(sj+1, argmax

a
Q(sj+1, a; θ); θ̄)

* Perform a gradient descent step w.r.t θ on

(Y T
j −Q(sj , aj ; θ))

2

6. If i is an integer multiple of τ :Smoothe update θ̄ with smoothing
factor α:

θ̄ ← αθ + (1− α)θ̄, 0 < α < 1

7. If ϵi > ϵf :Decay ϵi towards its final value ϵf with decay factor ϵd:

ϵi+1 = ϵi(1− ϵd), 0 < ϵd < 1

8. i← i+ 1

� end While

� Set random action probability for the next game:

ϵ1 = ϵImax

� g ← g + 1

– end While

Where

� Gmax and Imax are the total number of mini games played and the number of
interactions per game respectively.

� ϵs and ϵf are the starting and final values of the probability of executing a random
action in an agent-environment interaction within the game.

� The parameter τ determines the frequency of updating the deep neural network
implementing the target policy.
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Figure 4.2: Markov chain model for cashed data status.

Y DDQN
i = ri + γQ̂(si+1, argmax

a
Q(si+1, a; θi); θ̄i) , (4.5)

where action selection is based on the online network θi whereas its evaluation is based

on the target network θ̄i, and Q̂(.) is the target network response.

NOMA: States, Actions, and Rewards

The state of the NOMA environment at step i is defined as

si = {h1(i), h2(i), · · · , hN(i), u1(i), u2(i), · · · , uN(i)} , (4.6)

where hn(i) is the n-th candidate channel gain at time step i and un(i) ∈ {0, 1} is a

corresponding binary indicator to flag whether its requested data is cached or not. The

two-state Markov chain defining the transitions of cached data status indicated by un(i)

is shown in Fig. 4.2. The corresponding cache status transition matrix is

T =

Tp Tc

To Ta

 , (4.7)

where Tp is the probability that data persists in the cache and Tc is the probability that

cached data is cleared. Similarly, To is the probability that non-cached data remains

out-of-storage while Ta indicates the probability that it is added to the cache. These

probabilities are assumed to be known and therefore can be configured to track different

scenarios of cashed content availability (e.g. full, partial, and no-cashing scenarios).

The action ai taken by the proposed agent on the NOMA state si is defined as

ai = {a1(i), a2(i), · · · , aN(i), µ1(i), µ2(i), · · · , µN(i)} , (4.8)
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where the binary indicator an(i) = 1 denotes the activation of the n-th user and µn(i)

defines its allocated portion of the transmit power. In addition, the condition(
µm −

m−1∑
k=1

µk

)
hm−1

σ2
≥ △ (4.9)

can be applied for the power allocation of the m-th activated UE, m = 2, 3, . . . ,M , to

ensure efficient detection using SIC at the receiving terminals, where △ is a threshold

for reliable SIC operation [115]. If the action selected by the DDQN agent violates

this condition, the condition can then be enforced before the action is applied to the

environment by increasing the fraction of the transmit power allocated to the violating

UEs. Power normalization can therefore be applied to ensure that the allocated power is

constrained to the transmit power PT .

The immediate reward of the interaction between the proposed agent and the NOMA

environment at step i can be written as

ri =
N∑

n=1

rn(i) , (4.10)

where the reward for the n-th user is given by

rn(i) =

min (C, log2 (1 + SINRn(i))) , un(i) = 0

log2 (1 + SINRn(i)) , Otherwise

(4.11)

where the signal-to-interference-plus-noise ratio (SINR) at the n-th user is computed as

SINRn(i) =
an(i)µn(i)hn(i)∑n−1

k=1 ak(i)µk(i)hn(i) + σ2
. (4.12)

The γ-discounted cumulative reward over interaction step horizon I can then be writ-

ten as

R(I) = E[r1 + γr2 + γ2r3 + · · ·+ γI−1rI ]. (4.13)

In Algorithm 1, the proposed DDQN agent engages in a series of games with the

NOMA environment to learn a state-to-action mapping policy that maximizes the long-

term reward of (4.13). In the beginning, the policy network θ is randomly initialized and

a duplicate copy is used as the target network θ̄. With probability ϵs, a random uniformly
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distributed action is then applied to the environment. Otherwise, the action is based on

the current policy θ with probability 1 − ϵs. The immediate reward and resulting state

of the NOMA environment are then observed and saved in a buffer B that stores the

information on the agent-environment ongoing interaction. This information forms the

agent’s experience of the NOMA environment and is used to update the policy network

θ at each interaction step. A 4-tuple collection of a NOMA state, an action taken in

that state, and the resulting reward and new state forms a training data point within the

buffer. A random batch of such data points is used to update the network towards the

DDQN learning target Y T
j . For each data point j, the learning target is selected based on

the main policy θ and evaluated through the current target network θ̄. The target network

is updated periodically every τ interactions. The update is accomplished smoothly with

a factor α ∈ (0, 1) through a fractional combination of the parameters of the updated

main network θ and the current target network θ̄. At the end of each interaction step,

the probability for taking a random action is annealed away from the starting value

ϵs towards a small final value ϵf . This annealing process reflects the confidence of the

agent to follow its own strategy more often as it gains more experience about the NOMA

environment. The number of interaction steps required for the annealing process to

complete is controlled by the use of a decay factor ϵd. Once ϵf is reached, the agent fixes

the probability of executing random actions at ϵf for all subsequent interactions with the

NOMA environment.

The training complexity of the agent depends on a lot of factors and is generally

computationally expensive. However, it is of no big concern since it can be offloaded

by training the agent on a simulated environment in an offline mode and then deploy

the trained agent for online operation. In this work, we use the big O notation as a

comparative metric for the floating-point computational demands of the proposed scheme

and the benchmark approaches. For N candidate users, the deployment complexity of

the proposed agent with L layers is then O(LN). This is comparable to the O(N logN)

complexity of CSP. On the other hand, optimal selection for the activation ofM users over

a given resource block is on the order of O
((

N
M

))
, which is much more computationally

demanding.

In a practical deployment of the proposed scheme to pair users over multiple resource

blocks (RBs), the state of the NOMA environment, si, would depend on user-activation
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actions adopted for previously allocated RBs. For example, if certain users have been se-

lected for transmission over a given RB, then their corresponding channel gain information

would be nulled during the allocation of the next RB among the remaining candidates,

thus leading to selection choices impacting subsequent states of the overall environment.

In addition, in realistic communication systems, activated users would remain active for

some time during which the state of the transmission environment in (4.6) may change

(possibly even multiple times), and thus the actions adopted at a certain point would

have an impact on the system performance at later times, which makes it more suitable

to consider the discounted cumulative reward since actions have long-term consequences.

One final point regarding the use of Q-learning is that the dynamic process of cashing

data at the base station (BS) side is partly driven by the adopted actions since activated

users would impact the popularity distributions of different kinds of content within the

locale of the BS, which in turn affects later states of the environment with respect to

cached content availability as represented by the status indicators in (4.6), and therefore

provides yet another good reason for the application of Q-learning. In addition, one im-

portant advantage of the proposed scheme is its fast processing speed during deployment.

This can be important for practical systems with strict latency demand on the process-

ing time. For example, the latency constraint on NOMA resource management solutions

stems primarily from the fact that the operation must be completed within the coherence

time of the wireless channel. Thus, a successful deployment of the proposed scheme in

a realistic transmission scenario is contingent upon the proposed RL agent’s ability to

finish an inference of its DNN-based policy within the channel’s coherence time. This is

particularly important when the operation is mmWaves-enabled since the coherence time

of the wireless channel is typically smaller when operating at the mmWaves frequencies.

To verify the proposed scheme’s ability to conform to the constraint, we tracked the DNN

inference time during an agent-environment interaction by evaluating a total of 100,000

interactions. An inference of the agent’s DNN-based policy requires a processing time of

about 35 µsec. This is noticeably smaller than the coherence time of mmWaves channels

which ranges from about 250 µsec to 1.5 msec at 50% correlation when operating at a 60

GHz mmWaves carrier [116]. When operating at lower frequencies over non-mmWaves

bands (e.g., using a 3.5 GHz carrier), the coherence time of the channel will be consid-

erably larger and thus further relaxes the constraint on processing speed. For example,

63



4.5 Simulation Analysis

Table 4.1: Simulation settings: Capacity-constrained backhaul operation.

Scheme Parameter Value

Common parameters

Carrier frequency 1.9 GHz

Bandwidth, B 10 MHz

Channel pathloss exponent 2.9

Shadowing standard deviation 5.7 dB

Channel fading type Rayleigh

Noise spectral density −174 dBm/Hz

BS-to-UE separation 10 ∼ 210 m

Cache status transition matrix [0.6 0.4; 0.4 0.6]

Backhaul link capacity, CT 4 ∼ 8 bps/Hz

BS Tx power, PT −30 ∼ 10 dBm

Proposed RL-based DDQN

Deep NN training algorithm Adam optimizer

Learning rate 0.001

Target-network update frequency, τ 4

Soft-update smoothing factor, α 0.001

Experience buffer size 50000

Training batch size 8

Initial random-action probability, ϵs 1

Final random-action probability, ϵf 0.1

Random-action decay factor, ϵd 2.3× 10−4

Number of mini games 1000

Number of interactions 500

the average coherence time at 3.5 GHz is about 25 msec [117]. Therefore, the proposed

scheme can operate adequately within the time limit in both cases. By contrast, an ex-

haustive scan takes over 1 msec to finish. While this may be enough for operation at

sub-6 GHz frequencies, it violates the processing time limits when operating at mmWave

carriers.

