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Abstract 

Point clouds obtained from built assets have become increasingly popular in various tasks 
including heritage conservation, renovations, building maintenance, progress monitoring in 
construction sites, and urban planning. One of the desirable features of point clouds is the 
entailment of a highly detailed and accurate geometric representation of the acquired scene or 
object, which makes it suitable for many. However, raw point clouds contain unordered 3D points 
and hence lack semantic information about objects, which can limit their usability for further 
applications. In addition, point clouds acquired from the existing buildings contain diverse and 
large amounts of occlusions which further complicates its use. Thus, it is essential to extract 
relevant information about the building features from the point clouds about the building features. 

The main goal of this thesis is to propose a robust method of segmenting structural elements 
from point clouds without being affected by the noise or occlusions present in the environment. 
The contribution lies in three major aspects: the development of octree-based infrastructure to 
extract the important features from a point cloud; the identification and merging of the candidate 
surface patches for the structural elements; and the classification of the identified patches into 
segments of generic structural elements. 

The proposed segmentation method starts with extracting small-sized surface patches from 
the created voxels, and empirically joining the adjoining patches sharing similar local features. 
This process returns patches including disconnected patches due to the presence of occlusions and 
noise in the scene. In the second part, a robust technique is developed to merge the disconnected 
patches that represent similar surfaces of structural elements. The third part includes classifying 
and segmenting the merged into class elements which are: floor slabs, floor beams, walls, and 
columns. A novel classification method was used utilizing the concept of spatial dependency of 
elements in the structural systems of buildings.  

The proposed method is tested on a large point cloud with high levels of occlusions and noise. 
The evaluation of test results has indicated a good general performance, especially for segmenting 
the floor slabs where 100% was scored on all the quantitative metrics. The floor beams and walls 
have shown promising performance with rates above 60% for precision and 80% for recall. The 
comparison tests were done against the state-of-the-art segmentation methods including the deep 
learning method where the proposed method has shown relatively good results, particularly for 
beams that normally are difficult to segment. The performance of the proposed segmentation was 
highly affected by the lack of a good number of paired planar patches due to occlusion(s) located 
on one side of the pair-set. Other limitations are discussed and potential areas for improving the 
study are narrated.  
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1.1. Motivation 

Segmentation of structural elements from 3D point clouds is a crucial task in various 
applications, including reconstruction of 3D man-made infrastructures, progress monitoring in 
construction sites, change detection in urban scenes, and building inspection. The point cloud 
captured by 3D laser scanners, photogrammetry, or video-grammetry techniques, provides high-
detailed and accurate geometric information about the scanned environment (Vincke et al., 2019; 
Q. Wang & Kim, 2019). The measured 3D points have spatial coordinates of geometric surfaces 
and topologies which can be resourceful in various applications such as 3D remodeling, urban 
planning, and virtual reality. However, the raw point cloud data contains a vast amount of 
unorganized and noisy points (Poux & Billen, 2019), making it challenging and time-consuming 
to extract meaningful information for subsequent processing such as object detection, 
classification, and segmentations (Hajian & Becerik-Gerber, 2010).  

The research on point cloud segmentation has gained significant attention in recent years, and 
various techniques have been proposed to address its efficiency and overall accuracy in different 
environments. Conventional methods often rely on handcrafted features, such as surface normal, 
curvature, or color, to perform classification and segmentation which includes geometric fitting of 
underlying shapes in point clouds such as planar, circular, and spherical. Some of the widely used 
algorithms for geometric fitting in 3D point clouds are: Random Sample Consensus (RANSAC), 
3D-Hough transform (3D-HT) (Deschaud, 2010; Maalek et al., 2015; Schnabel et al., 2007), and 
region-growing (Deschaud, 2010). Nonetheless, implementing these algorithms has been 
demonstrated to be ineffective and expensive in terms of time and computation, when applied to 
large point clouds with a greater degree of noise and clutter (Vo et al., 2015). Specifically, the 
RANSAC method frequently generates erroneous (spurious) planes that do not match any object 
in the building scene as illustrated in Figure 1.1. In addition, these methods have been reported to 
underperform in capturing complex and heterogeneous information in the point cloud data (Vo et 
al., 2015). To solve this problem, much attention has been devoted to deep learning methods of 
segmenting point cloud data. 

 

Figure 1. 1 Geometric fitting on 3D point cloud using RANSAC: (a) Original point cloud (b) Result 
after plane fitting using RANSAC with erroneous planes representing in different RGB colors. 
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Deep learning-based methods, especially convolutional neural networks (CNNs), have shown 
promising results in point cloud segmentation. CNNs can analyze hierarchical attributes of the 3D 
point cloud data and capture both local and global features of building scenes. One of the pioneering 
works in this direction is PointNet (Qi, Su, et al., 2017), which treats point clouds as a set of 
unordered points and directly applies multilayer perceptron (MLPs) to each point feature. Another 
state-of-the-art work is PointCNN (Y. Li et al., 2018) which introduces a novel point convolution 
operation that respects the local permutation invariance of the point cloud data. Several subsequent 
works have extended the PointNet and PointCNN frameworks to address specific challenges in 
point cloud segmentation.  

However, the deep learning methods still have some drawbacks in the use of point clouds. 
They demand large numbers of training datasets, which can be computationally expensive, and 
labeled data are limited especially for complex structures (J. Zhang et al., 2019). In the study 
conducted in (Poux & Billen, 2019), the PointNet has demonstrated low performance in classifying 
the standard building components such as ceilings, floors, and walls when no color attributes are 
used despite the great performance it has shown in classifying other indoor objects such as chairs, 
tables, and bookshelves.  

The lack of instance segmentation in indoor point clouds is also a significant drawback for 
deep learning techniques (J. Zhang et al., 2019). Without this information, it can be challenging for 
applications such as 3D remodeling and structural analysis which prefer accurate and detailed 
classifications of objects within the point cloud as illustrated in Figure 1.2. Thereon, it is often 
enforced to perform additional processes that require prior knowledge about building structures to 
extract distinct details and high-level geometric representation of building features (Xu, 2019).  

 

Figure 1. 2 Segmentation result of the 3D model (Hyunsoo & Changwan, 2021): (a) Semantic 
segmentation with moderate classification (b) Instance segmentation with detailed classification. 

On that account, several studies have been conducted attempting to use the contextual 
knowledge of structural and architectural forms of buildings in the segmentation process. Son & 
Kim (2017) developed an approach to segment the 3D points into meaningful parts comprising 
floors, columns, walls, girders, beams, and slabs using the local concave and convex connectivity 
between the structural elements, and Hyunsoo & Changwan (2021) exploited the similar approach 
to perform an automated as-built remodeling for point cloud with the limited amount of missing 
data. Maalek et al. (2015) introduced a robust segmentation method that performs complete linkage 
of planar and linear features associated with columns and reinforcements for construction site 
progress monitoring and structural dimension compliance control. Hamid-Lakzaeian (2020) 
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developed a multi-planar algorithm as a means of distinguishing the structural from the non-
structural elements for a building with multi-planar facades. The proposed algorithm considered 
the positions of clusters of points with respect to their neighbors to segment the principal facades 
of architecturally ornate, multi-planar buildings. Although these methods have shown success, they 
have mostly been tested in construction-related scenarios where the building features are relatively 
more exposed and visible to sensors compared to those of existing and occupied buildings. 

Occupied buildings typically offer limited visibility of permanent structures due to 
obstructions caused by the presence of secondary objects in the scene such as fittings, furniture, 
and fixtures. These occlusions may have similar dimensions and orientations to standard building 
elements such as walls, slabs, and beams (Xiong et al., 2013), as shown in Figure 1.3. The 
occlusions can result in point clouds missing critical data, which can lead to inaccurate 
segmentations due to disconnected surface patches, particularly during the geometric fitting 
process (Hyunsoo & Changwan, 2021).  

 

Figure 1. 3 Various forms of occlusions are present in an occupied building: (a) large wardrobe 
concealing one face of the wall; (b) upper cabinet resembling a short-span beam; (c) door leaning and 
occluding a wall surface. 

From the aforementioned research, it can be seen that three major tasks should be addressed 
in the segmentation process: (1) Geometric fitting in a large point cloud; (2) Classifying the 
structural elements from the noise and occlusions present in the point cloud; (3) Segmenting the 
detected structural elements from one another. To address the mentioned tasks, this study proposes 
a segmentation method that overcomes the challenge of missing data caused by noise and 
occlusions while robustly segmenting structural points from the nearby non-structural objects. This 
proposed method involves identifying principal pairs of detected planar patches and merging the 
remotely disconnected patches representing the same structural surfaces. By incorporating patch-
pairing, we can assimilate the surface symmetry of common structural components into the 
segmentation pipeline.  

The method proposed in this thesis can manage point clouds with varying degrees of missing 
data, as well as handling point clouds of different scales and sample distributions. A case study is 
conducted on a multistory building with planar surfaces, the method applied in the study can be 
adopted in segmenting other concrete-based structures such as bridges, tunnels.  
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1.2. Objectives and contributions 

In this thesis, we present a framework for segmenting structural elements from a multi-storey 
building using 3D point cloud with novel algorithms and methods in the fields of detection, 
classification, and segmentation of point cloud. We aim to develop robust methods and techniques 
to segment structural elements from large point clouds containing high amount of secondary and 
temporary objects which usually complicates the segmentation process.  

The tasks included in this thesis consists of three main parts. The first part is about the 
repartitioning of the point cloud into a more simplified and manageable units (voxels) that can 
allow easier processing of point cloud and deduction of the underlying features in the neighborhood 
of points. this is done by spatially decomposing the point cloud into well-defined voxels for reliable 
estimation and computation of the underlying local features in the point clouds.  This helps to 
alleviate the problem large size of point cloud while maintaining the attributes of the original point 
cloud. The second part involves the extraction of candidate planar patches associated with 
structural elements amidst the noise and clutters present in the neighborhood. The proposed 
technique in this part helps to counter the challenge of the present secondary and temporary objects 
in the point cloud during the segmentation pipeline. The final part deals with segmentation of 
structural elements from the detected planar patches obtained in the preceding part. In this part, we 
introduce novel techniques for classifying the detected planar surfaces into well-defined structural 
elements using the spatial dependency and topology of elements in a structural system of buildings.  

In Figure 1.4, we illustrate an overview of the proposed methods, containing former works 
from other researches and our proposed method and their developing workflow. 

 

Figure 1. 4 Overview of the proposed segmentation method. 
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1.3. Research questions 

More specifically, in this work, the proposed segmentation method associated to large point 
cloud scene with high degree of noise, clutters and is to answer the following questions, which 
have not yet been considered or fully addressed in state-of-the-art literature: 

(a) How to efficiently and accurately detect local features associated with planar surfaces from a 
3D point cloud that contains a high amount of noise and artifacts? 

(b) How to effectively determine if the remote and disconnected planar patches in a point cloud 
belong to the same surface of a particular structural element? 

(c) What are the necessary aspects to consider in segmenting structural elements from the non-
structural elements and secondary objects present in the point cloud scene? 

For finding answers to the aforementioned research questions, before introducing our 
objectives and contributions, we first provide a detailed survey and review of related work in the 
following section 

1.4. Related work 

Numerous researchers have studied about segmentation works using point clouds. According 
to the three main tasks mentioned in the section 1.1, we will provide detailed reviews and 
discussions concerning methods and algorithms relating to spatial subdivision of 3D point clouds, 
geometric fitting, noise handling in point in point cloud and state of the art algorithms developed 
to segment building features from a point cloud.  

1.4.1. Spatial subdivision of 3D point clouds 

Spatial subdivision is a process of partitioning a point cloud into smaller subsets or regions 
based on their spatial locations. This process is commonly used in point cloud processing for 
applications such as data compression, segmentation, and visualization.  

There are several methods available for spatial subdivision of point clouds, and the two most 
common methods are octrees, and k-d trees. These methods differ in their complexity, efficiency, 
and accuracy, and are selected based on the specific application requirements. 

(a) Octree 

Octree is a hierarchical data structure that is commonly used for spatial subdivision of point 
clouds. The octree subdivides the space recursively into eight equal-sized cubes, or octants, until a 
termination condition is met. Each octant can either contain points or be empty, and if it contains 
points, it can be further subdivided into eight smaller octants. 

Octree structures are particularly useful for point clouds with non-uniform densities or 
complex shapes, as they adapt to the local density of points and can handle irregular shapes. They 
also allow efficient querying of points within a given region, which is useful for tasks such as point 
cloud segmentation or feature extraction (L. Han et al., 2021; Xu et al., 2021). 
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(b) K-d tree 

K-d tree is a data structure that is commonly used for spatial subdivision of point clouds. The 
k-d tree is a binary tree, where each node corresponds to an axis-aligned hyperplane that partitions 
the space into two half-spaces. The left subtree of the node represents the points to the left of the 
hyperplane, while the right subtree represents the points to the right of the hyperplane. The 
hyperplane direction is determined by associating every node with one of the k dimensions, and 
the hyperplane is perpendicular to that dimension's axis (Bentley, 1975). 

Even though both methods are widely used for spatial subdivision of point clouds, however, 
octree is mostly favored. The advantage of using octree is that it can handle point clouds with 
varying densities and shapes more efficiently than k-d tree. Another advantage of octree over the 
k-d tree is in its search for the nearest neighbor because the hierarchical structure of octree allows 
for efficient traversal of cells at different levels of detail, reducing the search space and improving 
the processing speed (Limberger & Oliveira, 2015). 

1.4.2. Geometric fitting in 3D Point Clouds 

Geometric fitting of point clouds is the process of finding a mathematical model that 
approximates the shape of a set of points in 3D space. This is a fundamental task in computer vision 
and robotics, where it is used for applications such as object recognition, pose estimation, and scene 
reconstruction. It is achieved by evaluating the connected points according to their geometric 
features (e.g., spatial positions and normal vectors) in a local or global scale through certain 
geometric models. Points meeting the criteria of fitting the same geometric model (either in the 
spatial or parametric domain) are extracted from the point cloud as single individual segment. 

In 3D point clouds, the three most widely used methodologies to extract geometric features 
are Random Sample Consensus (RANSAC), 3D-Hough transform (3D-HT), and region-growing. 

(a) RANSAC 

RANSAC is a popular algorithm for geometric fitting in point clouds, especially when the 
data contains a significant amount of noise or outliers. The RANSAC algorithm works by randomly 
selecting a subset of points from the point cloud and using them to fit a model. The model is then 
evaluated on the remaining points in the cloud, and those that are consistent with the model (i.e., 
within some predefined threshold) are considered as inliers (Fischler & Bolles, 1981). The 
algorithm is repeated for a fixed number of iterations, and the best model is chosen based on the 
number of inliers it generates. The RANSAC algorithm is effective in fitting various types of 
geometric models to point clouds, such as lines, planes, circles, and spheres. The algorithm can be 
easily extended to handle more complex models by modifying the model-fitting function and the 
threshold for inlier detection. 

The RANSAC is used to classify building planar features from a 3D point cloud (Hamid-
Lakzaeian, 2020; Hong et al., 2015) due to its computational efficiency in outlier settings. Several 
variants of RANSAC exist to optimize execution speed and accuracy in higher outliers. (Hamid-
Lakzaeian (2020) Enhanced RANSAC with an octree structure to detect multi-planar building 
facades, and in (L. Li et al., 2017) the point cloud is subdivided into cells to detect minimal planar 
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patches. However, RANSAC is highly sensitive to parameter tuning depending on the noise levels 
(Araújo & Oliveira, 2020). 

(b) 3D-Hough transform 

Hough transform (HT) is more prominent in detecting parameterized features in linear and 
circular shapes in 2D compared to 3D datasets (Borrmann et al., 2011). To facilitate the speed and 
accuracy of HT in 3D settings, in  Kultanen et al. (1990) a randomized version of HT was developed 
where planes and curves are detected by mapping points into one point in Hough space and 
randomly voting points based on a distance from the candidate primitive. Then, for each point in 
the point cloud, the algorithm computes the set of parameters that define the primitive that contains 
that point. The accumulator array is updated at each step to accumulate the evidence for each set 
of parameters. Once all points have been processed, the accumulator array is searched for peaks, 
which correspond to the most likely sets of parameters for the primitive. In (Borrmann et al. (2011), 
different variations of 3D-HT were evaluated to detect planes from a simulated laser scan model, 
while in (Díaz-Vilariño et al., 2015) HT was used to extract circular and rectangular columns from 
the projected points in the x-y plane; however, the implementation of 3D-HT is still disfavored due 
to its overall high computation cost (Borrmann et al., 2011; Vo et al., 2015). 

(c) Region growing 

Region growing is a technique used in geometric fitting of point clouds to segment a point 
cloud into regions that belong to a common geometric primitive. The basic idea of region growing 
is to start with a seed point, and then iteratively grow a region of points that are geometrically 
similar to the seed point, based on some criteria, such as the closest point, orientation, and surface 
curvature. If a neighboring point satisfies the similarity criteria, it is added to the growing region, 
and the algorithm continues to search for more neighboring points that are similar to the region. 
The algorithm stops when there are no more points that satisfy the similarity criteria or when the 
region reaches a predefined size or shape. 

Region-growing is widely implemented in 3D point clouds to detect geometry features due 
to its high resilience in contaminated data (Deschaud, 2010; Dimitrov & Golparvar-Fard, 2015; 
Maalek et al., 2015, 2019; Nurunnabi et al., 2012; Son & Kim, 2017; Xiong et al., 2013). The main 
limitation of region-growing is the selection of a seeding point that can affect the quality of 
segmentation (Kang et al., 2020). Also, during clustering, the algorithm can result in the over- or 
under-segmentation of regions leading to the spontaneous creation of region borders. Due to these 
problems, Maalek et al. (2015) suggested that a hybrid and clustering integrations can be used to 
overcome these limitations. In Rabbani et al. (2006), the region-growing was modified with a 
smoothness-constraint approach where close points with similar surface curvature are merged. This 
approach is deployed in the point cloud library (PCL) (Rusu & Cousins, 2011) and applied in (Son 
& Kim, 2017; Xiong et al., 2013) to detect planar patches. 

More recently, robust methods of Principal Component Analysis (PCA) have also been 
applied to segment planes in the presence of a high proportion of outliers. In Maalek et al. (2019), 
a statistical-based PCA that uses a fast-minimum covariance determinant to extract multiple planar 
objects from 3D point sets was applied. Nevertheless, the mentioned approaches are yet to solve 
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the problem of missing data due to extensive occlusions and separate nearly identical structural and 
non-structural elements in a point cloud scene.  

1.4.3. Methods for filtering noise in point clouds 

Noise filtration is an important preprocessing step in 3D point cloud processing, which aims 
to remove unwanted noise and outliers from the data. Noise in 3D point clouds can be caused by 
various factors, such as sensor noise, registration errors, occlusions, and surface irregularities. 
Filtration techniques can help to improve the quality and accuracy of the data and make subsequent 
processing steps more robust and efficient. Different categories have been created to filter noise in 
point clouds and they can be mainly categorized into two methods: statistical-based and 
neighborhood-based noise filtering (X. F. Han et al., 2017).  

(a) Statistical-based noise filtering 

Statistical-based noise filtering is a type of noise filtering technique used in point cloud 
processing that aims to remove random noise from the data. This method is based on the 
assumption that the noise in the data is random and can be modeled by a statistical distribution, 
such as a Gaussian or Laplacian distribution (Rusu & Cousins, 2011). 

To perform noise filtering in a point cloud, the distances to neighboring points within a given 
neighborhood are first calculated, assuming a Gaussian distribution. The mean value, µ, and 
standard deviation, σ, are then determined based on these distances. Points that are within a selected 
k number of neighboring points are considered as inliers and retained in the data set, while points 
that are further away are considered as outliers and excluded from the data set.  

There are several statistical-based noise filtering methods available for point clouds, 
including mean and median deviation filtering. Mean filtering is a simple technique that replaces 
each point with the average of its neighboring points within a defined neighborhood size. Median 
filtering is another popular technique that replaces each point with the median value of its 
neighboring points within a defined window size. Both mean and median filtering can effectively 
remove random noise from the data, but they may also smooth out important features and edges. 

Statistical-based noise filtering techniques are computationally efficient and easy to 
implement, but they may not be effective in removing structured noise or outliers. They are suitable 
for applications that require simple and fast preprocessing, such as visualization and point cloud 
compression. 

(b) Neighborhood-based noise filtering 

Neighborhood-based noise filtering is a type of noise filtering technique used in point cloud 
processing that aims to remove noise by identifying and filtering out points that do not conform to 
the geometric properties of the neighboring points (X. F. Han et al., 2017). 

In neighborhood-based noise filtering, a local neighborhood around each point in the point 
cloud is defined, typically using a fixed distance or a fixed number of neighboring points. The 
geometric properties of the points in the neighborhood, such as their spatial positions, normal 
vectors, or curvature, are then evaluated and compared to a predefined model or threshold. 
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1.4.4. Segmentation methods for point clouds 

Segmentation of structural elements from a point cloud involves the process of identifying 
and separating distinct structural elements such as floors, beams, walls, columns, roofs from the 
overall 3D point cloud data. The segmentation process is generally a complex procedure that 
requires advanced algorithms and computational resources. However, the overall process usually 
follows several operations which can divided into four main steps; preprocessing, extraction of 
geometric features, point classification and finally, the segmentation of structural elements.  

 Preprocessing of point cloud: this activity involves cleaning up the point cloud which 
normally contains noise, outliers and other artifacts that may affect the segmentation 
process. It also includes aligning the point cloud to a common coordinate system. 

 Feature estimation and extracting 3D geometric attributes: Once the data has been cleaned 
up, the next process is to identify all the relevant features from the point cloud and extract 
the respective geometric properties for further processing.  

 Point Classification: this operation deals with assigning labels or categories to individual 
points in a point cloud dataset based on their characteristics of the geometric features 
extracted in the previous step. The labels can represent different classes of objects, and for 
the built environment many researches have concentrated in classifying the generic building 
components such as floors, walls and its openings, columns, beams, and roofs. 

 Segmentation of structural elements: Once the points have been labelled, the next step is to 
segment the structural elements from the rest of the data. Various techniques are used to 
such as clustering, semantic segmentation using machine learning methods such as 
unsupervised means and deep learning methods, convex hulls, and plane fitting methods. 

The segmentation process can be divided in two main groups: the hardcoded knowledge-
based methods and deep learning methods. 

(a) Hardcoded knowledge-based methods 

Hardcoded knowledge-based segmentation methods refers to a techniques used to segment 
the structural elements from the point cloud based on the predefined rules or patterns (Q. Wang & 
Kim, 2019). The use of prior knowledge about the building components integrated with the features 
extracted from the point cloud has been used to separate structural points from non-structural points 
from the point cloud.  

In this approach, specific patterns and characteristics are used to identify structural elements 
within the point cloud data. For example, certain geometric shapes or patters may be indicative of 
certain elements such as floor or walls and these can be used to segment the points accordingly. 
The process typically involves identifying individual points or groups of points that represent 
particular features and patterns and using that to segment them into distinct elements.  

Several studies have applied the hardcoded knowledge-based context to segment point 
clouds, and they can be divided into the following types: density-based clustering, and geometric 
modelling.  



15 

 

The density-based clustering is commonly used technique used to discover the unknown 
clusters without the need to know the number of clusters. One popular algorithm used is Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996), which is in 
point cloud processing and data mining. These methods rely on the concept of density of samples, 
which is the number of points within a certain Euclidean distance from a given point. (X. Chen et 
al., 2022) segmented indoor objects from a point cloud scene by developing a density clustering 
model which used an exponential function and local density distribution along the z-direction. The 
function allowed to obtain a cutoff distance between clusters in point cloud. Majority of studies 
that applied this technique have relied on the variation of point densities along the z-axis to cluster 
and identify horizontal components such as floors and ceilings (J. Chen et al., 2017; Cho et al., 
2004; Hong et al., 2015; Valero et al., 2016). Cho et al. (2004) built a pseudo-grid that virtually 
contains points in accordance with their z-values and filter out noise based on the predefined local 
maxima and point distribution. Hong et al. (2015) also used the pseudo points to estimate the 
ceiling-to-floor height to perform vertical modelling. The authors used the local maxima and 
minima of z-values from the pseudo isolate the ceilings and floors and then, used RANSAC to 
modelling.  

Geometric modeling for point cloud involves estimating the geometric shapes such as planes, 
spheres, cylinders, or linear features that can best describe a set of 3D points in a point cloud. 
Geometrical modelling is one among the fundaments challenges in modelling the built assets, 
which often uses plane-based approach since most building elements are composed of planar 
surfaces (Q. Wang & Kim, 2019). As mentioned previously some of the commonly applied 
algorithms for geometric modeling (fitting) RANSAC, 3D HT and region-growing. Convex hull 
has also been applied to detect the outer boundaries of geometric shapes by tracing and fit the 
closest points given a set of points. Convex hull can be applied to solve the problem of edge 
detection and generate meaningful boundaries of various shapes using the alpha shapes 
(Edelsbrunner et al., 1983; Fayed & Mouftah, 2009; Sampath & Shan, 2005). Similar approach 
was used by (Maalek et al., 2019) to detect the column boundaries on the segmented planes. 
However, the downside to the geometric fitting method is its sensitivity towards geometry shape 
which is difficult to generalize due to uniqueness of different building objects and their shape 
profiles. Hence this method is normally used in the availability of as-planned BIM or Computer 
Aided Design (CAD) model for comparison purposes.  

The downside of hardcoded-based knowledge method is that it can be effective in some cases, 
however it may require significant manual effort to define the patterns and characteristics used for 
segmentation and it may not always be applicable to all types of point cloud scenes. Moreover, 
deep learning methods may be able to achieve more adaptable segmentation results by 
automatically learning patterns and features from the data itself. 

(b) Point-based Deep Learning methods 

In this part, we review the basics and techniques of deep learning (DL) networks in 
segmenting the point cloud data. DL has made significant advancements in both image processing 
and point cloud processing, but the techniques and challenges associated with each field are 
different. Processing 3D point clouds requires specialized algorithms that can handle the additional 
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dimensionality, unique data structure, and properties of point clouds, such as point scarcity, 
irregularity, and varying density. In contrast, image processing algorithms are designed to handle 
the regular grid-like structure of pixels in a 2D structure. Another difference is the type of 
information captured by each representation. Images capture color and intensity information in a 
2D, while point clouds capture geometric information about the scene or object, such as shape and 
depth. For that reason, we have seen more applications and advances in deep learning algorithms 
in images.  

Deep learning techniques have been adapted and developed specifically for point clouds, such 
as point-based and convolution neural networks (CNN), which have achieved groundbreaking 
results in segmenting building components. DL methods achieves the segmentation of point cloud 
associated with tasks such as the classification, semantic segmentation, and instance segmentation. 
There are numerous deep learning techniques used to segment point clouds, for this research we 
will introduce three prevalent networks: PointNet, PointNet++, and Dynamic Graph CNN. 

(i) PointNet 

PointNet as proposed by (Qi, Su, et al., 2017) is a deep learning architecture that directly 
processes the 3D point cloud data with while being invariant to permutations of the input points. 
Its architecture consist several layers of neural networks that takes advantage of the transformation 
networks (T-Net) and a number of the multi-layer perceptron (MLP) to extract features from the 
unordered set of n points, P = {p1, p2, …,pn}. The PointNet architecture allows to perform both 
classifications based on the pre-trained data and semantic segmentation by combining the local and 
global features. 

PointNet has several advantages over other DL architectures due to its robustness to rotation 
and translation and ability to handle variable-sized point clouds with low memory requirements.  

(ii) PointNet++ 

PointNet++ is a modified version of the PointNet (Qi, Su, et al., 2017), where a hierarchical 
neural network is introduced to capture local and global features of the input point cloud with high 
complexity (Qi, Yi, et al., 2017). The architecture is improved to divide the point cloud into a 
hierarchy of nested clusters. For each hierarchy, the network processes the points within that the 
cluster to increment more information about the global features for the entire point cloud. This 
allows efficient propagation of feature learning to speed up the aggregation of local and global 
features.  

(iii) Dynamic Graph CNN (DGCNN) 

DGCNN which is proposed by (Y. Wang et al., 2019) is a CNN-based architecture that uses 
the dynamic graph structure that allows to capture local and global features of the input point cloud. 
The network treats each point of the point cloud as a node of a graph, with vertices (edges) formed 
by the relations between neighboring points.  

DGCNN is built to perform in two-stage process where in the first stage, the network applies 
a shared MLP to each point to extract the local features. Then, using max pooling the local features 
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are aggregated to produce a global feature representation. In the next stage, the network implements 
the dynamic graph convolution layer on a local neighborhood for each point to gain the geometric 
relationships between nearby points in the point cloud. This process also, used the max pooling to 
aggregate the resulting features as in the first stage.  

1.5. Structure and organization 

This thesis is structured as follows. Chapter 2 addresses the theoretical aspects of spatial 
subdivision of point cloud using voxel structure, and feature estimation of point clouds. Chapters 
3 and chapter 4 are the core chapters for this thesis and describes the employed methods and how 
the methodological steps are interrelated as a means for attaining the goals presented above. 
Chapter 5 presents the experiments, experiment results and introduction to the methods used to 
evaluate the experimental results. Chapter 6 presents the evaluation of the experiment, and 
discussions of the overall methods. Chapter 7 closes the thesis by drawing the main conclusions 
and making suggestions for future works. 
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2.1. Introduction 

In this chapter, specific methods and techniques about the basic voxel-based data structure, 
geometric feature extraction, and geometric modeling of point clouds. The methods and techniques 
will be extensively used in the following methodology work. An appropriate notation is also 
introduced which will be used throughout the remaining chapters of this thesis 

2.2. Voxel-based Partitioning of 3D Point Cloud 

Voxelization of the point cloud involves discretizing the input point cloud into smaller and 
more manageable regular grids of cubic voxels. Each voxel represents a small portion of the point 
cloud containing a particular number of points falling within its grid boundaries. This approach is 
commonly used in the processing and analysis of 3D scenes in computer graphics, computer vision, 
and robotic applications. The points are bucketed in the voxels, and they can each be indexed to 
represent a particular voxel.  

There are two main methods of voxelization: Grid-based voxelization and Octree-based 
Voxelization. 

2.2.1. Grid-based Voxelization 

A grid-based voxelization is a technique of subdividing a point cloud into regular grids of 3D 
space creating cubicle cells of equal sizes. Then, for each cell of a grid, a voxel unit is generated 
to encompass all points found within its space. This approach is simple and computationally 
efficient that it does not require constructing complex data structures such as octree or k-d tree to 
parse the entire point cloud. Another advantage, of grid voxelization, is that it is easy to regulate 
its resolution by adjusting the grids. 

However, the disadvantage of this approach is the creation of multiple empty cells or voxels 
with relatively fewer points, particularly in low dense areas. This is attributed to the discretization 
of the entire point cloud contrary to the octree-based voxelization. An illustration of grid-based 
voxelization is presented in Fig. 2.1 The voxels can be referred from the grid indexes by the center 
or boundary coordinates.  

 

Figure 2. 1 Voxelization of the point cloud using grid-based approach: (a) Original point cloud; (b) 
voxelized point cloud. 
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2.2.2. Octree-based Voxelization 

This method involves partitioning the point cloud into voxels using an octree structure. An 
octree is a tree-based structure in which each node (parent-voxel) is subdivided into eight equally 
sized children (sub-voxels). The octree is built recursively by subdividing each voxel into eight 
smaller cubes (voxels) until a certain termination criterion is met. The criteria used are often, the 
minimum number of points in a tree or the maximum depth of the tree. If a cube has yet to meet 
the criterion, it is further subdivided into eight even smaller cubes until, and so on until the 
maximum depth is reached or minimum number of points are left. Once the octree is formed, the 
voxels are constructed to occupy the points based on the center of each octree node constructed. 
Fig. 2.2 illustrates the operational diagram for this approach. 

This approach differs from grid-based voxelization since it does not need to operate on empty 
spaces which save the computation cost. However, when working with large point clouds it may 
prove significantly expensive in memory consumption and computation when needing to traverse 
through each node of the octree structure.  

 

Figure 2. 2 Illustration of the octree structure (Guan et al., 2012). 

2.3. Feature estimation for 3D Geometric Shapes in Point Clouds 

Estimation of features from a 3D point cloud involves identifying the underlying attributes, 
structure, and patterns of points that can be used to describe geometric shapes and characteristics 
of 3D scenes.  

There are a number of features that can be analyzed from a point cloud, and while they are 
significant in describing the point cloud, estimating all of them without relevancy can be rendered 
redundant and computationally expensive (Chehata et al., 2009; Ni et al., 2017). It is necessary to 
specify the features of interest depending on the application and nature of the point cloud. Some 
studies have developed procedures for selecting the features from the point cloud (Chehata et al., 
2009; Guan et al., 2012; Weinmann et al., 2015).  
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In this study, we have focused on the geometry features to discover the geometry structures 
in the point clouds. According to (Ni et al., 2017) the geometric features in point clouds can be 
summarized into fourfold: Eigen-based, Height-based, Projection-area-based, and Surface-based 
features. These features provide powerful and efficient ways to capture and analyze the local 
structure and variability of the point clouds.  

2.3.1. Eigen-based features  

Eigen features are essentially descriptors that capture the geometric properties of a point 
cloud for shape analysis, feature extraction and object recognition. The common geometric 
descriptors derived using the Eigen features including curvature, normal orientation and local 
shape. 

Eigen-based features are derived from the eigenvalues and eigenvectors of the covariance 
matrix (C ) of the suitable neighborhood points in the point cloud (Chehata et al., 2009). These 
features are operating under the concept that a local 3D structure and orientation of a respective 
point-neighborhood N is aligned and spread in principle axes. The local structure around a given 
point p from a point cloud is described from the selection of a suitable closest neighborhood N (p) 
from the point p. Several approaches are used to define the neighborhood structure N (p) including 
spherical (Guo et al., 2015; I. Lee & Schenk, 2002), cylindrical (Filin & Pfeifer, 2005; Guo et al., 
2015) shapes, and using a fixed number of K ℕ closest neighbors ( lars Linsen & Prautzsch, 2001). 
The use of K neighbors optimizes the neighborhood size and hence, increases the distinctiveness 
of local features irrespective of the local shape.  

Given a local neighborhood structure within k points {p1, p2, …, pk}, the covariance matrix C 
can be derived according with Equation (2.1). 

C =  
1

𝑘 − 1
෍(𝑝ᵢ − 𝑝)(𝑝ᵢ − 𝑝)ᵀ                                        (2.1)

௞

௜ୀଵ

 

Where p is the mean vector representing the centroid location of the neighborhood structure 
in accordance with Equation (2.2). 

𝑝 = ෍ 𝑝ᵢ

௞

௜ୀଵ

                                                                              (2.2) 

The eigenvalues and eigenvectors of the C matrix provide essential information about the 
local geometry within the N (p). The eigenvalues represent the variance of the point cloud along 
each principal axis, while the eigenvectors represent the orientation of these axes (Feng & Guo, 
2018; Weinmann et al., 2015). Given a neighborhood structure and the derived eigenvectors(𝑣ᵢሬሬሬ⃗ ) 
where 𝑣ᵢሬሬሬ⃗   {𝑣₀ሬሬሬ⃗ , 𝑣₁ሬሬሬ⃗ , 𝑣₂ሬሬሬ⃗ }, with the corresponding eigenvalues (λ𝑖) where λ𝑖 € {λ0, λ1, λ2} several 
eigen-based features can be estimated.  

With ordering the eigenvalues in a decreasing values such that λ0 > λ1 > λ2 > 0, the following 
3D shape features can be estimated to describe the local neighborhood structure; its surface normal 
vector, 𝑣₂ሬሬሬ⃗ , its anisotropy, λₐₙ, its omnivariance, λₒₘ, its eigen entropy, λₑₙ (Poux & Billen, 2019), 
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its linearity, λₗₙ , its planarity, λₚₗ , and its surface variation, λₛᵥ, (Chehata et al., 2009; Poux & 
Billen, 2019; Weinmann et al., 2015). These features can be computed as according. 

λₐₙ =  
(λ₀ − λ₂)

λ₀
                                                                            (2.3) 

λₗₙ =  
(λ₀ − λ₁)

λ₀
                                                                            (2.4) 

λₚₗ =  
(λ₁ − λ₂)

λ₁
                                                                            (2.5) 

λₛᵥ =  
λ₂

∑ λ₀ଶ
௜ୀ଴

                                                                               (2.6) 

λₒₘ =  ඩෑ λ₀  
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                                                                         (2.7) 

λₑₙ =  − ෍ λᵢ ∗ ln(λᵢ)                                                               (2.8)
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2.3.2. Height-based features  

Height-based features in point cloud are deduced from the vertical elevation information of 
the points in a point cloud. These features are particularly useful for applications that require 
information about the height variations of a surface or topography for instance for buildings is used 
for surface quality inspection for concrete slab or floor flatness (Bosché & Biotteau, 2015; Bosché 
& Guenet, 2014; Puri et al., 2018; Q. Wang et al., 2016) and surface deformation analysis (Nuttens 
et al., 2014; Sánchez-Aparicio et al., 2018; Q. Wang et al., 2016), urban planning, tree detection 
and terrain modelling (Chehata et al., 2009; Feng & Guo, 2018; Guan et al., 2012). 

Some of the common height-based features are briefly described below: 

 Elevation or Vertical-profile-based features: This feature helps to measure the vertical 
distance between the ground and off-ground objects by obtaining the difference between a 
particular point of a terrestrial lidar data  and the lowest point in a generated cylindrical 
with predetermined radius (Chehata et al., 2009; Guan et al., 2012; Guo et al., 2015). This 
measurement can be used to estimate the height of buildings, trees, or power lines. 

 Surface roughness: These features are used to describe variability across a surface. It is 
normally used to identify areas of rough terrains and surface deformity such as rocky 
outcrops or uneven surfaces (Fan & Atkinson, 2018; Rodriguez-Cuenca et al., 2015). 

 Elevation variance: This is the variance of the measurements of height above the ground. It 
provides are higher value to standardize minimal differences for comparison purposes 
(Chehata et al., 2009). 
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 Local curvature: This is the measure of the rate of change of a surface at a particular point, 
and it is often used in the analyze the peak terrains and identify vertical features (Steinle & 
Voegtle, 2001). 

2.3.3. Projection-area-based features  

Projection area based features are a type of features derived from the projection of the point 
cloud or portion of points onto different planes or surfaces for analysis. (Johnson & Hebert, 1999) 
used the projection area features to perform simultaneous recognition of multiple 3D shaped 
objects by creating a spin image. (Guo et al., 2015) also used the same approach where the 2D 
accumulator was used as an image screen to collect bins containing projected points. The projection 
area is then calculated using the non-bare bins containing the projection points. The projection 
area-based features can be classified in twofold (Guo et al., 2015): 

 Horizontal-projection-area features: these features are derived from the 2D accumulator 
for area that is parallel to the XY projection plane. Object such as roof, ground and power 
lines can be identified using this approach. 

 Minimum vertical-projection-area features:  for these features, the direction perpendicular 
to the Z-axis where the bins distributed along the XY plane are used to calculate the areas. 
Vegetation and buildings are commonly identified using this approach.  

2.3.4. Surface-based features  

These are features related to flatness of the surface which is often associated to planarity, 
surface curvature and normal (Guo et al., 2015) developed two measurement indices to identify 
surface-based features: 

 Planarity index: this is a measurement that indicates whether a point belongs to a particular 
plane, such as the floor or a wall. It is calculated by fitting a plane to a particular range of 
points and measure the amount of deviation. By calculating the plane index for each point 
in the point cloud, it is possible to segment the point cloud into different planes.  

 Surface index: Similarly, the surface index is the value that indicates if a point belongs to a 
particular type of surface or not. It is calculated using the surface curvatures and normal. 
The surface index is normally regarded as the average value of all points to a plane’s 
surface. 
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3.1. Introduction  

This chapter introduces the initial methods of the proposed segmentation pipeline. The chapter 
covers the spatial decomposition of point cloud and placing the points in the voxels, estimating of 
eigen-based features of points populated in the voxels, detection of minimal planar patches and 
merging of minimal planar patches. 

3.2. Octree Decomposition of Point Cloud 

Octree-based voxelization is a popular technique of partitioning the point cloud using the octree 
structure and bucketing the points in voxel units. The first step is to construct the octree structure, 
this is typically done by recursively subdividing the point cloud into octants until the termination 
criteria is met. In this case, we adopted the minimum number of points as our termination criterion 
as used. Each leaf node of the octree represents a smaller region of input point cloud and contain 
list of all points that fall within a respective space region in accordance with the spatial frame 
system in use. Once the octree is generated, each leaf node is converted into a voxel in the voxel-
grid. The capitalizes the benefits of both systems of voxelization, where the voxel-grids provides 
uniform space partitioning and octree structure reduces the memory consumption by disregarding 
empty voxels and very sparse scenes which carries no geometry value. 

This approach also benefits in redistributing the dense regions of the point cloud which can improve 
accuracy and efficiency of the subsequent processing steps. Also, it supports efficient query by 
using voxel-grid to locate specific regions of interest, which it can be useful for applications such 
as collision detection in computer graphics (Vo et al., 2015; Xu, 2019). 

3.2.1. Generating an Octree Structure  

Working with octree requires a proper choice of resolution level which ensures proper subdivision 
3D space with regard to trade-off between the accuracy of results and requirements for both 
computational time and memory (Pulli et al., 1997). In this work, the input point cloud is equally 
partitioned into eight smaller regions (voxels) until a predefined maximum depth tree, Ѱmax, is 
reached. The use of maximum tree depth (Ѱmax) as our resolution strategy is a prevalent technique 
working with octree, (Poux & Billen, 2019; Pulli et al., 1997). This strategy allows for more 
efficient and effective data processing, specifically a deeper octree will result more levels and 
detailed partitioning of the point cloud data with increased homogeneity of data and finer details 
for precise analysis. 

However, this approach requires a user-defined depth which is important since setting a depth tree 
which is too high can lead to over-segmentation and increase the computational complexity of 
processing the data. In consideration to this challenge, we set other criteria to complement the tree 
depth criteria, where the minimum number of points per each voxel, Ꜫmin is used to have an 
optimum level of point cloud subdivision. The octree will recursively subdivide whichever the 
value of Ѱmax and Ꜫmin is reached earlier.  

The advantage of limiting the number of points in each voxel, is that the computational complexity 
of operations such as geometry fitting, segmentation and surface reconstruction can be significantly 
reduced, as fewer point need to be processed at each step. Another advantage of using minimum 
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number of points per voxel ensures that the resulting voxels are bucketed with points, which can 
help to preserve details and geometry features of the underlying surface or object of interest.  

However, setting a lower number of points per voxel can also lead to creation of exorbitant number 
of smaller voxels which can result computational challenges and increased memory usage 
especially for larger point clouds. In addition, having a very small sample size would lead to an 
erroneous data estimation and over-fitting, i.e., model skewing towards one datum (Osborne & 
Costello, 2004; Shaukat et al., 2016), while a too large sample size would otherwise lead to 
diminishing returns (Forcino, 2012). As, the result the optimal balance of voxel size and point 
density is carefully chosen for general adaptation. In this case, a proposed minimum number of 
points per voxel is Ꜫmin=30, which is proven to be efficient in large point clouds (Limberger & 
Oliveira, 2015). 

The octree is constructed in which we start with creating the root octant node by inserting a cube 
encompassing the entire point cloud. Afterwards, the root node is subdivided sequentially into eight 
equal children nodes (cubes) and assign the points to each node. The x, y, z coordinate of each 
point in the point cloud is used to determine which octant is contained in space. The division 
continues for all non-empty nodes until the Ѱmax or Ꜫmin is reached first. For storage referencing, 
the points are indexed similar to (Poux & Billen, 2019), which allow to efficiently access the points 
within a particular region of space as illustrated in Figure 3.1. 

 

 

Figure 3. 1 Point cloud subdivision: (a) octree structural framework; (b) abutting voxels for joining 
proximate planar patches. 

3.2.2. Voxelization of Point Cloud 

As described in the previous sub-section, all points are fitted into respective node/voxel-space 
based on the -x, -y, -z coordinates. This subsection discusses about the build-up of voxels using the 
voxel-grids. The use of voxel-grids provides an effective referencing of voxels through grid indexes 
(Qian-Yi et al., 2018). 
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The voxel-grid is constructed using a similar approach to (Nourian et al., 2016), where the 
bounding box is initially fitted to contain the entire point cloud. The size of the bounding box is 
decided by the local minima and maxima of all points present in the point cloud. For each 
subsequent round of partitioning of octree, the bounding box is equally subdivided creating the 
voxel-grids. The voxel-grid are represented by 3D arrays of -x, -y, -z values of points falling within 
the volume space of voxel-grids. After the voxel-grid are constructed, all points are assigned to 
voxels which is done by iterating through all points and determining which voxel it belongs to by 
dividing its coordinates by the size of the voxel and rounding down to the nearest integer. 

3.3. Feature estimation and Extraction of Planar Patches  

This section deals with estimation of 3D geometry attributes, where in our case we compute the 
eigen-based features within voxels to detect the underlying surface planarity. As mentioned earlier, 
the octree-based voxels help to reduce the complexity of the point cloud data while retaining the 
most important information. The eigen-based features are computed to determine the underlying 
surface planarity using the Principal Component Analysis (PCA). PCA is a prominent technique 
used for dimensionality reduction and feature extraction in 3D computer vision. Features in the n-
dimensional features (ℜn) are transformed to a lower (n-i) dimensional space (i.e. i = {1,2,…, n-
1}), for easy analysis and interpretation. In this study we attempt to reduce the underlying planarity 
features which are in 3D space to a 2D space: ℜ3 → ℜ2, to reveal the surface planarity within 
voxels. 

3.3.1. Estimation of Eigen-based Features and PCA  

The eigen-based features are computed to determine the underlying surface planarity using the 
Principal Component Analysis (PCA). PCA is a prominent technique used for dimensionality 
reduction and feature extraction in 3D computer vision.   

Given voxel Vi, populated with n points is used to compute the covariance matrix, C, for a particular 
neighborhood of points. However, prior to calculation of the covariance matrix, all points in the 
voxels are initially standardized which is important to ensure that x, y, z values have the same scale. 
This is important especially for points that are located further-off the origin in one direction of 
either x or y or z.  The process of standardization involves subtracting the mean (µ) and dividing 
by the standard deviation (σ) of each variable. 

Once the points are standardized, the next step is to compute the covariance matrix as (eqn.). The 
covariance matrix represents the square matrix of that summarizes the relationships between pairs 
of variables. From the covariance matrix, the eigen decomposition is performed to obtain the 
eigenvector and eigenvalues. The eigenvectors give the directions of maximum variance of points 
in the voxels, and the eigenvalues represent the amount of variance relative to each of the 
eigenvector. 

After the eigen decomposition, the next step is to choose the number of principal components to 
keep. All the points in the voxels are split into three main components representing their principal 
directions. The first principal component, PC1 represents the direction of maximum variance, and 
the second, PC2 and third principal components, PC3 are directions of decreasing variance 
orthogonal to the first. This is done by examining the proportion of variance explained by each 



33 

 

principal component and selecting the two main components that carries the most of variance in 
the data as illustrated in the Figure 3.2.  

 

Figure 3. 2 Points variations around the two selected principal components points variations around 
the two selected principal components. 

The eigenvalues obtained from the covariance matrix helps to interpret various attributes about the 
points in the voxels. The eigenvalues arranged in their decreasing values such that λ0 > λ1 > λ2 > 0 
The eigenvectors with the smallest eigenvalues correspond to the direction of minimum variance 
in the data (Narváez & Narváez, 2006). This direction is interpreted as the direction of planarity, 
as it represents the axis along which the points are most likely to lie on the flat surface. On the 
other case, the local surface normal is represented by the direction of the eigenvector with the 
largest eigenvalue. 

3.3.2.  Extraction of Minimal Planar Patches  

A set of n points (math) from the voxel, Vt that describes the principal direction are fitted with a 
plane to extract the planar patch. The approach to fit a plane is presented a total least square (TLS) 
problem (Gene & Charles, 1980). In this method, plane fitting is performed in voxels by 
minimizing the total distance between each point and the plane, including the sensor’s noise error 
herein referred as residual value (r). The plane parameters are estimated by the normal vectors 
which is the eigenvector of least eigenvalue.  

The general equation of a plane in 3D space is:  

Ax + By + Cz + D = 0 

Where A, B, and C are the plane’s normal vector components, and D is the plane’s distance for the 
origin point (0, 0, 0). Given a set of n the points with 3D coordinates (xi, yi, zi), the plane fitting 
problem can be formulated as finding the values of parameters A, B, C and D that minimizes the 
total sum of square distances between the points and the plane. To enhance the accuracy of plane 
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fitting, the TLS is complemented with the sensor’s standard noise error. The best-fit plane is then 
obtained as illustrated in the Figure 3.3, and all the points found on the plane are assigned 
accordingly. This activity returns a set of k minimal planar patches from each voxel.  

 

Figure 3. 3 Point distribution around the fitted plane on the x-y plane, and the estimated root mean 
square error. 

3.4. Merging of Minimal Planar Patches using Region-growing  

While the previous section describes the overall process of detecting the minimal planar patches 
within voxels, this section presents the merging of the planar patches across voxels based on 
proximity. The idea here is to join the minimal planar patches representing the same surfaces of 
structural components using the similar features used to detect them in the first place. To merge 
the planar patches across voxels, we first identify the neighboring voxels which are connected using 
predetermined criteria as described in section 3.4.1 Connectivity criteria for merging patches. Once 
the connected voxels are identified, the planar patches are checked if they share the same attributes 
for joining, and for similar patches they are merged by fitting a plane to the connected voxels using 
the TLS approach. 

3.4.1. Connectivity of Voxels for merging planar patches 

Selecting the connection between adjacent voxels is significant in merging the minimal planar 
patches considering high noise levels inherited in most point cloud data (Laine, 2013). In this study, 
the 26-voxel connectivity is selected, where every voxel has at least one vertex-neighbor i.e., that 
share a face, an edge, or a corner with it. This is considered as the most comprehensive type of 
connectivity and provide a more detailed representation of the spatial relationships between voxels 
compared to simpler connectivity rules, such as the 6-faces or 18-faces rules. However, its 
computational cost is higher due to the larger number of neighbors that need to be considered for 
each combination (Nourian et al., 2016). 

A combination of 26-connected voxels each enclosing a set planar patch (math), such that their 
surface normal vectors (math) are drawn for comparison and merging if they have similar 
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orientation. This approach is similar to (Y. T. Su et al., 2016) except that the proximity is based on 
the connected voxels instead of the ꞓ-distance threshold of the edging points between adjacent 
voxels. Therefore, using the voxel-proximity approach allows the consideration of merging two 
planar patches sourced from the same surface and are slightly disconnected due to occlusion or 
noise that otherwise the ꞓ-distance threshold would disqualify them. Some studies have used graph-
based methods to establish feature relationship among the connected voxels (Poux & Billen, 2019; 
Y. T. Su et al., 2016). In their strategies, each voxel was positioned as a node to create a voxel-to-
voxel proximity relationship, in particular the (Poux & Billen, 2019) managed to embed each voxel 
with all related eigen-based features to extract the geometrical differences while using the log-
Euclidean Riemannian metric to measure similarity between the adjacent voxels. In this study we 
opt to use surface normal vector to compare between the connected set of 26 voxels. 

Figure 3.4 illustrates the connectivity analysis, showing two planar patches from voxels which have 
surface normal vectors oriented in the same directions.  
 

 
Figure 3. 4 Adjoining voxels containing planar patches with similar normal orientations as candidates 
for the merging. 

3.4.2. Merging of Minimal Planar Patches  

Once a set of k connected voxels where k ≤ 26, having the same normal orientations  are identified, 
the next step is to join together their corresponding planar patches as described in (Ntiyakunze & 
Inoue, 2023). 

The merging process is done by finding the best-fit plane for the pair set using the TLS as explained 
in the section 3.3.2. Then, the process is repeated for all connected voxels until all suitable planar 
patches are merged. The residual value (r) is also used to refine the merged patches to ensure they 
are within the allowable noise levels depending on the sensory equipment used to obtain the point 
cloud.  

It is important to note that merging planar patches across voxels can be challenging task, especially 
in the presence of high levels of noise or partial occlusions (Poux & Billen, 2019). Noise can be 
referred to the irregularities, inaccuracies, or inconsistencies in the point cloud data that are caused 
by various factors in the scene being captured and/or unintentionally introduced during the 
processing of the point cloud (Araújo & Oliveira, 2020). Noise caused by the nature of scene are 
related to the occlusions present in the scene. When objects are occluded, the sensors cannot 
capture data in certain areas, resulting in missing or incomplete data. Some conditions present in 
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scene during the scanning process can also add noises to the point cloud such as the ambient 
lighting and weather conditions.  Noise can also arise from the devices and technique used to 
acquire the point cloud. This can relate to the measurement errors (limitations) of the sensors 
associated to the resolution angle, distance of the sensor and the surface being scanned, signal 
reflection resulting to duplicate data. Additionally, noise errors can be introduced when processing 
the point cloud often during registration of scans (Mostegel et al., 2017).  

Merging patches at the voxel level significantly limits dealing with the overwhelming amount of 
noise which increases the accuracy and the overall computation time. Other techniques such as 
regularization or outlier rejection can also be used to address the noise challenges and improve the 
accuracy of the merging process. 

3.5. Classification of merged planar patches 

The newly merged planar patches, Si = {S1, S2, …, Sn} are grouped into classifications based 
on the sizes of the patches. Here, the surface areas of patches, As, are used to define the patch’s size 
instead of the number of points in a patch due to the expected variability of point densities. Patches 
with surface areas (As) equal to or more than 0.15m2 are identified as complete (in our experiment) 
and are clustered together in a new set R consisting of n number of complete patches (i.e. Ri = {R1, 
R2,…,Rn} for i = 1,2,…n). The rest of the patches are labeled incomplete also referred in the study 
as undergrown patches, which are clustered in a new set Ŕ comprising of m number of incomplete 
patches (i.e. Ŕj = {Ŕ1, Ŕ2,…,Ŕm} for j = 1,2,…m }. Points left unassigned after the refinement 
process are also appended to the set Ŕ. The threshold value where As ≥ 0.15m2 is set to represent 
the expected minimum surface of any structural element that can be scanned in the scene.  

However, this approach only merges planar patches based on their proximity defined by their 
connected/abutting voxels as shown in Figure 3.1(b), and in the condition of high levels of noise 
and occlusions which is common in scenes of occupied buildings, other coplanar patches or points 
can be distant (Hyunsoo & Changwan, 2021). This phenomenon is often described as missing 
points, which causes the coplanar surface patches to be scattered and disconnected. The next 
section discusses about how to overcome this challenge by searching for candidate coplanar 
patches or points. 

3.6. Merging of remote disconnected coplanar patches 

Disconnected coplanar patches refers to clusters of surface patches of various sizes that lie on 
the same plane but are separated from one another. One of the critical challenges in working with 
point cloud is to identify the disconnected coplanar patches and substantiate that they belong to the 
same surface of an object. Several algorithms have been developed to tackle this challenge. One of 
such algorithm is RANSAC (Random Sample Consensus) (Fischler & Bolles, 1981). RANSAC is 
an iterative algorithm used to find a subset of inlier observations where in this case are coplanar 
patches and provide a robust parameter estimation despite a pool of outlier points. However, the 
implementation of RANSAC consumes high computation time (Nguyen et al., 2013), and  do not 
perform well with large point clouds and high levels of outliers and noise. In Figure 3.5, illustrates 
the results of RANSAC approach trying to connect various disconnected coplanar patches in a 
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noisy point cloud. It can be observed that dummy planes were established that do not represent any 
actual surface of the building.  

 

 

Figure 3. 5 Geometric fitting on 3D point cloud using RANSAC: (a) Original point cloud (b) Result 
after plane fitting using RANSAC with erroneous planes representing in different RGB colors. 

3.6.1. Missing data in Point Clouds  

The disconnected coplanar patches can be caused by noise or occlusions that are present either 
during the acquisition or preprocessing of point cloud, and this can result to missing data or holes 
on certain areas of surfaces particularly in walls, floors or ceilings (Hyunsoo & Changwan, 2021).  
Several studies have attempted to process point clouds containing missing data in their remodeling 
pipeline. In a study done by (Hyunsoo & Changwan, 2021), the authors encountered with the point 
cloud with incomplete sets of points on some objects that lead to missing portions of planes. They 
developed a method involving building a network of voxelized planar patches and then enlarging 
the voxel sizes within defined limitations to identify the overlapping surface patches. The process 
was repeated until no more overlaps were found and the network was updated recursively. The 
method managed to connect various discontinuities between the proximity elements.  

(Klasing et al., 2008) Applied a k-d tree structure to search for nearby clusters of points 
representing the same flat surface with the help of radically bounded nearest neighbor (RBNN) 
strategy. The approach managed to reduce for searching the nearby clusters and its average 

computational complexity was still at 0(
௡

௄(௔௩௘௥௔௚௘)
log(𝑛)). In a study done in (Nurunnabi et al., 

2012), a predetermined value of mean square error (MSE) was applied to estimate the lowest 
difference of the squared error (DMSE) between the pair sets of undergrown disconnected patches 
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that shares the similar features and in close distance. In the experiments, a fixed value of DMSE = 
1.0e-04 was used as a criterion to merge the candidate disconnected pairs of patches. 

Noises due to devices are usually estimated with reference to instrument specifications, while 
scene-related noises are difficult to measure due to the heterogeneousness of clutters. Noises due 
to non-permanent and permanent objects present in indoor scenes can obscure the segmentation 
process of structural elements especially when they are in the vicinity as demonstrated in Figure 
3.6.

 

Figure 3. 6 Presence of occlusions along the walls. 

Nonetheless, the mentioned studies have made use of patches or regions of coplanar points that 
are in proximity, which will be difficult to deliver when working with widely distant disconnected 
patches. Point clouds acquired in highly occluded sites bears significant amount of missing data 
points that requires a robust method to overcome them. Figure 3.7 shows the amount of missing 
data or holes created due to occlusion in point cloud.  

 

Figure 3. 7 Gaps on planar surfaces due to missing data caused by extensive occlusions. 
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To address the issue of large missing data, we developed a novel approach consisting of linearly 
interpolating the undergrown patches and unassigned points using the patch-pair correspondence 
referred in this study as the principal patches, ∑. The principal patches are empirically drawn from 
the set R. The use of pairs of principal patches helps to introduce the concepts of surface topology 
of structural elements that occurs in the pairs of opposing planar faces. 

Afterward, the planes fitted onto the selected pairs of principal patches are orderly and 
systematically spanned to collect coplanar patches and points using the statistical inferences drawn 
from the known samples i.e., principal patches. We further scrutinize the candidate coplanar 
patches by checking for the presence of outliers and later validate their coplanarity. 

3.6.2. Criteria for selecting pairs of principal planar patches  

In this subsection, we deal with patches from the set Rn {Ri = R1, R2,…, Rn} to determine the 
principal patches. At this point, there is a considerable number of undesirable planar patches due 
to noises and clutters, hence we initialize the filtration process by uncovering the sets of parallel-
pairs of principal patches. The essence of pairing the patches is to infer the surface topology of 
generic structural elements such as floor slabs, columns, walls and beams, which are bounded by 
pairs of opposing surfaces in a standard offset distance corresponding to the thicknesses or depths. 

To determine the principal patches (∑), we first extract the following attributes from patch set, 
Rn: normal vectors (𝑛ሬ⃗ i), patch’s surface area (As), and patch’s centroid, µ. The centroid (µ) of a 
particular patch, Ri containing k points set Ω, (Ω = {P1, P2, P3,…,Pk}) can be defined as in Equation 
(3.1).  

µ = ෍(𝑥ᵢ

௞

௜ୀଵ

, 𝑦ᵢ, 𝑧ᵢ)                                                                            (3.1) 

These attributes helps to uncover the surface and spatial properties of patches in order to find 
the similarities and proximity between patches. Four criteria are developed to determine the 
principal pairs of patches, ∑i & ∑i+1 (for ∑  Rn). Selection of the pairs of principal patches are based 
on the concept of parallel patches that are in vicinity, and in addition the proposed criteria enhance 
the structural-based knowledge into the selection process. 

(a) Criteria 1 - Orthogonal distance between planar patches  

Using a predetermined orthogonal distance (t) between the two pairs of candidate patches (Ri & 

Ri+1) reduces the computation resources for searching the correspondence pair sets. The orthogonal 
distance is estimated by finding any point, Pi (i.e. Pi  = {xi, yi, zi}) on the patch’s plane (ℿi) and 
compute the shortest distance between this point (Pi) and other patch’s plane (ℿi+1) along the 
direction of the normal vectors. Conditions for normal vectors and their absolute orientations are 
discussed in detail in the criteria 2.  

The threshold distance (t) between the candidate’s pair patches (Ri & Ri+1) is used to describe the 
maximal (tolerance) of the orthogonal offset distance between the two parallel patches, that 
stipulates the standard thickness of the common structural elements in buildings. The value of t, 
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where t ≤ 50 cm between the two neighboring parallel planar patches, is used to assign the candidate 
pairs of principal patches (∑i & ∑i+1).  

(b) Criteria 2 – Angular deviation between the planar patches  

Applying the angular deviation, θ between the two candidate planar patches is used to refine 
the selection of principal patches in their parallelism. The angular value (θ) between the pair 
patches (Ri & Ri+1) which is defined by the dot product of their respective normal vectors computed 
as in Equation (3.2).  

                                                    arccos (𝑛ሬ⃗ i . 𝑛ሬ⃗ i+1) ≤ θ                                                               (3.2) 

where 𝑛ሬ⃗ i, 𝑛ሬ⃗ i+1 are the estimated normal vectors of Ri, Ri+1 planar patches respectively. We 
consider the maximum angular deviation (θ) of not more than 5°. 

(c) Criteria 3 – Size difference between the pairs of planar patches  

This part deals with the comparison of patch coverage by their surface areas. The two parallel 
patches (Ri & Ri+1) with surface areas, As(i) and As(i+1), respectively, are compared against one 
another to enhance the selection of true patches representing structural elements as opposed to 
occluding objects in the vicinity. 

To calculate the surface area of each patch, we use the points contained in the patch (R) instead 
of its fitted plane (ℿ) to obtain accurate estimates. Hence, for a given patch, Ri containing k number 
of points, {Pi = P1, P2,...,Pk}, a polygon is created to connect all points using a convex hull based 
on a Quickhull algorithm (Mei et al., 2012). Convex hull polygon represents the smallest convex 
(set of triangles) that encloses all the points of the planar patch. Now, after obtaining the polygon, 
its area is calculated using a shoelace formula (Y. Lee & Lim, 2017), The shoelace method works 
by computing the aggregate sum of the signed areas of all the triangles that make up the polygon 
as provided in Equation (3.3). 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 =
1

2
│ ෍ 𝑋ᵢ𝑌ᵢାₗ + 𝑋ₙ

௡ିଵ

௜ୀଵ

𝑌ₗ − ෍ 𝑋ᵢ + 𝑌ᵢ − 𝑋ₗ𝑌ₙ
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│                       (3.3) 

Where the X and Y are the corresponding coordinates of the triangle’s vertices. 

Once the area of each patch is determined, we set a condition regarding a difference in their 
surface areas (dA) two adjacent and parallel patches using Equation (3), such that the ratio dA/As(i) 
or dA/As(i + 1) (whichever is larger between As(i) and As(i + 1)) is not more than 20%. We opted to use 
the surface areas instead of the number of points in a patch, which is influenced by point density 
that varies depending on the distance between the sensor and an object (Rabbani et al., 2006). 

                                                    dA = |As(i) - As(i + 1)|                                                                  (3.4) 

(d) Criteria 4 – Overlap between the pairs of planar patches 

The above criteria deal with the adjacency and matching sizes between two parallel planar 
patches, however, due to the expected high-level noises, the two patches may still represent 
surfaces from two different objects. To solve this, we introduce a patch-alignment criterion 
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whereby the two parallel patches must coherently overlap by more than 50% of their surface areas 
(As) as displayed in Figure 3.8.  

 

Figure 3. 8 Presence of occlusions along the walls. 

The overall procedures in section 3.6.2.a–d return a set of n number of parallel patches referred 
as the principal patches, ∑, for ∑n = {∑1, ∑2,…, ∑n} and their associated fitted-planes (ℿn). 

3.7. Spanning of Principal Planes 

Given a particular principal patch (∑i), we span its corresponding best-fit plane (ℿi) to locate 
the disconnected and remote coplanar patches. Span of the plane (ℿi) referred as Span(ℿi) (such 
that Span(ℿi)  ℜ3) is initialized by finding set of linear combination of vectors on the plane, ℿi. 
Let 𝑢ሬ⃗ i be a set of spanning vectors of the plane, ℿi, such that 𝑢ሬ⃗ i = {𝑢ሬ⃗ 1, 𝑢ሬ⃗ 2,…, 𝑢ሬ⃗ n | 𝑢ሬ⃗ i in ℜ3}. Each 
spanning vector corresponds to a particular point on the plane i.e. Pi = {Xi, Yi, Zi} as illustrated on 
the Figure 3.9. The span of 𝑢ሬ⃗ 1, 𝑢ሬ⃗ 2,…, 𝑢ሬ⃗ n is the collection of all linear combinations of 𝑢ሬ⃗ 1, 𝑢ሬ⃗ 2,…, 𝑢ሬ⃗ n 
denoted as Span(𝑢ሬ⃗ 1, 𝑢ሬ⃗ 2,…, 𝑢ሬ⃗ n) which is commutative as described  in Equation (3.5) The linear 
combination (W) of these vectors with their corresponding scalar values (coefficients), {Ci = C1, 

C2,…, Cn | Ci is a real number} is shown in Equation (3.6). 

    Span(𝑢ሬ⃗ 1, 𝑢ሬ⃗ 2) = Span(𝑢ሬ⃗ 2, 𝑢ሬ⃗ 3) = Span(𝑢ሬ⃗ 1, 𝑢ሬ⃗ 3) for each Span(𝑢ሬ⃗ i) = Span൝

𝑥ᵢ
𝑦ᵢ
𝑧ᵢ

ൡ                             (3.5)  

                          W = C1𝑢ሬ⃗ 1 + C2𝑢ሬ⃗ 2 + ... + Cn𝑢ሬ⃗ n                                                                         (3.6) 

Spanning of a plane is instructed to occur in various directions in a vector spaces, V (for V 
 ℜ3) and the extent of the span is modified by adjusting the scalars values (Ci). The spanning is 
terminated at the local maxima and local minima in each direction of -x, -y, -z of the input point 
cloud (i.e. min-x, max-x, min-y, max-y, min-z and max-z). Placing the spanning constraints helps to 
avoid the unnecessary expense of computing the infinity planes (ℿα), which reduces the search for 
approximate coplanar patches and/or points. 
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Figure 3. 9 Spanning vectors on a plane. 

3.7.1. Locating coplanar points onto the spanned planes 

This section deals with assigning points and undergrown patches from the set Ŕ onto the 
spanned principal planes (Span(ℿ)) in order to determine the remaining coplanar patches or points. 
First, we check for the points contained in the set Ŕ that lie on any of the spanned plan (ℿi). This 
can be done by substituting the coordinates of the point into the equation of the plane and see if 
satisfies the equation of plane. For a point, Pi ={xi, yi, zi) | Pi  set Ŕ  ℜ3, should satisfy the general 
equation of a particular spanned plane, Ax + By + Cz = D such that Axi + Byi + Czi = D as well. 

However, it is often uncommon for points to lie perfectly on the fitted plane due to the expected 
regression errors, and the other hand, not all points found on the vector space (V) of the spanned 
plane (Span(ℿ)) or closely to it, are deemed to represent the similar object surface. Therefore, 
several strategies are proposed to locate true coplanar. 

The process is initiated by calculating the closest points from the spanned plane and check if 
they are actually coplanar with reference to the spanned principal plane. A distance threshold (δdist) 
is used as a measure of points, Pi contained in the set Ŕ to the spanned plane (i.e., Pi = {xi, yi, zi) | Pi 
 set Ŕ  ℜ3. This is a preliminary screening step to locate all the closest candidate points fitting 
the distance criteria. Points falling within the allowable distance threshold (f) are provisionally 
assigned to the closest spanned plane (Span(ℿi)). Afterward, the assigned points are screened for 
outliers and measure their coplanarity based on the neighborhood (N) using PCA.  

3.7.2. Points-to-Plane-Assignment 

This part describes the initial step of assigning the nearby points to the spanned plane, and in 
this case the closest distance to the plane is computed which is the orthogonal distance. Hence, 
points in the set Ŕ are drawn and measured their orthogonal distances (f) to the spanned planes such 
that. f: Pi → Span(ℿi) | Pi  set Ŕ  ℜ3, where f denotes the orthogonal distance of a particular 
point Pi to a spanned plane, Span(ℿi), within a pre-signed allowable distance (δdist). The distance 
(f) of an arbitrary point, Pi, to a plane represented in a general form: Ax + By + Cz + D = 0 where 

(A, B, C) denotes the unit normal vector, 𝑁ሬሬ⃗ , is computed as Equation (3.7); 

𝑓 =  
|୅୶ଵ ା୆୷ଵା େ୸ଵ|

ඥ୅మା୆మାେ²
      (3.7) 
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The threshold value, δdist, is used to set a tolerance distance of a candidate point to the spanned 
plane, which is partially related to the concept of the maximum distance of sample-to-plane (MDP) 
as applied in (Araújo & Oliveira, 2020; H. Chen et al., 2022). The value of δdist, determined by 
inferring the sample distribution from the principal patches (∑i) using a median estimator. The 
median estimator is used in the process instead of the mean value (µ) because the median value is 
more useful when dealing with skewed data and outliers due to its robustness and insensitive to 
extreme values, providing a better representation of the central tendency of the dataset (Rousseeuw 
& Croux, 1993).  