4.5 Simulation Analysis

4.5.1 Environment Setup

The parameters of the simulation environment are configured as in Table 4.1. Unless

otherwise stated, the table lists the default values used for the simulation parameters

across all studied scenarios. We assume a NOMA system with candidate UEs requesting

the download of popular data. The carrier frequency is set to 1.9 GHz with a default

transmission bandwidth of 10 MHz.

The close-in (CI) channel model is used with a pathloss exponent of 2.9 for non-

line-of-sight (NLOS) propagation [118]. The shadowing standard deviation is set to 5.7

dB. The reference distance of the CI channel model is set to 1 meter since it provides

high model accuracy and parameter stability for indoor as well as outdoor urban macro
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and urban micro-channels across a wide span of mmWave and microwave frequencies.

Although such a small value for the reference distance may lie within the near-field range

of large arrays of antennas, the resulting error is negligible in the design of practical

wireless systems [118,119].

A typical value of −174 dBm/Hz is used for the noise spectral density. The separation

distances from the BS to candidate UEs range from 10 to 210 meters. The probability

that data persists in the cache is set to Tp = 60% and the probability that cached data

is cleared is set to Tc = 40%, whereas the probability that non-cached data is added to

the cache is configured to Ta = 60% while the probability that it remains out-of-storage

is To = 40%. Backhaul link capacities of 4 and 8 bps/Hz are considered. The total BS

transmit power is varied from −30 dBm to 10 dBm.

The deep neural network deployed by the DDQN agent consists of five fully-connected

layers, with four hidden layers utilizing rectified linear unit (ReLU) activation (i.e., f(x) =

max(0, x)) followed by an output layer with linear activation (i.e., f(x) = x). The five

layers have 100,95,90,85, and 100 neurons, respectively.

The Adam optimizer [120] is used to update the parameter set θ of the deep neural

network implementing the state-to-action mapping policy of the RL agent. The cor-

responding training learning rate is set to 10−3. The target-network parameter set θ̄

is soft-updated every 4 agent-environment interactions. Soft updating is accomplished

through a smoothing factor of 10−3. The buffer used by the agent to collect the acquired

experiences over many interactions with the NOMA environment is configured to store a

maximum of 50000 experiences.

The policy network is iteratively trained using batches of 8 experiences each. The

initial probability of executing a random action in the NOMA environment is set to 100%.

The probability of taking a random action in any given state is gradually annealed towards

a final value of 10%. The annealing process is configured to last 10000 interactions by

setting the decay factor ϵd to 2.3× 10−4. The maximum number of mini games played is

configured to 1000 with each game consisting of a maximum of 500 interactions.

4.5.2 Results and Discussion

For cache-disabled transmissions, the achievable sum-rate performance of the proposed

RL-based DDQN scheme is evaluated in Fig. 4.3 (a). Three benchmark approaches are
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Figure 4.3: Performance of the proposed RL-based DDQN scheme vs optimal strategy, CSP
algorithm [102], and random mapping policy in terms of normalized sum-rate vs
transmit power with backhaul capacity of 4 bps/Hz for (a) cache-disabled, and
(b) cache-enabled transmissions.

included: random and optimal mapping policies as well as the conventional CSP algo-

rithm where candidate users are sorted according to the quality of their channel links

and then users with high channel gain separation are paired [102]. The schemes are com-

pared in terms of the normalized sum-rate for different BS transmit power levels ranging

from −30 dBm to 10 dBm. The exhaustive search algorithm actively seeks the actions

maximizing the achievable sum-rate in an online fashion during deployment. All possible

alternatives are exhausted to ensure the highest-utility action is applied. The proposed

agent manages to learn a near-optimal state-to-action mapping policy that converges to

the capping limit of 4 bps/Hz at the 10 dBm transmit power level. At low transmit

power values, optimal, proposed, and CSP algorithms exhibit similar performance since

potential relative gains among candidate UEs are not noticeable. However, as transmit

power is increased, potential contributions of different candidate UEs start to make a

noticeable impact leading to a widened gap between more optimized selections (provided

by exhaustive strategy and the trained agent) and the CSP algorithm. However, since

the backhaul limits the maximum achievable sum-rate to 4 bps/Hz, further increase of

the transmit power ensures that CSP eventually catches up and the performance gap

starts to narrow again at high transmit power levels.

Similarly, Figure 4.3 (b) plots the normalized sum-rate vs BS transmit power for

cache-enabled communications. The backhaul throttling is alleviated by virtue of cache

unit deployment and normalized sum-rate levels as high as 10.75 bps/Hz can be reached
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Figure 4.4: Sum-rate performance tracking of the proposed scheme for different data caching
scenarios.

via optimal exhaustive strategy at transmit power of 10 dBm. The proposed RL agent

closely follows the optimal policy and manages to achieve about 10.6 bps/Hz at the same

transmit power level. Since the limiting ceil of 4 bps/Hz on the achievable sum-rate is

broken whenever requested data by an activated UE is pre-cached, the gap between CSP

and the proposed algorithm remains without shrinking at relatively high transmit power

levels.

Figure 4.4 tracks the ability of the proposed RL agent to lock onto the optimal policy

for three distinct data caching scenarios going from one extreme case where data is never

cached to the other extreme scenario where local copies of requested data is always cached.

The data-caching probability matrix for the first case, where requested data is consistently

not available in the cache unit, is set to T = [0 1; 1 0]. The second scenario, where data

is fully cached, is represented by the data-caching probability matrix T = [1 0; 0 1]. The

last scenario of partial data caching is represented by T = [0.6 0.4; 0.4 0.6]. Clearly, the

first scenario is equivalent to the case where the cache unit is not installed as evidenced

by the saturating sum-rate performance that approaches the backhaul link capacity of

4 bps/Hz at the 10 dBm transmit power level. On the other extreme, however, the

achievable sum-rate of the second scenario first exceeds the 4 bps/Hz barrier at power

levels as low as −17 dBm with the gap increasing until it reaches about 3.4 folds at the 10

dBm power level compared to the case where requested data is never found in the cache.
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Figure 4.5: Training performance tracking of the proposed scheme for different learning rates.

In the last case representing the scenario where requested data is only partially cached,

the achievable sum-rate is naturally lower than the ideal scenario where requested data is

always available in the cache unit. However, it is a more realistic scenario to assume and

it can still provide considerable improvement over the case where the cache unit is not

utilized, especially for high levels of transmit power since it does not have performance

floor by virtue of proactive data caching. For example, in this case the sum-rate first goes

above the limiting threshold at around −14.2 dBm and achieves about 2.7-fold increase

over the case where data is consistently unavailable in the cache unit at the 10 dBm

power level. In all three case, the trained RL agent manages to successfully track the

optimal policy.

Figure 4.5 examines the training progress of the proposed RL agent as it interacts

with the NOMA environment to acquire a state-to-action mapping policy that can achieve

higher long-term rewards. Specifically, the plot investigates the dependence of the learned

policy on the learning rate parameter and how it can affect the obtained reward over

subsequent game runs. Setting the learning rate value to 0.01 enhances the performance

by about 7% compared to the case where a faster learning rate of 0.1 is used. Slowing

the learning rate further to 0.001 boosts the performance by an extra 1% indicating a

diminishing return effect on the rewards obtained over 400 games. Therefore, even though

slower learning rates can achieve higher long-term rewards, careful consideration of an

appropriate learning rate is important to balance reward performance and training speed
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Figure 4.6: Sum-rate performance vs transmission bandwidth at carrier frequency of 38 GHz
in the presence of mmWave blockers.

of the Adam optimizer. A learning rate of 0.001 is commonly used and is recommended

by [120]. However, depending on the particular application requirements, a faster or

slower rate may be more suitable.

Figure 4.6 plots the achievable sum-rate performance of the random and exhaustive

search strategies as well as CSP and the proposed scheme for 38-GHz mmWave NOMA

transmissions at 40 dBm transmit power level over a range of transmission bandwidths

from 100 to 500 MHz with a backhaul connection limited to 8 bps/Hz. Transmissions at

such high frequencies typically suffer blockage effects caused by objects of various sizes

within the transmission medium. The blocking probability at a BS-UE separation d can

be modeled as, Pb = 1− e−2d ρD̄δ/π, where ρ>1 is a parameter representing the density of

blockers relative to the BS and is set to 5, D̄ is the average blocker length and is set to 20

meters, and δ denotes the BS distribution density and is set to 1.92× 10−5 to reflect the

case when hexagonal cells of radius 200 meters are homogeneously deployed [121]. The

proposed RL agent manages to adapt to the NOMA environment conditions and learns

to closely follow the optimal policy to within 98.5% at the 500 MHz bandwidth level.

By contrast, CSP reaches 83.3% of the optimal value and achieves a sum-rate of 3.25

Gbps utilizing the same amount of bandwidth. Finally, the random search approach falls

behind at 43.3% of the optimal value as it lacks the ability to account for the presence

of mmWave blockers.
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Figure 4.7: Sum-rate convergence performance of the proposed scheme with backhaul link
capacity of 4 bps/Hz and BS transmit power of 10 dBm.

Figure 4.7 illustrates the convergence of the proposed RL agent to near-optimal sum-

rate level at 10 dBm of transmission power and 4 bps/Hz backhaul connection. Unlike

the benchmark schemes where the mapping policy does not evolve dynamically over

iterated interactions with the NOMA environment, the proposed RL agent initially starts

with a random policy and progresses towards the optimal policy as it interacts with the

NOMA environment to learn more optimized decisions with higher long-term rewards.