Given a set Q containing k points (pi = p1, p2,…, pk) from a particular principal patch (∑i) with 
its corresponding best-fit plane (ℿi), for each point in the set Q, we compute the point-to-plane 
distances (f), forming a new set of measurements, Đ = {đ1, đ2, …, đq} provided using Equation 
(3.7). To incorporate the noise errors, we adopt the use of median absolute deviation (MAD) to 
estimate the deviation of points around the plane (planar patch) as used in (Araújo & Oliveira, 
2020).  

From the set Đ, the MAD is computed using Equation (3.8) and used it to calculate the value 
of δdist. δdist is designed to set the maximum limit over the median value using the standard deviation 
(σ), which is equivalent to MAD in our case as shown in Equation (3.9). 

MAD = Ω × median (|pi − median(Đ)|) (3.8)

Where pi represents a point in the set Q and Ω = 1.4826, representing a constant value in the 
normal distribution for the consistent coherence between the MAD and standard deviation values 
(Limberger & Oliveira, 2015). 

δdist. = [Median(Đ) + ƿ MAD(Đ)] (3.9)

Using a probability distribution, we use the second quantile (2σ), ƿ = 2, as shown in Figure 
3.10, which results to a confidence interval of 95.45% to select true samples (inliers) around the 
median value. 
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Figure 3. 10 Probability distribution curve 

Points that lie within the δdist are assigned to the corresponding plane (Span(ℿi)) as the 
provisional coplanar points. In addition, the points falling between two spanned planes and are 
within the allowable distance threshold (δdist) are assigned to the nearest plane judged by the 
smallest orthogonal distance. The output of this process is the number of sparse regions of points 
over the course of spanned planes are shown in Figure 3.11. This is due to the inherited amount of 
noise and multi-dense properties in those regions that created the set Ŕ in the first place. The next 
step involves the screening for outliers in regions based on the clustering method. 

 

Figure 3. 11 Disconnected coplanar regions as the result of occlusion present in the scene. 

3.7.3. Testing for outliers 

In the raw point cloud dataset, the measurement of noise errors is commonly used to detect 
outliers by setting the allowable offsets of samples-to-plane. However, it is difficult to measure the 
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noise levels for raw 3D point clouds, as it is biased toward the sensors used and the noises may 
contaminate all three components (xyz) of the coordinate system (Huang & Menq, 2001). Our 
approach is independent of the sensor’s noise levels; instead, we apply the knowledge acquired 
from the dataset. We use the statistical distribution and neighborhood structure of the samples to 
eliminate the outliers. Intuitively, the provisionally assigned coplanar points detected in Section 
3.5.3a form K number of sparse points across the spanned planes. For this reason, we used the 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) approach to detect the 
outliers.  

The DBSCAN algorithm is mainly used for clustering analysis, but it can also be used to detect 
outliers for n-dimensional datasets. The approach works by partitioning the provisional point sets 
assigned to the spanned planes into distinct groups of points based on their density defined by a 
certain neighborhood and then identifying any points that do not belong to any of these groups as 
outliers.  

In DBSCAN, a point is considered a core point (Č) if there are at least a certain number of 
points, MinPts, neighboring points within a given radius, eps. A neighboring point is within the 
radius if its distance from the core point is less than or equal to eps. Points that are not core points 
but still within the radius of a core point (eps) are considered to be border points. Finally, any points 
that are neither core points nor border points are considered as outliers (X. Zhang et al., 2022). 

To detect outliers, the algorithm first identifies the core points (Č) and border points in the from 
the input point set. Here, all the provisionally assigned points from each spanned plane, Span(ℿi) 
are drawn separately, and used as input in the algorithm. The next step is to form clusters by 
connecting the core points and their associated border points. Any points that are not assigned to 
any cluster are classified as outliers and unassigned/removed from the spanned plane. 

The advantage of using DBSCAN for outlier detection is that it is not affected by the shape of 
the dataset, can handle noise and it performs well even when the points are unordered which is the 
case when dealing with the point cloud datasets (Sawant, 2014). Also, it performs well in large 
datasets as the case of this study. However, it requires parameter tuning (i.e. MinPts and eps ) 
which can be challenging in practice especially working with diverse point cloud. For optimum 
selection of the parameters, the Varied DBSCAN (VDBSCAN) approach (Liu et al., 2007) is 
employed to explicitly select parameters which are proportional to the density variations of the 
dataset.  

In the VDBSCAN, each point is assigned a specific density threshold that determines the 
MinPts required for the point to be considered a core point (Č). This threshold is calculated based 
on the distance to the k-nearest neighbor or each point, where k is a user-defined parameter and a 
guide towards determining the eps. Specifically, the threshold is set as the average distance between 
a point and its k-nearest neighbors. By assigning different density thresholds to each point, 
VDBSCAN can identify clusters with varying densities. Point in dense regions will have a higher 
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density threshold and require more k-neighbors to be considered a core point (Č), while points in 
sparse regions will have a relatively lower density threshold and require fewer neighbors to be 
considered a core point. 

The VDBSCAN algorithm proceeds in a similar way to the traditional DBSCAN (Ester et al., 
1996), starting with a random non-visited point and expanding the neighborhood cluster around it. 
However, in the VDBSCAN the density threshold of each point is used to determine its neighbors, 
instead of a fixed parameter. The algorithm continues until all points have been visited and assigned 
to a cluster. 

Therefore, the unique values of eps are obtained at different densities and the corresponding 
minimum numbers of neighboring points (MinPts) are subsequently determined as shown in 
Equation (3.10).  

𝑀𝑖𝑛𝑃𝑡𝑠ᵢ =
ଵ

௡
∑ 𝑃𝑖௡

௜ୀଵ    (3.10)

where Pi (i = 1, 2,…, n) is the number of points in the eps neighborhood for point i.  

Points that are left un-clustered are identified as outliers and eliminated from the spanned plane. 
This process outputs a number of k clusters, Ci = {C1, C2,…, Ck}, as inliers to spanned planes, and  
the next step involves testing if the cluster and the points are coplanar. 

3.7.4. Validation for Coplanarity 

For each cluster detected in the previous process (Ci), the check for their coplanarity is 
performed using PCA by measuring their principal directions with respect to the directions of their 
assigned spanned planes (i.e., Span(ℿi)). Similar to the approach in Section 3.3, the covariance 
matrix, C, of neighboring samples, N, in the cluster (Ci) decomposes and returns three eigenvectors 
𝑣⃗0, 𝑣⃗1, 𝑣⃗2, and their corresponding eigenvalues λ2 ≥ λ1 ≥ λ0. The plane is fitted along the direction 
of the vectors representing the highest variation, i.e., 𝑣⃗1, 𝑣⃗2. Eigenvector, 𝑣⃗0 defines normal vectors 
𝑛ሬ⃗  of clusters. 

Then, the orientations of each of the cluster’s normal vector,𝑛ሬ⃗ ᵢ are matched with the principal 

plane’s normal vector, 𝑁ሬሬ⃗ . The cluster is identified as coplanar if the angle between the two normal 

vectors (𝑛ሬ⃗  and 𝑁ሬሬ⃗ ) is within a maximal normal deviation (MND) of 2° (in our experiment) as 
provided in equation (3.11). Otherwise, the cluster and all its elements (i.e., points) are rejected for 
further processing. The process is iterated for all the assigned clusters relative to their spanned 
planes. 

                                                        arccos (𝑛ሬ⃗ i . 𝑁ሬሬ⃗ i) ≤ 2°                                                          (3.11) 
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We provide a smaller MND threshold for the clusters i.e. 2° compared to the MND of 5° that 
is adopted earlier in selecting the principal patches, this is because larger patches (i.e. principal 
patches, ) have admit relatively more normal deviations (Araújo & Oliveira, 2020). 

3.8. Refining the pairs of principal patches 

Once the coplanar points are distinctly assigned to their corresponding spanned principal 
planes, Span(ℿ), the next process involves refining and arranging the planes including their 
associated patches in order to make sure that the pairs of principle planes are properly aligned and 
matched in terms of coverage of points.  

There are several methods used to refine planar patches. One common approach is to use 
iterative closest point (ICP) algorithms (Besl & McKay, 1992), which is a classical approach that 
iteratively refine the relative position and orientation of the patches based on the correspondence 
between their points. Another approach is to used feature-based methods, which rely on extracting 
and matching distinctive features in the patches such as corner, edges, or orientations (Förstner, 
n.d.; Kaiser et al., 2020; Verginis, 2013).  

In our approach each pair of the spanned principal planes, i.e., Span(ℿi) & Span(ℿi + 1), is 
traversed to determine the number of points and their associated patches (clusters). Then, we 
compared the points coverage between the planes in each pair set using the criteria applied in 
Section 3.5.1b. The qualified pair sets are then subjected to a plane classification procedure as 
described in Section 4.1. 
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4.1. Introduction 

This chapter focusses in segmenting the extracted planar patches in their pairwise groupings. 
The segmentation process is initialized by clustering the patch pairs based on their spatial locations 
and geometric properties such as size, orientations, group the patches belong to the same structural 
element. The following step involves analyzing the clusters to identify the structural elements they 
present, such as floors, beams, columns, or walls, using the knowledge about the structural forms 
specifically in their spatial dependencies, and the geometry rules in classification of points. The 
segmentation process also goes in line with validating the identified points matching the structural 
elements with their geometric and topological consistency with the overall building model, for 
instance checking the consistency of height differences between floors with the heights of vertical 
elements such as walls or columns or location of beams and ceilings along the z-values.  

4.2. Plane arrangements 

Once the planar patches are implicitly validated and grouped in pairwise planes (ℿ), they are 
now arranged with respect to the standard orientations of the generic reinforced concrete (RC) 
structural elements in consideration: horizontal elements (floors, suspended slabs, and beams) and 
vertical elements (walls and columns). Horizontal elements refer to the elements that provide lateral 
stability to the building and resist the forces caused by wind or seismic activity, such as floor slabs, 
roofs, floor beams, cantilever beams, foundation beams, foundation footings and bracing systems. 
The vertical structural elements refer to the elements that provide vertical support to the building 
and transfer loads from the upper levels (roofs) to the foundation, and they include columns and 
walls. This study deals only with the floors, suspended slabs, and beams as the horizontal members, 
and for the vertical members are columns and walls. 

The arrangement of the plane pairs is setup with accordance to the orientation of the planes 
referring to their normal directions (𝑛ሬ⃗ ), which is categorized in the following manner: 

 Horizontal Planes, ℿh (including the nearly horizontal planes): comprises pairs of 
planes with their normal vectors, 𝑛ሬ⃗ h, oriented at an angle, Ɵ < 45° to the z-axis; 

 Vertical Planes, ℿv (including nearly vertical planes): comprises pairs of planes with 
normal vectors, 𝑛ሬ⃗ v, oriented at an angle, Ɵ ≥ 45° to the z-axis. 

The set of two planes in a pair-set is denoted as i and j, such that ℿh(i,j) refers to the horizontal 
plane pairs and ℿv(i,j) refers to the vertical plane pairs. After all pairs of planes are arranged in their 
respective orientations i.e. horizontal or vertical, we start to classify the planes by matching their 
local feature properties with the physical (global) attributes of structural elements. From each 
plane-pairs, the following local geometric properties are extracted and used in the segmentation 
process: the normal direction (𝑛ሬ⃗ ᵢ), the centroid (ℳᵢ), the surface area of planes (Ap = l × w, based 
on the extreme edges), and the distance from the origin (). Whereas the centroid, ℳᵢ of any 
particular plane (ℿᵢ) represents the center point of a plane, i.e. ℳᵢ={xᵢ, yᵢ, zᵢ}. Whereas the global 
properties (attributes) of the structural elements are defined in accordance with the general 



53 

 

standards and the domain knowledge about the structural systems of buildings with the RC 
framework. 

4.3. Segmentation of Floor Slabs 

As defined in (Ram, 2014), reinforced concrete (RC) slabs are structural member panels, 
horizontal or nearly so, bounded between and supported by beams, columns, walls, or the ground. 
In a typical multi-story building, floor slabs are located between each level of the building forming 
a series of platforms or levels. The floor slabs of the topmost level of the building is called the roof 
slab, while the floor slab of the bottommost level in level to the ground surface is referred in this 
study as a ground slab. 

Since this study deals with the multi-storey building, therefore the segmentation process 
involves separating different levels of floor slabs that involves the floor slab and the suspended 
slabs. The latter are the slabs which are not directly supported by the ground but is instead 
suspended from the structural elements of the building, such as beams and columns. This creates a 
space between to form storey. This study uses a bottom-up approach in the segmentation process, 
whereby it starts with identifying the planar patches representing the surfaces of the ceilings and 
floors, which are the composing surfaces of the suspended slabs, followed by segmenting the 
suspended slabs. From a typical suspended floor slab, the ceiling and floor surfaces are 
distinguished by their positions as illustrated in the Figure 4.1(a). The ceiling surface is the 
underside of the floor slab, which is exposed during the scanning from the room below and 
depending on the design it can be uncovered or covered with another suspended layer usually 
consisting of plasterboard or ceiling tiles. For this study, we deal with the uncovered ceilings. The 
floor surface, on the other hand, is the upper surface of the floor slab, which is visible from the 
room above.  

The available horizontal pairs of planes ℿh(i,j) are used in this case to detect the ceilings and 
floors. For this study, we express the slabs according to their floor levels starting from the first 
floor (ground level) and the pairs of planes are denoted in the following manner: 

 ℿh(0,j), for planes representing floors (upper skin of the slab), where j = {1, 2,…, n} 
corresponding to the floor levels; 

 ℿh(i,0), for planes representing ceilings (bottom skin of the slab), where i = {1, 2,…, n} 
at a corresponding floor level. 

To detect the floor slabs, the horizontal planes are first ranked according to their vertical 
positions with reference to the z-component (zᵢ) of their centroid points, ℳᵢ. This process creates 
a z-order histogram that comprises of planes describing their elevation level with the lowest plane 
assigned to the first floor, (ℿh(0,1)) as illustrated in Figure 10a. The subsequent floors are determined 
in ascending order as shown in Figure 4.10(b). 



54 

 

The next step is to detect the second-floor slab, which involves identifying the associated planes 
representing the ceiling (ℿh(1,0)), and the corresponding floor surface (ℿh(0,2)). We prescribe criteria 
to determine the candidate planes for the ceiling and floor. We first set the orthogonal distance, h, 
between the first-floor plane (ℿh(0,1)), and the succeeding parallel (or nearly parallel) plane in the 
z-order. The distance, h, stipulates the allowable minimum storey height, where h ≥ 2.1 m for a 
standard residential building, and the succeeding parallel plane is labeled as the candidate ceiling 
plane (ℿh(1,0)). 

If the candidate plane (ℿh(1,0)) conforms to the h-threshold, we further analyze the plane in 
combination with its succeeding plane defined as the candidate plane for the floor (Πh(0,2)). The two 
planes (ℿh(1,0) & ℿh(0,2)) are set to be within the predetermined distance (ts) stipulating the slab 
thickness (particularly for the two-way slabs), where ts < 50 cm. 

In conjunction with the ts-threshold, the difference in surface areas (Ap) between the two planes, 
ℿh(2,0) & ℿh(0,2) is set to be less than 15% (in our experiment). The area difference accounts for 
dissimilarity in surface exposure between the ceilings and floors, whereby floor beams conceal the 
ceiling surfaces as opposed to walls on the floors. Once all the conditions are met, the candidate 
planes ℿh(1,0) and ℿh(0,2) are eventually designated for the ceiling and floor, respectively, for the 
second-floor slab and the offset distance hi is signed as the first story. 

The operation continues sequentially to detect the remaining floor slabs and their corresponding 
ceilings and floors. This approach helps to automatically obtain the respective story heights, hi, that 
we can use to segment the vertical components enclosed between the floors and ceilings, where i 
= {1, 2,…, n} for each i indicates a particular story level. 

 

(a) 
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Figure 4. 1 Vertical alignment of horizontal planes defining the respective floors and ceilings: (a) 
Planes representing the 1st and 2nd-floor slabs; (b) Horizontal patches including the detected occluding 
objects positioned along the z-axis. 

4.4. Segmentation of Floor Beams 

Concrete beams are horizontal or sloped composite structural members that transfer transverse 
loads from slabs to columns and/or load-bearing walls below (Nilson et al., 2016). The orientation 
and form of a beam will depend on the span of the opening it is supporting, the load it needs to 
bear, and the available headroom, that together play a role in designing the form or profile of the 
section and its overall dimensions (i.e. width and depth of the beam). The common beams forms 
include rectangular, circular or I-shaped. This study deals with the rectangular floor RC beams 
composed of three exposed planar faces, which are: the soffit of beams, which is the horizontal 
underside or ceiling of the beam, and the two parallel vertical sides as shown in Figure 4.2. 

Segmentation of beams from the 3D point cloud is a complex task that requires a careful 
processing of the data. The method used in this study develops an approach for detecting surface 
patches representing floor beams amidst of high levels of noise and artifacts. Two main steps are 
proposed to segment the floors beams: the soffits of beams, and the vertical sides of beams. 

 First, the horizontal patches representing the soffits of beams are detected using a ray-casting 
technique where the beams of virtual rays are casted from the top with reference to the floor slab 
that the beam in consideration is attached to. The detected planes for the slab’s ceilings (ℿh(i,0)) are 
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used in this case to locate the candidate surface patches for the beam’s soffits, where the rays casted 
from the virtual source located just above the ceiling’s plane. Then, the rays are traced across their 
path across the ceiling’s plane as the immediate first layer, and the recording is done whenever the 
rays hit the surface patches sitting below the ceiling’s plane. For each of the recorded hit, the target 
surface patch is further analyses if it corresponds to the beam’s soffits. Then, the detected surface 
patches for the soffits are used to locate the corresponding vertical sides of beams using the grouped 
pairs of vertical planes (ℿv(i,j)). The next subsection discusses in detail about the segmentation 
process. 

 

Figure 4. 2 Cross-section of the concrete beam under the floor slab. 

4.4.1. Assortment of the candidate planar patches for floor beams 

This part involves of assortment and preliminary screening of all points that approximately 
match the local position of floor beams. All the points and planar patches that still remains in the 
sets Ŕ and R, are collected. Where at this stage, the sets Ŕ and R (refer to section 3.3.3) are left with 
the points (and patches) that are not assigned to any of the paired planes (i.e. ℿh and ℿv). All the 
collected points are grouped in one cluster Ꞷ, such that Ꞷ = {p1, p2,…,pn} where p1, p2,…,pn are 
the points in the cluster Ꞷ. 

The points from the cluster Ꞷ, are further classified into groups of k number of smaller clusters 
with respect to which floor level they belong, such that Ꞷ,  Ꞷi = {Ꞷ1, Ꞷ2,…, Ꞷk} where Ꞷi 
comprises of sub-clusters obtained depending on the number of storeys (floor levels) in the 
building. This is done by determining the z-value of each point in the cluster Ꞷ, and find the exact 
floor level they belong with respect to the segmented floor slabs (floor and ceiling surfaces). 
Furthermore, the points contained in each of the sub-clusters (Ꞷi), are filtered to be remained with 
points that are only 1.00 metres below its corresponding ceiling. Again, the z-values of each point 
in the sub-clusters Ꞷi are used to compare with the vertical position of the respective planes for 
ceilings (ℿh(i,0)).  Such that, for a given ceiling’s plane with a general equation, aX + bY + c(Z) + 
d = 0, and a point, pi = {xi, yi, zi} drawn from a sub-cluster Ꞷi, where Z - zi ≤ 1.0 metres. A restraint 
of 1.00metres below the ceiling level is placed to reduce the searching process into only the points 
in proximity to the floor slab where the beam is expected to exist.  
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4.4.2. Ray casting to segment soffits of floor beams 

After the preliminary screening of the point cloud to obtain the candidate points related to the 
soffits of beams presented in their particular sub-clusters (Ꞷi) arranged in accordance to the floor 
levels, the next step is to determine the true points representing the floor beams.  

The points contained from each of the sub-cluster (Ꞷi) are taken and the planes Π, are fitted to 
these points in their respective sub-clusters in a predetermined constraint. For each plane (Π) to be 

fitted, its normal vector (𝑛ሬ⃗ ) should not deviate by more than 10° from the normal vector (𝑁ሬሬ⃗ ) of a 

ceiling’s plane that is on the same floor level as the sub-cluster, i.e. arccos(𝑛ሬ⃗  . 𝑁ሬሬ⃗ ) ≤ 10°. A residual 
(r) as shown in the Figure 3.3 is designed to respond to the estimated noise errors of the scanner.  
This process aims to tentatively assign each point contained in the sub-clusters to a particular 
provisional plane in order to allow the proceeding operations that involves rasterizing the point 
cloud and ray casting. 

In order to apply ray casting, the input dataset is rasterized to create a visibility grid-cells during 
ray casting. Ray casting is a technique used in computer vision and 3D graphics to create 
viewpoints of objects present in the scene. For point clouds, ray casting can be used to determine 
which point are visible from a particular viewpoint. In this case, the ray casting approach is adopted 
to detect 3D points related to floor beams using the ceiling as the viewpoint. The input dataset in 
the ray casting process is comprised of the segmented ceiling planes (ℿh(i,0)) and the sub-clusters 
(Ꞷi) including its provisional fitted planes, however the operation is conducted separately for each 
sub-cluster and the corresponding ceiling plane herein referred as a batch.  

Hence given a batch composing of a particular sub-cluster, Ꞷi containing n number of fitted-
planes ∑ Π௡

௜ୀ௜ , with its constituents points, and the associated ceiling plane, ℿh(i,0), rasterization is 
done inspired by an approach used in (Ochmann et al., 2019; Xiong et al., 2013) to create single-
layered voxelization referred as occupancy bitmaps. In order to process computations of ray casting 
efficiently, the octree-based voxels are used for storing the bitmaps. A resolution of 10 x 10cm 
bitmaps is selected in the study which provides a desired level of details and efficient computational 
resources. This operation returns m number of occupancy bitmaps, Si = {S1, S2,…, Sm}, where each 
bitmap is given by its center cj, referring to the local coordinate system.  

The bitmaps are labeled as either occupied, S¢, if it has at least one point, or empty, Se if it has 
no point inside. Next, a series of m rays, ri, for i = {1, 2,…, m}, originating from the camera’s 
position pr, which is positioned above the ceiling’s plane, are cast onto the occupancy bitmaps and 
the intersection of rays are computed thereafter. Intersections are traced from the position of the 
camera as the starting point pr and direction vector of rays are determined, ur. The direction vector 
is typically a normalized vector that points in the direction of the ray, in our case is aimed down 
the negative z-axis. If the ray does not hit any bitmap on the plane, we proceed to observe if any 
intersection (hit) is made on the voxels below the ceiling’s plane in the direction of the ray vector. 
Prior to determining the exact position where the bitmap and the ray intersect, we first need to 
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calculate the distance of the camera’s position and the intersection point po, on the plane with 
bitmap. Figure 4.3 illustrates the vector direction ur, of the ray, from the camera’s origin point pr, 
to the point po, on the plane. 

 

Figure 4. 3 Direction vector for ray onto the plane 

The plane where the intersection point po is located can be defined by the point po and a unit 
surface normal vector n (i.e. a unit vector perpendicular to the plane’s) i.e. the plane: (po, n). 
Together these give the position of the plane in the space and its orientation. In order to find out 
where the ray (pr, ur) intersect the plane, the distance of the point x is computed from the plane (po, 
n). To begin with, the vector from po to the point x is constructed, i.e., x - po as shown in Figure 
4.4.  

 

Figure 4. 4 Distance between the intersection point and ray source 

The projection of the vector onto n gives the perpendicular distance (d) of x from the plane. 
The distance, d is calculated in Equation (4.1). In the setup, if d > 0, then x is above the plane by 
the distance d, if d < 0 then x is below the plane by the distance |d|, and if d = 0 then x is exactly 
on the plane (po, n). 

                                                 d = n . (x – po)                                                           (4.1) 

Given a standard parametric equation of a ray (L. Linsen et al., 2007), any distance along the 
ray measured by parameter t whereby all the points y lying on the ray has to satisfy the Equation 
(4.2). Now, the parametric equation, can now be combined with the distance (d) to find the ray 
plane intersection calculated in Equation (17).  

y(t) = pr + tur, t ≥ 0                                                      (4.2) 

        0 = n . [(pr + tur) - po]                                                  (4.3)  

t(n . ur) = -n . (pr - po)                                                  (4.4) 

Equation (4.4) gives the value of t for which the ray intersects the plane. And the value of all 
intersection points y, are computed by inserting the value of t in the Equation (4.2). 
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The process is repeated for all intersections made happening below the ceilings plane (ℿh(i,0)) 
and identify all the respective bitmaps where the intersections occurred. The bitmaps are used to 

extract the points contained in them, and from each bitmap (Si), N number of points, p (i.e.  ∑ 𝑝ᵢே
௜ୀଵ ), 

are drawn in their respective provisional planes (Π). For the neighborhood of N points, the best-fit 
planes are refitted, this time the TLS approach (Gene & Charles, 1980) is applied to build more 
accurate surface planes. On implementing the TLS, since the expected width of the floor beam is 
larger than bitmap’s i.e. 10cm width, each plane fitted on one bitmap (Si) is expanded and merged 
with plane of the abutting bitmap (Si+1) on the condition that they are aligned along the direction 
of the ceiling’s plane (ℿh(i,0)) right above them as illustrated in the Figure 4.5. 

Points aligned in the best-fit planes are identified and assigned to represent soffits of beams in 
their respective patches (clusters). As the result, a new set of k horizontal patches are segmented, 
Ꝓh(i) = {Ꝓh(1), Ꝓh(2),…, Ꝓh(n)} and used to identify points representing the vertical sides of floor 
beams as discussed in the next part. 

 

Figure 4. 5 Alignment and position of the overhead ceiling and points below the ceiling plane for 
detecting candidate points for the corresponding beam below. 

4.4.3. Segmentation of vertical sides of floor beams 

Following that, using the planes for beam soffits (Ꝓh(n)) and the associated ceiling plane, ℿh(i,0), 
we find the local positions of the neighboring pairs of vertical planes, ꝒV(i), which correspond to 
the vertical sides of beams. A set of vertical paired planes (ℿv) is used to determine the planes ꝒV(i) 

if they qualify for the following conditions: 

 The normals, 𝑛ሬ⃗ v, of a particular pair of vertical planes (ℿv), should be perpendicular (or 
nearly so) to the normal direction, 𝑛ሬ⃗ h, of a soffit’s plane, Ꝓh(i); 

 The orthogonal distance between the pair of vertical planes (i.e., ℿV(i) ↔ ℿV(i + 1)) is 
approximately equal to the breadth of the associated soffit’s plane, Ꝓh(i); 
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 The height of vertical planes (ℿv) should correspond to the distance between the 
ceiling’s plane (ℿh(i,0)) and the associated plane for the beam’s soffit (Ꝓh(i)). 

The pair set of vertical planes conforming to the above conditions are eliminated from the list 
of ℿv and designated to represent the vertical sides of the floor beams. Henceforth, for each of the 
revealed beams, we unveil a set of three planes (Ꝓh(i), Ꝓv(i), & Ꝓv(i + 1)) representing the typical 
surfaces of beams under the floor ceiling. 

4.5. Segmentation of Walls and Columns 

The vertical pair-planes (ℿv) are primarily used to identify the points representing the surfaces 
of the walls and columns. The study is focused on the load bearing vertical elements i.e. RC 
columns and solid walls, which construes a structural path starting from the floor slabs or beams 
and ultimately anchored to the floor. For the purpose of this study, columns shall also include the 
attached and isolated piers. A tolerance, tw, (10 cm ≤ tw ≥ 50 cm) is defined for wall thickness, 
where the value of tw = 10 cm is applied to avoid selecting non-structural walls such as drywalls. 

The segmentation process is initialized with clustering the remaining vertical planes (ℿv) into 
several sub-clusters referred herein as vertical sub-spaces where each plane is grouped into its 
respective floor (storey) level based on the series of floor slabs detected earlier as illustrated in the 
Figure 4.6. From each vertical plane ℿv(i), containing the n number of points pi (i.e.  ∑ 𝑝ᵢ௡

௜ୀଵ ), the 
highest and lowest points along the z-axis are identified and use them to find which floor level that 
particular plane (ℿv(i)) is located with reference of the identified planes for ceilings ℿh(0,j), and floors 
ℿh(i,0). The created vertical sub-spaces helps to establish the storey heights hi (i.e. hi = {h1, h2, …, 
hn} which describes the height between the floor and the nearest subsequent upper ceiling. For 
instance, given two successive floor slabs (i.e. Floor slab1 as the lower slab and Floor slab2 as the 
upper slab), where the for floor slab1 is composed of the floor plane ℿh(0,j), with a centroid point 
ℳ1= x1, y1, z1, and the floor slab2 is composed with a floor ceiling plane ℿh(i,0), with a centroid 
point ℳ2= x2, y2, z2, the storey height (hi) between the floor slab1 and floor slab2 can be computed 
as shown in Equation (4.5). 

hi = z2 – z1         (4.5)

Where the z1, z2 are the z-values of centroid points ℳ1 and ℳ2. 

Next, the established storey heights (hi) from each of the vertical sub-space are used to set the 
maximum requirements hmax, for the heights of the candidate wall planes (ℿw) housed in the 
respective sub-space. This implies that the candidate planes for walls and columns should not 
exceed the space between two successive floor slabs. Whereas, for each storey the minimum height 
requirement hmin, is refers to the height between the soffits of the floor beam and the immediate 
floor surface below it. Hence, to determine the hmin the storey height (hi) is subtracted from the 
depth of the corresponding floor beam (hd), as formulated in Equation (4.6). Therefore, for each 
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vertical sub-space, the set of vertical pairs of planes are identified whose heights lie within the 
height thresholds (hmax - hmin).  

hmin = hi − hd (4.6)

This approach uses a pair-wise plane search, which is suitable for detecting internal walls that 
comprise a pair of planes that locally lie on the same vertical sub-space. Henceforth, it can be 
ineffective in the classification of the external walls where one skin is in the interior and another 
skin is on the exterior of the building (façades), where the latter inherently do not fall within the 
floor partitions (vertical sub-spaces) as shown in Figure 4.6. To segment the planar surfaces 
representing the external walls, first the identification of the planes for the façades (exterior skin) 
ℿw(f), is done and their corresponding interior planes, ℿw(g), separately, and pair them afterward 
using the thickness threshold, tw. 

In principle, a common multi-story building has facades comprised of extended planar faces 
with disconnected surface patches due to large openings, recesses, protrusions (Hamid-Lakzaeian, 
2020), and occlusions from the external features. From the set R, we identify the remaining 
unpaired vertical patches and find the combination of coincidental planar patches, ṝi = {ṝ1, ṝ2,…, 
ṝn} and fit the planes accordingly. To identify the points representing the façades, the combination 
of ṝn patches is located beyond or along the edge points of the ceiling (ℿh(i,0)) and floor planes 
(ℿh(0,j)) in their x- and y-components. In doing so, obtain the coplanar patches can be obtained to 
represent the exterior surfaces (façades) of the external walls across the perimeter of the building. 
Using the set ṝi, we identify the planes that are perpendicular (or nearly so) to the planes for the 
façades (ℿw(f)) within the thickness threshold (tw). The identified planes are then checked against 
the requirements for the wall height (hmax − hmin) and assigned as planes for the interior skin of the 
external wall (ℿw(g)). 

The walls are formed by two parallel planes (skins), while the columns are formed by two pairs 
of planes in the opposing direction. The length-to-thickness ratio (4:1) described in (AIJ, 2002; 
Barker et al., 1976) is used to distinguish between the vertical planes forming the walls and 
columns. The lengths of planes in the two pair sets not exceeding four times (i.e., 4×) the 
perpendicular distance between them (thickness) are classified as planes for columns. Those having 
lengths over 4× the thickness are classified as planes for walls. 
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Figure 4. 6 Vertical subspaces by floor levels. 
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5.1. Introduction 

This chapter involves the introduction of the experiment design, the experimental dataset, 
instruments, and software applied, evaluation metrics, experimental procedures, and description of 
the results. 

5.2. Experimental design 

For testing the performance of the methods introduced in sections 3-4, the experiments are 
performed and assessed using three major parameters: quantitative evaluation, qualitative analysis, 
and comparative evaluation. 

The quantitative evaluation of the experiments done on the segmentation of point clouds into 
structural components provides a numerical analysis of the performance of the proposed 
segmentation methods. The evaluation is based on a set of quantitative metrics such as precision, 
recall, F1-score, and the intersection over Union (IoU), which are discussed in detail in section 6. 
The evaluation is conducted at different stages of the segmentation pipelines from the detection of 
the minimal planar patches to the final segmentation of building components. The evaluation is 
also performed to check the effectiveness of different segmentation algorithms depending on the 
type of structural elements in the study. This is necessary because certain algorithms have been 
more effective in identifying particular elements than others. 

The qualitative analysis is done to provide a subjective analysis of the performance of 
segmentation approaches applied in the study. The evaluation is based on the visual inspection of 
the segmentation results and analytical observation based on several factors that can affect the 
accuracy of the results for instance nature of the occlusions present on the site, for instance, the 
type and size of fittings and furniture, disparities between elements of the similar type, finishing 
applied specially to walls and ceilings, the existence of moving clutters, and the like. Furthermore, 
a correlation is made between the qualitative and quantitative evaluations. Overall, the qualitative 
evaluation provides additional insights into the performance of different methods proposed in the 
study and help to understand the strengths and limitation of each method. 

The comparative evaluation of the experiments is performed between the proposed 
segmentation methods and the standard methods of segmenting the point clouds into building 
components. Our proposed segmentation methods are directly compared with the popular 
techniques in the industry that have deployed clustering and deep learning segmentation 
techniques. A similar raw dataset is applied in this instance for all the segmentation methods 
selected in the comparison, and the results are compared in their accuracies and efficiencies. 
Comparative evaluation can help to validate the proposed segmentation method’s effectiveness. 
Comparing the results of the proposed method with other state-of-the-art methods enhances to 
determine whether the proposed method is better, worse, or similar in terms of accuracy, speed, 
and other relevant metrics. 
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In general, the evaluations are used as a guide for further improvements in our algorithms, 
leading to more accurate and efficient segmentation of structural elements from the point cloud. 

5.3. Experiment dataset and equipment 

In order to test the efficiency of the proposed methods a large 3D point cloud with a high degree 
of noise and occlusions with unmodified scenes. The points cloud is acquired from a 46-year-old 
five-story RC-framed building as shown in Figure 5.1. The building is comprised of 30 fully 
furnished apartment units with similar floor layouts (refer Appendix I), located in Onojo, Fukuoka. 

The point cloud was generated by combining multiple registered scans acquired at known 
positions for indoor and outdoor scenes. The scans were captured using a Zoller + Fröhlich (Z + F) 
Imager® 5016 terrestrial laser scanner (Zoller + Fröhlich, 2022). Outline activities for laser 
scanning the building which include the scanning planning, setting up the scanner, activation of 
the inbuilt software, calibrating the scanner, methods for scanning the building, and the initial 
processing of the scans are discussed in detail in Ntiyakunze et al. (2022).  The procedures 
discussed in the paper provide a basic guide for conducting laser scanning in a highly cluttered 
environment, and they can be adapted to suit various requirements of different sites. 

 

Figure 5. 1 Rear view of Hikari Building 

The building was scanned from several scan positions (refer Appendix II) to capture all the 
necessary geometries to obtain an unmodified point cloud. For experimental purposes, the original 
point cloud (see Figure 5.2a), is randomly cut into two portions, where the portion1 (see Figure 
5.2b) is used primarily for the general experimentation of the proposed segmentation procedures 
and portion2 is used for comparative testing and evaluation (see Figure 5.2c). The original point 
cloud contains a huge file size and high similarities between floor levels and room conditions, 
hence the portions used for the experiment still provide an accurate presentation of the scenery and 
provide manageable data size. The scans are indexed and registered on Autodesk ReCap Pro and 
generate the point cloud. The scanning results for these scenes are illustrated in Table 5.1.  

Table 5. 1 The number of scan stations, the total number of points, and registration precision. 

Experiment  Scan stations No. of Points  Average resolution range Average range error 
Original Point 
cloud 

236 374,405,029 0.1mm 0.25 mm rms 
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Test data 
(Portion1) 

N/A 66,997,720 0.1mm 0.25 mm rms 

Comparison 
dataset (Portion2) 

N/A 7.360,289 0.1mm 0.25 mm rms 

The proposed segmentation method was implemented on Open3D 0.16.0  (Qian-Yi et al., 
2018), CloudCompare v2.12.3 (Kyiv, Ukraine) (64-bit), and Python 3.9.12. All the experiments 
were performed on a 3.70 GHz Intel(R) Core (TM) i9-10900K processor and 32 GB of RAM and 
an NVIDIA Geforce RTX 3070. All the baseline methods were performed on Open3D 0.16.0 and 
Python 3.9.12, whereas CloudCompare v2.12.3 was used for geometric fitting and visualization of 
results. 

 

Figure 5. 2 Input point cloud for the experiments: (a) Original point cloud; (b) Portion1; (c) Portion2 
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5.4. Evaluation metrics 

Setting appropriate evaluation metrics is essential for measuring the quantitative performance 
of the proposed segmentation methods, identifying their strengths and weaknesses, and ensuring 
the accuracy and reliability of the overall approach. The basic approach in selecting the evaluation 
metrics is to assess the level of agreement between the segmentation results and the real-world 
dataset (ground-truth data) which is used for referencing. The quantities used in the reference 
dataset are collected manually from the site with the assistance of the original point cloud data and 
scan images.  

For performance evaluation of the proposed methods regarding segmentation and classification 
outcomes, we utilize the following evaluation metrics: precision (pr), recall (r), F1-score, and 
Intersection-Over-Union (IoU). The precision (pr), recall (r), F1-score, and Intersection-Over-
Union (IoU) are selected as a measure for assessing the accuracy and effectiveness of our method.  

The precision (pr) stands for the percentage of correct segmentations among all the predicted 
segmentations, which pertaining to the confusion matrix is the ability of the method not to label as 
positive a sample that is negative. On the other hand, the recall (r) corresponds to the percentage 
of correctly identified positive instances among all the actual positive instances. F1-score combines 
precision and recall providing an overall measure of accuracy. The F1-score is calculated as the 
harmonic mean of precision and recall, with a value of 1 indicating perfect accuracy and a value of 
0 indicating poor accuracy. IoU is the measure of the overlap between the predicted segmentation 
and the ground truth data. The IoU metric is typically preferred over the F1-score when there the 
class frequencies are severally unbalanced which is common in indoor point cloud datasets (Poux 
& Billen, 2019). The overall accuracy (OA) which is an aggregates measure of the overall 
performance of the experiment in predicting all class elements is avoided to be used as an 
evaluation metric in the study because of the undue bias declining towards dominant elements 
where in this case the performance accuracy for walls can significantly influence the overall 
accuracy. Hence, the F1-score is preferred to penalize the single effect of bad classification of one 
element over others.  

Precision (pr) = 
୘୔

୘୔ା୊୔
 (5.1) 

 

Recall (r) = 
୘୔

୘୔ା୊୒
 (5.2) 

 

F1-score = 
ଶ୘୔

ଶ୘୔ ା ୊୔ ା ୊୒
 (5.3) 

 

IoU = 
୘୔

୊୔ ା ୊୒ ା ୘୔
 (5.4) 
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Where TP represents true positives, which refers to the number of class elements (slabs, beams, 
or walls) that were detected and found in the existing building; FP represents false positives, which 
refers to the number of detected class elements that were not found in the existing building; FN 
represents false negatives, which refers to the number of undetected class elements that were not 
detected by the proposed method. We also use true negative (TN) to evaluate our model’s ability 
to correctly predict the negative classes. An illustration of the TP, FP, FN, and TN is provided in 
Figure 5.3. 

 

Figure 5. 3 Confusion matrix 

The selected evaluation metrics are popular measures in the segmentation and classification 
tasks in point clouds and images. Poux & Billen (2019) used the confusion matrix of size n x n to 
extract the evaluation metrics to test the segmentation approach using graph theory, where n is the 
number of labels. Other state of art studies also used the same evaluation strategy for the plane 
detection problem (Awrangjeb & Fraser, 2014; Nurunnabi et al., 2012; Vo et al., 2015; Xiong et 
al., 2013) also used the same metrics to test their plane detection approaches.  

5.5. Preprocessing of the dataset 

Initially, the input point cloud is manually cropped to remove the unwanted objects appearing 
separated from the site of interest including nearby buildings, roads, and trees. Then, voxel-based 
down-sampling is used to mainly sparse the points in highly dense regions while preserving the 
overall shape and local structure. This process helps to save computational resources which reduce 
the computation time and memory use. The input point cloud P, with 66,997,720 points is 
uniformly sub-sampled using a 0.05mm voxel size, generating a point cloud, p with 30,129,150 
points, such that, p ⊆ P.  

5.6. Experimental Procedures and Results 

5.6.1. Decomposition of the 3D Point Cloud using Octree-based voxelization  

The input point cloud (p) is spatially subdivided to produce a voxelized point cloud as presented 
in Figure 15. The decomposition of the point cloud was initiated at the internal node level 0 with 
30,129,150 points into 8 children and recursively decomposes guided by early termination criteria. 
The termination is based on two criteria: the maximum depth and the minimum number of samples 
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in each voxel, whichever arrived earlier. The maximum depth selected was Ѱmax = 6, and the 
minimum number of points per voxel is Ꜫmin = 30, used to subdivide the input point cloud as shown 
in Figure 5.4, into smaller levels for reduced computations in the proceeding processes.  

 

Figure 5. 4 Spatial sub-division of the input point cloud. 

A small output of the resulting octree is presented in Table 5.2 which shows the number of 
selective internal nodes at their specific levels, the number of points at each node, and their 
respective grid indices (refer Appendix III for additional information about the octree structure 
created from the input point cloud). Internal nodes are created and voxel grids were fitted at all 
nodes from level 0 to level 5 as the termination point.  

Table 5. 2 Octree structure created and the respective voxel-grids at internal node level 6 

7: Internal node at depth 5 has 2 children and 1406 points ([-6.8281192  29.97262225  6.10515596]) 

      5: Leaf node at depth 6 has 645 points with origin [-6.81233795 29.97262225  6.12093721] 

      7: Leaf node at depth 6 has 761 points with origin [-6.81233795 29.9884035   6.12093721] 

6: Internal node at depth 5 has 6 children and 1124 points ([-6.7965567  29.97262225  6.10515596]) 

      0: Leaf node at depth 6 has 22 points with origin [-6.7965567  29.97262225  6.10515596] 

      1: Leaf node at depth 6 has 4 points with origin [-6.78077545 29.97262225  6.10515596] 

      4: Leaf node at depth 6 has 138 points with origin [-6.7965567  29.97262225  6.12093721] 

      5: Leaf node at depth 6 has 7 points with origin [-6.78077545 29.97262225  6.12093721] 

      6: Leaf node at depth 6 has 363 points with origin [-6.7965567  29.9884035   6.12093721] 

      7: Leaf node at depth 6 has 590 points with origin [-6.78077545 29.9884035   6.12093721] 

7: Internal node at depth 5 has 4 children and 1569 points ([-6.7649942  29.97262225  6.10515596]) 
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      4: Leaf node at depth 6 has 56 points with origin [-6.7649942  29.97262225  6.12093721] 

      5: Leaf node at depth 6 has 167 points with origin [-6.74921295 29.97262225  6.12093721] 

      6: Leaf node at depth 6 has 508 points with origin [-6.7649942  29.9884035   6.12093721] 

      7: Leaf node at depth 6 has 838 points with origin [-6.74921295 29.9884035   6.12093721] 

5: Internal node at depth 5 has 2 children and 1463 points ([-6.8281192  30.00418475  6.10515596]) 

      5: Leaf node at depth 6 has 716 points with origin [-6.81233795 30.00418475  6.12093721] 

      7: Leaf node at depth 6 has 747 points with origin [-6.81233795 30.019966    6.12093721] 

7: Internal node at depth 5 has 2 children and 1655 points ([-6.8281192  30.03574725  6.10515596]) 

      5: Leaf node at depth 6 has 822 points with origin [-6.81233795 30.03574725  6.12093721] 

      7: Leaf node at depth 6 has 833 points with origin [-6.81233795 30.0515285   6.12093721] 

4: Internal node at depth 5 has 4 children and 2729 points ([-6.7965567  30.00418475  6.10515596]) 

      4: Leaf node at depth 6 has 344 points with origin [-6.7965567  30.00418475  6.12093721] 

      5: Leaf node at depth 6 has 740 points with origin [-6.78077545 30.00418475  6.12093721] 

      6: Leaf node at depth 6 has 567 points with origin [-6.7965567  30.019966    6.12093721] 

      7: Leaf node at depth 6 has 1078 points with origin [-6.78077545 30.019966    6.12093721] 

5: Internal node at depth 5 has 4 children and 731 points ([-6.7649942  30.00418475  6.10515596]) 

      4: Leaf node at depth 6 has 220 points with origin [-6.7649942  30.00418475  6.12093721] 

      5: Leaf node at depth 6 has 53 points with origin [-6.74921295 30.00418475  6.12093721] 

      6: Leaf node at depth 6 has 455 points with origin [-6.7649942  30.019966    6.12093721] 

      7: Leaf node at depth 6 has 3 points with origin [-6.74921295 30.019966    6.12093721] 

6: Internal node at depth 5 has 4 children and 2849 points ([-6.7965567  30.03574725  6.10515596]) 

      4: Leaf node at depth 6 has 691 points with origin [-6.7965567  30.03574725  6.12093721] 

      5: Leaf node at depth 6 has 746 points with origin [-6.78077545 30.03574725  6.12093721] 

      6: Leaf node at depth 6 has 708 points with origin [-6.7965567  30.0515285   6.12093721] 

      7: Leaf node at depth 6 has 704 points with origin [-6.78077545 30.0515285   6.12093721] 

7: Internal node at depth 5 has 4 children and 3290 points ([-6.7649942  30.03574725  6.10515596]) 

      4: Leaf node at depth 6 has 811 points with origin [-6.7649942  30.03574725  6.12093721] 

      5: Leaf node at depth 6 has 371 points with origin [-6.74921295 30.03574725  6.12093721] 

      6: Leaf node at depth 6 has 707 points with origin [-6.7649942  30.0515285   6.12093721] 

      7: Leaf node at depth 6 has 1401 points with origin [-6.74921295 30.0515285   6.12093721] 

4: Internal node at depth 4 has 3 children and 6009 points ([-6.8596817  29.94105975  6.13671846]) 

3: Internal node at depth 5 has 4 children and 2880 points ([-6.8281192  29.97262225  6.13671846]) 

       1: Leaf node at depth 6 has 723 points with origin [-6.81233795 29.97262225  6.13671846] 

       3: Leaf node at depth 6 has 705 points with origin [-6.81233795 29.9884035   6.13671846] 
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       5: Leaf node at depth 6 has 726 points with origin [-6.81233795 29.97262225  6.15249971] 

       7: Leaf node at depth 6 has 726 points with origin [-6.81233795 29.9884035   6.15249971] 

5: Internal node at depth 5 has 1 children and 18 points ([-6.8281192  29.94105975  6.16828096]) 

7: Internal node at depth 5 has 4 children and 3111 points ([-6.8281192  29.97262225  6.16828096]) 

       1: Leaf node at depth 6 has 840 points with origin [-6.81233795 29.97262225  6.16828096] 

       3: Leaf node at depth 6 has 738 points with origin [-6.81233795 29.9884035   6.16828096] 

       5: Leaf node at depth 6 has 809 points with origin [-6.81233795 29.97262225  6.18406221] 

       7: Leaf node at depth 6 has 724 points with origin [-6.81233795 29.9884035   6.18406221] 

5: Internal node at depth 4 has 7 children and 17646 points ([-6.7965567  29.94105975  6.13671846]) 

1: Internal node at depth 5 has 3 children and 85 points ([-6.7649942  29.94105975  6.13671846]) 

       0: Leaf node at depth 6 has 1 points with origin [-6.7649942  29.94105975  6.13671846] 

       4: Leaf node at depth 6 has 26 points with origin [-6.7649942  29.94105975  6.15249971] 

       5: Leaf node at depth 6 has 58 points with origin [-6.74921295 29.94105975  6.15249971] 

2: Internal node at depth 5 has 7 children and 2385 points ([-6.7965567  29.97262225  6.13671846]) 

       0: Leaf node at depth 6 has 341 points with origin [-6.7965567  29.97262225  6.13671846] 

       2: Leaf node at depth 6 has 46 points with origin [-6.7965567  29.9884035   6.13671846] 

       3: Leaf node at depth 6 has 780 points with origin [-6.78077545 29.9884035   6.13671846] 

       4: Leaf node at depth 6 has 469 points with origin [-6.7965567  29.97262225  6.15249971] 

       5: Leaf node at depth 6 has 161 points with origin [-6.78077545 29.97262225  6.15249971] 

       6: Leaf node at depth 6 has 8 points with origin [-6.7965567  29.9884035   6.15249971] 

       7: Leaf node at depth 6 has 580 points with origin [-6.78077545 29.9884035   6.15249971] 

3: Internal node at depth 5 has 8 children and 3772 points ([-6.7649942  29.97262225  6.13671846]) 

       0: Leaf node at depth 6 has 29 points with origin [-6.7649942  29.97262225  6.13671846] 

       1: Leaf node at depth 6 has 538 points with origin [-6.74921295 29.97262225  6.13671846] 

       2: Leaf node at depth 6 has 787 points with origin [-6.7649942  29.9884035   6.13671846] 

       3: Leaf node at depth 6 has 483 points with origin [-6.74921295 29.9884035   6.13671846] 

       4: Leaf node at depth 6 has 419 points with origin [-6.7649942  29.97262225  6.15249971] 

       5: Leaf node at depth 6 has 1023 points with origin [-6.74921295 29.97262225  6.15249971] 

       6: Leaf node at depth 6 has 405 points with origin [-6.7649942  29.9884035   6.15249971] 

       7: Leaf node at depth 6 has 88 points with origin [-6.74921295 29.9884035   6.15249971] 

4: Internal node at depth 5 has 4 children and 1473 points ([-6.7965567  29.94105975  6.16828096]) 

       0: Leaf node at depth 6 has 18 points with origin [-6.7965567  29.94105975  6.16828096] 

       1: Leaf node at depth 6 has 351 points with origin [-6.78077545 29.94105975  6.16828096] 

       4: Leaf node at depth 6 has 405 points with origin [-6.7965567  29.94105975  6.18406221] 
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       5: Leaf node at depth 6 has 699 points with origin [-6.78077545 29.94105975  6.18406221] 

5: Internal node at depth 5 has 4 children and 2891 points ([-6.7649942  29.94105975  6.16828096]) 

        0: Leaf node at depth 6 has 572 points with origin [-6.7649942  29.94105975  6.16828096] 

        1: Leaf node at depth 6 has 744 points with origin [-6.74921295 29.94105975  6.16828096] 

        4: Leaf node at depth 6 has 770 points with origin [-6.7649942  29.94105975  6.18406221] 

        5: Leaf node at depth 6 has 805 points with origin [-6.74921295 29.94105975  6.18406221] 

6: Internal node at depth 5 has 4 children and 3242 points ([-6.7965567  29.97262225  6.16828096]) 

       0: Leaf node at depth 6 has 776 points with origin [-6.7965567  29.97262225  6.16828096] 

       1: Leaf node at depth 6 has 971 points with origin [-6.78077545 29.97262225  6.16828096] 

       4: Leaf node at depth 6 has 743 points with origin [-6.7965567  29.97262225  6.18406221] 

       5: Leaf node at depth 6 has 752 points with origin [-6.78077545 29.97262225  6.18406221] 

7: Internal node at depth 5 has 4 children and 3798 points ([-6.7649942  29.97262225  6.16828096]) 

       0: Leaf node at depth 6 has 1042 points with origin [-6.7649942  29.97262225  6.16828096] 

       1: Leaf node at depth 6 has 1154 points with origin [-6.74921295 29.97262225  6.16828096] 

       4: Leaf node at depth 6 has 712 points with origin [-6.7649942  29.97262225  6.18406221] 

       5: Leaf node at depth 6 has 890 points with origin [-6.74921295 29.97262225  6.18406221] 

      6: Internal node at depth 4 has 4 children and 16944 points ([-6.8596817  30.00418475  6.13671846]) 

1: Internal node at depth 5 has 4 children and 2809 points ([-6.8281192  30.00418475  6.13671846]) 

      1: Leaf node at depth 6 has 718 points with origin [-6.81233795 30.00418475  6.13671846] 

      3: Leaf node at depth 6 has 695 points with origin [-6.81233795 30.019966    6.13671846] 

      5: Leaf node at depth 6 has 691 points with origin [-6.81233795 30.00418475  6.15249971] 

      7: Leaf node at depth 6 has 705 points with origin [-6.81233795 30.019966    6.15249971] 

3: Internal node at depth 5 has 4 children and 3292 points ([-6.8281192  30.03574725  6.13671846]) 

      1: Leaf node at depth 6 has 855 points with origin [-6.81233795 30.03574725  6.13671846] 

      3: Leaf node at depth 6 has 906 points with origin [-6.81233795 30.0515285   6.13671846] 

      5: Leaf node at depth 6 has 775 points with origin [-6.81233795 30.03574725  6.15249971] 

      7: Leaf node at depth 6 has 756 points with origin [-6.81233795 30.0515285   6.15249971] 

5: Internal node at depth 5 has 6 children and 4713 points ([-6.8281192  30.00418475  6.16828096]) 

      1: Leaf node at depth 6 has 650 points with origin [-6.81233795 30.00418475  6.16828096] 

      2: Leaf node at depth 6 has 451 points with origin [-6.8281192  30.019966    6.16828096] 

      3: Leaf node at depth 6 has 1322 points with origin [-6.81233795 30.019966    6.16828096] 

      5: Leaf node at depth 6 has 674 points with origin [-6.81233795 30.00418475  6.18406221] 

      6: Leaf node at depth 6 has 283 points with origin [-6.8281192  30.019966    6.18406221] 

      7: Leaf node at depth 6 has 1333 points with origin [-6.81233795 30.019966    6.18406221] 
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      7: Internal node at depth 5 has 6 children and 6130 points ([-6.8281192  30.03574725  6.16828096]) 

      0: Leaf node at depth 6 has 379 points with origin [-6.8281192  30.03574725  6.16828096] 

      1: Leaf node at depth 6 has 1571 points with origin [-6.81233795 30.03574725  6.16828096] 

      2: Leaf node at depth 6 has 427 points with origin [-6.8281192  30.0515285   6.16828096] 

      3: Leaf node at depth 6 has 1590 points with origin [-6.81233795 30.0515285   6.16828096] 

      5: Leaf node at depth 6 has 1143 points with origin [-6.81233795 30.03574725  6.18406221] 

      7: Leaf node at depth 6 has 1020 points with origin [-6.81233795 30.0515285   6.18406221] 

5.6.2. Planar Patch Generation 

Firstly, the eigen-based features are computed using the PCA and fit a plane in the principal 
direction of the points, whose normal is given by the smallest eigenvalue (λ0). The TLS approach 
was used to fit planes at the voxel level. For this case, only the voxels with more than 30 points 
were processed. Non-empty voxels and voxels with less than 30 points were excluded from this 
process. Some of the plane fitting results are illustrated in Figures 5.5(a) – 5.5(e), where points in 
their respective voxels are fitted. Points are presented in colors referring to the scalar values 
described in the mixed histogram and Gaussian distribution charts. The charts show how much 
each point in the plane deviates from the sample mean value. 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 
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Figure 5. 5 Plane fitting at the voxel level: (a) Plane on 87 points; (b) Plane on 601 points; (c) Plane on 
276 points; (d) Plane on 232 points; (e) Plane on 61 points; (f) Plane on 81 points. 

5.6.3. Merging of planar patches 

The planar patches from the adjoining voxels using the 26-face connectivity approach are 
merged provided that the difference in their normal vectors, 𝑛ሬ⃗ i & 𝑛ሬ⃗ 1+I lie within a maximal angular 
value of 5°. The minimal planar patches detected in the previous step are recursively merged on 
their proximities as illustrated in Figure 5.6 (a) - (b) where about five minimal patches from the 5 
connected patches are merged, summing up a plane fitted to 941 points.  
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Figure 5. 6 Merging of adjacent planar patches across the connected voxels: (a) Fully connected patches; 
(b) Patches with sparsely distributed points. 

Next, the merged patches with surface areas (As) ≥ 0.15m2, are together appended in a set R 
which is used for determining the principal pairs of planes. Otherwise, the merged patches with 
surface areas (As) ≤ 0.15m2 are clustered in the set Ŕi, and labeled as undergrowth patches. 

5.6.4. Determination of principal patches 

The planar patches contained in set R are carefully analyzed in order to obtain the principal 
patches (∑). The criteria of selecting principal patches are used to filter out patches that may not 
present the surfaces of building elements, including differences of normal orientation between the 
two patches to form a pair-set as illustrated in Figure 5.7(a) and 5.7(b), where the difference the 
normal of two patches in each pair set is less than 5 degrees.  
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Figure 5. 7 Pairs of principal patches with close normal orientations: (a) Adjacent patches with normal’s 
angular deviation of only 0.08 degrees; (b) Adjacent patches with normal’s angular deviation of only 
0.10 degrees. 

As a result, pairs of principal patches are determined as illustrated as shown in Figure 5.8, 
where Figure 5.8(a) represents the horizontally oriented principal pairs of patches planes, and 
Figure 5.8(b) represents the vertically oriented principal pairs of patches. 

 

(a) 
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Figure 5. 8 Pairs of generated principal planar patches: (a) Horizontal patches; (b) Vertical patches. 

5.6.5. Search for the disconnected coplanar points using the principal patches 

The principal patches (∑) are then spanned using the linear combinations (Wi) of their 
respective span vectors (𝑢ሬ⃗ i) found from each of the planes (ℿi) of the principal patches. The 
spanned planes (Span(ℿi)), are then used to allocate their nearest corresponding points from the set 
Ŕ. The points falling within the distance threshold (δdist) from the Span(ℿi) are provisionally 
assigned as the coplanar point. Next, the VDBSCAN approach was applied to exclude the outliers, 
followed up by the screening for coplanarity. Finally, the points are fixed to the Span(ℿi) and 
refined for the proceeding segmentation process which involves the classification of planes into 
structural elements. Figure 5.9 and 5.10 illustrates the spanned principal planes and their 
corresponding coplanar points drawn from the incomplete set of patches i.e., set Ŕ. 

Prior to the classification process, the spanned planes are updated, now to include the principal 
patches (∑) and their newly assigned coplanar points from the set Ŕ. Then, the updated planes in 
their entirety are arranged and clustered into horizontal (ℿh) and vertical (ℿv) with respect to their 
orientations pertaining to the conditions described in previously. Thereon, the planes are segmented 
to embody the structural elements of regular buildings in the following order: floor slabs, floor 
beams, walls, and columns.  
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Figure 5. 9 Results of spanning the horizontal principal planes and the subsequent assignment of 
disconnected coplanar patches: (a) disconnected patches; (b) planes fitted after spanning the principle 
patches and assigning the corresponding coplanar patches. 

 

Figure 5. 10 Results of spanning the vertical principal planes and the subsequent assignment of 
disconnected coplanar patches: (a-d) disconnected patches; (a’-d’) planes fitted after spanning the 
patches and assigning the corresponding coplanar patches. 

The point assignment to the spanned plane is followed up by the removal of outlier points and 
minimal clusters generated using the DBSCAN approach as shown in Figure 5.11(a). The 
elimination of minimal clusters helps to avoid the inclusion of small clusters as coplanar regions 
as presented in Figure 5.11(b) since the assignment of points in the Span(ℿ) may overlook these 
regions. 
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Figure 5. 11 Point assignment to the spanned principal planes in searching for coplanar points and 
patches: (a) Outliers detected; (b) Surface patches and points from the clutter objects converge with 
spanned plane. 

5.6.6. Segmentation of floor slabs 

The horizontal planes (ℿh) are used in this case to segment floor slabs from the detection of the 
planes representing the surfaces of the ceilings (ℿh(i,0)) and floors (ℿh(0,j)). The parameter thresholds 
stipulated for story heights (hi) and slab thickness (ts) are used to subjectively provide the logical 
sequencing of horizontal planes corresponding to the floor slabs. The first floor denoted the 
particular plane as ℿh(0,1), following that, the plane representing the ceiling for the second floor is 
determined (ℿh(1,0)) using the height threshold (hi). Then, the process is recursively repeated in the 
vertical direction to determine the subsequent ceilings and floors as illustrated in Figure 5.12. As a 
result, we identified and clustered five horizontal planes corresponding to the floor surfaces and 
four horizontal planes for the ceiling surfaces that resulted in a total of four-floor slabs, where; 

 ℿh(0,1), represents the floor surface for the 1st floor slab; 

  ℿh(1,0), represents the ceiling surface for the 2nd floor slab; 

 ℿh(0,2), represents the floor surface for the 2nd floor slab; 

 ℿh(2,0), represents the ceiling surface for the 3rd floor slab; 

 ℿh(0,3), represents the floor surface for the 3rd floor slab; 

 ℿh(3,0), represents the ceiling surface for the 4th floor slab; 

 ℿh(0,4), represents the floor surface for the 4th floor slab; 

 ℿh(4,0), represents the ceiling surface for the 5th floor slab; 
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 ℿh(0,5), represents the floor surface for the 5th floor slab. 

 

Figure 5. 12 Floor slabs detected in the experiment are represented by the pairs of ceiling and floor 
planes. 

5.6.7. Segmentation of floor beams 

Methods proposed in this research are designed to classify surface patches and planes into floor 
beams through the detection of the three main surfaces of floor beams: soffits and the two opposing 
vertical sides. The beam’s soffits are detected from the non-principal patches in cluster R and the 
points remaining in clusters Ŕ. The ray casting operation is conducted using Open3D software, 
where the input dataset is inserted in the process consisting of separate batches. The batches are 
each comprised of the detected ceiling plane (ℿh(i,0)) and the corresponding unassigned points from 
the sub-clusters (Ꞷi) that are within 1.00 metres below the ceiling plane. The bitmaps (Si) are 
created using flat layer octree build-up and then, the beam of rays (ri) that are equivalent to the 

number of bitmaps created is cast onto the batch in the direction of the ceiling’s normal vector (𝑁ሬሬ⃗ ) 
i.e.  ∑ 𝑟௡

௜ୀ௜  & ∑ 𝑆௡
௜ୀ௜ , where n denotes the number of rays and bitmaps created from the ceiling 

plane. 

The intersection of rays y(t), is computed from each batch, and the bitmaps (voxels) hit below 
the planes are identified and used to extract the points bucketed in them. These points are refitted 
with new planes in the direction of the ceiling plane in a similar batch. The points are segmented 
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and labeled to represent the soffits of floor beams. After that, the vertical sides of beams are 
detected using the detected soffit points. Figure 5.13 illustrated the combination of the segmented 
patches for soffits and vertical sides of floor beams. 

 

Figure 5. 13 The detected soffits and vertical sides of the 2nd-floor beams. 

5.6.8. Segmentation of Walls  

The vertical pairs of planes (ℿv) are used to detect the walls and columns found between the 
created vertical sub-spaces which are created between the segmented floor slabs. The vertical sub-
spaces are created between the successive floor slabs, such that each vertical sub-space pertains to 
a storey height (hi). As a result, a total of four (4) vertical subspaces are created corresponding to 
storey heights. 

The created vertical subspace, hmax, hmin, and the thickness (tw) are used to determine the wall 
planes from the pool of vertical pairs of planes (ℿv). The threshold tw is used to empirically separate 
the load-bearing walls and columns from other vertical objects including the light partitions and 
occlusions along the walls. As a result, a total of 44 walls are determined and segmented. Figure 
5.14 illustrates the walls detected from the first storey.  



85 

 

 

Figure 5. 14 The detected walls at the first floor 
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6.1. Introduction 

This chapter covers the evaluation of the experimental results in terms of the overall quality 
and quantitative performance which measures up the observed results against the ground truth 
inferred from the existing building. The chapter also covers the comparative evaluation that 
includes the comparison of the proposed segmentation method versus the state-of-the-art 
segmentation methods. In addition, it discusses the limitations of the proposed method which 
includes the major problems. 

6.2. Quantitative Evaluation 

The quality of the classification process is evaluated by comparing the observed class elements 
from the experiment results against those of the ground truth inferred from the existing building. 
Quantitative evaluation of the classification of points into several elements (floor slabs, beams, and 
walls) is performed using the five metrics: precision (pr), recall (r), F1-score, Intersection-Over-
Union (IoU), and overall accuracy (OA).  

Some elements can induce dominance over other elements due to their large quantities and for 
this different metrics of measurement are used for quantification. The floor slabs are enumerated 
in their composed ceiling and floor surfaces. As for the floor beams and walls, the linear 
measurement along the x and or y-direction to get their dimensions in running lengths. This is due 
to the distinct nature of beams and wall layouts where they are represented in partial lengths 
between corners or columns and often occupy several arrangements and orientations dividing the 
floor or ceiling spaces. For the walls, the detected pairs of vertical planes are measured by their 
average extreme dimensions excluding the openings. 

The overall measurements of different class elements from the ground truth data and those 
obtained from the experimental results are provided in Table 6.1.  

Table 6. 1 Measurements of structural elements from ground truth data and experimental results. 

Object 
Floor slabs Floor beams Walls 

Ceilings Floors 1Slabs Soffits Vertical sides 1Beams  
Ground truth data 4 5 5 213 213 213 242 
Experimental results 4 5 5 284 242 242 310 

Results from Table 7.1 shows a resemblance in the quantities associated with floor slabs 
between the ground truth data and experimental results. However, the measurements obtained from 
the output of the experiment have indicated significant false measurements for the classes of floor 
beams and walls, where the variation increase is 14% and 28% for the floor beams and walls 
respectively. Furthermore, it is noted that the experimental results have produced different 
measurements between the soffits and the vertical sides of the beam i.e. 284m for soffits and 242m 
for the vertical sides. This is illustrated in Figure 6.1 that the soffits are observed to be longer 
compared to the vertical sides, and this is attributed to two factors; the order of detection of beams 
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where the soffits are detected first and then used to find the vertical sides under limited conditions. 
Hence, since the detection of vertical sides is preceded by the detection of soffits, the amount 
detected for the vertical sides is predestined to have lesser or equal scores compared to the soffits; 
and another factor is the inherent undersize of planar patches forming the vertical sides.  

 

Figure 6. 1 Part of the floor beam with the different sizes of the soffits and vertical sides. 

The overall results of the experiment using Portion1 are presented in Table 6.2, where TP stands 
for True Positives, FN for False Positives, FN for False Negatives, and TN for True Negatives. 

Table 6. 2 Comparison of the overall experimental results and ground truth data. 

Metrics 
Floor slabs Floor beams 

Walls 
Ceilings Floors 1Slabs Soffits Vertical sides 1Beams 

TP 4 5 5 192.00 149.76 149.76 202.00 
FP 0 0 0 92.16 92.16 92.16 108.00 
FN 0 0 0 20.80 20.80 20.80 40.00 
TN 0 8 8 23.40 23.40 23.40 28.00 

Precision 1 1 1 0.68 0.62 0.62 0.65 
Recall 1 1 1 0.90 0.88 0.88 0.83 

F1-score 1 1 1 0.77 0.73 0.73 0.73 
IoU 1 1 1 0.63 0.57 0.57 0.58 

I Slabs and I Beams are subject to the identification of all their constituent parts. 

From Table 6.2, the floor slabs and beams are represented by their constituent surface planes, 
(i.e., the ceilings and floors for the floor slabs, and the soffits and vertical sides for the beams). 
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Figure 6. 2 Confusion Matrix for the Segmented Versus Actual Floor Slabs 

 

Figure 6. 3 Confusion Matrix for the Segmented Versus Actual Floor Beams 

 



91 

 

 

Figure 6. 4 Confusion Matrix for the Segmented Versus Actual Walls 

As Table 6.2 and Figure 6.2. show, all the ceilings and floors are perfectly detected and 
segmented using the proposed method, with a score of 1 in all the quantitative metrics. Therefore, 
all the floor slabs are detected with reference to the ground truth data. The first-floor slab appeared 
in one planar surface which is identified as the floor surface, while the rest of the floor slabs are 
presented as pairs of surfaces of ceilings and floors. In the evaluation process, the ceilings and 
floors are considered to their full dimensions while disregarding the size or number of gaps 
(referred to as holes) between the coplanar patches as shown in Figure 6.5. However, the holes 
which are due to the missing data led by occlusions can significantly influence the segmentation 
results when working with relatively smaller floor slabs.   The experiment is based on the interior 
slabs and the exterior recessed slabs only; the protruding balconies are not considered due to the 
hidden ceilings and excessive occlusions.  

 

Figure 6. 5 Holes present on the surfaces of the point cloud 

The TN values cover the performance of the proposed method to correctly predict the negative 
class. In this case, the countertops, which are captured by the scanner are formulated as the negative 



92 

 

class for the floor surface, and the model has correctly classified them identified as not floors. 
Figure 6.6. demonstrates the presence of the countertops and their detected planar patches. 

 

Figure 6. 6 Detected planar patches for the countertops, floors, and walls. 

The floor beams showed positive performance, as shown in Table 6.2 and Figure 6.3, amidst a 
high level of clutter on the ceiling surfaces. Beams as a whole element are scored over 0.60 in 
terms of precision, recall, and F1-score, and the IoU which measures the worst-case performance, 
is slightly above 0.5. As mentioned previously, there is a slight difference accounted for in the 
detected soffits and vertical sides of beams, which among other reasons mentioned is also caused 
by the presence of occlusions along the sides of the beams.  

According to our approach, the vertical sides can only be detected if both planes are in a pair 
set of vertical planes, so if one face is occluded it may affect the detection of both faces as a pair, 
which also hindered classifying the object as a beam as shown in Figure 6.7.  
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Figure 6. 7 Incomplete detection of the beam due to the missing one vertical side. 