Therefore, the proposed RL agent initially exhibits low sum-rate performance that keeps

on increasing as more games are run until it eventually reaches a saturated level of average

normalized sum-rate exceeding 98% of the maximum possible level of the exhaustive

search strategy. The proposed scheme firstly exceeds CSP by the second game played

where the learned policy achieves an average sum-rate of 9.38 bps/Hz as opposed to 9.32

bps/Hz using the CSP algorithm. Starting from the third game, the sum-rate performance

of the proposed RL agent rapidly increases to about 97.8% of the maximum level by the

eighth game. After this point, the learned policy slowly improves to within 98.5% of the

optimal policy.

To validate the robustness of the proposed scheme, we investigate its performance in

Fig. 4.8 with full state information (FSI) vs partial state information (PSI) availabilities

for both cache-enabled (Cache-ON) and cache-disabled (Cache-OFF) NOMA transmis-

sions, with a backhaul link connection limited to 4 bps/Hz. In PSI, the cache state
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Figure 4.8: Performance tracking of the proposed scheme with full state information vs partial
state information availabilities for both Cache-ON and Cache-OFF scenarios.

information is not provided to the RL agent. The normalized sum-rate is evaluated at

different BS transmit power levels ranging from −30 dBm to 20 dBm. As expected, in

the Cache-OFF scenario, since data caching is disabled, providing the proposed RL agent

with only PSI does not have a degrading effect on its performance compared with FSI

availability. Therefore, the proposed agent adapts to the NOMA environment to maintain

close tracking of the optimal policy and approaches the maximum achievable sum-rate of

4 bps/Hz at 10 dBm of transmission power even when only PSI is available. However,

the merit of providing the agent with FSI becomes apparent when caching local copies of

trending popular content in the locale of the serving BS is utilized. For this Cache-ON

scenario, the aggregate sum-rate can be boosted well above the limiting threshold of 4

bps/Hz to reach about 13.92 bps/Hz at the 20 dBm power point as achieved by the

exhaustive strategy. The proposed RL agent with FSI comes in second at 13.77 bps/Hz

whereas PSI availability causes a sum-rate performance degradation of about 15% at the

same power level. From a transmit power perspective, an agent with PSI requires an

extra 4.6 dB to reach the same 10.6 bps/Hz achieved by an agent operating at 10 dBm

with FSI. This demonstrates the effectiveness of utilizing the cache state information by

the proposed RL agent.

In Fig. 4.9, we examine the effect of the backhaul capping threshold on the achievable

performance and verify the ability of the proposed RL-based agent to adapt its policy
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Figure 4.9: Performance tracking of the proposed scheme for different backhaul throttling
levels for cache-disabled communications.

for different throttling settings. As expected, when the normalized backhaul capacity is

configured at 4 bps/Hz, the achievable sum-rate gradually saturates towards the upper

limit of 4 bps/Hz as the transmit power is increased. Similarly, when the capping level

is set to 6 and 8 bps/Hz, the achievable sum-rate level is capped at 6 and 8 bps/Hz,

respectively. In all three cases, it is clear that the proposed scheme can consistently

support near-optimal sum-rate levels irrespective of the backhaul capping limit. This

demonstrates the adaptability and effectiveness of the proposed solution.

Figure 4.10 demonstrates the importance of maintaining an optimized NOMA resource

management operation even when proactive data caching is not needed for transmission

scenarios enjoying unrestricted backhaul operation with no throttling effects. As stated,

here we assume that the connected backhaul link is not imposing any throttling effects

on the system’s operation, and thus the achievable sum-rate level is solely determined

by the attainable communication rate over the forward link between the transmitting

base station and the activated NOMA users. As can be seen from the figure, the ex-

haustive search algorithm provides the highest possible sum-rate levels as expected. The

proposed scheme, however, can support near-optimal speeds across the transmit power

range, reaching about 99.75% of the exhaustive’s performance at the 10 dBm point.

Nonetheless, performance degradation of as much as 37% can be incurred if the operation

is not optimized. This clearly demonstrates that even when the backhaul link capacity
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Figure 4.10: Performance tracking of the proposed scheme when the backhaul link is not
throttled.

is not limited, the proposed NOMA user selection and power allocation optimization is

still needed to maintain near-optimal communication rates.
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Chapter 5

UAV-Assisted Mission-Critical

3D-NOMA Downlink

5.1 Introduction

Beyond 5G (B5G) and 6G cellular networks face design challenges due to their in-

creased requirements on massive connectivity and communication speeds [122–128]. This

can be particularly pressing in zones stricken by disasters where the primary base sta-

tions (BSs) infrastructure is momentarily out of commission owing to sustaining severe or

mild impairment. In such scenarios, ad-hoc intervention based on dispatched unmanned

aerial vehicles (UAVs) can allow for a quick and suitable remedy to maintain adequate

coverage and provide high-speed reliable wireless connections to offload downlink data to

appropriately activated receivers within the afflicted region [80,81,129–137]. The mobile

UAV base stations (UAV-MBSs) can therefore play the pivotal role of rapidly dispatched

mobile BSs within certain target regions.

Incorporating mmWaves into UAV-based transmissions can provide important ad-

vantages to the communication system. The huge bandwidth resources provided by

mmWaves can help the UAV-mounted BS to support high-speed communications as well

as flexible coverage [138, 139]. For example, the authors in [138] have studied UAV-

mounted BSs to support dynamic rerouting for reconfigurable backhauls operating over

mmWaves bands. In [139], the authors proposed a beamforming technique to support

flexible coverage within target zones by exploiting mmWave-enabled UAV transmissions.

Moreover, the availability of the LOS component in UAV-based systems is suitable for
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mmWaves-based communications aiming to reach high gains [140,141].

On the other hand, non-orthogonal multiple access (NOMA) downlink protocol is

an efficient multiplexing candidate approach for the UAV-MBS to utilize to satisfy the

connectivity and transfer speeds requirements set forth for B5G and 6G wireless sys-

tems. Contrary to conventional orthogonal multiple access, NOMA-based transmissions

are preferred because they have been demonstrated to offer better overall performance

through stacking the data of multiple receiving devices (RDs) using a unified resource

block (RB) design, wherein jointly-multiplexed devices would enjoy a larger transmission

bandwidth as well as more frequent scheduling [99,100,142–145]. Data frames conveying

information of multiplexed receivers are sent over the unified RB at varying levels of

transmission power to enable each device to successfully recover its own intended data by

applying successive interference cancellation (SIC) to sequentially retrieve then remove

the messages within the received NOMA stack until it extracts its intended message sig-

nal [43]. Energy-efficient planning of the dispatched UAV-MBS flying course throughout

the entire communication period is imperative so that the UAV’s battery use is opti-

mized. In addition, it is of critical importance to optimize the continuous adaptation of

various allocated power portions within a maximum allowable budget of available trans-

mission power as well as the dynamic activation of the receiving devices to reap as much

of the promised performance of NOMA-based operation as possible [105,107]. Moreover,

making proper choices regarding the selection of appropriate receiving devices to add to

a certain NOMA message stack is important to attain boosted sum-rate levels [146]. In

addition, each time the UAV moves position, power allocation and device paring need to

be re-optimized, resulting in a surge in complexity and energy consumption. This is not

acceptable especially when coupled with the UAV’s limited battery life.

The aforementioned challenges have not been sufficiently addressed to the best of our

knowledge. Recently, reinforcement learning (RL)-based methods have been attracting

the attention of the research community due to their effectiveness and inherent flexibility

in dealing with highly dynamic sequential decision problems. In this chapter, we present

two proposed algorithms based on the powerful RL framework to address the joint issue of

energy-efficient dynamic UAV-MBS path design, receiving device activation, and transmit

power distribution for high-speed NOMA-UAV-based downlink wireless communications.

In particular, multiarmed bandit (MAB) and double deep Q-network (DDQN) RL agents
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are employed to leverage their highly adaptable nature to handle various dynamic and

complex models. For the proposed MAB approach, we consider the two variants: minimax

optimal stochastic strategy (MOSS) as well as upper confidence bound (UCB) for their

simple yet effective deployment. For the DDQN-based algorithm, the RL agent training

can be carried out offline where the agent engages in multiple interactions with the

UAV-NOMA environment model before it is dispatched for operational deployment. The

DDQN RL agent learns an effective deep neural network (DNN)-based strategy which

it uses to determine the appropriate projections of the environment’s subsequent states

onto a series of decisions yielding high returns in the long-term. On the other hand, no

DNNs are incorporated in the MAB-based approach which is deployed directly to make

on-the-fly online decisions while aiming to attain adequate performance in terms of the

achievable total data rate level through the dynamic selection of various allowable actions

according to their varying levels of some appropriate fitness criteria to determine their

effective utilities. The utility of making various decisions are updated continuously over

the communication time horizon.

5.2 Related Work

Pairing NOMA receiving devices optimally for downlink transmissions generally re-

quires a complete scan exhausting all possible groupings. However the computational

burden of such a brute force approach is huge which deems the application of the optimal

solver unrealistic from a practical standpoint [146]. Numerous strategies were devised for

the appropriate grouping of receiving devices over unified NOMA RBs. Famous bench-

marks include the random grouping algorithm (RGA) which samples the action space

using a uniform random decisioning strategy and channel-state grouping (CSG) [102]

wherein strong nodes (i.e., devices with boosted channel conditions) are grouped with

weaker nodes (i.e., devices with attenuated channel conditions). The authors in [103]

developed a technique leveraging unsupervised learning for node clustering wherein they

developed an algorithm based on expectation maximization by harnessing spatial correl-

ative patterns among different nodes to solve the device grouping problem.

Although optimized distribution of the power available for signal transmission over

receivers multiplexed on a given RB can be attained for power-domain NOMA systems

using the technique outlined in [104], optimized operation results can be accomplished
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only by considering the joint problem of device grouping and power distribution, a taxing

NP-hard problem [105]. Upon handling the problem in [105], the authors devised an

allocation scheme that operates suboptimally by constructing a correlation structure for

the downlink channels, and then deploying difference of convex optimization to distribute

the available power. With a focus on reducing the amount of power consumption, the

work in [106] leveraged the sparse nature associated with NOMA power distribution to

formulate a convex-relaxed version of the power distribution and user grouping problem.

However, the presented technique incurs high computational demand to solve the formu-

lated string of problems. A relaxed version based on l1-norm characterization is formed

in [107] for the joint problem of power distribution and device grouping, wherein the

authors applied a solution method based on compressive sensing.

Although the above body of research work handles the problem of NOMA user group-

ing and power distribution for a variety of conventional wireless communication scenar-

ios, it fails to accommodate less common yet important mission-critical scenarios such as

emergency-oriented communications wherein an effective and reliable transmission sys-

tem which can be quickly deployed is needed. One possible use case, for example, is

dispatching UAV-mounted mobile BSs to blackout sites where receiving devices are dis-

connected from the main servicing infrastructure. To incorporate this need, an emergency

network UAV-aided framework is developed in [80] for operation in disaster zones. The

scheduling and trajectory of UAV-MBSs are firstly designed to support wireless coverage

to the receiving devices on the ground. Afterwards, to expand the UAV-MBS wireless

service domain, the authors formed a ground-based multi-hop D2D system and studied

the UAV-MBS transceiver design. However, the generic system presented in [80] does

not account for NOMA resource management optimization. To address this point, the

authors in [81] established a UAV-assisted framework for NOMA-based emergency com-

munications. The proposed scheme started by establishing a UAV-active uplink line to

collect information relevant to the IoT devices within the areas under emergency oper-

ation. Subsequently, to support coverage for IoT users, a joint power management and

UAV dispatching scheme is proposed. However, downlink NOMA user grouping is not

considered. To handle this issue, the work presented in [82] combines both NOMA power

distribution and user grouping with UAV-MBS path design and optimizes the opera-

tion jointly with a sumrate-maximization objective in mind. However, energy-efficient
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Damaged BS 

Figure 5.1: NOMA-UAV-MBS system model.

operation is not guaranteed since battery-aware design is not considered.

In this chapter, we consider energy-driven design of the joint problem of dynamic UAV-

MBS path planning and downlink NOMA user grouping and power distribution where

battery-constrained operation is taken into account and optimized routing is accomplished

through the deployment of the proposed RL-based frameworks where the RL agents are

aiming to maximize the total rate while operating in a battery-constrained mode for

energy-efficient UAV-MBS deployment.

5.3 System Model

Consider a downlink UAV-MBS-based system operating via NOMA protocol to of-

fload information data to a group of wireless receiving devices as illustrated in Fig. 5.1.

Application scenarios for such a UAV-based communication system include deployment in

emergency cases (e.g., environments affected by a natural disaster [80,81]) where ground

users are experiencing connection issues due to temporary damage of the nearby BS as

depicted in Fig. 5.2. In this case, the serving UAV-MBS can offload emergency commu-

nications data to ground users via a multi-hop UAV relay chain or by utilizing HAPS

link communications. Another practical use case is to establish temporary hotspot com-

munication links for suburban or rural environments [147]. Initially, the transmitting

UAV-MBS begins at some arbitrary position (e.g., center of the flying zone). The cov-

erage area is split into multiple small regions of potential spots for hovering, with the

blue circles marking the hovering positions’ centers. The receiving devices are scattered
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Figure 5.2: NOMA-UAV-MBS emergency environment [80,81].

arbitrarily throughout the flying zone covered by the UAV-MBS. To optimize the rate of

transferring data, the UAV-MBS transmitter must carefully select the receiving devices to

activate and offload data to as well as allocate the available transmit power efficiently. In

addition, enery-efficient dynamic course planning is important to position the UAV-MBS

in an optimized manner across all the allowable hovering spots so as to accommodate and

account for the evolving nature of the various wireless links while avoiding rapid depletion

of the UAV’s battery. In this work, we assume that the UAV-MBS is capable of predeter-

mining its own location within the flying zone1. We also assume that the channel-state

information (CSI) information is available at the UAV-MBS side. It is worth mention-

ing that the operation of the proposed agents does not require the UAV mobile BS to

have explicit knowledge of the ground users’ locations. CSI availability is sufficient for

the proposed RL agents to operate. Alternatively, if the reward feedback information is

readily available, the MAB agent can estimate the proper action and navigate the zone

accordingly. Since downlink NOMA protocol [99] is utilized, the information offloaded

to the activated receiving devices is sent over unified RBs where the corresponding total

rate attained by the selected devices may be expressed as

R =
D∑

d=1

W log2

(
1 +

pdgd∑d−1
i=1 pigd + σ2

)
, (5.1)

1This is typically accomplished through a global navigation satellite system (GNSS). However, if the
GNSS is unavailable or more precise location information is needed, then other techniques may be used
(e.g., integrating ultra-wideband (UWB) technology with LiDAR-based range finders) [148].
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where, without loss of generality, we assume a descending-order CSI gain information

between the UAV-MBS and the receiving devices: g1 > g2 > · · · > gD. W represents

the available transmission bandwidth, and σ2 represents the variance of the zero-mean

additive white Gaussian noise. pd is the portion of the transmission power that the UAV-

MBS allocates to the signal of the d-th selected receiving device. Under the assumption

of a total number of K candidate receiving devices, we have d ∈ {1, 2, . . . , D}, where

D < K represents the number of information streams offloaded via the downlink NOMA

multiplexing protocol.

We assume that the UAV’s battery has a finite capacity of χ energy units (EUs) and

that the battery energy level decreases linearly as a function of the traveled distance

according to

L(i) = χ−
i∑

j=1

η Z(j) , (5.2)

where L(i) denotes the UAV’s battery level at time step i and Z(j) is the distance traveled

at step j, j = 1, 2, . . . , i. η is the energy expense per unit distance. Here, we mainly focus

on tracking the energy consumed in moving the UAV around whereas hovering energy

consumption is not included.

We assume that the communication channel’s wireless link between the UAV-MBS

transmitter and the d-th candidate receiving device is given by a Rician channel represen-

tation to model the presence of the LOS signal. Therefore, the channel link connecting

receiving device d to the UAV-MBS may be written as

gd =

√
Fr

Fr + 1
ḡd +

√
1

Fr + 1
g̃d , (5.3)

where ḡd denotes the LOS deterministic component which is set to a typical value of

1 [149]. g̃d represents an NLOS random component that follows the Rayleigh distribution.

Fr denotes the Rician channel parameter.

Dynamic spot selection for UAV-MBS adaptive hovering throughout the flying zone

is of paramount importance to properly tune the effective wireless links connecting the

receiving devices to the UAV-MBS in a way that maximizes the collective acquired rate

without expending the UAV’s battery inefficiently. By changing the UAV-MBS loca-

tion, the wireless channel can then be controlled to combat the interference and thus
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Figure 5.3: UAV Location update within environments with blockers.

boost the effective SINR level at the receiving devices, and consequently improve the

sum-rate [140, 150, 151]. Adjusting the UAV hovering location within the service area

is therefore important for the proposed scheme to mitigate the effects of interference

among multiplexed NOMA users to maximize the achievable sum-rate level. Consider for

example a two-user NOMA downlink transmission with SIC detection: the normalized

sum-rate is log2(1 +
p1g1
σ2 ) + log2(1 +

p2g2
p1g2+σ2 ). Here, the channel gains, gd , d = 1, 2, are

time-varying and depend on the Tx-Rx separation distance. Therefore, by changing the

UAV Tx location, the channel gains can be adjusted to maximize the sum-rate level.

Moreover, changing the UAV’s location can be useful for situations where blockers are

present in the environment around stationary users. In this case, the UAV can change

its location to achieve an LOS link to the ground user and provide better connectiv-

ity as shown in Fig. 5.3. In addition, careful activation of receiving devices as well as

proper splitting of the UAV-MBS transmission power among the selected devices must

be adjusted dynamically to provide and sustain high operational performance.

5.4 Proposed Algorithms

This section presents RL solution methods based on CS-MAB and DDQN to address

the joint problem outlined earlier in section 5.3. Although both methods share the

same underlying agent-environment interaction principle, they have distinctive features

and operate on different basic concepts: DDQN agents rely on DNNs to represent their

decision-making policy and can provide near-optimal performance if environment-related
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information is collected adequately during offline training sessions. MAB agents, on

the other hand, do not employ DNNs, and make on-the-fly decisions through direct

online deployment where they adjust their decisions dynamically according to the rewards

received during a series of successive interactions with the environment. Since no DNNs

are present, MAB-based operation is generally less complex and simpler to implement

than its DDQN-based counterpart. It may, however, provide less optimized performance

than DDQN.