Some overhead (upper) cabinets with breadths not exceeding 50 cm are falsely identified as 
beams contributing to the value of the FP as shown in Figure 6.8. In general, the detection of beams 
is affected by the amount of surfaces exposed to the scanners. In particular, the segmentation of 
the isolated beams performed better compared to the segmentation of revealed beams with walls 
attached under them as demonstrated in Figure 6.9, and this is due to the difference in the extent of 
the exposed undersides (soffits) of the beams. 

 

Figure 6. 8 The overhead cabinet falsely classified as a beam. 
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Figure 6. 9 Different types of exposure of floor beams. 

In accordance with Table 6.2 and Figure 6.4, the quality of the proposed method approach in 
segmenting the walls also showed positive results. The approach has accurately not labeled the 
non-wall points as walls are presented with a precision score of 0.65, and the recall measure, which 
is related to the ability of our classification process to find all the wall points, recorded a score of 
0.83. The worst-case performance of the segmentation and classification approach is marked at 
0.58 IoU, which is still acceptable as it is above a threshold of 0.5. In general, the method has 
shown good performance in classifying the wall elements despite the substantial amounts of 
temporary and fixed objects on the faces of the walls. 

The existing building contains a substantial amount of non-load-bearing walls, whereby most 
of the interior walls are made up of shôji (traditional Japanese sliding walls or doors) and glass 
partitions as shown in Figure 6.10 (a) & (b). Since the drywall partitions have the same heights 
(2.50–3.20 m) as those of load-bearing walls (solid walls), the classification method had to rely 
mainly on the differences in their thicknesses to distinguish the load-bearing from the non-load-
bearing walls. A thickness tolerance (tw) applied in the classification (for 10 cm ≤ tw ≥ 50 cm) 
managed to dismiss most of the drywall partitions except for a few partitions with thickness >10 
cm, which accounted for the FP. The value of the FP was also attributed to the incorrect 
classification of certain wardrobes, which displayed dimensions (height and width) that covered 
the full extent of one face of a wall and a breadth (w) not exceeding 50 cm as illustrated in Figure 
6.11. The value of FN is contributed mostly by the amount of undetected external walls. This is 
due to the restriction of the scanner’s access in the narrow spaces leading to the limited exposure 
of the exterior faces of the external walls. The presence of trees in the vicinity of the building also 
partly limited the detection of the external walls. 
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Figure 6. 10 Drywall partitions mistaken; (a) Glasswork partitions; (b) shoji 

 

Figure 6. 11 The Wardrobe falsely classified as wall 

6.3. Qualitative analysis 

6.3.1. Influence of voxel resolutions 

The voxel resolutions which refer to the size of the 3D grid cells used to contain a small dataset 
of point cloud, can have a significant influence on the accuracy and efficiency of the plane detection 
pipeline.  In the experiment, where the octree system is adopted to decompose the point cloud, the 
voxel size is maintained at the same size at each corresponding internal level. The resolution is 
controlled by the two factors simultaneously: the maximum depth (Ѱmax) = 6, and the minimum 
number of points per voxel (Ꜫmin) = 30. 

The resolution performed well in fitting planes on actual planar surfaces, however, spurious 
planes were created in cases with highly scattered points in voxels as illustrated in Figure 6.12. 
Nonetheless, more often these spurious planes were discarded due to a lack of a merging partner 
nearby since they did not represent any real surface of a building component, hence they were 
considered undergrown patches and inserted in the set Ŕ. 
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Figure 6. 12 Spurious plane detected in the voxel due to sparsity of data. 

6.3.2. Analysis of the Classification of detected planes 

Figure 14b shows an input (subsampled) point cloud P with a total of 30,129,150 points, and 
after the spatial decomposition, the planar patches are derived and classified accordingly into class 
elements. As the result of the segmentation and classification processes into structural elements, 
the points remaining unclassified (₱) are found to represent about 35% of the original points (P) 

such that ₱ ⊆ P.  

Analysis was conducted on the remaining points to gain insight into the relevancy of the 
unclassified points. Manual inspection of the remaining planar patches is done to determine if they 
may represent any of the surfaces of structural elements. Among them, about 20% were found to 
be part of the class objects largely associated with the external walls which also contributed in large 
proportion to the FN value for the walls (i.e., undetected walls). This is mainly due to a lack of the 
corresponding pair plane on the other side, and this was sensitive since the wall can be classified it 
is represented wholly by two planes. Furthermore, among the remaining unclassified pairs of 
vertical planes (ℿv), 90% of them are found to represent the drywall partitions and doors which 
were successfully rejected because of the thickness (tw) threshold. The building did not have any 
exposed columns that required the segmentation process. 

It is also observed that the planar patches associated with floor surfaces were disposed to a high 
number of occlusions that led to missing points in the planes. Clutters present on the floor were not 
removed during scanning and the segmentation method is tasked to correctly identify them and 
properly distinguish them from the floor points. In most cases, the missing points appeared as holes 
on the surface patches as illustrated in Figure 6.13, this is caused by the shadow effect of the 
scanner for each of the scanning positions. This may have affected the segmentation results for 
floors if the floor surfaces were smaller. 
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Figure 6. 13 Surface patches for floors with missing points and holes. 

6.4. Comparative evaluation 

To compare the performance of the proposed segmentation method with the recent outstanding 
methods related to clustering and deep learning methods, a different set of point clouds was cut 
from the original dataset for an independent and unbiased evaluation. A relatively smaller point 
cloud is used in this section to allow adaptation of each method used in the comparison. Two 
methods are selected for the comparison; the Density-based clustering approach as applied in (X. 
Chen et al. (2022), and an optimized DGCNN with the neighbor network as proposed in (Hyunsoo 
& Changwan (2021). These methods have been tested for indoor point cloud scenes to segment 
various building components and have shown good performance in their respective experiments. 

6.4.1. Comparison dataset 

The test dataset ₧, consists of a point cloud cut from the building on the second floor as shown in 
Figure 6.14, which includes scenes from the living room, bedroom, washing room, and entrance 
porch. The dataset (₧) is already downsampled resulting in a total of 7,360,289 points.  
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Figure 6. 14 Comparison dataset: (a) Original Point Cloud; (b) Portion of the original dataset for 
experiment testing – Rearview; (c) Cut portion of the original dataset for experiment testing – Front 
view. 

6.4.2. Proposed segmentation method 

Similar procedures are used in the segmentation of the dataset as described in subsection 5.6, 
where the point cloud is first voxelized, followed up by detecting and merging planar patches. 
Lastly, the pairs of refined patches are classified accordingly into classes of elements which are 
floor, ceiling, beams, and walls. The results of the segmentation are presented in Figure 6.15. The 
color seen in the figures represents the scalar values and normal orientations for the planar patches. 
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Figure 6. 15 Segmentation results based on the proposed method: (a) Segmented surfaces for floors 
and ceiling; (b) Segmented walls. 

6.4.3. Segmentation based on density-based clustering method  (X. Chen et al., 2022) 

In this paper, a density clustering model based on the exponential function is utilized to 
determine the local density within a cutoff distance. The boundary-to-indoor point cloud distances 
are initially used to create a constraint condition for wall density clustering. Subsequently, the 
density clustering of the z direction and local density model is employed to extract the ceiling and 
floor. 

In implementing the method proposed in this study for the comparative dataset (₧), first the 
density of the input point cloud (₧) is estimated using the developed exponential function model. 
The model involves assigning a density value to each point cloud based on its distance from 
neighboring points. Then, the wall density clustering is performed where the wall points are 
clustered based on their density values using wall constraint conditions which are room boundaries. 
The distances between the boundary and indoor point clouds are used to create these constraint 
conditions. Points with densities above a threshold are clustered to form walls. As for the ceilings 
and floors, the density values of points in the z-direction are computed and grouped to form the 
ceiling and floor. The resulting segmentation model is shown in Figure 6.16. 
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Figure 6. 16 Segmentation results based on the density-based clustering method: (a) Segmented surfaces 
for floors and ceiling; (b) Segmented walls. 

6.4.4. Segmentation based on the optimized DGCNN with the neighbor network (Hyunsoo 
& Changwan, 2021) 

The authors in this study proposed a method for creating 3D as-built models from incomplete 
point clouds by utilizing connectivity relations between neighboring elements. The methods 
involve using a DGCNN which is a deep learning method that can learn local features from 
neighboring points, unlike PointNet, which learns from the local and global features for all input 
points, regardless of the order of the input point clouds. The DGCNN enabled semantic 
segmentation at the point level to label each point including those coming from incomplete points. 
Then, from the segmented objects, the authors proposed to extract planar patches to break down 
the labeled objects into finer details since the DGCNN obtains broad segmentation results. The 
method involves segmenting the point cloud into smaller parts and using a connectivity graph to 
identify and connect the segmented parts. The authors also present an algorithm for resolving 
conflicts between connected segments. The proposed method is tested on both synthetic and real-
world point clouds and is found to produce accurate as-built models with minimal manual 
intervention.  

In implementing the method proposed in the study in the comparison evaluation, the input point 
cloud (₧) is segmented into labeled classes using DGCNN, where the training of the dataset was 
conducted using the Stanford 3D Indoor Space (S3DIS) data (Armeni et al., 2017). Then, the planar 
patches are determined using the smoothness-constraint region growing (Rabbani et al., 2006) as 
suggested in the paper. Once the planar patches are obtained for each corresponding segment, the 
connectivity graph which describes the neighboring network is built where each sub-graph 
corresponds to a segment of the input point cloud. The connectivity which is based on the 
neighboring segments and planar patches managed to associate and combine the patches with 
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missing points. The methods resulted in the segmentation of several elements even those with 
incomplete points, the results of the segmentation method are illustrated in Figure 6.17. 

 

 

Figure 6. 17 Segmentation results based on the optimized DGCNN with the neighbor network: (a) 
Segmented surfaces for floors and ceiling; (b) Segmented walls. 

6.4.5. Evaluation of Results 

Table 6.3 provides combined evaluation results from the three methods used in the comparison 
evaluation.  

Table 6. 3 Comparison of different segmentation methods. 

Objects Floor slabs Floor beams Walls 
Metrics pr r F1-score pr r F1-score pr r F1-score 
Proposed method (A) 1 1 1 0.75 0.75 0.75 0.60 0.75 0.67 
Density-based 
clustering (B) 1 1 1 0.25 0.33 0.29 0.70 0.64 0.67 

DGCNN with the 
neighbor network (C) 1 1 1 0.67 0.67 0.67 0.70 0.70 0.70 

Key: pr - precision, r - recall 

From Table 6.3, all three methods have generally performed well in segmenting the floor slab 
and wall classes. The proposed method (method A) has an edge advantage in segmenting beams, 
while method B has shown a low performance in this category due to low scores in all metrics 
related to beams. Method B is prone to a lower recall value due to overreliance on the local density 
which fails to distinguish objects in the vicinity which is the case of floor beams and ceilings.  

Method C shows slight advantages in segmenting wall class compared to other methods, which 
is attributed to the pairwise strategy of planes which is required in method A. This means that for 
a wall to be identified and segmented then both planes forming a wall must be detected. 
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6.5. Limitations of the Study 

This study presents a method to segment raw point clouds into meaningful segments of 
structural elements. The approaches proposed in this study have shown the potential to classify 
structural elements in a large and noisy point cloud including other complex settings. However, the 
proposed method is fallen short in various situations.  

First, the method has entirely focused on surface planarity and developed a strategy to detect 
and perform classification based on that. However, there is a significantly large stock of buildings 
built with non-planar members such as circular columns and beams. In that way, the proposed 
method should develop more adaptable techniques for incorporating different profiles and shapes 
of structural members. Also, the method was observed to be vulnerable to elements with relatively 
smaller surfaces such as the vertical sides of beams which is attributed to the reliance on planar 
patches in identifying these elements. Supplement techniques for dealing with smaller surfaces 
should be developed to solve this challenge.  

Secondly, the research has not given enough attention to the points falling between the 
intersection lines of two or more patches and properly assign them to the respective patch as 
illustrated in Figure 6.18. This is an important aspect that is referred to as the boundary 
regularization process and is important for 3D remodeling (Macher et al., 2017; Z. Su et al., 2022). 
Assigning points falling on the intersection line to an appropriate surface patch will further improve 
the segmentation process.  

Thirdly, from the experimental results, we have observed that our method is not performing 
well to classify the unpaired surface patches as the result of occlusions. Ways which can improve 
the approach towards classifying the single planes are essential, especially dealing with buildings 
with small rooms where the presence of small objects can occlude a larger part of its walls.  

Finally, additional experiments with different settings should be performed to further validate 
the robustness of the proposed method. The proposed method has only been tested on a regular 
rectangular building with minimal variations of floor layouts and configuration of the main 
components. Further tests on other environments are necessary to evaluate the performance of the 
proposed method and recognize other areas of improvement. Also, other structural members should 
be incorporated such as stairs, outdoor suspended slabs (e.g., canopies), and cantilever beams. 
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Figure 6. 18 Intersection points between two colliding planar patches. 
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7.1. Introduction 

The final chapter of this paper serves two objectives - firstly, to demonstrate the key 
conclusions resulting from the proposed methods presented in this study, and secondly, to suggest 
potential avenues for future research based on the limitations associated with the proposed method. 
The conclusions are drawn based on their relevance to the objectives pursued in the thesis and the 
three research questions outlined in chapter 1. 

7.2. Conclusion 

Research question 1: How to efficiently and accurately detect local features associated with planar 
surfaces from a large 3D point cloud that contains a high amount of noise and artifacts? 

The task here is three-fold: dealing with the large point cloud, solving the challenge of noises 
and clutter situations, and detecting surface planarity while facing the mentioned challenges. The 
first solution to handle the large size point cloud is to divide the point cloud and deal with small 
portions one at a time, but rather in our approach, the point cloud is recursively divided, and each 
portion is connected to the original source along with the rest of other portions on the same level 
and any of the portions that would result from the proceeding divisions. Hence, the adoption of an 
octree-based voxelization helped to solve this by subdividing the point cloud into smaller sets using 
the octree structure where each octree (node) is connected to its parent octree (node). Then, points 
are allocated to each octree and stored in a voxel where it’s easier to estimate the local attributes 
of points. The division is regulated to allow the optimum number of points to be stored in each 
voxel for statistical computations. The proposed partition involves a maximum depth of Ѱmax = 6, 
and the minimum number of points per voxel is Ꜫmin = 30, whichever is reached earlier. This 
approach minimized the number of samples to deal with so as is the amount of noise and clutters, 
hence the PCA and plane fitting operations were less challenged since they are sensitive to outliers 
(noises). Hence instead of performing computations on the 66,997,720 points all at once, much 
lesser points are processed simultaneously. Therefore, by utilizing voxelization, the detection 
process is made more efficient and accurate while reducing the impact of noise and clutter in the 
original point cloud data. 

The proposed method was able to detect about 1,487,525 minimal planar patches which are 
subsequently merged based on empirical similarities and proximities. It was noted that fake or 
spurious patches were also detected in the process which required more computation power to deal 
with, even though they were later rectified by discarding them due to lack of pairing partners. 
However, this challenge should further be improved to reduce the computation memory and time.  

Research question 2: How to effectively determine the remote and disconnected planar patches 
in a point cloud belonging to the same surface of a particular structural element? 

The main challenge in dealing with surface patches that are infected with missing points is to 
find which patches are deduced from a similar object. Point clouds containing occlusions, which 
are common for those acquired from the built assets, often result in disconnected patches often 
referred to as incomplete patches. The study has proposed a pairwise grouping of planar patches 
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by incorporating the spatial coordination of parallel patches in the neighborhood designed to 
assimilate the surface topology of structural elements. The grouped pairs of planes herein referred 
to as principal patches, are empirically spanned to allocate the candidate points representing the 
same surface. The process then continues to dispatch outliers and validate the planarity of the 
provisional inlier points by inferring the main direction of the respective principal patches. The 
proposed method managed to allocate and accommodate true coplanar points and patches that 
belong to a similar surface of the global representation. However, several points were still left out 
unassigned to either of the spanned planes which contributed to a higher FN value (false negative) 
of floor beams especially for the vertical sides. This was caused by the small sizes of patches 
corresponding to the vertical sides of beams which were difficult to detect.  

Research question 3: What are the necessary aspects to consider in segmenting structural elements 
from the non-structural elements and secondary objects present in the point cloud scene? 

To answer this question, this paper presents the concept of spatial dependency of structural 
systems of buildings which describes the connectivity of common building elements in terms of 
their locations, orientations, and functional connectivity. The concept is aggregated with the spatial 
information derived from the detected planar patches to establish meaning linkage and connection 
with the global attributes of structural elements. The features of planar patches associated with their 
spatial proximity, orientations, and locations helped to determine whether they belong to a 
particular structural element. The proposed method has been able to classify and segment points in 
their respective planar patches. This allowed for accurate segmentation of the structural elements 
in the point cloud scene. 

The performance of the proposed method was assessed both qualitatively and quantitatively. 
The test results generally produced positive results, with each element being satisfactorily 
segmented. The floor slabs were 100% detected and segmented. The constituent surfaces 
composing the floor slabs (ceilings and floors) were also perfectly identified. The floor beams 
showed a promising performance with a precision rate of 62% and the ability to positively recall 
88% of beams. Good results were also observed in detecting the walls, where the approach was 
performed at a precision rate of 65% and with the ability to recall 83% of walls, while the worst-
case scenario was observed at 58% only. Most of the class elements were appropriately labeled. 
We also compared our proposed method with other recent and reputable segmentation methods 
related to built assets and the performance results in segmenting walls and floors were closely 
similar, while our proposed method performed better in segmenting floor beams 

7.3. Outlook 

The main objective of this thesis was to identify and reconstruct building objects from the 
construction site and built environment. While this goal has been achieved, there is still room for 
further improvement. In the future, the following areas would be explored and examined. 

The octree-voxelization structure should be designed to be more adaptable. The resolution of 
the voxels which covers the size and population of samples in the voxel should be guided with 
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lesser of tuning parameters, which also applies to other selected thresholds used in the study. The 
proposed methods have been shown to incline much about setting the parameters which would not 
fit every situation.  

The use of surface planarity could be further optimized. The proposed method has identified 
structural elements by identifying planar surfaces in the point cloud data while disregarding other 
potential characteristics or attributes that could be used to identify and segment the elements. This 
may limit the accuracy or completeness of the segmentation results, especially if some structural 
elements are not predominantly planar or if non-structural elements share similar planar surfaces 
with the structural ones. 

One of the primary objectives of this study is to enhance automation in the segmentation 
pipeline, by utilizing more efficient algorithms and methods to further enhance the performance. 
However, deep learning methods have increasingly been reported to have more significant 
advantages over hand-crafted features, resulting in better distinctiveness and less time-consuming. 
The utilization of newly developed neural networks and our proposed method can assist in 
overcoming the limitations of dataset acquisition by filling in missing points caused by occlusion 
which is a critical challenge to overcome. 

At last, further developments should be consummated in the direction of efficient and parallel 
operations which can permit an increase in time efficiency. The current operations have involved 
different equipment and programs from point cloud registration, feature estimation, plane fitting, 
and merging of planar patches, to the resulting segmentation. This way it can increase the speed 
and reduce the time required to process the point cloud data. By doing so, the method can become 
more practical and useful for real-world applications where processing large amounts of data in a 
short amount of time is critical. The author believes that by making these improvements, the 
method can achieve better performance and become a more valuable tool for researchers and 
practitioners in the field. 
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Appendix I – As-Built Floor Plan 
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Appendix II – Site Images 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



113 

 

External 
scan location - 501 scan location - 502 scan location - 503 

scan location - 504 scan location - 505 scan location - 506 

scan location - 507 scan location - 508 scan location - 509 

scan location - 510 scan location - 511 scan location - 512 

Internal 
scan location - 3 scan location - 4 scan location - 5 



114 

 

scan location - 6 scan location - 7 scan location - 8 

  
scan location - 9 scan location - 10 scan location - 11 

  
scan location - 12 scan location - 13 scan location - 14 

  
scan location - 15 scan location - 16 scan location - 17 

  
scan location - 18 scan location - 19 scan location - 20 

  
scan location - 21 scan location - 22 scan location - 23 

  
scan location - 24 scan location - 25 scan location - 26 



115 

 

  
scan location - 27 scan location - 28 scan location - 29 

  
scan location - 30 scan location - 31 scan location - 32 

  
scan location - 205 scan location - 206 scan location - 207 

  
scan location - 208 scan location - 209 scan location - 210 

  
scan location - 211 scan location - 212 scan location - 213 

  

scan location - 214 scan location - 215 scan location - 216 



116 

 

  
scan location - 217 scan location - 218 scan location - 219 

  
scan location - 220 scan location - 221 scan location - 222 

  
scan location - 223 scan location - 224 scan location - 225 

  
scan location - 226 scan location - 227 scan location - 228 

  
scan location - 229 scan location - 230 scan location - 231 

  
scan location - 232 scan location - 233 scan location - 234 



117 

 

  
scan location - 235 scan location - 236 scan location - 237 

  
scan location - 238 scan location - 239 scan location - 240 

  
scan location - 241 scan location - 242 scan location - 243 

  
scan location - 244 scan location - 245 scan location - 246 

  
scan location - 247 scan location - 248 scan location - 249 

  
scan location - 250 scan location - 251 scan location - 252 



118 

 

  
scan location - 253 scan location - 254 scan location - 255 

  
scan location - 256 scan location - 257 scan location - 258 

  
scan location - 259 scan location - 260 scan location - 261 

  
scan location - 262 scan location - 263 scan location - 264 

  
scan location - 265 scan location - 266 scan location - 267 

  
 

 

 