5.4.1 Deep RL-based Operation: Q network Method

Algorithm I outlines the proposed DDQN solution for the joint UAV-MBS path design

and NOMA device activation and power allocation scheme. The fundamental operating

premise is to develop a successful strategy to transfer sequential input environmental

variables to highly rewarding decisions over the long run, which are reflected in the

cumulative rates acquired by active receiving devices. The algorithm leverages the main

Q-learning concept that maps a given action A to a fitness Q-value when taken in a state

L by following some policy π according to

V π
q (L,A) = E[r1 + βr2 + β2r3 + . . . |A0 = A, L0 = L] , (5.4)

where V π
q (L,A) denotes the mean discounted summation of rewards acquired in a long-

term sense. These rewards are earned when, starting at some arbitrary state L0 = L,

action A0 = A is applied then the subsequent state-action path is dictated in accordance

with the policy π. r1 denotes the immediately-acquired reward and rl ∀ l > 1 represents

the rewards acquired subsequently during future states. β ∈ [0, 1] is a parameter to adjust

the amount of discounting to apply to balance r1 with future rewards.

A DDQN is used to provide Vq(L,A; Ψi), a configurable parameteric implementation

of the value function which can be tuned to generate a good approximation of the optimal

function V ∗q (L,A). A DNN is employed to store Ψi, the parameter set used to generate

the optimal strategy. DDQN RL agents employ a separate set of parameters Ψ̄i to

generate Yi which provides a target for the training of Ψi, the main strategy set for the

i-th agent-environment interactive exchange. The learnable target is estimated as

Yi = ri + βV̂q(Li+1, argmax
A

Vq(Li+1,A; Ψi); Ψ̄i) , (5.5)
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where the main DNN parameter set Ψi is reserved for decision making whereas the as-

sessment of the corresponding fitness value is estimated through the target DNN, Ψ̄i.

V̂q(.) represents the response generated by the target DNN.

NOMA-UAV-MBS: State & Action Spaces, and Rewards

The state defining the environment of the NOMA-UAV-MBS system is formed for the

i-th interactive step as

Li = {g1(i), g2(i), · · · , gK(i), L(i)} , (5.6)

where gk(i) and L(i) represent the channel gain of the k-th candidate and the UAV’s

battery level at time step i, respectively.

The action Ai applied by the proposed DDQN agent to state Li is formed as

Ai = {X(i), Y (i), s1(i), s2(i), · · · , sK(i),

p1(i), p2(i), · · · , pK(i) } , (5.7)

where X(i) and Y (i) are the coordinates of the chosen UAV hovering spot at the i-th step

whereas sk(i) = 1 is a binary indicator denoting the selection of the k-th device and pk(i)

represents its corresponding transmission power portion allocated by the UAV-MBS.

The immediate reward resulting from applying Ai in the i-th interaction step to the

environment can be expressed as

ri =
K∑
k=1

rk(i) , (5.8)

where the reward contribution of the k-th activated device is evaluated as

rk(i) = log2 (1 + Γk(i)) , (5.9)

with the ratio of desired signal power to the collective power of interference and noise

(SINR) evaluated as

Γk(i) =
sk(i)pk(i)gk(i)∑k−1

u=1 su(i)pu(i)gk(i) + σ2
. (5.10)

The β-discounted total reward accumulated throughout an interaction horizon I may
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therefore be expressed as

R(I) = E[r1 + βr2 + β2r3 + · · ·+ βI−1rI ]. (5.11)

The proposed RL operation in Algorithm I is designed so that the DDQN agent inter-

acts continuously for E episodes each comprising up to I interactions with the NOMA-

UAV-MBS environment. The proposed agent aims to learn a successful strategy that

sequentially projects the environment’s states to a series of actions that maximize the

total long-run reward in (5.11). At the start, two identical random instantiations of the

parameter sets Ψ and Ψ̄ are generated for the main and target DNN-based policies. The

NOMA-UAV-MBS environment is then subjected to a uniformly distributed random ac-

tion with probability αs. The decision is made with probability 1 − αs depending on

the existing DNN strategy, Ψ. Subsequently, the SIC-related QoS requirement for proper

detection, (
pd −

d−1∑
u=1

pu

)
gd−1
σ2
≥ µ , (5.12)

can be checked and, if necessary, enforced whenever the action is not conforming to the

condition. pd and µ respectively denote the power portion allocated for active receiv-

ing device d, d = 2, 3, . . . , D, and a reliable detection threshold for the SIC operation.

The sum-rate immediate reward as well as the next resultant NOMA-UAV-MBS system

state can then be buffered into an experience-gathering memory unit M which collects

important information relevant to the agent’s ongoing interaction with the environment.

The collected information helps the agent to form a concrete set of experiences which

can be progressively fused and harnessed to update the agent’s acting policy Ψ during

each round of interaction. The buffering memory unit, M, is propagated with training

data objects taking the form of 4-tuple items each consisting of a possible state of the

environment, an associated action performed during that state, a resultant subsequent

state, and the reward collected from that interaction. A mini-batch of random data items

is fetched from the experience memory unit for tuning and adjustment of the main policy

DNN toward the agent’s learnable target, Yj. In double DQN operation, each training

data item within the mini-batch is used to compute a corresponding learnable value over

a two-step process: firstly the training item’s next state information is passed through

the main DNN, Ψ, to find the action with the associated highest Q-value. Secondly,
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Algorithm I: Proposed DDQN Agent for Joint UAV-MBS Path Design and NOMA Device Activation and Power
Allocation.

– Set Pt, χ, g, µ, E, η, I, δ, αs, αf , γ, αd

– Initialize Ψ, Ψ̄ = Ψ, d = 1, α1 = αs, M = NULL

– While e ≤ E run the following episode:

� Set i = 1, L(i) = χ

� Initialize NOMA-UAV-MBS state Li

� While i ≤ I

1. Draw a random sample s from a uniform distribution U(0, 1): If s ≤ αi ⇒ Pick decision Ai

randomly. Else, Ai = argmaxA Vq(Li,A; Ψ).

2. If Ai does not conform to the QoS requirement (5.12):

* For k ∈ Vu, Vu ≡ set of violating devices, enforce (5.12) on Ai by rectifying the allocated
power portion for each active device in Vu:

pk =
µσ2

gk−1
+

k−1∑
u=1

pu

* Normalize Tx power level of all active devices:

pd ←
pd∑D

u=1 pu
Pt

3. Execute Ai in the environment, then monitor its resulting state Li+1 and the UAV’s battery
level L(i), and acquire the generated reward ri

4. Append (Li,Ai, ri,Li+1), the experience gathered through interaction, to the memory unit M

5. Randomly pick an experience mini-batch (Lj ,Aj , rj ,Lj+1) from the memory M:

* Set A∗ = argmaxA Vq(Lj+1,A; Ψ)

* Form the agent’s training target as

Yj = rj + 1[Lj ̸= Terminal]βV̂q(Lj+1, A
∗; Ψ̄)

* Take a single gradient descent step on∑
j(Yj − Vq(Lj ,Aj ; Ψ))2 w.r.t Ψ

6. If i Mod δ = 0 :Adjust Ψ̄ softly using a smoothing parameter γ:

Ψ̄← γΨ+ (1− γ)Ψ̄, 0 < γ < 1

7. If αf < αi:Reduce αi further to approach the final level αf through the annealing factor αd:

αi+1 = αi(1− αd), 0 < αd < 1

8. If L(i) ≤ (1− g)χ (i.e., UAV’s battery is depleted):

* Penalize the reward for battery draining:

ri = ri − ρ

* Mark state Li as Terminal, and set α1 = αi.

* End Episode

9. Increment iteration index: i← i+ 1

� end While

� Configure probability of randomized decisioning for the upcoming episode:

α1 = αI

� Advance episode: e← e+ 1

– end While

where

� 1[.] is the indicator function. E is the number of episodes and I is the maximum number of iterations within
an episode.

� αs is the initial probability of randomized decisioning whereas αf represents the final probability of picking
an action in a random fashion during advanced interactions.

� ρ is the penalty for battery draining and δ is a configurable controller to adjust the target network’s update
interval.
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the the training item’s immediate reward component is combined with the output of the

secondary DNN, Ψ̄, which corresponds to the action selected in the first step. Although

the main DNN parameter set is updated at each interaction, the critic’s network, Ψ̄, is

smoothly updated in a periodic fashion every δ iterations. To accomplish this soft update,

a fractional smoothing factor, γ ∈ (0, 1), is used to fuse the updated parameter set of the

main DNN with the current parameter set of the target DNN.

To optimize the operation for battery-aware decisioning, at each interactive iteration,

the agent’s inspect the status of the UAV’s battery to determine whether to prematurely

halt the ongoing episode. If the UAV’s battery is drained (i.e., L(i) ≤ (1 − g)χ, g is

the battery drain percentage), the agent’s reward is discounted by a configurable penalty

parameter, ρ. The agent then saves the current value of the probability of making its

decision on a random basis, αi, to be used as the starting value, α1, for the next episode,

then the current episode is abruptly terminated, thus giving the agent an incentive to-

wards deciding in favor of actions that, in the long run, do not drain the UAV’s battery

rapidly. Otherwise, towards the end of the interaction iteration, if the current probability

of executing a random decision is greater than a preconfigured minimum end value, αf ,

then the probability is reduced through a controllable decay parameter αd. This prob-

ability reduction mechanism is gradual and lasts for an amount of iterations controlled

through αd to allow the DDQN agent to build more confidence to follow its developing

internal strategy, Ψ, more frequently while it absorbs more knowledge of the underlying

characteristics of the environment it is interacting with. Once the probability reduction

process halts, the agent subsequently maintains a fixed level of αf for sampling decisions

randomly throughout all remaining interactions.

5.4.2 Multiarmed bandit-based Solution

Algorithm II outlines the proposed CS-MAB solution for the joint UAV-MBS path

design (deciding which coordinates to choose for subsequent hovering positions within

the defined grid for UAV-MBS operation) and NOMA device activation and power al-

location scheme. The algorithm’s deployment can be implemented via either CS-MOSS

or CS-UCB options. The UAV-MBS player starts initially at some arbitrary state of the

environment and pulls a decision arm then loops successively over all the allowable deci-

sion arms in a number of interactive steps in order to form initial crude estimates for the
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Algorithm II: Proposed Cost-Subsidized MAB Operation for Joint UAV-MBS Path Design and NOMA
Device Activation and Power Allocation.

– Set Pt, λ, µ, χ, η, H

– Initialize i = 1, NOMA-UAV-MBS state Li

– While i ≤ H

� If i ≤ Amax

1. Pull decision arm Ai

2. If Ai does not conform to the QoS requirement (5.12):

* For k ∈ Vu, Vu ≡ set of violating devices, enforce (5.12) on Ai by rectifying the
allocated power portion for each active device in Vu:

pk =
µσ2

gk−1
+

k−1∑
u=1

pu

* Normalize power level of all active devices:

pd ←
pd∑D

u=1 pu
Pt

3. Set up a reward jar for current arm: mi = ri

4. Initialize a pull counter for current arm: ni = 1

5. Evaluate the utility of pulling current arm:

fi =

{
mi +

√
2 log (i), CS-UCB

mi +
√

max (log (i) , 0), CS-MOSS
(5.13)

� Otherwise

1. Set k = argmaxj fj

2. Form a candidate subset of decision arms:

Ω(i) = {j : fj ≥ (1− λ) fk} (5.14)

3. Pull battery-aware arm Ai∗ : i∗ = argmax
j∈Ω(i)

L(j) (5.15)

4. If Ai∗ does not conform to (5.12):

* For k ∈ Vu, enforce (5.12) on Ai∗ by rectifying the allocated power portion for
each active device in Vu:

pk =
µσ2

gk−1
+

k−1∑
u=1

pu

* Normalize power level of all active devices:

pd ←
pd∑D

u=1 pu
Pt

5. Update reward jar of Ai∗ : mi∗ ← mi∗ + ri

6. Increment corresponding counter: ni∗ ← ni∗ + 1

7. Update the utility corresponding to playing Ai∗ :

fi∗ =


mi∗
ni∗

+
√

2 log(i)
ni∗

, CS-UCB

mi∗
ni∗

+

√
max

(
log

(
i

ni∗

)
,0

)
ni∗

, CS-MOSS

(5.16)

� Move to new NOMA-UAV-MBS state, Li+1.
� Increment iteration index: i← i+ 1

– end While

where

� The horizon, H, is the total number of played arms.

� Amax denotes the number of arms available to the agent.

� λ is the cost-subsidizing control parameter.
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various utilities of playing different decision arms in accordance with Eq. (5.13). During

this initialization phase, a separate reward jar is dedicated to collect the achievements

of each decision arm. Each jar’s initial value is set to the immediate reward acquired by

executing the corresponding decision arm in the environment. As for the DDQN case,

Eq. (5.8) reflects how much reward is generated for a given arm play. Each decision arm

Ai is a three-tuple action object containing the hovering position coordinates (X,Y ) of

the UAV-MBS, along with the UAV-MBS transmit power portions (p1, p2, ...pK), and a

set of active receiving devices as defined in Eq. (5.7). Moreover, a set of counters is ini-

tialized to record the frequencies of pulling various decision arms in later stages. During

each interaction, and before executing the chosen decision arm on the NOMA-UAV-MBS

system, if the chosen decision arm is not conforming to the data detection fidelity require-

ment in (5.12), the agent enforces the condition by boosting the power portions associated

with the violating receiving devices and applying power normalization to maintain the

feasibility of transmission power budget.

As soon as the initialization phase terminates, dynamic selection of decision arms is

accomplished by harnessing the available information of various arm-pulling utilities as

well as the UAV-MBS battery level, which are updated dynamically in every interactive

iteration in accordance with Eqs. (5.16), and (5.15) and (5.2), respectively. In particular,

a feasible subset of candidate receiving devices exceeding a configurable QoS threshold on

utility is formed according to Eq. (5.14) where a recommended cost-subsidizing factor of

λ = 0.1 is used [152]. Next, to control the battery energy consumption and facilitate for a

battery-aware operation, the feasible decision arm resulting in the current highest battery

level is played in the environment as dictated by Eq. (5.15). The corresponding generated

reward is then added to the associated reward jar of the played arm. In addition, the

corresponding counter of the played arm is incremented by one, and the associated utility

value is updated. The state of the environment advances subsequently to a new state

and another iteration of interaction begins. The CS-MAB algorithm keeps on interacting

with the environment for a predefined horizon, H.

Numerous hyper-parameters govern the process of training a DDQN RL agent and,

generally speaking, high complexity is associated with the required computations. This

concern may nonetheless be bypassed if computations are offloaded to a prior stage of

offline training wherein the DDQN RL agent’s skills are honed through interactive training
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on the possibly-simulated environment. Afterwards, online operation is commenced and

the experienced agent is deployed. The proposed DDQN agent (with A layers) has a

deployment complexity of O(vAK) for K candidate devices within an area of v hovering

positions. On the other hand, the deployment complexity of the CS-MAB agent is O(vK).

By contrast, in optimal operation, UAV-MBS placement and the grouping of D devices

for active operation over an allocated RB would incur O
(
v
(
K
D

))
, thereby demanding a

far greater implementation cost.

5.5 Numerical Analysis

5.5.1 Simulation Environment

Table 5.1: Simulation settings: UAV-assisted mission-critical mmWave transmissions.

Scheme Setting Value

Common settings

mmWave Carrier frequency 60 GHz

System bandwidth, W 100 MHz

Channel exponent (pathloss), υ 2.1

Standard deviation for Shadowing, ζ 4.4 dB

Type of wireless channel Rician

Rician channel parameter, Fr 10 dB

Noise spectral density −174 dBm/Hz

Grid zone size 100× 100 m2

Grid zone spacing 10 m

UAV-MBS battery capacity, χ 1 EU

UAV-MBS energy parameter, η 10−4 EU

UAV-MBS transmit power, Pt 20 dBm

Proposed DDQN

solution

Episodes 100

Episode interactive iterations 100

DNN optimizer method SGDM

Learning rate 0.001

Secondary DNN update period, δ 4

Gradual-update softening parameter, γ 0.001

Capacity of experience memory unit 5000

Mini-batch training items 8

Randomized initial action probability, αs 1

Randomized action probability end-level, αf 0.01

Probability decaying parameter, αd 0.005

Battery draining penalty, ρ 100

The settings of the simulated environment are given in Table 5.1. The table presents

the default simulation values of the used settings for the evaluated scenarios. We assume
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a data-offloading NOMA-UAV-MBS downlink system where 5 candidate receiving devices

are scattered arbitrarily within a 100× 100 m2 2-D zone. Various grid sizes ranging from

less than 100-by-100 m2 and going well beyond 100-by-100 m2 have been considered in

the literature. For instance, the authors in [153] considered a grid size of 30-by-30 m2

whereas the authors in [140] considered a 200-by-200 grid. Similarly, the authors in [81]

considered a 200-by-200 emergency communications area with four deployed UAVs. In

our work, we consider an in between 100-by-100 area which can be suitable for spots

not covered yet by the main network’s infrastructure (e.g., in remote areas) or for zones

suffering network instability such as in areas hit by disasters thus temporarily rendering

the main network out-of-service. It is worth mentioning that other grid sizes can be used

depending on the application. All receiving devices employ antenna elements at a fixed 1

m height. Initially, and at a fixed 10 m height, the UAV-MBS begins at the (0,0) hovering

point within the flying region. The carrier setting for the mmWave is configured to 60

GHz. The system bandwidth setting is 100 MHz. We also consider the close-in model

(CI),

PLdB
CI (f, Z) = PLdB

FS (f, Z0) + 10υ log10

(
Z

Z0

)
+Υζ

CI , (5.17)

for large-scale channel disturbances. The used channel exponent setting for pathloss

is υ = 2.1 (typical for line-of-sight propagation (LOS) of mmWaves in urban environ-

ments) [118]. The model simulates large-scale fluctuations which is combined with small-

scale fading of Eq. (5.3) to account for overall variation of the wireless channel. The

channel gain of the d-th candidate receiving device is thus PLdB
CI + 20 log10 |gd| dB. The

standard deviation, ζ, for CI model emulated shadowing, Υζ
CI , is configured as 4.4 dB.

PLdB
FS is the nominal pathloss for free-space in dB. Since it delivers appropriate model

accuracy and maintains parameter stability both for outdoor as well as indoor urban en-

vironments (including micro and macro variants) spanning a broad frequency spectrum

within microwave and mmWave bands, a Z0 = 1 m reference distance is utilized for

typical CI models. A 1 m reference point might be crossing the boundaries of the near-

field emitted by massive antennae arrays. However, the inaccuracy introduced by such

small distance is mostly trivial from the perspective of practical wireless communication

systems. [118,119].