119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix III - Octree Subdivisions 
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OCTREE.TRAVERSE(F_traverse)  
0: Internal node at depth 0 has 8 children and 30129150 points ([-6.9859317  29.94105975  6.07359346]) 
    0: Internal node at depth 1 has 8 children and 5029004 points ([-6.9859317  29.94105975  6.07359346]) 
        0: Internal node at depth 2 has 4 children and 324915 points ([-6.9859317  29.94105975  6.07359346]) 
            1: Internal node at depth 3 has 8 children and 60815 points ([-6.8596817  29.94105975  6.07359346]) 
                0: Internal node at depth 4 has 1 children and 1406 points ([-6.8596817  29.94105975  6.07359346]) 
                    7: Internal node at depth 5 has 2 children and 1406 points ([-6.8281192  29.97262225  6.10515596]) 
                        5: Leaf node at depth 6 has 645 points with origin [-6.81233795 29.97262225  6.12093721] 
                        7: Leaf node at depth 6 has 761 points with origin [-6.81233795 29.9884035   6.12093721] 
                1: Internal node at depth 4 has 2 children and 2693 points ([-6.7965567  29.94105975  6.07359346]) 
                    6: Internal node at depth 5 has 6 children and 1124 points ([-6.7965567  29.97262225  6.10515596]) 
                        0: Leaf node at depth 6 has 22 points with origin [-6.7965567  29.97262225  6.10515596] 
                        1: Leaf node at depth 6 has 4 points with origin [-6.78077545 29.97262225  6.10515596] 
                        4: Leaf node at depth 6 has 138 points with origin [-6.7965567  29.97262225  6.12093721] 
                        5: Leaf node at depth 6 has 7 points with origin [-6.78077545 29.97262225  6.12093721] 
                        6: Leaf node at depth 6 has 363 points with origin [-6.7965567  29.9884035   6.12093721] 
                        7: Leaf node at depth 6 has 590 points with origin [-6.78077545 29.9884035   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 1569 points ([-6.7649942  29.97262225  6.10515596]) 
                        4: Leaf node at depth 6 has 56 points with origin [-6.7649942  29.97262225  6.12093721] 
                        5: Leaf node at depth 6 has 167 points with origin [-6.74921295 29.97262225  6.12093721] 
                        6: Leaf node at depth 6 has 508 points with origin [-6.7649942  29.9884035   6.12093721] 
                        7: Leaf node at depth 6 has 838 points with origin [-6.74921295 29.9884035   6.12093721] 
                2: Internal node at depth 4 has 2 children and 3118 points ([-6.8596817  30.00418475  6.07359346]) 
                    5: Internal node at depth 5 has 2 children and 1463 points ([-6.8281192  30.00418475  6.10515596]) 
                        5: Leaf node at depth 6 has 716 points with origin [-6.81233795 30.00418475  6.12093721] 
                        7: Leaf node at depth 6 has 747 points with origin [-6.81233795 30.019966    6.12093721] 
                    7: Internal node at depth 5 has 2 children and 1655 points ([-6.8281192  30.03574725  6.10515596]) 
                        5: Leaf node at depth 6 has 822 points with origin [-6.81233795 30.03574725  6.12093721] 
                        7: Leaf node at depth 6 has 833 points with origin [-6.81233795 30.0515285   6.12093721] 
                3: Internal node at depth 4 has 4 children and 9599 points ([-6.7965567  30.00418475  6.07359346]) 
                    4: Internal node at depth 5 has 4 children and 2729 points ([-6.7965567  30.00418475  6.10515596]) 
                        4: Leaf node at depth 6 has 344 points with origin [-6.7965567  30.00418475  6.12093721] 
                        5: Leaf node at depth 6 has 740 points with origin [-6.78077545 30.00418475  6.12093721] 
                        6: Leaf node at depth 6 has 567 points with origin [-6.7965567  30.019966    6.12093721] 
                        7: Leaf node at depth 6 has 1078 points with origin [-6.78077545 30.019966    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 731 points ([-6.7649942  30.00418475  6.10515596]) 
                        4: Leaf node at depth 6 has 220 points with origin [-6.7649942  30.00418475  6.12093721] 
                        5: Leaf node at depth 6 has 53 points with origin [-6.74921295 30.00418475  6.12093721] 
                        6: Leaf node at depth 6 has 455 points with origin [-6.7649942  30.019966    6.12093721] 
                        7: Leaf node at depth 6 has 3 points with origin [-6.74921295 30.019966    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 2849 points ([-6.7965567  30.03574725  6.10515596]) 
                        4: Leaf node at depth 6 has 691 points with origin [-6.7965567  30.03574725  6.12093721] 
                        5: Leaf node at depth 6 has 746 points with origin [-6.78077545 30.03574725  6.12093721] 
                        6: Leaf node at depth 6 has 708 points with origin [-6.7965567  30.0515285   6.12093721] 
                        7: Leaf node at depth 6 has 704 points with origin [-6.78077545 30.0515285   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 3290 points ([-6.7649942  30.03574725  6.10515596]) 
                        4: Leaf node at depth 6 has 811 points with origin [-6.7649942  30.03574725  6.12093721] 
                        5: Leaf node at depth 6 has 371 points with origin [-6.74921295 30.03574725  6.12093721] 
                        6: Leaf node at depth 6 has 707 points with origin [-6.7649942  30.0515285   6.12093721] 
                        7: Leaf node at depth 6 has 1401 points with origin [-6.74921295 30.0515285   6.12093721] 
                4: Internal node at depth 4 has 3 children and 6009 points ([-6.8596817  29.94105975  6.13671846]) 
                    3: Internal node at depth 5 has 4 children and 2880 points ([-6.8281192  29.97262225  6.13671846]) 
                        1: Leaf node at depth 6 has 723 points with origin [-6.81233795 29.97262225  6.13671846] 
                        3: Leaf node at depth 6 has 705 points with origin [-6.81233795 29.9884035   6.13671846] 
                        5: Leaf node at depth 6 has 726 points with origin [-6.81233795 29.97262225  6.15249971] 
                        7: Leaf node at depth 6 has 726 points with origin [-6.81233795 29.9884035   6.15249971] 
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                    5: Internal node at depth 5 has 1 children and 18 points ([-6.8281192  29.94105975  6.16828096]) 
                    7: Internal node at depth 5 has 4 children and 3111 points ([-6.8281192  29.97262225  6.16828096]) 
                        1: Leaf node at depth 6 has 840 points with origin [-6.81233795 29.97262225  6.16828096] 
                        3: Leaf node at depth 6 has 738 points with origin [-6.81233795 29.9884035   6.16828096] 
                        5: Leaf node at depth 6 has 809 points with origin [-6.81233795 29.97262225  6.18406221] 
                        7: Leaf node at depth 6 has 724 points with origin [-6.81233795 29.9884035   6.18406221] 
                5: Internal node at depth 4 has 7 children and 17646 points ([-6.7965567  29.94105975  6.13671846]) 
                    1: Internal node at depth 5 has 3 children and 85 points ([-6.7649942  29.94105975  6.13671846]) 
                        0: Leaf node at depth 6 has 1 points with origin [-6.7649942  29.94105975  6.13671846] 
                        4: Leaf node at depth 6 has 26 points with origin [-6.7649942  29.94105975  6.15249971] 
                        5: Leaf node at depth 6 has 58 points with origin [-6.74921295 29.94105975  6.15249971] 
                    2: Internal node at depth 5 has 7 children and 2385 points ([-6.7965567  29.97262225  6.13671846]) 
                        0: Leaf node at depth 6 has 341 points with origin [-6.7965567  29.97262225  6.13671846] 
                        2: Leaf node at depth 6 has 46 points with origin [-6.7965567  29.9884035   6.13671846] 
                        3: Leaf node at depth 6 has 780 points with origin [-6.78077545 29.9884035   6.13671846] 
                        4: Leaf node at depth 6 has 469 points with origin [-6.7965567  29.97262225  6.15249971] 
                        5: Leaf node at depth 6 has 161 points with origin [-6.78077545 29.97262225  6.15249971] 
                        6: Leaf node at depth 6 has 8 points with origin [-6.7965567  29.9884035   6.15249971] 
                        7: Leaf node at depth 6 has 580 points with origin [-6.78077545 29.9884035   6.15249971] 
                    3: Internal node at depth 5 has 8 children and 3772 points ([-6.7649942  29.97262225  6.13671846]) 
                        0: Leaf node at depth 6 has 29 points with origin [-6.7649942  29.97262225  6.13671846] 
                        1: Leaf node at depth 6 has 538 points with origin [-6.74921295 29.97262225  6.13671846] 
                        2: Leaf node at depth 6 has 787 points with origin [-6.7649942  29.9884035   6.13671846] 
                        3: Leaf node at depth 6 has 483 points with origin [-6.74921295 29.9884035   6.13671846] 
                        4: Leaf node at depth 6 has 419 points with origin [-6.7649942  29.97262225  6.15249971] 
                        5: Leaf node at depth 6 has 1023 points with origin [-6.74921295 29.97262225  6.15249971] 
                        6: Leaf node at depth 6 has 405 points with origin [-6.7649942  29.9884035   6.15249971] 
                        7: Leaf node at depth 6 has 88 points with origin [-6.74921295 29.9884035   6.15249971] 
                    4: Internal node at depth 5 has 4 children and 1473 points ([-6.7965567  29.94105975  6.16828096]) 
                        0: Leaf node at depth 6 has 18 points with origin [-6.7965567  29.94105975  6.16828096] 
                        1: Leaf node at depth 6 has 351 points with origin [-6.78077545 29.94105975  6.16828096] 
                        4: Leaf node at depth 6 has 405 points with origin [-6.7965567  29.94105975  6.18406221] 
                        5: Leaf node at depth 6 has 699 points with origin [-6.78077545 29.94105975  6.18406221] 
                    5: Internal node at depth 5 has 4 children and 2891 points ([-6.7649942  29.94105975  6.16828096]) 
                        0: Leaf node at depth 6 has 572 points with origin [-6.7649942  29.94105975  6.16828096] 
                        1: Leaf node at depth 6 has 744 points with origin [-6.74921295 29.94105975  6.16828096] 
                        4: Leaf node at depth 6 has 770 points with origin [-6.7649942  29.94105975  6.18406221] 
                        5: Leaf node at depth 6 has 805 points with origin [-6.74921295 29.94105975  6.18406221] 
                    6: Internal node at depth 5 has 4 children and 3242 points ([-6.7965567  29.97262225  6.16828096]) 
                        0: Leaf node at depth 6 has 776 points with origin [-6.7965567  29.97262225  6.16828096] 
                        1: Leaf node at depth 6 has 971 points with origin [-6.78077545 29.97262225  6.16828096] 
                        4: Leaf node at depth 6 has 743 points with origin [-6.7965567  29.97262225  6.18406221] 
                        5: Leaf node at depth 6 has 752 points with origin [-6.78077545 29.97262225  6.18406221] 
                    7: Internal node at depth 5 has 4 children and 3798 points ([-6.7649942  29.97262225  6.16828096]) 
                        0: Leaf node at depth 6 has 1042 points with origin [-6.7649942  29.97262225  6.16828096] 
                        1: Leaf node at depth 6 has 1154 points with origin [-6.74921295 29.97262225  6.16828096] 
                        4: Leaf node at depth 6 has 712 points with origin [-6.7649942  29.97262225  6.18406221] 
                        5: Leaf node at depth 6 has 890 points with origin [-6.74921295 29.97262225  6.18406221] 
                6: Internal node at depth 4 has 4 children and 16944 points ([-6.8596817  30.00418475  6.13671846]) 
                    1: Internal node at depth 5 has 4 children and 2809 points ([-6.8281192  30.00418475  6.13671846]) 
                        1: Leaf node at depth 6 has 718 points with origin [-6.81233795 30.00418475  6.13671846] 
                        3: Leaf node at depth 6 has 695 points with origin [-6.81233795 30.019966    6.13671846] 
                        5: Leaf node at depth 6 has 691 points with origin [-6.81233795 30.00418475  6.15249971] 
                        7: Leaf node at depth 6 has 705 points with origin [-6.81233795 30.019966    6.15249971] 
                    3: Internal node at depth 5 has 4 children and 3292 points ([-6.8281192  30.03574725  6.13671846]) 
                        1: Leaf node at depth 6 has 855 points with origin [-6.81233795 30.03574725  6.13671846] 
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                        3: Leaf node at depth 6 has 906 points with origin [-6.81233795 30.0515285   6.13671846] 
                        5: Leaf node at depth 6 has 775 points with origin [-6.81233795 30.03574725  6.15249971] 
                        7: Leaf node at depth 6 has 756 points with origin [-6.81233795 30.0515285   6.15249971] 
                    5: Internal node at depth 5 has 6 children and 4713 points ([-6.8281192  30.00418475  6.16828096]) 
                        1: Leaf node at depth 6 has 650 points with origin [-6.81233795 30.00418475  6.16828096] 
                        2: Leaf node at depth 6 has 451 points with origin [-6.8281192  30.019966    6.16828096] 
                        3: Leaf node at depth 6 has 1322 points with origin [-6.81233795 30.019966    6.16828096] 
                        5: Leaf node at depth 6 has 674 points with origin [-6.81233795 30.00418475  6.18406221] 
                        6: Leaf node at depth 6 has 283 points with origin [-6.8281192  30.019966    6.18406221] 
                        7: Leaf node at depth 6 has 1333 points with origin [-6.81233795 30.019966    6.18406221] 
                    7: Internal node at depth 5 has 6 children and 6130 points ([-6.8281192  30.03574725  6.16828096]) 
                        0: Leaf node at depth 6 has 379 points with origin [-6.8281192  30.03574725  6.16828096] 
                        1: Leaf node at depth 6 has 1571 points with origin [-6.81233795 30.03574725  6.16828096] 
                        2: Leaf node at depth 6 has 427 points with origin [-6.8281192  30.0515285   6.16828096] 
                        3: Leaf node at depth 6 has 1590 points with origin [-6.81233795 30.0515285   6.16828096] 
                        5: Leaf node at depth 6 has 1143 points with origin [-6.81233795 30.03574725  6.18406221] 
                        7: Leaf node at depth 6 has 1020 points with origin [-6.81233795 30.0515285   6.18406221] 
                7: Internal node at depth 4 has 2 children and 3400 points ([-6.7965567  30.00418475  6.13671846]) 
                    1: Internal node at depth 5 has 4 children and 1170 points ([-6.7649942  30.00418475  6.13671846]) 
                        1: Leaf node at depth 6 has 35 points with origin [-6.74921295 30.00418475  6.13671846] 
                        2: Leaf node at depth 6 has 36 points with origin [-6.7649942  30.019966    6.13671846] 
                        3: Leaf node at depth 6 has 324 points with origin [-6.74921295 30.019966    6.13671846] 
                        7: Leaf node at depth 6 has 775 points with origin [-6.74921295 30.019966    6.15249971] 
                    3: Internal node at depth 5 has 4 children and 2230 points ([-6.7649942  30.03574725  6.13671846]) 
                        0: Leaf node at depth 6 has 196 points with origin [-6.7649942  30.03574725  6.13671846] 
                        1: Leaf node at depth 6 has 1739 points with origin [-6.74921295 30.03574725  6.13671846] 
                        3: Leaf node at depth 6 has 157 points with origin [-6.74921295 30.0515285   6.13671846] 
                        5: Leaf node at depth 6 has 138 points with origin [-6.74921295 30.03574725  6.15249971] 
            3: Internal node at depth 3 has 8 children and 56934 points ([-6.8596817  30.06730975  6.07359346]) 
                0: Internal node at depth 4 has 1 children and 805 points ([-6.8596817  30.06730975  6.07359346]) 
                    5: Internal node at depth 5 has 2 children and 805 points ([-6.8281192  30.06730975  6.10515596]) 
                        5: Leaf node at depth 6 has 632 points with origin [-6.81233795 30.06730975  6.12093721] 
                        7: Leaf node at depth 6 has 173 points with origin [-6.81233795 30.083091    6.12093721] 
                1: Internal node at depth 4 has 4 children and 10515 points ([-6.7965567  30.06730975  6.07359346]) 
                    4: Internal node at depth 5 has 5 children and 2350 points ([-6.7965567  30.06730975  6.10515596]) 
                        2: Leaf node at depth 6 has 2 points with origin [-6.7965567  30.083091    6.10515596] 
                        4: Leaf node at depth 6 has 703 points with origin [-6.7965567  30.06730975  6.12093721] 
                        5: Leaf node at depth 6 has 740 points with origin [-6.78077545 30.06730975  6.12093721] 
                        6: Leaf node at depth 6 has 373 points with origin [-6.7965567  30.083091    6.12093721] 
                        7: Leaf node at depth 6 has 532 points with origin [-6.78077545 30.083091    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 3089 points ([-6.7649942  30.06730975  6.10515596]) 
                        4: Leaf node at depth 6 has 680 points with origin [-6.7649942  30.06730975  6.12093721] 
                        5: Leaf node at depth 6 has 737 points with origin [-6.74921295 30.06730975  6.12093721] 
                        6: Leaf node at depth 6 has 908 points with origin [-6.7649942  30.083091    6.12093721] 
                        7: Leaf node at depth 6 has 764 points with origin [-6.74921295 30.083091    6.12093721] 
                    6: Internal node at depth 5 has 2 children and 931 points ([-6.7965567  30.09887225  6.10515596]) 
                        5: Leaf node at depth 6 has 358 points with origin [-6.78077545 30.09887225  6.12093721] 
                        7: Leaf node at depth 6 has 573 points with origin [-6.78077545 30.1146535   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 4145 points ([-6.7649942  30.09887225  6.10515596]) 
                        4: Leaf node at depth 6 has 1558 points with origin [-6.7649942  30.09887225  6.12093721] 
                        5: Leaf node at depth 6 has 736 points with origin [-6.74921295 30.09887225  6.12093721] 
                        6: Leaf node at depth 6 has 1076 points with origin [-6.7649942  30.1146535   6.12093721] 
                        7: Leaf node at depth 6 has 775 points with origin [-6.74921295 30.1146535   6.12093721] 
                2: Internal node at depth 4 has 2 children and 29 points ([-6.8596817  30.13043475  6.07359346]) 
                3: Internal node at depth 4 has 2 children and 6645 points ([-6.7965567  30.13043475  6.07359346]) 
                    5: Internal node at depth 5 has 4 children and 3522 points ([-6.7649942  30.13043475  6.10515596]) 
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                        4: Leaf node at depth 6 has 647 points with origin [-6.7649942  30.13043475  6.12093721] 
                        5: Leaf node at depth 6 has 1124 points with origin [-6.74921295 30.13043475  6.12093721] 
                        6: Leaf node at depth 6 has 198 points with origin [-6.7649942  30.146216    6.12093721] 
                        7: Leaf node at depth 6 has 1553 points with origin [-6.74921295 30.146216    6.12093721] 
                    7: Internal node at depth 5 has 3 children and 3123 points ([-6.7649942  30.16199725  6.10515596]) 
                        5: Leaf node at depth 6 has 1564 points with origin [-6.74921295 30.16199725  6.12093721] 
                        6: Leaf node at depth 6 has 13 points with origin [-6.7649942  30.1777785   6.12093721] 
                        7: Leaf node at depth 6 has 1546 points with origin [-6.74921295 30.1777785   6.12093721] 
                4: Internal node at depth 4 has 4 children and 8434 points ([-6.8596817  30.06730975  6.13671846]) 
                    1: Internal node at depth 5 has 3 children and 976 points ([-6.8281192  30.06730975  6.13671846]) 
                        1: Leaf node at depth 6 has 498 points with origin [-6.81233795 30.06730975  6.13671846] 
                        3: Leaf node at depth 6 has 117 points with origin [-6.81233795 30.083091    6.13671846] 
                        5: Leaf node at depth 6 has 361 points with origin [-6.81233795 30.06730975  6.15249971] 
                    3: Internal node at depth 5 has 2 children and 3 points ([-6.8281192  30.09887225  6.13671846]) 
                    5: Internal node at depth 5 has 8 children and 3979 points ([-6.8281192  30.06730975  6.16828096]) 
                        0: Leaf node at depth 6 has 424 points with origin [-6.8281192  30.06730975  6.16828096] 
                        1: Leaf node at depth 6 has 863 points with origin [-6.81233795 30.06730975  6.16828096] 
                        2: Leaf node at depth 6 has 622 points with origin [-6.8281192  30.083091    6.16828096] 
                        3: Leaf node at depth 6 has 228 points with origin [-6.81233795 30.083091    6.16828096] 
                        4: Leaf node at depth 6 has 16 points with origin [-6.8281192  30.06730975  6.18406221] 
                        5: Leaf node at depth 6 has 850 points with origin [-6.81233795 30.06730975  6.18406221] 
                        6: Leaf node at depth 6 has 317 points with origin [-6.8281192  30.083091    6.18406221] 
                        7: Leaf node at depth 6 has 659 points with origin [-6.81233795 30.083091    6.18406221] 
                    7: Internal node at depth 5 has 8 children and 3476 points ([-6.8281192  30.09887225  6.16828096]) 
                        0: Leaf node at depth 6 has 606 points with origin [-6.8281192  30.09887225  6.16828096] 
                        1: Leaf node at depth 6 has 204 points with origin [-6.81233795 30.09887225  6.16828096] 
                        2: Leaf node at depth 6 has 537 points with origin [-6.8281192  30.1146535   6.16828096] 
                        3: Leaf node at depth 6 has 186 points with origin [-6.81233795 30.1146535   6.16828096] 
                        4: Leaf node at depth 6 has 129 points with origin [-6.8281192  30.09887225  6.18406221] 
                        5: Leaf node at depth 6 has 885 points with origin [-6.81233795 30.09887225  6.18406221] 
                        6: Leaf node at depth 6 has 79 points with origin [-6.8281192  30.1146535   6.18406221] 
                        7: Leaf node at depth 6 has 850 points with origin [-6.81233795 30.1146535   6.18406221] 
                5: Internal node at depth 4 has 7 children and 11203 points ([-6.7965567  30.06730975  6.13671846]) 
                    0: Internal node at depth 5 has 2 children and 14 points ([-6.7965567  30.06730975  6.13671846]) 
                    1: Internal node at depth 5 has 2 children and 678 points ([-6.7649942  30.06730975  6.13671846]) 
                        2: Leaf node at depth 6 has 286 points with origin [-6.7649942  30.083091    6.13671846] 
                        6: Leaf node at depth 6 has 392 points with origin [-6.7649942  30.083091    6.15249971] 
                    2: Internal node at depth 5 has 3 children and 114 points ([-6.7965567  30.09887225  6.13671846]) 
                        1: Leaf node at depth 6 has 12 points with origin [-6.78077545 30.09887225  6.13671846] 
                        3: Leaf node at depth 6 has 96 points with origin [-6.78077545 30.1146535   6.13671846] 
                        7: Leaf node at depth 6 has 6 points with origin [-6.78077545 30.1146535   6.15249971] 
                    3: Internal node at depth 5 has 5 children and 4033 points ([-6.7649942  30.09887225  6.13671846]) 
                        0: Leaf node at depth 6 has 1250 points with origin [-6.7649942  30.09887225  6.13671846] 
                        2: Leaf node at depth 6 has 1185 points with origin [-6.7649942  30.1146535   6.13671846] 
                        4: Leaf node at depth 6 has 761 points with origin [-6.7649942  30.09887225  6.15249971] 
                        6: Leaf node at depth 6 has 608 points with origin [-6.7649942  30.1146535   6.15249971] 
                        7: Leaf node at depth 6 has 229 points with origin [-6.74921295 30.1146535   6.15249971] 
                    4: Internal node at depth 5 has 4 children and 186 points ([-6.7965567  30.06730975  6.16828096]) 
                        1: Leaf node at depth 6 has 38 points with origin [-6.78077545 30.06730975  6.16828096] 
                        3: Leaf node at depth 6 has 74 points with origin [-6.78077545 30.083091    6.16828096] 
                        5: Leaf node at depth 6 has 48 points with origin [-6.78077545 30.06730975  6.18406221] 
                        7: Leaf node at depth 6 has 26 points with origin [-6.78077545 30.083091    6.18406221] 
                    5: Internal node at depth 5 has 4 children and 1763 points ([-6.7649942  30.06730975  6.16828096]) 
                        0: Leaf node at depth 6 has 11 points with origin [-6.7649942  30.06730975  6.16828096] 
                        2: Leaf node at depth 6 has 892 points with origin [-6.7649942  30.083091    6.16828096] 
                        4: Leaf node at depth 6 has 18 points with origin [-6.7649942  30.06730975  6.18406221] 
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                        6: Leaf node at depth 6 has 842 points with origin [-6.7649942  30.083091    6.18406221] 
                    7: Internal node at depth 5 has 6 children and 4415 points ([-6.7649942  30.09887225  6.16828096]) 
                        0: Leaf node at depth 6 has 1134 points with origin [-6.7649942  30.09887225  6.16828096] 
                        2: Leaf node at depth 6 has 587 points with origin [-6.7649942  30.1146535   6.16828096] 
                        3: Leaf node at depth 6 has 435 points with origin [-6.74921295 30.1146535   6.16828096] 
                        4: Leaf node at depth 6 has 1035 points with origin [-6.7649942  30.09887225  6.18406221] 
                        6: Leaf node at depth 6 has 748 points with origin [-6.7649942  30.1146535   6.18406221] 
                        7: Leaf node at depth 6 has 476 points with origin [-6.74921295 30.1146535   6.18406221] 
                6: Internal node at depth 4 has 3 children and 2698 points ([-6.8596817  30.13043475  6.13671846]) 
                    1: Internal node at depth 5 has 1 children and 1 points ([-6.8281192  30.13043475  6.13671846]) 
                    5: Internal node at depth 5 has 8 children and 2675 points ([-6.8281192  30.13043475  6.16828096]) 
                        0: Leaf node at depth 6 has 517 points with origin [-6.8281192  30.13043475  6.16828096] 
                        1: Leaf node at depth 6 has 167 points with origin [-6.81233795 30.13043475  6.16828096] 
                        2: Leaf node at depth 6 has 460 points with origin [-6.8281192  30.146216    6.16828096] 
                        3: Leaf node at depth 6 has 2 points with origin [-6.81233795 30.146216    6.16828096] 
                        4: Leaf node at depth 6 has 82 points with origin [-6.8281192  30.13043475  6.18406221] 
                        5: Leaf node at depth 6 has 829 points with origin [-6.81233795 30.13043475  6.18406221] 
                        6: Leaf node at depth 6 has 577 points with origin [-6.8281192  30.146216    6.18406221] 
                        7: Leaf node at depth 6 has 41 points with origin [-6.81233795 30.146216    6.18406221] 
                    7: Internal node at depth 5 has 2 children and 22 points ([-6.8281192  30.16199725  6.16828096]) 
                7: Internal node at depth 4 has 4 children and 16605 points ([-6.7965567  30.13043475  6.13671846]) 
                    1: Internal node at depth 5 has 7 children and 4195 points ([-6.7649942  30.13043475  6.13671846]) 
                        0: Leaf node at depth 6 has 454 points with origin [-6.7649942  30.13043475  6.13671846] 
                        1: Leaf node at depth 6 has 486 points with origin [-6.74921295 30.13043475  6.13671846] 
                        2: Leaf node at depth 6 has 3 points with origin [-6.7649942  30.146216    6.13671846] 
                        3: Leaf node at depth 6 has 945 points with origin [-6.74921295 30.146216    6.13671846] 
                        4: Leaf node at depth 6 has 6 points with origin [-6.7649942  30.13043475  6.15249971] 
                        5: Leaf node at depth 6 has 1178 points with origin [-6.74921295 30.13043475  6.15249971] 
                        7: Leaf node at depth 6 has 1123 points with origin [-6.74921295 30.146216    6.15249971] 
                    3: Internal node at depth 5 has 5 children and 3410 points ([-6.7649942  30.16199725  6.13671846]) 
                        1: Leaf node at depth 6 has 838 points with origin [-6.74921295 30.16199725  6.13671846] 
                        2: Leaf node at depth 6 has 143 points with origin [-6.7649942  30.1777785   6.13671846] 
                        3: Leaf node at depth 6 has 693 points with origin [-6.74921295 30.1777785   6.13671846] 
                        5: Leaf node at depth 6 has 881 points with origin [-6.74921295 30.16199725  6.15249971] 
                        7: Leaf node at depth 6 has 855 points with origin [-6.74921295 30.1777785   6.15249971] 
                    5: Internal node at depth 5 has 4 children and 4642 points ([-6.7649942  30.13043475  6.16828096]) 
                        1: Leaf node at depth 6 has 1141 points with origin [-6.74921295 30.13043475  6.16828096] 
                        3: Leaf node at depth 6 has 1010 points with origin [-6.74921295 30.146216    6.16828096] 
                        5: Leaf node at depth 6 has 1126 points with origin [-6.74921295 30.13043475  6.18406221] 
                        7: Leaf node at depth 6 has 1365 points with origin [-6.74921295 30.146216    6.18406221] 
                    7: Internal node at depth 5 has 6 children and 4358 points ([-6.7649942  30.16199725  6.16828096]) 
                        1: Leaf node at depth 6 has 876 points with origin [-6.74921295 30.16199725  6.16828096] 
                        2: Leaf node at depth 6 has 26 points with origin [-6.7649942  30.1777785   6.16828096] 
                        3: Leaf node at depth 6 has 1003 points with origin [-6.74921295 30.1777785   6.16828096] 
                        5: Leaf node at depth 6 has 1316 points with origin [-6.74921295 30.16199725  6.18406221] 
                        6: Leaf node at depth 6 has 151 points with origin [-6.7649942  30.1777785   6.18406221] 
                        7: Leaf node at depth 6 has 986 points with origin [-6.74921295 30.1777785   6.18406221] 
            5: Internal node at depth 3 has 8 children and 95270 points ([-6.8596817  29.94105975  6.19984346]) 
                0: Internal node at depth 4 has 4 children and 7462 points ([-6.8596817  29.94105975  6.19984346]) 
                    1: Internal node at depth 5 has 2 children and 479 points ([-6.8281192  29.94105975  6.19984346]) 
                        1: Leaf node at depth 6 has 224 points with origin [-6.81233795 29.94105975  6.19984346] 
                        5: Leaf node at depth 6 has 255 points with origin [-6.81233795 29.94105975  6.21562471] 
                    3: Internal node at depth 5 has 4 children and 3223 points ([-6.8281192  29.97262225  6.19984346]) 
                        1: Leaf node at depth 6 has 799 points with origin [-6.81233795 29.97262225  6.19984346] 
                        3: Leaf node at depth 6 has 807 points with origin [-6.81233795 29.9884035   6.19984346] 
                        5: Leaf node at depth 6 has 787 points with origin [-6.81233795 29.97262225  6.21562471] 
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                        7: Leaf node at depth 6 has 830 points with origin [-6.81233795 29.9884035   6.21562471] 
                    5: Internal node at depth 5 has 2 children and 557 points ([-6.8281192  29.94105975  6.23140596]) 
                        1: Leaf node at depth 6 has 276 points with origin [-6.81233795 29.94105975  6.23140596] 
                        5: Leaf node at depth 6 has 281 points with origin [-6.81233795 29.94105975  6.24718721] 
                    7: Internal node at depth 5 has 4 children and 3203 points ([-6.8281192  29.97262225  6.23140596]) 
                        1: Leaf node at depth 6 has 794 points with origin [-6.81233795 29.97262225  6.23140596] 
                        3: Leaf node at depth 6 has 816 points with origin [-6.81233795 29.9884035   6.23140596] 
                        5: Leaf node at depth 6 has 877 points with origin [-6.81233795 29.97262225  6.24718721] 
                        7: Leaf node at depth 6 has 716 points with origin [-6.81233795 29.9884035   6.24718721] 
                1: Internal node at depth 4 has 8 children and 23433 points ([-6.7965567  29.94105975  6.19984346]) 
                    0: Internal node at depth 5 has 4 children and 2706 points ([-6.7965567  29.94105975  6.19984346]) 
                        0: Leaf node at depth 6 has 683 points with origin [-6.7965567  29.94105975  6.19984346] 
                        1: Leaf node at depth 6 has 639 points with origin [-6.78077545 29.94105975  6.19984346] 
                        4: Leaf node at depth 6 has 725 points with origin [-6.7965567  29.94105975  6.21562471] 
                        5: Leaf node at depth 6 has 659 points with origin [-6.78077545 29.94105975  6.21562471] 
                    1: Internal node at depth 5 has 4 children and 3349 points ([-6.7649942  29.94105975  6.19984346]) 
                        0: Leaf node at depth 6 has 791 points with origin [-6.7649942  29.94105975  6.19984346] 
                        1: Leaf node at depth 6 has 788 points with origin [-6.74921295 29.94105975  6.19984346] 
                        4: Leaf node at depth 6 has 733 points with origin [-6.7649942  29.94105975  6.21562471] 
                        5: Leaf node at depth 6 has 1037 points with origin [-6.74921295 29.94105975  6.21562471] 
                    2: Internal node at depth 5 has 4 children and 2893 points ([-6.7965567  29.97262225  6.19984346]) 
                        0: Leaf node at depth 6 has 708 points with origin [-6.7965567  29.97262225  6.19984346] 
                        1: Leaf node at depth 6 has 737 points with origin [-6.78077545 29.97262225  6.19984346] 
                        4: Leaf node at depth 6 has 736 points with origin [-6.7965567  29.97262225  6.21562471] 
                        5: Leaf node at depth 6 has 712 points with origin [-6.78077545 29.97262225  6.21562471] 
                    3: Internal node at depth 5 has 4 children and 2836 points ([-6.7649942  29.97262225  6.19984346]) 
                        0: Leaf node at depth 6 has 692 points with origin [-6.7649942  29.97262225  6.19984346] 
                        1: Leaf node at depth 6 has 685 points with origin [-6.74921295 29.97262225  6.19984346] 
                        4: Leaf node at depth 6 has 733 points with origin [-6.7649942  29.97262225  6.21562471] 
                        5: Leaf node at depth 6 has 726 points with origin [-6.74921295 29.97262225  6.21562471] 
                    4: Internal node at depth 5 has 4 children and 2791 points ([-6.7965567  29.94105975  6.23140596]) 
                        0: Leaf node at depth 6 has 715 points with origin [-6.7965567  29.94105975  6.23140596] 
                        1: Leaf node at depth 6 has 669 points with origin [-6.78077545 29.94105975  6.23140596] 
                        4: Leaf node at depth 6 has 725 points with origin [-6.7965567  29.94105975  6.24718721] 
                        5: Leaf node at depth 6 has 682 points with origin [-6.78077545 29.94105975  6.24718721] 
                    5: Internal node at depth 5 has 4 children and 2752 points ([-6.7649942  29.94105975  6.23140596]) 
                        0: Leaf node at depth 6 has 624 points with origin [-6.7649942  29.94105975  6.23140596] 
                        1: Leaf node at depth 6 has 705 points with origin [-6.74921295 29.94105975  6.23140596] 
                        4: Leaf node at depth 6 has 685 points with origin [-6.7649942  29.94105975  6.24718721] 
                        5: Leaf node at depth 6 has 738 points with origin [-6.74921295 29.94105975  6.24718721] 
                    6: Internal node at depth 5 has 4 children and 2891 points ([-6.7965567  29.97262225  6.23140596]) 
                        0: Leaf node at depth 6 has 684 points with origin [-6.7965567  29.97262225  6.23140596] 
                        1: Leaf node at depth 6 has 697 points with origin [-6.78077545 29.97262225  6.23140596] 
                        4: Leaf node at depth 6 has 725 points with origin [-6.7965567  29.97262225  6.24718721] 
                        5: Leaf node at depth 6 has 785 points with origin [-6.78077545 29.97262225  6.24718721] 
                    7: Internal node at depth 5 has 4 children and 3215 points ([-6.7649942  29.97262225  6.23140596]) 
                        0: Leaf node at depth 6 has 725 points with origin [-6.7649942  29.97262225  6.23140596] 
                        1: Leaf node at depth 6 has 732 points with origin [-6.74921295 29.97262225  6.23140596] 
                        4: Leaf node at depth 6 has 877 points with origin [-6.7649942  29.97262225  6.24718721] 
                        5: Leaf node at depth 6 has 881 points with origin [-6.74921295 29.97262225  6.24718721] 
                2: Internal node at depth 4 has 4 children and 17083 points ([-6.8596817  30.00418475  6.19984346]) 
                    1: Internal node at depth 5 has 6 children and 4594 points ([-6.8281192  30.00418475  6.19984346]) 
                        1: Leaf node at depth 6 has 679 points with origin [-6.81233795 30.00418475  6.19984346] 
                        2: Leaf node at depth 6 has 343 points with origin [-6.8281192  30.019966    6.19984346] 
                        3: Leaf node at depth 6 has 1356 points with origin [-6.81233795 30.019966    6.19984346] 
                        5: Leaf node at depth 6 has 690 points with origin [-6.81233795 30.00418475  6.21562471] 
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                        6: Leaf node at depth 6 has 321 points with origin [-6.8281192  30.019966    6.21562471] 
                        7: Leaf node at depth 6 has 1205 points with origin [-6.81233795 30.019966    6.21562471] 
                    3: Internal node at depth 5 has 8 children and 5047 points ([-6.8281192  30.03574725  6.19984346]) 
                        0: Leaf node at depth 6 has 17 points with origin [-6.8281192  30.03574725  6.19984346] 
                        1: Leaf node at depth 6 has 1243 points with origin [-6.81233795 30.03574725  6.19984346] 
                        2: Leaf node at depth 6 has 109 points with origin [-6.8281192  30.0515285   6.19984346] 
                        3: Leaf node at depth 6 has 1244 points with origin [-6.81233795 30.0515285   6.19984346] 
                        4: Leaf node at depth 6 has 246 points with origin [-6.8281192  30.03574725  6.21562471] 
                        5: Leaf node at depth 6 has 942 points with origin [-6.81233795 30.03574725  6.21562471] 
                        6: Leaf node at depth 6 has 177 points with origin [-6.8281192  30.0515285   6.21562471] 
                        7: Leaf node at depth 6 has 1069 points with origin [-6.81233795 30.0515285   6.21562471] 
                    5: Internal node at depth 5 has 6 children and 4469 points ([-6.8281192  30.00418475  6.23140596]) 
                        1: Leaf node at depth 6 has 684 points with origin [-6.81233795 30.00418475  6.23140596] 
                        2: Leaf node at depth 6 has 324 points with origin [-6.8281192  30.019966    6.23140596] 
                        3: Leaf node at depth 6 has 1107 points with origin [-6.81233795 30.019966    6.23140596] 
                        5: Leaf node at depth 6 has 722 points with origin [-6.81233795 30.00418475  6.24718721] 
                        6: Leaf node at depth 6 has 467 points with origin [-6.8281192  30.019966    6.24718721] 
                        7: Leaf node at depth 6 has 1165 points with origin [-6.81233795 30.019966    6.24718721] 
                    7: Internal node at depth 5 has 8 children and 2973 points ([-6.8281192  30.03574725  6.23140596]) 
                        0: Leaf node at depth 6 has 253 points with origin [-6.8281192  30.03574725  6.23140596] 
                        1: Leaf node at depth 6 has 501 points with origin [-6.81233795 30.03574725  6.23140596] 
                        2: Leaf node at depth 6 has 231 points with origin [-6.8281192  30.0515285   6.23140596] 
                        3: Leaf node at depth 6 has 869 points with origin [-6.81233795 30.0515285   6.23140596] 
                        4: Leaf node at depth 6 has 93 points with origin [-6.8281192  30.03574725  6.24718721] 
                        5: Leaf node at depth 6 has 268 points with origin [-6.81233795 30.03574725  6.24718721] 