The UAV-MBS operates at a 20-dBm default transmission power level to offload the

NOMA message relaying the data of active receiving devices. The simulated AWGN noise
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Figure 5.4: Evaluation of the performance in terms of the acquired sum-rate.

is generated using the typical −174 dBm/Hz for its PSD level.

The primary and secondary DNNs employed in the RL-based DDQN operation are

built with a total of 5 convolutional layers (fully-connected type). Layers 1 through 4 have

rectifying linear units (ReLUs) as non-linear activation functions: A(x) = max(0, x). The

fifth layer (output layer) has the linear characteristic A(x) = x. The structure of the two

sets of neurons configured for both DNNs is identical: 100 neurons within each of layer 1

and 5, whereas the remaining three layers in the middle consist of 95,90, and 85 neurons

respectively. Moreover, each neuron in both DDNs is configured with an adjustable bias

term.

DNN training for updating the main parameter set Ψ at each interactive iteration is

accomplished by performing a single optimization step using stochastic gradient descent

with momentum operation (SGDM optimizer) [154] towards an energy-efficient and highly

rewarding mapping strategy from input environmental states to appropriate decisions that

the agent can apply. The associated learning step size is configured as 0.001. The critic’s

secondary DNN set, Ψ̄, is only periodically updated every fourth interactive step. The

gradual update of Ψ̄ is performed in a smooth fashion using a soft mixture of Ψ̄ and

Ψ with a 10−3 softening parameter. A limit of five thousand items is set on the size

of the memory tank buffering experience data items collected by the DDQN agent over

successive interactive steps.

The end policy for the trained DDQN agent is acquired by progressively updating

the main DNN set Ψ, using an 8-item mini-batch (which is composed through random
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Figure 5.5: UAV hovering distribution for (a) Exhaustive search, and (b) Random selection
strategy.

sampling from the previously stored experience items) during each update step. The

DDQN agent’s training starts with a 100% chance of choosing a random decision (with

uniform selection distribution among the decision set). The agent gradually shifts away

from this randomized decisioning by annealing its probability over successive interactive

iterations until the chance of operating in a random fashion reaches a preset terminal

level of 0.01. By setting the decaying parameter αd = 5 × 10−3, this probability decay

process runs for slightly over 900 interactive iterations before it halts when the terminal

level αf is attained. The training phase comprises a 100 episodes in total where each one

runs for up to a 100 interactive iterations.

5.5.2 Results and Discussion

In Fig. 5.4 we evaluate the performance of the proposed algorithms in terms of the

normalized ergodic total rate with the total transmission power of the UAV-MBS rang-

ing from −20 dBm to 20 dBm. Upper and lower performance benchmark references are

respectively represented by the exhaustive and random solution strategies. In addition,

conventional CSSP resource allocation reference baseline [102] is included with optimal

UAV-MBS positioning. In CSSP, candidate receiving devices are arranged based on their

channel state quality conditions wherein the devices experiencing larger gaps in their

channel gains are paired. Clearly, the optimal exhaustive approach can support the high-

est total rate level in a consistent manner by virtue of exploring every available point

within the action space before applying the most-rewarding alternative. On the other

hand, random-based operation runs by choosing to execute some randomly sampled al-
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Figure 5.6: UAV hovering distribution for the proposed (a) DDQN RL agent, and (b) CS-
MAB-UCB RL agent.

ternative from the available decision set, thereby resulting in a heavily non-optimized

and weak performance which mainly functions as an indicator of achievable levels for the

total rate. Coming on top of the proposed algorithms is the DDQN solution where it

manages to remain within a close performance gap from the upper level provided by the

exhaustive scan. Beginning with extremely low levels of UAV-MBS transmission power,

the proposed algorithms produce performance results close to those achieved by a random

approach, with CSSP taking the lead until around −4 dBm where the proposed DDQN

first overtakes CSSP. As the UAV-MBS transmission power is increased, noticeable dis-

tinct performance gaps of the achievable sum-rate then begins to emerge until the DDQN

agent rises to slightly over 77% of the exhaustive at 0 dBm as opposed to 72% for CSSP,

with the CS-MOSS agent following next at about 55% whereas the CS-UCB agent falls

behind around the 25% mark. The proposed CS-MAB agents then quickly rise to surpass

CSSP starting around 8 dBm. All schemes then keep on rising until the DDQN agent

manages to attain almost 96% of the sum-rate level achievable by an exhaustive scan at

20 dBm, whereas CS-MOSS rises to 91.5% and CS-UCB follows closely after at 89.5%

which is immediately followed by CSSP at 89.3%.

Figure 5.5 illustrates the distribution of UAV hovering spot selection based on an

exhaustive search for sum-rate maximization in part (a) and a random selection strategy

in part (b). Figure 5.5 (a) shows the critical positions within the flying zone that the UAV-

MBS visits for hovering during a series of 105 interactive steps while following an optimal

solution policy as given by an exhaustive search covering the entirety of the action space.

This intensive scanning of the grid filters the ineffective hovering spots while leaving intact
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(a)
 

(b)

Figure 5.7: Path traced by the UAV for DDQN-based operation, for (a) Training, and (b)
Deployment.

the five positions represented by the blue bars due to their optimized positioning relative

to device scatter pattern. These five critical hovering locations are chosen exclusively

by the UAV-MBS to attain the transmission rates of Figs. 5.4 and 5.10. Despite the

fact that all of the 5 locations are preferred and chosen by the optimal strategy, their

associated visiting frequencies are not the same as indicated by the difference in their

corresponding bar heights, and the UAV-MBS predominantly converges to the position

(30,20) for hovering. Furthermore, in part (b) we can observe the non-optimized behavior

of the random strategy where, as expected, all spots are selected with almost equal visiting

frequencies.

Figure 5.6 illustrates in part (a) the distribution of UAV hovering spot selection

based on a trained DDQN RL agent, whereas in part (b) the CS-UCB agent’s selection

strategy is presented. For the entire deployment stage, the trained DDQN agent decides

to maintain a fixed position at the spot most frequently visited by the optimal scanning

as indicated by the presence of a singular blue prism at the (30,20) grid point. On the

other hand, the CS-UCB agent switches back and forth between the same spot and the

spot at (-20,-30) while occasionally visiting other positions with less relative frequency

as indicated by the blue bars of varying heights in part (b).

To get a complementary view of the DDQN operation, the trajectories traced by the

UAV during both training and deployment are shown in Fig. 5.7. In part (a), each line in

this figure represents a traced path segment connecting a departure point to a destination

point where the UAV traverses the path connecting the two spots as it makes successive
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Figure 5.8: UAV movement energy efficiency of the proposed RL-based algorithms.

decisions while interacting with the environment. the agent learns by exploring various

hovering positions to absorb the essential features of the environment prior to deployment.

Noticeably, the agent goes through the three spots at (30,20), (10,20), and (0,40) more

often than it routes through other spots on the grid. Upon deployment in part (b), the

trained DDQN agent opts to route directly from the (0,0) starting point to the critical

position found at (30,20) where it maintains position as discussed earlier in part (a) of

Fig. 5.6.

The energy efficiency of the UAV movement is presented in Fig. 5.8 for CSSP and the

proposed RL-based schemes where the Y-axis represents the total energy consumption

level per normalized ergodic sum-rate. As shown, an energy efficiency level of about 0.44

EU per bps/Hz is achieved by the DDQN solution and is lower than those achieved by

both CS-UCB and CS-MOSS solutions. The CS-MOSS solution comes second in line

at around 1.31 EU per bps/Hz, thus requiring just a little below 200% higher energy to

support the same total transfer speed provided when operating using the DDQN solution.

The CS-UCB solution consumes about 1.4 EU per bps/Hz which sets it at around 220%

and 7.5% behind the DDQN and CS-MOSS solutions, respectively. Lastly, to maintain

adequate total rate levels, CSSP incurs a significant energy loss in comparison where it

consumes over 11 times higher energy than CS-UCB. This demonstrates the effectiveness

of the proposed RL-based approaches.

The trajectory traced by the UAV is shown in Fig. 5.9 for CS-MAB-based operation

with and without battery optimization. In part (a), the subsidizing factor of the deployed
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Figure 5.9: Path traced by the UAV for MAB-based operation, for (a) No battery optimiza-
tion: λ = 0 CS-UCB, and (b) With battery optimization: λ = 0.1 CS-UCB.

CS-UCB agent is configured to λ = 0 whereas in part (b) a recommended typical value

of λ = 0.1 is used [152]. When the operation is not optimized for energy efficiency, the

CS-UCB agent keeps rerouting through all the spots on the grid extremely intensively

without any signs of filtering down the traced path. On the other hand, when battery

optimization is turned on in part (b), the CS-UCB agent prunes the traversed path

significantly and flies along a much smaller subset of path segments compared to the

operation illustrated in part (a) when battery usage optimization is turned off. This

clearly shows the effectiveness of cost-subsidizing operation when a MAB solution is

deployed.

To verify the ability of our proposed solutions to support proportionally increasing

total rate versus a variable transmit bandwidth range, Fig. 5.10 demonstrates the total

achievable rate corresponding to 100 ∼ 500 MHz Tx bandwidths at 60-GHz NOMA

mmWave carrier. When operating at a hundred MHz, all solutions result in sub-Giga

data transfer speeds. All approaches then rapidly exceed 1 Gbps except for the random

strategy which grows very slowly towards the 1-Gpbs level where it breaks it around the

500 MHz mark at which point the proposed methods manage to support rates beyond

2.5 Gbps. The DDQN agent comes on top of the proposed RL solutions where it achieves

speeds as high as 2.92 Gbps while enjoying the full 500 MHz of system bandwidth.

By contrast, CS-MOSS attains 2.81 Gbps whereas CS-UCB reaches 2.68 Gbps when

utilizing the full bandwidth. CSSP trails behind and achieves 2.57 Gbps at the same

500-MHz point. Nonetheless, the optimal exhaustive scan can evidently support even
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faster transmission rates going well beyond 3 Gbps by running through all permissible

decisions.

The capability of the proposed algorithms to learn successful adaptations to changing

line-of-sight circumstances within the wireless links of the used communication channels

is validated in Fig. 5.11 where a comparative analysis of the DDQN agent versus cost-

subsidized MAB methods is presented. The strength of the simulated LOS channel

component is swept by adjusting the Rician parameter LOS control over the range −40

∼ 40 dB. Both DDQN and CS-MAB solutions show similar trends. When operating over

non-LOS-dominated links (corresponding to −40 ∼ −10 dB), the response exhibited by

the DDQN agent is flat at around 7.7 bps/Hz. Similarly, CS-MOSS operates around

7.34 bps/Hz whereas CS-UCB provides 7.17 bps/Hz over the same region. Next, the

total rates of both DDQN and CS-MAB solutions begin to accelerate as operation is

shifted towards channels with more inherent presence of the line-of-sight component as

illustrated in Fig. 5.11 for the −10 ∼ 10 dB region. As shown for the region 10 ∼ 40

dB, the achieved levels of the total ergodic rate that can be supported by the proposed

algorithms saturate eventually when operation is heavily geared toward LOS-dominated

links where, at the end point of 40 dB, the DDQN solution provides 8.54 bps/Hz, whereas

CS-MOSS supports 8.17 and CS-UCB comes next at 8 bps/Hz.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we developed novel AI-based algorithms to address important issues in

wireless communication systems to facilitate for more optimized technological solutions

suitable for deployment in future 6G networks. The thesis focused on optimizing both

PHY and MAC layers operation for 3D-NOMA networks with both terrestrial and non-

terrestrial (UAV-based) communications modes considered. The overall objective of the

thesis was to provide adequate AI-based solutions to challenging problems facing potential

6G candidate technologies where the developed solutions were specifically tailored for 3D-

NOMA networks to ultimately address 6G target goals related to:

1. Low-complexity PHY layer signal processing to better accommodate 6G applications

with stringent real-time demands (e.g., 3D holographic video streaming and haptic

internet), with improved PHY layer transmission characteristics (e.g., enhanced

OFDM PAPR reduction capability).

2. Denser connectivity where more devices can enjoy simultaneous access to the net-

work without suffering performance degradation to improve the overall capacity

of the servicing network (e.g., 3D-NOMA network employing power-domain user

multiplexing to meet massive connectivity demands).

3. Increased transmission speeds where even higher data transfer rates can be sup-

ported over wireless links operating within the mmWave frequency range to satisfy

the ever-growing need for faster connections for bandwidth-hungry 6G applications
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which are expected to be more prevalent in the future (e.g., 16K conferencing,

rich-content and immersive AR/VR applications).

4. Robustness to emergencies and energy-oriented design so that 6G networks includ-

ing 3D-NOMA can adapt quickly and efficiently to disasters to maintain coverage

support via mission-critical non-terrestrial UAV-mounted mobile base stations to

provide reliable, fast wireless links to ground-based users.

In line with the above guiding targets, in this thesis, we proposed novel AI-based

solutions to pave the way for the realization of the ultimate vision of 3D-NOMA networks

for future 6G systems:

� For the PHY layer, in chapter 3, we proposed a novel neural network-based ap-

proach for PAPR reduction in OFDM signals with common conventional techniques

for benchmark comparison. To surpass the limits of conventional solutions, we

proposed a novel network-selection algorithm that scans non-linear maps in the

neighborhood of conventional CF-based schemes to find the network with the low-

est cubic metric reduction for certain QoS requirements. Comparative analysis in

terms of the complexity required for processing OFDM signals showed significant

improvement in favor of NN approaches which makes them more suitable for ap-

plications with tight low-latency real-time operation requirements. Our proposed

SNN-CF scheme provided the highest performance in terms of OFDM cubic metric

reduction while maintaining the O(N) complexity class of ANN. In addition, unlike

ANN, the proposed scheme maintains much closer BER performance to conven-

tional CF schemes at higher modulations. Moreover, the proposed scheme exhibits

less OoB radiations than ANN making it more desirable for interference-sensitive

transmission environments such as heterogeneous networks.

� For the MAC layer, in chapter 4, we proposed a cache-enabled RL-based power

allocation and user selection scheme for opportunistic access to terrestrial downlink

NOMA wireless systems. The proposed scheme learns to achieve near-optimal sum-

rate levels through the continuous interaction with the NOMA environment. The

trained RL agent managed to maintain consistent performance across a wide range

of transmission scenarios including different cached-data availabilities, shadowing

and Raleigh fading effects, and mmWaves transmissions. Although the training
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algorithm may incur high computational complexity, the deployment complexity of

a trained agent is not high. In addition, the training process can be accomplished

by the agent-environment interaction in a simulated offline mode. Although other

schemes such as CSP do not require convergence analysis, the proposed scheme

manages to converge quickly within a few games to near-optimal policy. In addition,

this is not a big concern since offloading the training process to an offline setting

ensures that the trained agent will converge to its final policy before it is deployed for

operation. Overall, the proposed RL-based solution provides adequate performance

and exhibits high degree of adaptability to various transmission scenarios, thus

making it suitable for further investigation for deployment in more advanced settings

such as NOMA-based MIMO heterogeneous networks.

� In addition, non-terrestrial mission-critical UAV-based communications for emer-

gency use cases was considered where operation optimization is accomplished to

provide fast and energy-efficient UAV-assisted wireless downlink communication

channels for ground-based users. To this end, in chapter 5, we have conducted an

investigative study on the utilization of CS-MAB as well as DDQN agents as vi-

able RL-based data-offloading solutions for emergency use cases deploying ready-to-

dispatch UAV-MBSs for NOMA-based downlink transmissions. The DDQN agent’s

training was accomplished in an offline stage wherein the agent engages with the

UAV-MBS-NOMA environment in a multi-iteration interactive mode prior to opera-

tional deployment. CS-MAB agents on the other hand were directly operated online

as they do not utilize DNNs to require a training stage. Due to its tailored ability

to resolve highly complex dynamic sequential decision problems, the proposed RL

DDQN approach succeeded in supporting an energy-efficient near-optimal total rate

level consistently in various battery-constrained transmission scenarios, whereas the

proposed cost-subsidized MAB-based approaches followed closely after. Both pro-

posed approaches have been tested via operation in mmWave-enabled propagation

modes with varying dominance levels of the LOS Rician channel component. Both

CS-MAB and DDQN solutions exhibited accelerated performance over links with

strong LOS presence where they respectively supported as high an ergodic total

rate level as 8.17 bps/Hz and 8.54 bps/Hz. We tackled the joint dynamic UAV-

MBS trajectory design and NOMA transmit power splitting and receiving device
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activation problem to adequately support ready-to-deploy energy-efficient solutions

accommodating increased transfer speeds breaking beyond 2.5 Gbps which may

prove critical importance for deployment in emergency cases with high-speed data-

offloading demands as in the regions afflicted by disasters.

For PHY layer optimization, an improvement of 12% was obtained in the OFDM

PAPR cubic metric measure with 99.9% CCDF fidelity. Moreover, 14.3% reduction in

the associated computational cost was attained compared to conventional SCF for a 256-

subcarrier OFDM system with QPSK modulation. On the other hand, for MAC layer

NOMA resource management, an 18.4% faster communication speed was achieved by the

proposed DDQN RL agent for cache-enabled NOMA downlink resource management over

a capacity-limited backhaul link with a per-user cap of 8 bps/Hz when operating at a

38-GHz mmWave carrier using a 500 MHz of system bandwidth. In addition, significant

UAV battery energy savings (reaching 91% of that required by conventional CSP) was

accomplished for the dynamic path planning of mission-critical, non-terrestrial NOMA

downlink transmissions using the proposed CS-UCB agent.

By solving critical PHY and MAC layer problems and boosting the performance in

terms of various metrics beyond the limits of conventional approaches for both terrestrial

and non-terrestrial communication scenarios, the proposed PHY and MAC layer-level

AI-based schemes lay the foundational basis for an integrated and more comprehensive

vision of the 3D-NOMA network in Fig. 1.4, bringing us one step closer towards more

capable future 6G networks.

6.2 Future Work Suggestions

Future research directions may possibly cover areas including:

� Integrating novel AI-based PAPR reduction solutions within massive MIMO-based

OFDM PHY layer operation.

� Developing novel system-level AI-based resource management solutions for intel-

ligent reflecting surfaces (RIS)-aided multi-UAV communications with AI-driven

guaranteed collision avoidance mechanisms.

� AI-aided designs for joint resource management and optimized operation of co-

operative 3D-NOMA communication equipment harvesting and relaying wireless
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energy.

� AI-driven coordination for HAPS nodes placement within a larger 3D-NOMA frame-

work. Furthermore, Satellite-HAPS (and HAPS-UAV) link optimization is needed

for the overall tuning of an encompassing 3D-NOMA 6G network.
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