                        6: Leaf node at depth 6 has 266 points with origin [-6.8281192  30.0515285   6.24718721] 
                        7: Leaf node at depth 6 has 492 points with origin [-6.81233795 30.0515285   6.24718721] 
                3: Internal node at depth 4 has 3 children and 104 points ([-6.7965567  30.00418475  6.19984346]) 
                    3: Internal node at depth 5 has 2 children and 73 points ([-6.7649942  30.03574725  6.19984346]) 
                        4: Leaf node at depth 6 has 7 points with origin [-6.7649942  30.03574725  6.21562471] 
                        6: Leaf node at depth 6 has 66 points with origin [-6.7649942  30.0515285   6.21562471] 
                    6: Internal node at depth 5 has 1 children and 2 points ([-6.7965567  30.03574725  6.23140596]) 
                    7: Internal node at depth 5 has 3 children and 29 points ([-6.7649942  30.03574725  6.23140596]) 
                4: Internal node at depth 4 has 4 children and 7370 points ([-6.8596817  29.94105975  6.26296846]) 
                    1: Internal node at depth 5 has 2 children and 614 points ([-6.8281192  29.94105975  6.26296846]) 
                        1: Leaf node at depth 6 has 286 points with origin [-6.81233795 29.94105975  6.26296846] 
                        5: Leaf node at depth 6 has 328 points with origin [-6.81233795 29.94105975  6.27874971] 
                    3: Internal node at depth 5 has 4 children and 3187 points ([-6.8281192  29.97262225  6.26296846]) 
                        1: Leaf node at depth 6 has 832 points with origin [-6.81233795 29.97262225  6.26296846] 
                        3: Leaf node at depth 6 has 735 points with origin [-6.81233795 29.9884035   6.26296846] 
                        5: Leaf node at depth 6 has 828 points with origin [-6.81233795 29.97262225  6.27874971] 
                        7: Leaf node at depth 6 has 792 points with origin [-6.81233795 29.9884035   6.27874971] 
                    5: Internal node at depth 5 has 2 children and 615 points ([-6.8281192  29.94105975  6.29453096]) 
                        1: Leaf node at depth 6 has 298 points with origin [-6.81233795 29.94105975  6.29453096] 
                        5: Leaf node at depth 6 has 317 points with origin [-6.81233795 29.94105975  6.31031221] 
                    7: Internal node at depth 5 has 4 children and 2954 points ([-6.8281192  29.97262225  6.29453096]) 
                        1: Leaf node at depth 6 has 779 points with origin [-6.81233795 29.97262225  6.29453096] 
                        3: Leaf node at depth 6 has 706 points with origin [-6.81233795 29.9884035   6.29453096] 
                        5: Leaf node at depth 6 has 791 points with origin [-6.81233795 29.97262225  6.31031221] 
                        7: Leaf node at depth 6 has 678 points with origin [-6.81233795 29.9884035   6.31031221] 
                5: Internal node at depth 4 has 8 children and 24717 points ([-6.7965567  29.94105975  6.26296846]) 
                    0: Internal node at depth 5 has 4 children and 2780 points ([-6.7965567  29.94105975  6.26296846]) 
                        0: Leaf node at depth 6 has 701 points with origin [-6.7965567  29.94105975  6.26296846] 
                        1: Leaf node at depth 6 has 704 points with origin [-6.78077545 29.94105975  6.26296846] 
                        4: Leaf node at depth 6 has 687 points with origin [-6.7965567  29.94105975  6.27874971] 
                        5: Leaf node at depth 6 has 688 points with origin [-6.78077545 29.94105975  6.27874971] 
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                    1: Internal node at depth 5 has 4 children and 3133 points ([-6.7649942  29.94105975  6.26296846]) 
                        0: Leaf node at depth 6 has 672 points with origin [-6.7649942  29.94105975  6.26296846] 
                        1: Leaf node at depth 6 has 817 points with origin [-6.74921295 29.94105975  6.26296846] 
                        4: Leaf node at depth 6 has 754 points with origin [-6.7649942  29.94105975  6.27874971] 
                        5: Leaf node at depth 6 has 890 points with origin [-6.74921295 29.94105975  6.27874971] 
                    2: Internal node at depth 5 has 5 children and 3318 points ([-6.7965567  29.97262225  6.26296846]) 
                        0: Leaf node at depth 6 has 734 points with origin [-6.7965567  29.97262225  6.26296846] 
                        1: Leaf node at depth 6 has 816 points with origin [-6.78077545 29.97262225  6.26296846] 
                        4: Leaf node at depth 6 has 769 points with origin [-6.7965567  29.97262225  6.27874971] 
                        5: Leaf node at depth 6 has 946 points with origin [-6.78077545 29.97262225  6.27874971] 
                        6: Leaf node at depth 6 has 53 points with origin [-6.7965567  29.9884035   6.27874971] 
                    3: Internal node at depth 5 has 4 children and 3222 points ([-6.7649942  29.97262225  6.26296846]) 
                        0: Leaf node at depth 6 has 701 points with origin [-6.7649942  29.97262225  6.26296846] 
                        1: Leaf node at depth 6 has 722 points with origin [-6.74921295 29.97262225  6.26296846] 
                        4: Leaf node at depth 6 has 921 points with origin [-6.7649942  29.97262225  6.27874971] 
                        5: Leaf node at depth 6 has 878 points with origin [-6.74921295 29.97262225  6.27874971] 
                    4: Internal node at depth 5 has 4 children and 2658 points ([-6.7965567  29.94105975  6.29453096]) 
                        0: Leaf node at depth 6 has 654 points with origin [-6.7965567  29.94105975  6.29453096] 
                        1: Leaf node at depth 6 has 671 points with origin [-6.78077545 29.94105975  6.29453096] 
                        4: Leaf node at depth 6 has 692 points with origin [-6.7965567  29.94105975  6.31031221] 
                        5: Leaf node at depth 6 has 641 points with origin [-6.78077545 29.94105975  6.31031221] 
                    5: Internal node at depth 5 has 4 children and 2947 points ([-6.7649942  29.94105975  6.29453096]) 
                        0: Leaf node at depth 6 has 719 points with origin [-6.7649942  29.94105975  6.29453096] 
                        1: Leaf node at depth 6 has 717 points with origin [-6.74921295 29.94105975  6.29453096] 
                        4: Leaf node at depth 6 has 749 points with origin [-6.7649942  29.94105975  6.31031221] 
                        5: Leaf node at depth 6 has 762 points with origin [-6.74921295 29.94105975  6.31031221] 
                    6: Internal node at depth 5 has 4 children and 3551 points ([-6.7965567  29.97262225  6.29453096]) 
                        0: Leaf node at depth 6 has 823 points with origin [-6.7965567  29.97262225  6.29453096] 
                        1: Leaf node at depth 6 has 1135 points with origin [-6.78077545 29.97262225  6.29453096] 
                        4: Leaf node at depth 6 has 790 points with origin [-6.7965567  29.97262225  6.31031221] 
                        5: Leaf node at depth 6 has 803 points with origin [-6.78077545 29.97262225  6.31031221] 
                    7: Internal node at depth 5 has 4 children and 3108 points ([-6.7649942  29.97262225  6.29453096]) 
                        0: Leaf node at depth 6 has 892 points with origin [-6.7649942  29.97262225  6.29453096] 
                        1: Leaf node at depth 6 has 741 points with origin [-6.74921295 29.97262225  6.29453096] 
                        4: Leaf node at depth 6 has 760 points with origin [-6.7649942  29.97262225  6.31031221] 
                        5: Leaf node at depth 6 has 715 points with origin [-6.74921295 29.97262225  6.31031221] 
                6: Internal node at depth 4 has 4 children and 14374 points ([-6.8596817  30.00418475  6.26296846]) 
                    1: Internal node at depth 5 has 6 children and 4581 points ([-6.8281192  30.00418475  6.26296846]) 
                        1: Leaf node at depth 6 has 673 points with origin [-6.81233795 30.00418475  6.26296846] 
                        2: Leaf node at depth 6 has 460 points with origin [-6.8281192  30.019966    6.26296846] 
                        3: Leaf node at depth 6 has 1251 points with origin [-6.81233795 30.019966    6.26296846] 
                        5: Leaf node at depth 6 has 888 points with origin [-6.81233795 30.00418475  6.27874971] 
                        6: Leaf node at depth 6 has 437 points with origin [-6.8281192  30.019966    6.27874971] 
                        7: Leaf node at depth 6 has 872 points with origin [-6.81233795 30.019966    6.27874971] 
                    3: Internal node at depth 5 has 8 children and 4837 points ([-6.8281192  30.03574725  6.26296846]) 
                        0: Leaf node at depth 6 has 212 points with origin [-6.8281192  30.03574725  6.26296846] 
                        1: Leaf node at depth 6 has 668 points with origin [-6.81233795 30.03574725  6.26296846] 
                        2: Leaf node at depth 6 has 248 points with origin [-6.8281192  30.0515285   6.26296846] 
                        3: Leaf node at depth 6 has 802 points with origin [-6.81233795 30.0515285   6.26296846] 
                        4: Leaf node at depth 6 has 477 points with origin [-6.8281192  30.03574725  6.27874971] 
                        5: Leaf node at depth 6 has 938 points with origin [-6.81233795 30.03574725  6.27874971] 
                        6: Leaf node at depth 6 has 546 points with origin [-6.8281192  30.0515285   6.27874971] 
                        7: Leaf node at depth 6 has 946 points with origin [-6.81233795 30.0515285   6.27874971] 
                    5: Internal node at depth 5 has 5 children and 2769 points ([-6.8281192  30.00418475  6.29453096]) 
                        1: Leaf node at depth 6 has 751 points with origin [-6.81233795 30.00418475  6.29453096] 
                        2: Leaf node at depth 6 has 1 points with origin [-6.8281192  30.019966    6.29453096] 
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                        3: Leaf node at depth 6 has 683 points with origin [-6.81233795 30.019966    6.29453096] 
                        5: Leaf node at depth 6 has 642 points with origin [-6.81233795 30.00418475  6.31031221] 
                        7: Leaf node at depth 6 has 692 points with origin [-6.81233795 30.019966    6.31031221] 
                    7: Internal node at depth 5 has 6 children and 2187 points ([-6.8281192  30.03574725  6.29453096]) 
                        0: Leaf node at depth 6 has 1 points with origin [-6.8281192  30.03574725  6.29453096] 
                        1: Leaf node at depth 6 has 673 points with origin [-6.81233795 30.03574725  6.29453096] 
                        2: Leaf node at depth 6 has 1 points with origin [-6.8281192  30.0515285   6.29453096] 
                        3: Leaf node at depth 6 has 448 points with origin [-6.81233795 30.0515285   6.29453096] 
                        5: Leaf node at depth 6 has 673 points with origin [-6.81233795 30.03574725  6.31031221] 
                        7: Leaf node at depth 6 has 391 points with origin [-6.81233795 30.0515285   6.31031221] 
                7: Internal node at depth 4 has 4 children and 727 points ([-6.7965567  30.00418475  6.26296846]) 
                    0: Internal node at depth 5 has 2 children and 213 points ([-6.7965567  30.00418475  6.26296846]) 
                        4: Leaf node at depth 6 has 120 points with origin [-6.7965567  30.00418475  6.27874971] 
                        6: Leaf node at depth 6 has 93 points with origin [-6.7965567  30.019966    6.27874971] 
                    2: Internal node at depth 5 has 2 children and 277 points ([-6.7965567  30.03574725  6.26296846]) 
                        4: Leaf node at depth 6 has 105 points with origin [-6.7965567  30.03574725  6.27874971] 
                        6: Leaf node at depth 6 has 172 points with origin [-6.7965567  30.0515285   6.27874971] 
                    6: Internal node at depth 5 has 2 children and 226 points ([-6.7965567  30.03574725  6.29453096]) 
                        2: Leaf node at depth 6 has 132 points with origin [-6.7965567  30.0515285   6.29453096] 
                        6: Leaf node at depth 6 has 94 points with origin [-6.7965567  30.0515285   6.31031221] 
                    7: Internal node at depth 5 has 1 children and 11 points ([-6.7649942  30.03574725  6.29453096]) 
            7: Internal node at depth 3 has 8 children and 111896 points ([-6.8596817  30.06730975  6.19984346]) 
                0: Internal node at depth 4 has 4 children and 24358 points ([-6.8596817  30.06730975  6.19984346]) 
                    1: Internal node at depth 5 has 8 children and 7184 points ([-6.8281192  30.06730975  6.19984346]) 
                        0: Leaf node at depth 6 has 24 points with origin [-6.8281192  30.06730975  6.19984346] 
                        1: Leaf node at depth 6 has 1404 points with origin [-6.81233795 30.06730975  6.19984346] 
                        2: Leaf node at depth 6 has 546 points with origin [-6.8281192  30.083091    6.19984346] 
                        3: Leaf node at depth 6 has 1388 points with origin [-6.81233795 30.083091    6.19984346] 
                        4: Leaf node at depth 6 has 267 points with origin [-6.8281192  30.06730975  6.21562471] 
                        5: Leaf node at depth 6 has 1488 points with origin [-6.81233795 30.06730975  6.21562471] 
                        6: Leaf node at depth 6 has 619 points with origin [-6.8281192  30.083091    6.21562471] 
                        7: Leaf node at depth 6 has 1448 points with origin [-6.81233795 30.083091    6.21562471] 
                    3: Internal node at depth 5 has 8 children and 7305 points ([-6.8281192  30.09887225  6.19984346]) 
                        0: Leaf node at depth 6 has 583 points with origin [-6.8281192  30.09887225  6.19984346] 
                        1: Leaf node at depth 6 has 1568 points with origin [-6.81233795 30.09887225  6.19984346] 
                        2: Leaf node at depth 6 has 419 points with origin [-6.8281192  30.1146535   6.19984346] 
                        3: Leaf node at depth 6 has 900 points with origin [-6.81233795 30.1146535   6.19984346] 
                        4: Leaf node at depth 6 has 646 points with origin [-6.8281192  30.09887225  6.21562471] 
                        5: Leaf node at depth 6 has 1711 points with origin [-6.81233795 30.09887225  6.21562471] 
                        6: Leaf node at depth 6 has 909 points with origin [-6.8281192  30.1146535   6.21562471] 
                        7: Leaf node at depth 6 has 569 points with origin [-6.81233795 30.1146535   6.21562471] 
                    5: Internal node at depth 5 has 8 children and 6089 points ([-6.8281192  30.06730975  6.23140596]) 
                        0: Leaf node at depth 6 has 341 points with origin [-6.8281192  30.06730975  6.23140596] 
                        1: Leaf node at depth 6 has 1110 points with origin [-6.81233795 30.06730975  6.23140596] 
                        2: Leaf node at depth 6 has 754 points with origin [-6.8281192  30.083091    6.23140596] 
                        3: Leaf node at depth 6 has 1193 points with origin [-6.81233795 30.083091    6.23140596] 
                        4: Leaf node at depth 6 has 241 points with origin [-6.8281192  30.06730975  6.24718721] 
                        5: Leaf node at depth 6 has 612 points with origin [-6.81233795 30.06730975  6.24718721] 
                        6: Leaf node at depth 6 has 822 points with origin [-6.8281192  30.083091    6.24718721] 
                        7: Leaf node at depth 6 has 1016 points with origin [-6.81233795 30.083091    6.24718721] 
                    7: Internal node at depth 5 has 8 children and 3780 points ([-6.8281192  30.09887225  6.23140596]) 
                        0: Leaf node at depth 6 has 336 points with origin [-6.8281192  30.09887225  6.23140596] 
                        1: Leaf node at depth 6 has 889 points with origin [-6.81233795 30.09887225  6.23140596] 
                        2: Leaf node at depth 6 has 397 points with origin [-6.8281192  30.1146535   6.23140596] 
                        3: Leaf node at depth 6 has 722 points with origin [-6.81233795 30.1146535   6.23140596] 
                        4: Leaf node at depth 6 has 210 points with origin [-6.8281192  30.09887225  6.24718721] 
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                        5: Leaf node at depth 6 has 599 points with origin [-6.81233795 30.09887225  6.24718721] 
                        6: Leaf node at depth 6 has 104 points with origin [-6.8281192  30.1146535   6.24718721] 
                        7: Leaf node at depth 6 has 523 points with origin [-6.81233795 30.1146535   6.24718721] 
                1: Internal node at depth 4 has 8 children and 9374 points ([-6.7965567  30.06730975  6.19984346]) 
                    0: Internal node at depth 5 has 5 children and 1478 points ([-6.7965567  30.06730975  6.19984346]) 
                        0: Leaf node at depth 6 has 67 points with origin [-6.7965567  30.06730975  6.19984346] 
                        1: Leaf node at depth 6 has 32 points with origin [-6.78077545 30.06730975  6.19984346] 
                        2: Leaf node at depth 6 has 489 points with origin [-6.7965567  30.083091    6.19984346] 
                        3: Leaf node at depth 6 has 872 points with origin [-6.78077545 30.083091    6.19984346] 
                        5: Leaf node at depth 6 has 18 points with origin [-6.78077545 30.06730975  6.21562471] 
                    1: Internal node at depth 5 has 4 children and 458 points ([-6.7649942  30.06730975  6.19984346]) 
                        2: Leaf node at depth 6 has 380 points with origin [-6.7649942  30.083091    6.19984346] 
                        4: Leaf node at depth 6 has 55 points with origin [-6.7649942  30.06730975  6.21562471] 
                        5: Leaf node at depth 6 has 1 points with origin [-6.74921295 30.06730975  6.21562471] 
                        6: Leaf node at depth 6 has 22 points with origin [-6.7649942  30.083091    6.21562471] 
                    2: Internal node at depth 5 has 7 children and 1722 points ([-6.7965567  30.09887225  6.19984346]) 
                        0: Leaf node at depth 6 has 489 points with origin [-6.7965567  30.09887225  6.19984346] 
                        1: Leaf node at depth 6 has 861 points with origin [-6.78077545 30.09887225  6.19984346] 
                        2: Leaf node at depth 6 has 99 points with origin [-6.7965567  30.1146535   6.19984346] 
                        3: Leaf node at depth 6 has 183 points with origin [-6.78077545 30.1146535   6.19984346] 
                        4: Leaf node at depth 6 has 6 points with origin [-6.7965567  30.09887225  6.21562471] 
                        6: Leaf node at depth 6 has 67 points with origin [-6.7965567  30.1146535   6.21562471] 
                        7: Leaf node at depth 6 has 17 points with origin [-6.78077545 30.1146535   6.21562471] 
                    3: Internal node at depth 5 has 6 children and 3105 points ([-6.7649942  30.09887225  6.19984346]) 
                        0: Leaf node at depth 6 has 663 points with origin [-6.7649942  30.09887225  6.19984346] 
                        2: Leaf node at depth 6 has 448 points with origin [-6.7649942  30.1146535   6.19984346] 
                        3: Leaf node at depth 6 has 492 points with origin [-6.74921295 30.1146535   6.19984346] 
                        4: Leaf node at depth 6 has 15 points with origin [-6.7649942  30.09887225  6.21562471] 
                        6: Leaf node at depth 6 has 771 points with origin [-6.7649942  30.1146535   6.21562471] 
                        7: Leaf node at depth 6 has 716 points with origin [-6.74921295 30.1146535   6.21562471] 
                    4: Internal node at depth 5 has 1 children and 17 points ([-6.7965567  30.06730975  6.23140596]) 
                    5: Internal node at depth 5 has 4 children and 375 points ([-6.7649942  30.06730975  6.23140596]) 
                        0: Leaf node at depth 6 has 34 points with origin [-6.7649942  30.06730975  6.23140596] 
                        2: Leaf node at depth 6 has 80 points with origin [-6.7649942  30.083091    6.23140596] 
                        4: Leaf node at depth 6 has 8 points with origin [-6.7649942  30.06730975  6.24718721] 
                        6: Leaf node at depth 6 has 253 points with origin [-6.7649942  30.083091    6.24718721] 
                    6: Internal node at depth 5 has 5 children and 1423 points ([-6.7965567  30.09887225  6.23140596]) 
                        2: Leaf node at depth 6 has 222 points with origin [-6.7965567  30.1146535   6.23140596] 
                        3: Leaf node at depth 6 has 828 points with origin [-6.78077545 30.1146535   6.23140596] 
                        5: Leaf node at depth 6 has 87 points with origin [-6.78077545 30.09887225  6.24718721] 
                        6: Leaf node at depth 6 has 205 points with origin [-6.7965567  30.1146535   6.24718721] 
                        7: Leaf node at depth 6 has 81 points with origin [-6.78077545 30.1146535   6.24718721] 
                    7: Internal node at depth 5 has 4 children and 796 points ([-6.7649942  30.09887225  6.23140596]) 
                        0: Leaf node at depth 6 has 50 points with origin [-6.7649942  30.09887225  6.23140596] 
                        2: Leaf node at depth 6 has 366 points with origin [-6.7649942  30.1146535   6.23140596] 
                        4: Leaf node at depth 6 has 314 points with origin [-6.7649942  30.09887225  6.24718721] 
                        6: Leaf node at depth 6 has 66 points with origin [-6.7649942  30.1146535   6.24718721] 
                2: Internal node at depth 4 has 4 children and 11062 points ([-6.8596817  30.13043475  6.19984346]) 
                    1: Internal node at depth 5 has 8 children and 3116 points ([-6.8281192  30.13043475  6.19984346]) 
                        0: Leaf node at depth 6 has 250 points with origin [-6.8281192  30.13043475  6.19984346] 
                        1: Leaf node at depth 6 has 722 points with origin [-6.81233795 30.13043475  6.19984346] 
                        2: Leaf node at depth 6 has 556 points with origin [-6.8281192  30.146216    6.19984346] 
                        3: Leaf node at depth 6 has 10 points with origin [-6.81233795 30.146216    6.19984346] 
                        4: Leaf node at depth 6 has 146 points with origin [-6.8281192  30.13043475  6.21562471] 
                        5: Leaf node at depth 6 has 887 points with origin [-6.81233795 30.13043475  6.21562471] 
                        6: Leaf node at depth 6 has 528 points with origin [-6.8281192  30.146216    6.21562471] 
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                        7: Leaf node at depth 6 has 17 points with origin [-6.81233795 30.146216    6.21562471] 
                    3: Internal node at depth 5 has 1 children and 6 points ([-6.8281192  30.16199725  6.19984346]) 
                    5: Internal node at depth 5 has 8 children and 5019 points ([-6.8281192  30.13043475  6.23140596]) 
                        0: Leaf node at depth 6 has 312 points with origin [-6.8281192  30.13043475  6.23140596] 
                        1: Leaf node at depth 6 has 910 points with origin [-6.81233795 30.13043475  6.23140596] 
                        2: Leaf node at depth 6 has 536 points with origin [-6.8281192  30.146216    6.23140596] 
                        3: Leaf node at depth 6 has 429 points with origin [-6.81233795 30.146216    6.23140596] 
                        4: Leaf node at depth 6 has 595 points with origin [-6.8281192  30.13043475  6.24718721] 
                        5: Leaf node at depth 6 has 684 points with origin [-6.81233795 30.13043475  6.24718721] 
                        6: Leaf node at depth 6 has 547 points with origin [-6.8281192  30.146216    6.24718721] 
                        7: Leaf node at depth 6 has 1006 points with origin [-6.81233795 30.146216    6.24718721] 
                    7: Internal node at depth 5 has 8 children and 2921 points ([-6.8281192  30.16199725  6.23140596]) 
                        0: Leaf node at depth 6 has 6 points with origin [-6.8281192  30.16199725  6.23140596] 
                        1: Leaf node at depth 6 has 729 points with origin [-6.81233795 30.16199725  6.23140596] 
                        2: Leaf node at depth 6 has 1 points with origin [-6.8281192  30.1777785   6.23140596] 
                        3: Leaf node at depth 6 has 539 points with origin [-6.81233795 30.1777785   6.23140596] 
                        4: Leaf node at depth 6 has 3 points with origin [-6.8281192  30.16199725  6.24718721] 
                        5: Leaf node at depth 6 has 884 points with origin [-6.81233795 30.16199725  6.24718721] 
                        6: Leaf node at depth 6 has 1 points with origin [-6.8281192  30.1777785   6.24718721] 
                        7: Leaf node at depth 6 has 758 points with origin [-6.81233795 30.1777785   6.24718721] 
                3: Internal node at depth 4 has 7 children and 18822 points ([-6.7965567  30.13043475  6.19984346]) 
                    0: Internal node at depth 5 has 2 children and 665 points ([-6.7965567  30.13043475  6.19984346]) 
                        5: Leaf node at depth 6 has 492 points with origin [-6.78077545 30.13043475  6.21562471] 
                        7: Leaf node at depth 6 has 173 points with origin [-6.78077545 30.146216    6.21562471] 
                    1: Internal node at depth 5 has 8 children and 6497 points ([-6.7649942  30.13043475  6.19984346]) 
                        0: Leaf node at depth 6 has 89 points with origin [-6.7649942  30.13043475  6.19984346] 
                        1: Leaf node at depth 6 has 1549 points with origin [-6.74921295 30.13043475  6.19984346] 
                        2: Leaf node at depth 6 has 8 points with origin [-6.7649942  30.146216    6.19984346] 
                        3: Leaf node at depth 6 has 1310 points with origin [-6.74921295 30.146216    6.19984346] 
                        4: Leaf node at depth 6 has 1266 points with origin [-6.7649942  30.13043475  6.21562471] 
                        5: Leaf node at depth 6 has 341 points with origin [-6.74921295 30.13043475  6.21562471] 
                        6: Leaf node at depth 6 has 370 points with origin [-6.7649942  30.146216    6.21562471] 
                        7: Leaf node at depth 6 has 1564 points with origin [-6.74921295 30.146216    6.21562471] 
                    3: Internal node at depth 5 has 7 children and 4834 points ([-6.7649942  30.16199725  6.19984346]) 
                        1: Leaf node at depth 6 has 788 points with origin [-6.74921295 30.16199725  6.19984346] 
                        2: Leaf node at depth 6 has 39 points with origin [-6.7649942  30.1777785   6.19984346] 
                        3: Leaf node at depth 6 has 734 points with origin [-6.74921295 30.1777785   6.19984346] 
                        4: Leaf node at depth 6 has 66 points with origin [-6.7649942  30.16199725  6.21562471] 
                        5: Leaf node at depth 6 has 1678 points with origin [-6.74921295 30.16199725  6.21562471] 
                        6: Leaf node at depth 6 has 208 points with origin [-6.7649942  30.1777785   6.21562471] 
                        7: Leaf node at depth 6 has 1321 points with origin [-6.74921295 30.1777785   6.21562471] 
                    4: Internal node at depth 5 has 7 children and 2715 points ([-6.7965567  30.13043475  6.23140596]) 
                        0: Leaf node at depth 6 has 395 points with origin [-6.7965567  30.13043475  6.23140596] 
                        1: Leaf node at depth 6 has 923 points with origin [-6.78077545 30.13043475  6.23140596] 
                        2: Leaf node at depth 6 has 317 points with origin [-6.7965567  30.146216    6.23140596] 
                        3: Leaf node at depth 6 has 650 points with origin [-6.78077545 30.146216    6.23140596] 
                        4: Leaf node at depth 6 has 43 points with origin [-6.7965567  30.13043475  6.24718721] 
                        5: Leaf node at depth 6 has 308 points with origin [-6.78077545 30.13043475  6.24718721] 
                        7: Leaf node at depth 6 has 79 points with origin [-6.78077545 30.146216    6.24718721] 
                    5: Internal node at depth 5 has 5 children and 710 points ([-6.7649942  30.13043475  6.23140596]) 
                        0: Leaf node at depth 6 has 10 points with origin [-6.7649942  30.13043475  6.23140596] 
                        2: Leaf node at depth 6 has 577 points with origin [-6.7649942  30.146216    6.23140596] 
                        3: Leaf node at depth 6 has 4 points with origin [-6.74921295 30.146216    6.23140596] 
                        4: Leaf node at depth 6 has 95 points with origin [-6.7649942  30.13043475  6.24718721] 
                        6: Leaf node at depth 6 has 24 points with origin [-6.7649942  30.146216    6.24718721] 
                    6: Internal node at depth 5 has 6 children and 1352 points ([-6.7965567  30.16199725  6.23140596]) 
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                        0: Leaf node at depth 6 has 120 points with origin [-6.7965567  30.16199725  6.23140596] 
                        1: Leaf node at depth 6 has 580 points with origin [-6.78077545 30.16199725  6.23140596] 
                        2: Leaf node at depth 6 has 9 points with origin [-6.7965567  30.1777785   6.23140596] 
                        3: Leaf node at depth 6 has 629 points with origin [-6.78077545 30.1777785   6.23140596] 
                        5: Leaf node at depth 6 has 1 points with origin [-6.78077545 30.16199725  6.24718721] 
                        6: Leaf node at depth 6 has 13 points with origin [-6.7965567  30.1777785   6.24718721] 
                    7: Internal node at depth 5 has 4 children and 2049 points ([-6.7649942  30.16199725  6.23140596]) 
                        0: Leaf node at depth 6 has 792 points with origin [-6.7649942  30.16199725  6.23140596] 
                        1: Leaf node at depth 6 has 369 points with origin [-6.74921295 30.16199725  6.23140596] 
                        2: Leaf node at depth 6 has 721 points with origin [-6.7649942  30.1777785   6.23140596] 
                        3: Leaf node at depth 6 has 167 points with origin [-6.74921295 30.1777785   6.23140596] 
                4: Internal node at depth 4 has 4 children and 12419 points ([-6.8596817  30.06730975  6.26296846]) 
                    1: Internal node at depth 5 has 8 children and 6597 points ([-6.8281192  30.06730975  6.26296846]) 
                        0: Leaf node at depth 6 has 265 points with origin [-6.8281192  30.06730975  6.26296846] 
                        1: Leaf node at depth 6 has 1196 points with origin [-6.81233795 30.06730975  6.26296846] 
                        2: Leaf node at depth 6 has 1072 points with origin [-6.8281192  30.083091    6.26296846] 
                        3: Leaf node at depth 6 has 1074 points with origin [-6.81233795 30.083091    6.26296846] 
                        4: Leaf node at depth 6 has 581 points with origin [-6.8281192  30.06730975  6.27874971] 
                        5: Leaf node at depth 6 has 897 points with origin [-6.81233795 30.06730975  6.27874971] 
                        6: Leaf node at depth 6 has 554 points with origin [-6.8281192  30.083091    6.27874971] 
                        7: Leaf node at depth 6 has 958 points with origin [-6.81233795 30.083091    6.27874971] 
                    3: Internal node at depth 5 has 8 children and 5561 points ([-6.8281192  30.09887225  6.26296846]) 
                        0: Leaf node at depth 6 has 544 points with origin [-6.8281192  30.09887225  6.26296846] 
                        1: Leaf node at depth 6 has 774 points with origin [-6.81233795 30.09887225  6.26296846] 
                        2: Leaf node at depth 6 has 444 points with origin [-6.8281192  30.1146535   6.26296846] 
                        3: Leaf node at depth 6 has 696 points with origin [-6.81233795 30.1146535   6.26296846] 
                        4: Leaf node at depth 6 has 578 points with origin [-6.8281192  30.09887225  6.27874971] 
                        5: Leaf node at depth 6 has 1008 points with origin [-6.81233795 30.09887225  6.27874971] 
                        6: Leaf node at depth 6 has 560 points with origin [-6.8281192  30.1146535   6.27874971] 
                        7: Leaf node at depth 6 has 957 points with origin [-6.81233795 30.1146535   6.27874971] 
                    5: Internal node at depth 5 has 4 children and 131 points ([-6.8281192  30.06730975  6.29453096]) 
                        0: Leaf node at depth 6 has 2 points with origin [-6.8281192  30.06730975  6.29453096] 
                        2: Leaf node at depth 6 has 3 points with origin [-6.8281192  30.083091    6.29453096] 
                        5: Leaf node at depth 6 has 37 points with origin [-6.81233795 30.06730975  6.31031221] 
                        7: Leaf node at depth 6 has 89 points with origin [-6.81233795 30.083091    6.31031221] 
                    7: Internal node at depth 5 has 4 children and 130 points ([-6.8281192  30.09887225  6.29453096]) 
                        0: Leaf node at depth 6 has 3 points with origin [-6.8281192  30.09887225  6.29453096] 
                        2: Leaf node at depth 6 has 4 points with origin [-6.8281192  30.1146535   6.29453096] 
                        5: Leaf node at depth 6 has 60 points with origin [-6.81233795 30.09887225  6.31031221] 
                        7: Leaf node at depth 6 has 63 points with origin [-6.81233795 30.1146535   6.31031221] 
                5: Internal node at depth 4 has 6 children and 8746 points ([-6.7965567  30.06730975  6.26296846]) 
                    0: Internal node at depth 5 has 4 children and 995 points ([-6.7965567  30.06730975  6.26296846]) 
                        1: Leaf node at depth 6 has 1 points with origin [-6.78077545 30.06730975  6.26296846] 
                        3: Leaf node at depth 6 has 17 points with origin [-6.78077545 30.083091    6.26296846] 
                        4: Leaf node at depth 6 has 503 points with origin [-6.7965567  30.06730975  6.27874971] 
                        6: Leaf node at depth 6 has 474 points with origin [-6.7965567  30.083091    6.27874971] 
                    1: Internal node at depth 5 has 6 children and 391 points ([-6.7649942  30.06730975  6.26296846]) 
                        0: Leaf node at depth 6 has 275 points with origin [-6.7649942  30.06730975  6.26296846] 
                        2: Leaf node at depth 6 has 53 points with origin [-6.7649942  30.083091    6.26296846] 
                        3: Leaf node at depth 6 has 3 points with origin [-6.74921295 30.083091    6.26296846] 
                        5: Leaf node at depth 6 has 3 points with origin [-6.74921295 30.06730975  6.27874971] 
                        6: Leaf node at depth 6 has 51 points with origin [-6.7649942  30.083091    6.27874971] 
                        7: Leaf node at depth 6 has 6 points with origin [-6.74921295 30.083091    6.27874971] 
                    2: Internal node at depth 5 has 4 children and 1287 points ([-6.7965567  30.09887225  6.26296846]) 
                        1: Leaf node at depth 6 has 152 points with origin [-6.78077545 30.09887225  6.26296846] 
                        3: Leaf node at depth 6 has 127 points with origin [-6.78077545 30.1146535   6.26296846] 
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                        4: Leaf node at depth 6 has 497 points with origin [-6.7965567  30.09887225  6.27874971] 
                        6: Leaf node at depth 6 has 511 points with origin [-6.7965567  30.1146535   6.27874971] 
                    3: Internal node at depth 5 has 4 children and 495 points ([-6.7649942  30.09887225  6.26296846]) 
                        0: Leaf node at depth 6 has 56 points with origin [-6.7649942  30.09887225  6.26296846] 
                        2: Leaf node at depth 6 has 8 points with origin [-6.7649942  30.1146535   6.26296846] 
                        4: Leaf node at depth 6 has 189 points with origin [-6.7649942  30.09887225  6.27874971] 
                        6: Leaf node at depth 6 has 242 points with origin [-6.7649942  30.1146535   6.27874971] 
                    4: Internal node at depth 5 has 4 children and 2902 points ([-6.7965567  30.06730975  6.29453096]) 
                        0: Leaf node at depth 6 has 898 points with origin [-6.7965567  30.06730975  6.29453096] 
                        2: Leaf node at depth 6 has 893 points with origin [-6.7965567  30.083091    6.29453096] 
                        4: Leaf node at depth 6 has 586 points with origin [-6.7965567  30.06730975  6.31031221] 
                        6: Leaf node at depth 6 has 525 points with origin [-6.7965567  30.083091    6.31031221] 
                    6: Internal node at depth 5 has 4 children and 2676 points ([-6.7965567  30.09887225  6.29453096]) 
                        0: Leaf node at depth 6 has 903 points with origin [-6.7965567  30.09887225  6.29453096] 
                        2: Leaf node at depth 6 has 773 points with origin [-6.7965567  30.1146535   6.29453096] 
                        4: Leaf node at depth 6 has 486 points with origin [-6.7965567  30.09887225  6.31031221] 
                        6: Leaf node at depth 6 has 514 points with origin [-6.7965567  30.1146535   6.31031221] 
                6: Internal node at depth 4 has 4 children and 12237 points ([-6.8596817  30.13043475  6.26296846]) 
                    1: Internal node at depth 5 has 8 children and 6327 points ([-6.8281192  30.13043475  6.26296846]) 
                        0: Leaf node at depth 6 has 586 points with origin [-6.8281192  30.13043475  6.26296846] 
                        1: Leaf node at depth 6 has 830 points with origin [-6.81233795 30.13043475  6.26296846] 
                        2: Leaf node at depth 6 has 681 points with origin [-6.8281192  30.146216    6.26296846] 
                        3: Leaf node at depth 6 has 942 points with origin [-6.81233795 30.146216    6.26296846] 
                        4: Leaf node at depth 6 has 535 points with origin [-6.8281192  30.13043475  6.27874971] 
                        5: Leaf node at depth 6 has 1179 points with origin [-6.81233795 30.13043475  6.27874971] 
                        6: Leaf node at depth 6 has 346 points with origin [-6.8281192  30.146216    6.27874971] 
                        7: Leaf node at depth 6 has 1228 points with origin [-6.81233795 30.146216    6.27874971] 
                    3: Internal node at depth 5 has 4 children and 3509 points ([-6.8281192  30.16199725  6.26296846]) 
                        1: Leaf node at depth 6 has 812 points with origin [-6.81233795 30.16199725  6.26296846] 
                        3: Leaf node at depth 6 has 832 points with origin [-6.81233795 30.1777785   6.26296846] 
                        5: Leaf node at depth 6 has 1007 points with origin [-6.81233795 30.16199725  6.27874971] 
                        7: Leaf node at depth 6 has 858 points with origin [-6.81233795 30.1777785   6.27874971] 
                    5: Internal node at depth 5 has 5 children and 1424 points ([-6.8281192  30.13043475  6.29453096]) 
                        0: Leaf node at depth 6 has 7 points with origin [-6.8281192  30.13043475  6.29453096] 
                        1: Leaf node at depth 6 has 661 points with origin [-6.81233795 30.13043475  6.29453096] 
                        2: Leaf node at depth 6 has 3 points with origin [-6.8281192  30.146216    6.29453096] 
                        3: Leaf node at depth 6 has 399 points with origin [-6.81233795 30.146216    6.29453096] 
                        5: Leaf node at depth 6 has 354 points with origin [-6.81233795 30.13043475  6.31031221] 
                    7: Internal node at depth 5 has 4 children and 977 points ([-6.8281192  30.16199725  6.29453096]) 
                        0: Leaf node at depth 6 has 5 points with origin [-6.8281192  30.16199725  6.29453096] 
                        1: Leaf node at depth 6 has 406 points with origin [-6.81233795 30.16199725  6.29453096] 
                        3: Leaf node at depth 6 has 565 points with origin [-6.81233795 30.1777785   6.29453096] 
                        7: Leaf node at depth 6 has 1 points with origin [-6.81233795 30.1777785   6.31031221] 
                7: Internal node at depth 4 has 7 children and 14878 points ([-6.7965567  30.13043475  6.26296846]) 
                    0: Internal node at depth 5 has 6 children and 572 points ([-6.7965567  30.13043475  6.26296846]) 
                        1: Leaf node at depth 6 has 184 points with origin [-6.78077545 30.13043475  6.26296846] 
                        3: Leaf node at depth 6 has 142 points with origin [-6.78077545 30.146216    6.26296846] 
                        4: Leaf node at depth 6 has 126 points with origin [-6.7965567  30.13043475  6.27874971] 
                        5: Leaf node at depth 6 has 3 points with origin [-6.78077545 30.13043475  6.27874971] 
                        6: Leaf node at depth 6 has 115 points with origin [-6.7965567  30.146216    6.27874971] 
                        7: Leaf node at depth 6 has 2 points with origin [-6.78077545 30.146216    6.27874971] 
                    1: Internal node at depth 5 has 4 children and 328 points ([-6.7649942  30.13043475  6.26296846]) 
                        0: Leaf node at depth 6 has 5 points with origin [-6.7649942  30.13043475  6.26296846] 
                        2: Leaf node at depth 6 has 8 points with origin [-6.7649942  30.146216    6.26296846] 
                        4: Leaf node at depth 6 has 233 points with origin [-6.7649942  30.13043475  6.27874971] 
                        6: Leaf node at depth 6 has 82 points with origin [-6.7649942  30.146216    6.27874971] 
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                    2: Internal node at depth 5 has 4 children and 1340 points ([-6.7965567  30.16199725  6.26296846]) 
                        2: Leaf node at depth 6 has 23 points with origin [-6.7965567  30.1777785   6.26296846] 
                        4: Leaf node at depth 6 has 228 points with origin [-6.7965567  30.16199725  6.27874971] 
                        6: Leaf node at depth 6 has 631 points with origin [-6.7965567  30.1777785   6.27874971] 
                        7: Leaf node at depth 6 has 458 points with origin [-6.78077545 30.1777785   6.27874971] 
                    3: Internal node at depth 5 has 2 children and 1089 points ([-6.7649942  30.16199725  6.26296846]) 
                        6: Leaf node at depth 6 has 544 points with origin [-6.7649942  30.1777785   6.27874971] 
                        7: Leaf node at depth 6 has 545 points with origin [-6.74921295 30.1777785   6.27874971] 
                    4: Internal node at depth 5 has 4 children and 3744 points ([-6.7965567  30.13043475  6.29453096]) 
                        0: Leaf node at depth 6 has 762 points with origin [-6.7965567  30.13043475  6.29453096] 
                        2: Leaf node at depth 6 has 905 points with origin [-6.7965567  30.146216    6.29453096] 
                        4: Leaf node at depth 6 has 830 points with origin [-6.7965567  30.13043475  6.31031221] 
                        6: Leaf node at depth 6 has 1247 points with origin [-6.7965567  30.146216    6.31031221] 
                    6: Internal node at depth 5 has 6 children and 5171 points ([-6.7965567  30.16199725  6.29453096]) 
                        0: Leaf node at depth 6 has 926 points with origin [-6.7965567  30.16199725  6.29453096] 
                        2: Leaf node at depth 6 has 1036 points with origin [-6.7965567  30.1777785   6.29453096] 
                        3: Leaf node at depth 6 has 659 points with origin [-6.78077545 30.1777785   6.29453096] 
                        4: Leaf node at depth 6 has 856 points with origin [-6.7965567  30.16199725  6.31031221] 
                        6: Leaf node at depth 6 has 985 points with origin [-6.7965567  30.1777785   6.31031221] 
                        7: Leaf node at depth 6 has 709 points with origin [-6.78077545 30.1777785   6.31031221] 
                    7: Internal node at depth 5 has 4 children and 2634 points ([-6.7649942  30.16199725  6.29453096]) 
                        2: Leaf node at depth 6 has 645 points with origin [-6.7649942  30.1777785   6.29453096] 
                        3: Leaf node at depth 6 has 680 points with origin [-6.74921295 30.1777785   6.29453096] 
                        6: Leaf node at depth 6 has 635 points with origin [-6.7649942  30.1777785   6.31031221] 
                        7: Leaf node at depth 6 has 674 points with origin [-6.74921295 30.1777785   6.31031221] 
        1: Internal node at depth 2 has 8 children and 673077 points ([-6.7334317  29.94105975  6.07359346]) 
            0: Internal node at depth 3 has 8 children and 105122 points ([-6.7334317  29.94105975  6.07359346]) 
                0: Internal node at depth 4 has 2 children and 2113 points ([-6.7334317  29.94105975  6.07359346]) 
                    6: Internal node at depth 5 has 4 children and 253 points ([-6.7334317  29.97262225  6.10515596]) 
                        4: Leaf node at depth 6 has 113 points with origin [-6.7334317  29.97262225  6.12093721] 
                        5: Leaf node at depth 6 has 2 points with origin [-6.71765045 29.97262225  6.12093721] 
                        6: Leaf node at depth 6 has 121 points with origin [-6.7334317  29.9884035   6.12093721] 
                        7: Leaf node at depth 6 has 17 points with origin [-6.71765045 29.9884035   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 1860 points ([-6.7018692  29.97262225  6.10515596]) 
                        4: Leaf node at depth 6 has 130 points with origin [-6.7018692  29.97262225  6.12093721] 
                        5: Leaf node at depth 6 has 203 points with origin [-6.68608795 29.97262225  6.12093721] 
                        6: Leaf node at depth 6 has 836 points with origin [-6.7018692  29.9884035   6.12093721] 
                        7: Leaf node at depth 6 has 691 points with origin [-6.68608795 29.9884035   6.12093721] 
                1: Internal node at depth 4 has 2 children and 3287 points ([-6.6703067  29.94105975  6.07359346]) 
                    6: Internal node at depth 5 has 4 children and 1686 points ([-6.6703067  29.97262225  6.10515596]) 
                        4: Leaf node at depth 6 has 139 points with origin [-6.6703067  29.97262225  6.12093721] 
                        5: Leaf node at depth 6 has 139 points with origin [-6.65452545 29.97262225  6.12093721] 
                        6: Leaf node at depth 6 has 740 points with origin [-6.6703067  29.9884035   6.12093721] 
                        7: Leaf node at depth 6 has 668 points with origin [-6.65452545 29.9884035   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 1601 points ([-6.6387442  29.97262225  6.10515596]) 
                        4: Leaf node at depth 6 has 138 points with origin [-6.6387442  29.97262225  6.12093721] 
                        5: Leaf node at depth 6 has 127 points with origin [-6.62296295 29.97262225  6.12093721] 
                        6: Leaf node at depth 6 has 730 points with origin [-6.6387442  29.9884035   6.12093721] 
                        7: Leaf node at depth 6 has 606 points with origin [-6.62296295 29.9884035   6.12093721] 
                2: Internal node at depth 4 has 4 children and 13819 points ([-6.7334317  30.00418475  6.07359346]) 
                    4: Internal node at depth 5 has 3 children and 729 points ([-6.7334317  30.00418475  6.10515596]) 
                        4: Leaf node at depth 6 has 2 points with origin [-6.7334317  30.00418475  6.12093721] 
                        5: Leaf node at depth 6 has 367 points with origin [-6.71765045 30.00418475  6.12093721] 
                        7: Leaf node at depth 6 has 360 points with origin [-6.71765045 30.019966    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 3730 points ([-6.7018692  30.00418475  6.10515596]) 
                        4: Leaf node at depth 6 has 1612 points with origin [-6.7018692  30.00418475  6.12093721] 
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                        5: Leaf node at depth 6 has 892 points with origin [-6.68608795 30.00418475  6.12093721] 
                        6: Leaf node at depth 6 has 457 points with origin [-6.7018692  30.019966    6.12093721] 
                        7: Leaf node at depth 6 has 769 points with origin [-6.68608795 30.019966    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 4989 points ([-6.7334317  30.03574725  6.10515596]) 
                        4: Leaf node at depth 6 has 1878 points with origin [-6.7334317  30.03574725  6.12093721] 
                        5: Leaf node at depth 6 has 1286 points with origin [-6.71765045 30.03574725  6.12093721] 
                        6: Leaf node at depth 6 has 1016 points with origin [-6.7334317  30.0515285   6.12093721] 
                        7: Leaf node at depth 6 has 809 points with origin [-6.71765045 30.0515285   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 4371 points ([-6.7018692  30.03574725  6.10515596]) 
                        4: Leaf node at depth 6 has 1311 points with origin [-6.7018692  30.03574725  6.12093721] 
                        5: Leaf node at depth 6 has 1224 points with origin [-6.68608795 30.03574725  6.12093721] 
                        6: Leaf node at depth 6 has 1088 points with origin [-6.7018692  30.0515285   6.12093721] 
                        7: Leaf node at depth 6 has 748 points with origin [-6.68608795 30.0515285   6.12093721] 
                3: Internal node at depth 4 has 4 children and 12785 points ([-6.6703067  30.00418475  6.07359346]) 
                    4: Internal node at depth 5 has 4 children and 3350 points ([-6.6703067  30.00418475  6.10515596]) 
                        4: Leaf node at depth 6 has 879 points with origin [-6.6703067  30.00418475  6.12093721] 
                        5: Leaf node at depth 6 has 807 points with origin [-6.65452545 30.00418475  6.12093721] 
                        6: Leaf node at depth 6 has 863 points with origin [-6.6703067  30.019966    6.12093721] 
                        7: Leaf node at depth 6 has 801 points with origin [-6.65452545 30.019966    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 3087 points ([-6.6387442  30.00418475  6.10515596]) 
                        4: Leaf node at depth 6 has 790 points with origin [-6.6387442  30.00418475  6.12093721] 
                        5: Leaf node at depth 6 has 768 points with origin [-6.62296295 30.00418475  6.12093721] 
                        6: Leaf node at depth 6 has 825 points with origin [-6.6387442  30.019966    6.12093721] 
                        7: Leaf node at depth 6 has 704 points with origin [-6.62296295 30.019966    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 3257 points ([-6.6703067  30.03574725  6.10515596]) 
                        4: Leaf node at depth 6 has 801 points with origin [-6.6703067  30.03574725  6.12093721] 
                        5: Leaf node at depth 6 has 798 points with origin [-6.65452545 30.03574725  6.12093721] 
                        6: Leaf node at depth 6 has 816 points with origin [-6.6703067  30.0515285   6.12093721] 
                        7: Leaf node at depth 6 has 842 points with origin [-6.65452545 30.0515285   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 3091 points ([-6.6387442  30.03574725  6.10515596]) 
                        4: Leaf node at depth 6 has 818 points with origin [-6.6387442  30.03574725  6.12093721] 
                        5: Leaf node at depth 6 has 722 points with origin [-6.62296295 30.03574725  6.12093721] 
                        6: Leaf node at depth 6 has 815 points with origin [-6.6387442  30.0515285   6.12093721] 
                        7: Leaf node at depth 6 has 736 points with origin [-6.62296295 30.0515285   6.12093721] 
                4: Internal node at depth 4 has 8 children and 25461 points ([-6.7334317  29.94105975  6.13671846]) 
                    0: Internal node at depth 5 has 4 children and 155 points ([-6.7334317  29.94105975  6.13671846]) 
                        4: Leaf node at depth 6 has 31 points with origin [-6.7334317  29.94105975  6.15249971] 
                        5: Leaf node at depth 6 has 14 points with origin [-6.71765045 29.94105975  6.15249971] 
                        6: Leaf node at depth 6 has 30 points with origin [-6.7334317  29.956841    6.15249971] 
                        7: Leaf node at depth 6 has 80 points with origin [-6.71765045 29.956841    6.15249971] 
                    1: Internal node at depth 5 has 3 children and 21 points ([-6.7018692  29.94105975  6.13671846]) 
                    2: Internal node at depth 5 has 7 children and 3787 points ([-6.7334317  29.97262225  6.13671846]) 
                        0: Leaf node at depth 6 has 691 points with origin [-6.7334317  29.97262225  6.13671846] 
                        1: Leaf node at depth 6 has 372 points with origin [-6.71765045 29.97262225  6.13671846] 
                        2: Leaf node at depth 6 has 232 points with origin [-6.7334317  29.9884035   6.13671846] 
                        3: Leaf node at depth 6 has 568 points with origin [-6.71765045 29.9884035   6.13671846] 
                        4: Leaf node at depth 6 has 792 points with origin [-6.7334317  29.97262225  6.15249971] 
                        5: Leaf node at depth 6 has 860 points with origin [-6.71765045 29.97262225  6.15249971] 
                        7: Leaf node at depth 6 has 272 points with origin [-6.71765045 29.9884035   6.15249971] 
                    3: Internal node at depth 5 has 8 children and 5567 points ([-6.7018692  29.97262225  6.13671846]) 
                        0: Leaf node at depth 6 has 748 points with origin [-6.7018692  29.97262225  6.13671846] 
                        1: Leaf node at depth 6 has 839 points with origin [-6.68608795 29.97262225  6.13671846] 
                        2: Leaf node at depth 6 has 932 points with origin [-6.7018692  29.9884035   6.13671846] 
                        3: Leaf node at depth 6 has 1015 points with origin [-6.68608795 29.9884035   6.13671846] 
                        4: Leaf node at depth 6 has 887 points with origin [-6.7018692  29.97262225  6.15249971] 
                        5: Leaf node at depth 6 has 620 points with origin [-6.68608795 29.97262225  6.15249971] 
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                        6: Leaf node at depth 6 has 20 points with origin [-6.7018692  29.9884035   6.15249971] 
                        7: Leaf node at depth 6 has 506 points with origin [-6.68608795 29.9884035   6.15249971] 
                    4: Internal node at depth 5 has 7 children and 3566 points ([-6.7334317  29.94105975  6.16828096]) 
                        0: Leaf node at depth 6 has 892 points with origin [-6.7334317  29.94105975  6.16828096] 
                        1: Leaf node at depth 6 has 835 points with origin [-6.71765045 29.94105975  6.16828096] 
                        2: Leaf node at depth 6 has 5 points with origin [-6.7334317  29.956841    6.16828096] 
                        3: Leaf node at depth 6 has 44 points with origin [-6.71765045 29.956841    6.16828096] 
                        4: Leaf node at depth 6 has 868 points with origin [-6.7334317  29.94105975  6.18406221] 
                        5: Leaf node at depth 6 has 921 points with origin [-6.71765045 29.94105975  6.18406221] 
                        7: Leaf node at depth 6 has 1 points with origin [-6.71765045 29.956841    6.18406221] 
                    5: Internal node at depth 5 has 8 children and 2795 points ([-6.7018692  29.94105975  6.16828096]) 
                        0: Leaf node at depth 6 has 675 points with origin [-6.7018692  29.94105975  6.16828096] 
                        1: Leaf node at depth 6 has 580 points with origin [-6.68608795 29.94105975  6.16828096] 
                        2: Leaf node at depth 6 has 9 points with origin [-6.7018692  29.956841    6.16828096] 
                        3: Leaf node at depth 6 has 35 points with origin [-6.68608795 29.956841    6.16828096] 
                        4: Leaf node at depth 6 has 715 points with origin [-6.7018692  29.94105975  6.18406221] 
                        5: Leaf node at depth 6 has 761 points with origin [-6.68608795 29.94105975  6.18406221] 
                        6: Leaf node at depth 6 has 2 points with origin [-6.7018692  29.956841    6.18406221] 
                        7: Leaf node at depth 6 has 18 points with origin [-6.68608795 29.956841    6.18406221] 
                    6: Internal node at depth 5 has 4 children and 4062 points ([-6.7334317  29.97262225  6.16828096]) 
                        0: Leaf node at depth 6 has 970 points with origin [-6.7334317  29.97262225  6.16828096] 
                        1: Leaf node at depth 6 has 1011 points with origin [-6.71765045 29.97262225  6.16828096] 
                        4: Leaf node at depth 6 has 1027 points with origin [-6.7334317  29.97262225  6.18406221] 
                        5: Leaf node at depth 6 has 1054 points with origin [-6.71765045 29.97262225  6.18406221] 
                    7: Internal node at depth 5 has 6 children and 5508 points ([-6.7018692  29.97262225  6.16828096]) 
                        0: Leaf node at depth 6 has 999 points with origin [-6.7018692  29.97262225  6.16828096] 
                        1: Leaf node at depth 6 has 1115 points with origin [-6.68608795 29.97262225  6.16828096] 
                        3: Leaf node at depth 6 has 598 points with origin [-6.68608795 29.9884035   6.16828096] 
                        4: Leaf node at depth 6 has 1057 points with origin [-6.7018692  29.97262225  6.18406221] 
                        5: Leaf node at depth 6 has 1076 points with origin [-6.68608795 29.97262225  6.18406221] 
                        7: Leaf node at depth 6 has 663 points with origin [-6.68608795 29.9884035   6.18406221] 
                5: Internal node at depth 4 has 6 children and 26436 points ([-6.6703067  29.94105975  6.13671846]) 
                    2: Internal node at depth 5 has 6 children and 4647 points ([-6.6703067  29.97262225  6.13671846]) 
                        0: Leaf node at depth 6 has 945 points with origin [-6.6703067  29.97262225  6.13671846] 
                        1: Leaf node at depth 6 has 932 points with origin [-6.65452545 29.97262225  6.13671846] 
                        2: Leaf node at depth 6 has 964 points with origin [-6.6703067  29.9884035   6.13671846] 
                        3: Leaf node at depth 6 has 885 points with origin [-6.65452545 29.9884035   6.13671846] 
                        4: Leaf node at depth 6 has 454 points with origin [-6.6703067  29.97262225  6.15249971] 
                        5: Leaf node at depth 6 has 467 points with origin [-6.65452545 29.97262225  6.15249971] 
                    3: Internal node at depth 5 has 6 children and 1057 points ([-6.6387442  29.97262225  6.13671846]) 
                        0: Leaf node at depth 6 has 216 points with origin [-6.6387442  29.97262225  6.13671846] 
                        2: Leaf node at depth 6 has 378 points with origin [-6.6387442  29.9884035   6.13671846] 
                        3: Leaf node at depth 6 has 156 points with origin [-6.62296295 29.9884035   6.13671846] 
                        4: Leaf node at depth 6 has 71 points with origin [-6.6387442  29.97262225  6.15249971] 
                        6: Leaf node at depth 6 has 141 points with origin [-6.6387442  29.9884035   6.15249971] 
                        7: Leaf node at depth 6 has 95 points with origin [-6.62296295 29.9884035   6.15249971] 
                    4: Internal node at depth 5 has 6 children and 2506 points ([-6.6703067  29.94105975  6.16828096]) 
                        0: Leaf node at depth 6 has 574 points with origin [-6.6703067  29.94105975  6.16828096] 
                        1: Leaf node at depth 6 has 420 points with origin [-6.65452545 29.94105975  6.16828096] 
                        2: Leaf node at depth 6 has 1 points with origin [-6.6703067  29.956841    6.16828096] 
                        4: Leaf node at depth 6 has 743 points with origin [-6.6703067  29.94105975  6.18406221] 
                        5: Leaf node at depth 6 has 764 points with origin [-6.65452545 29.94105975  6.18406221] 
                        6: Leaf node at depth 6 has 4 points with origin [-6.6703067  29.956841    6.18406221] 
                    5: Internal node at depth 5 has 4 children and 1658 points ([-6.6387442  29.94105975  6.16828096]) 
                        0: Leaf node at depth 6 has 239 points with origin [-6.6387442  29.94105975  6.16828096] 
                        1: Leaf node at depth 6 has 16 points with origin [-6.62296295 29.94105975  6.16828096] 
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                        4: Leaf node at depth 6 has 777 points with origin [-6.6387442  29.94105975  6.18406221] 
                        5: Leaf node at depth 6 has 626 points with origin [-6.62296295 29.94105975  6.18406221] 
                    6: Internal node at depth 5 has 8 children and 8131 points ([-6.6703067  29.97262225  6.16828096]) 
                        0: Leaf node at depth 6 has 1326 points with origin [-6.6703067  29.97262225  6.16828096] 
                        1: Leaf node at depth 6 has 1269 points with origin [-6.65452545 29.97262225  6.16828096] 
                        2: Leaf node at depth 6 has 907 points with origin [-6.6703067  29.9884035   6.16828096] 
                        3: Leaf node at depth 6 has 1001 points with origin [-6.65452545 29.9884035   6.16828096] 
                        4: Leaf node at depth 6 has 1267 points with origin [-6.6703067  29.97262225  6.18406221] 
                        5: Leaf node at depth 6 has 1015 points with origin [-6.65452545 29.97262225  6.18406221] 
                        6: Leaf node at depth 6 has 678 points with origin [-6.6703067  29.9884035   6.18406221] 
                        7: Leaf node at depth 6 has 668 points with origin [-6.65452545 29.9884035   6.18406221] 
                    7: Internal node at depth 5 has 8 children and 8437 points ([-6.6387442  29.97262225  6.16828096]) 
                        0: Leaf node at depth 6 has 1101 points with origin [-6.6387442  29.97262225  6.16828096] 
                        1: Leaf node at depth 6 has 1038 points with origin [-6.62296295 29.97262225  6.16828096] 
                        2: Leaf node at depth 6 has 1235 points with origin [-6.6387442  29.9884035   6.16828096] 
                        3: Leaf node at depth 6 has 1118 points with origin [-6.62296295 29.9884035   6.16828096] 
                        4: Leaf node at depth 6 has 1080 points with origin [-6.6387442  29.97262225  6.18406221] 
                        5: Leaf node at depth 6 has 1282 points with origin [-6.62296295 29.97262225  6.18406221] 
                        6: Leaf node at depth 6 has 879 points with origin [-6.6387442  29.9884035   6.18406221] 
                        7: Leaf node at depth 6 has 704 points with origin [-6.62296295 29.9884035   6.18406221] 
                6: Internal node at depth 4 has 5 children and 15489 points ([-6.7334317  30.00418475  6.13671846]) 
                    0: Internal node at depth 5 has 7 children and 5782 points ([-6.7334317  30.00418475  6.13671846]) 
                        0: Leaf node at depth 6 has 578 points with origin [-6.7334317  30.00418475  6.13671846] 
                        1: Leaf node at depth 6 has 1782 points with origin [-6.71765045 30.00418475  6.13671846] 
                        2: Leaf node at depth 6 has 715 points with origin [-6.7334317  30.019966    6.13671846] 
                        3: Leaf node at depth 6 has 1295 points with origin [-6.71765045 30.019966    6.13671846] 
                        5: Leaf node at depth 6 has 599 points with origin [-6.71765045 30.00418475  6.15249971] 
                        6: Leaf node at depth 6 has 798 points with origin [-6.7334317  30.019966    6.15249971] 
                        7: Leaf node at depth 6 has 15 points with origin [-6.71765045 30.019966    6.15249971] 
                    1: Internal node at depth 5 has 5 children and 1429 points ([-6.7018692  30.00418475  6.13671846]) 
                        0: Leaf node at depth 6 has 755 points with origin [-6.7018692  30.00418475  6.13671846] 
                        1: Leaf node at depth 6 has 325 points with origin [-6.68608795 30.00418475  6.13671846] 
                        2: Leaf node at depth 6 has 67 points with origin [-6.7018692  30.019966    6.13671846] 
                        4: Leaf node at depth 6 has 168 points with origin [-6.7018692  30.00418475  6.15249971] 
                        5: Leaf node at depth 6 has 114 points with origin [-6.68608795 30.00418475  6.15249971] 
                    2: Internal node at depth 5 has 4 children and 4268 points ([-6.7334317  30.03574725  6.13671846]) 
                        0: Leaf node at depth 6 has 2100 points with origin [-6.7334317  30.03574725  6.13671846] 
                        1: Leaf node at depth 6 has 1286 points with origin [-6.71765045 30.03574725  6.13671846] 
                        4: Leaf node at depth 6 has 753 points with origin [-6.7334317  30.03574725  6.15249971] 
                        5: Leaf node at depth 6 has 129 points with origin [-6.71765045 30.03574725  6.15249971] 
                    3: Internal node at depth 5 has 6 children and 3413 points ([-6.7018692  30.03574725  6.13671846]) 
                        0: Leaf node at depth 6 has 1928 points with origin [-6.7018692  30.03574725  6.13671846] 
                        1: Leaf node at depth 6 has 838 points with origin [-6.68608795 30.03574725  6.13671846] 
                        2: Leaf node at depth 6 has 208 points with origin [-6.7018692  30.0515285   6.13671846] 
                        3: Leaf node at depth 6 has 9 points with origin [-6.68608795 30.0515285   6.13671846] 
                        4: Leaf node at depth 6 has 404 points with origin [-6.7018692  30.03574725  6.15249971] 
                        6: Leaf node at depth 6 has 26 points with origin [-6.7018692  30.0515285   6.15249971] 
                    5: Internal node at depth 5 has 2 children and 597 points ([-6.7018692  30.00418475  6.16828096]) 
                        1: Leaf node at depth 6 has 363 points with origin [-6.68608795 30.00418475  6.16828096] 
                        5: Leaf node at depth 6 has 234 points with origin [-6.68608795 30.00418475  6.18406221] 
                7: Internal node at depth 4 has 4 children and 5732 points ([-6.6703067  30.00418475  6.13671846]) 
                    0: Internal node at depth 5 has 2 children and 799 points ([-6.6703067  30.00418475  6.13671846]) 
                        0: Leaf node at depth 6 has 411 points with origin [-6.6703067  30.00418475  6.13671846] 
                        1: Leaf node at depth 6 has 388 points with origin [-6.65452545 30.00418475  6.13671846] 
                    1: Internal node at depth 5 has 4 children and 3200 points ([-6.6387442  30.00418475  6.13671846]) 
                        0: Leaf node at depth 6 has 710 points with origin [-6.6387442  30.00418475  6.13671846] 
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                        1: Leaf node at depth 6 has 779 points with origin [-6.62296295 30.00418475  6.13671846] 
                        4: Leaf node at depth 6 has 759 points with origin [-6.6387442  30.00418475  6.15249971] 
                        5: Leaf node at depth 6 has 952 points with origin [-6.62296295 30.00418475  6.15249971] 
                    4: Internal node at depth 5 has 2 children and 753 points ([-6.6703067  30.00418475  6.16828096]) 
                        0: Leaf node at depth 6 has 368 points with origin [-6.6703067  30.00418475  6.16828096] 
                        1: Leaf node at depth 6 has 385 points with origin [-6.65452545 30.00418475  6.16828096] 
                    5: Internal node at depth 5 has 2 children and 980 points ([-6.6387442  30.00418475  6.16828096]) 
                        0: Leaf node at depth 6 has 502 points with origin [-6.6387442  30.00418475  6.16828096] 
                        1: Leaf node at depth 6 has 478 points with origin [-6.62296295 30.00418475  6.16828096] 
            1: Internal node at depth 3 has 8 children and 93935 points ([-6.6071817  29.94105975  6.07359346]) 
                0: Internal node at depth 4 has 2 children and 791 points ([-6.6071817  29.94105975  6.07359346]) 
                    6: Internal node at depth 5 has 4 children and 785 points ([-6.6071817  29.97262225  6.10515596]) 
                        4: Leaf node at depth 6 has 113 points with origin [-6.6071817  29.97262225  6.12093721] 
                        5: Leaf node at depth 6 has 7 points with origin [-6.59140045 29.97262225  6.12093721] 
                        6: Leaf node at depth 6 has 627 points with origin [-6.6071817  29.9884035   6.12093721] 
                        7: Leaf node at depth 6 has 38 points with origin [-6.59140045 29.9884035   6.12093721] 
                    7: Internal node at depth 5 has 2 children and 6 points ([-6.5756192  29.97262225  6.10515596]) 
                1: Internal node at depth 4 has 2 children and 1175 points ([-6.5440567  29.94105975  6.07359346]) 
                    6: Internal node at depth 5 has 3 children and 77 points ([-6.5440567  29.97262225  6.10515596]) 
                        4: Leaf node at depth 6 has 32 points with origin [-6.5440567  29.97262225  6.12093721] 
                        5: Leaf node at depth 6 has 8 points with origin [-6.52827545 29.97262225  6.12093721] 
                        7: Leaf node at depth 6 has 37 points with origin [-6.52827545 29.9884035   6.12093721] 
                    7: Internal node at depth 5 has 2 children and 1098 points ([-6.5124942  29.97262225  6.10515596]) 
                        5: Leaf node at depth 6 has 479 points with origin [-6.49671295 29.97262225  6.12093721] 
                        7: Leaf node at depth 6 has 619 points with origin [-6.49671295 29.9884035   6.12093721] 
                2: Internal node at depth 4 has 4 children and 13577 points ([-6.6071817  30.00418475  6.07359346]) 
                    4: Internal node at depth 5 has 4 children and 3275 points ([-6.6071817  30.00418475  6.10515596]) 
                        4: Leaf node at depth 6 has 1280 points with origin [-6.6071817  30.00418475  6.12093721] 
                        5: Leaf node at depth 6 has 190 points with origin [-6.59140045 30.00418475  6.12093721] 
                        6: Leaf node at depth 6 has 1296 points with origin [-6.6071817  30.019966    6.12093721] 
                        7: Leaf node at depth 6 has 509 points with origin [-6.59140045 30.019966    6.12093721] 
                    5: Internal node at depth 5 has 5 children and 2121 points ([-6.5756192  30.00418475  6.10515596]) 
                        3: Leaf node at depth 6 has 1 points with origin [-6.55983795 30.019966    6.10515596] 
                        4: Leaf node at depth 6 has 282 points with origin [-6.5756192  30.00418475  6.12093721] 
                        5: Leaf node at depth 6 has 182 points with origin [-6.55983795 30.00418475  6.12093721] 
                        6: Leaf node at depth 6 has 695 points with origin [-6.5756192  30.019966    6.12093721] 
                        7: Leaf node at depth 6 has 961 points with origin [-6.55983795 30.019966    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 3712 points ([-6.6071817  30.03574725  6.10515596]) 
                        4: Leaf node at depth 6 has 1095 points with origin [-6.6071817  30.03574725  6.12093721] 
                        5: Leaf node at depth 6 has 1051 points with origin [-6.59140045 30.03574725  6.12093721] 
                        6: Leaf node at depth 6 has 722 points with origin [-6.6071817  30.0515285   6.12093721] 
                        7: Leaf node at depth 6 has 844 points with origin [-6.59140045 30.0515285   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 4469 points ([-6.5756192  30.03574725  6.10515596]) 
                        4: Leaf node at depth 6 has 1204 points with origin [-6.5756192  30.03574725  6.12093721] 
                        5: Leaf node at depth 6 has 1589 points with origin [-6.55983795 30.03574725  6.12093721] 
                        6: Leaf node at depth 6 has 787 points with origin [-6.5756192  30.0515285   6.12093721] 
                        7: Leaf node at depth 6 has 889 points with origin [-6.55983795 30.0515285   6.12093721] 
                3: Internal node at depth 4 has 4 children and 10701 points ([-6.5440567  30.00418475  6.07359346]) 
                    4: Internal node at depth 5 has 8 children and 2119 points ([-6.5440567  30.00418475  6.10515596]) 
                        0: Leaf node at depth 6 has 25 points with origin [-6.5440567  30.00418475  6.10515596] 
                        1: Leaf node at depth 6 has 7 points with origin [-6.52827545 30.00418475  6.10515596] 
                        2: Leaf node at depth 6 has 50 points with origin [-6.5440567  30.019966    6.10515596] 
                        3: Leaf node at depth 6 has 5 points with origin [-6.52827545 30.019966    6.10515596] 
                        4: Leaf node at depth 6 has 441 points with origin [-6.5440567  30.00418475  6.12093721] 
                        5: Leaf node at depth 6 has 638 points with origin [-6.52827545 30.00418475  6.12093721] 
                        6: Leaf node at depth 6 has 522 points with origin [-6.5440567  30.019966    6.12093721] 
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                        7: Leaf node at depth 6 has 431 points with origin [-6.52827545 30.019966    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 1983 points ([-6.5124942  30.00418475  6.10515596]) 
                        4: Leaf node at depth 6 has 569 points with origin [-6.5124942  30.00418475  6.12093721] 
                        5: Leaf node at depth 6 has 574 points with origin [-6.49671295 30.00418475  6.12093721] 
                        6: Leaf node at depth 6 has 296 points with origin [-6.5124942  30.019966    6.12093721] 
                        7: Leaf node at depth 6 has 544 points with origin [-6.49671295 30.019966    6.12093721] 
                    6: Internal node at depth 5 has 6 children and 3089 points ([-6.5440567  30.03574725  6.10515596]) 
                        1: Leaf node at depth 6 has 2 points with origin [-6.52827545 30.03574725  6.10515596] 
                        3: Leaf node at depth 6 has 1 points with origin [-6.52827545 30.0515285   6.10515596] 
                        4: Leaf node at depth 6 has 791 points with origin [-6.5440567  30.03574725  6.12093721] 
                        5: Leaf node at depth 6 has 644 points with origin [-6.52827545 30.03574725  6.12093721] 
                        6: Leaf node at depth 6 has 801 points with origin [-6.5440567  30.0515285   6.12093721] 
                        7: Leaf node at depth 6 has 850 points with origin [-6.52827545 30.0515285   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 3510 points ([-6.5124942  30.03574725  6.10515596]) 
                        4: Leaf node at depth 6 has 319 points with origin [-6.5124942  30.03574725  6.12093721] 
                        5: Leaf node at depth 6 has 499 points with origin [-6.49671295 30.03574725  6.12093721] 
                        6: Leaf node at depth 6 has 1314 points with origin [-6.5124942  30.0515285   6.12093721] 
                        7: Leaf node at depth 6 has 1378 points with origin [-6.49671295 30.0515285   6.12093721] 
                4: Internal node at depth 4 has 6 children and 13258 points ([-6.6071817  29.94105975  6.13671846]) 
                    2: Internal node at depth 5 has 3 children and 166 points ([-6.6071817  29.97262225  6.13671846]) 
                        2: Leaf node at depth 6 has 94 points with origin [-6.6071817  29.9884035   6.13671846] 
                        3: Leaf node at depth 6 has 2 points with origin [-6.59140045 29.9884035   6.13671846] 
                        6: Leaf node at depth 6 has 70 points with origin [-6.6071817  29.9884035   6.15249971] 
                    3: Internal node at depth 5 has 4 children and 39 points ([-6.5756192  29.97262225  6.13671846]) 
                        2: Leaf node at depth 6 has 2 points with origin [-6.5756192  29.9884035   6.13671846] 
                        3: Leaf node at depth 6 has 5 points with origin [-6.55983795 29.9884035   6.13671846] 
                        5: Leaf node at depth 6 has 9 points with origin [-6.55983795 29.97262225  6.15249971] 
                        7: Leaf node at depth 6 has 23 points with origin [-6.55983795 29.9884035   6.15249971] 
                    4: Internal node at depth 5 has 3 children and 866 points ([-6.6071817  29.94105975  6.16828096]) 
                        0: Leaf node at depth 6 has 15 points with origin [-6.6071817  29.94105975  6.16828096] 
                        4: Leaf node at depth 6 has 523 points with origin [-6.6071817  29.94105975  6.18406221] 
                        5: Leaf node at depth 6 has 328 points with origin [-6.59140045 29.94105975  6.18406221] 
                    5: Internal node at depth 5 has 1 children and 17 points ([-6.5756192  29.94105975  6.16828096]) 
                    6: Internal node at depth 5 has 8 children and 6843 points ([-6.6071817  29.97262225  6.16828096]) 
                        0: Leaf node at depth 6 has 994 points with origin [-6.6071817  29.97262225  6.16828096] 
                        1: Leaf node at depth 6 has 780 points with origin [-6.59140045 29.97262225  6.16828096] 
                        2: Leaf node at depth 6 has 1290 points with origin [-6.6071817  29.9884035   6.16828096] 
                        3: Leaf node at depth 6 has 831 points with origin [-6.59140045 29.9884035   6.16828096] 
                        4: Leaf node at depth 6 has 1008 points with origin [-6.6071817  29.97262225  6.18406221] 
                        5: Leaf node at depth 6 has 725 points with origin [-6.59140045 29.97262225  6.18406221] 
                        6: Leaf node at depth 6 has 997 points with origin [-6.6071817  29.9884035   6.18406221] 
                        7: Leaf node at depth 6 has 218 points with origin [-6.59140045 29.9884035   6.18406221] 
                    7: Internal node at depth 5 has 7 children and 5327 points ([-6.5756192  29.97262225  6.16828096]) 
                        0: Leaf node at depth 6 has 994 points with origin [-6.5756192  29.97262225  6.16828096] 
                        1: Leaf node at depth 6 has 417 points with origin [-6.55983795 29.97262225  6.16828096] 
                        2: Leaf node at depth 6 has 760 points with origin [-6.5756192  29.9884035   6.16828096] 
                        3: Leaf node at depth 6 has 722 points with origin [-6.55983795 29.9884035   6.16828096] 
                        4: Leaf node at depth 6 has 711 points with origin [-6.5756192  29.97262225  6.18406221] 
                        5: Leaf node at depth 6 has 633 points with origin [-6.55983795 29.97262225  6.18406221] 
                        7: Leaf node at depth 6 has 1090 points with origin [-6.55983795 29.9884035   6.18406221] 
                5: Internal node at depth 4 has 6 children and 2626 points ([-6.5440567  29.94105975  6.13671846]) 
                    0: Internal node at depth 5 has 1 children and 2 points ([-6.5440567  29.94105975  6.13671846]) 
                    1: Internal node at depth 5 has 1 children and 1 points ([-6.5124942  29.94105975  6.13671846]) 
                    2: Internal node at depth 5 has 7 children and 341 points ([-6.5440567  29.97262225  6.13671846]) 
                        0: Leaf node at depth 6 has 15 points with origin [-6.5440567  29.97262225  6.13671846] 
                        1: Leaf node at depth 6 has 33 points with origin [-6.52827545 29.97262225  6.13671846] 
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                        2: Leaf node at depth 6 has 5 points with origin [-6.5440567  29.9884035   6.13671846] 
                        3: Leaf node at depth 6 has 99 points with origin [-6.52827545 29.9884035   6.13671846] 
                        4: Leaf node at depth 6 has 49 points with origin [-6.5440567  29.97262225  6.15249971] 
                        5: Leaf node at depth 6 has 76 points with origin [-6.52827545 29.97262225  6.15249971] 
                        7: Leaf node at depth 6 has 64 points with origin [-6.52827545 29.9884035   6.15249971] 
                    3: Internal node at depth 5 has 7 children and 1420 points ([-6.5124942  29.97262225  6.13671846]) 
                        1: Leaf node at depth 6 has 345 points with origin [-6.49671295 29.97262225  6.13671846] 
                        2: Leaf node at depth 6 has 22 points with origin [-6.5124942  29.9884035   6.13671846] 
                        3: Leaf node at depth 6 has 636 points with origin [-6.49671295 29.9884035   6.13671846] 
                        4: Leaf node at depth 6 has 3 points with origin [-6.5124942  29.97262225  6.15249971] 
                        5: Leaf node at depth 6 has 186 points with origin [-6.49671295 29.97262225  6.15249971] 
                        6: Leaf node at depth 6 has 39 points with origin [-6.5124942  29.9884035   6.15249971] 
                        7: Leaf node at depth 6 has 189 points with origin [-6.49671295 29.9884035   6.15249971] 
                    6: Internal node at depth 5 has 7 children and 486 points ([-6.5440567  29.97262225  6.16828096]) 
                        0: Leaf node at depth 6 has 88 points with origin [-6.5440567  29.97262225  6.16828096] 
                        1: Leaf node at depth 6 has 102 points with origin [-6.52827545 29.97262225  6.16828096] 
                        3: Leaf node at depth 6 has 5 points with origin [-6.52827545 29.9884035   6.16828096] 
                        4: Leaf node at depth 6 has 104 points with origin [-6.5440567  29.97262225  6.18406221] 
                        5: Leaf node at depth 6 has 83 points with origin [-6.52827545 29.97262225  6.18406221] 
                        6: Leaf node at depth 6 has 2 points with origin [-6.5440567  29.9884035   6.18406221] 
                        7: Leaf node at depth 6 has 102 points with origin [-6.52827545 29.9884035   6.18406221] 
                    7: Internal node at depth 5 has 7 children and 376 points ([-6.5124942  29.97262225  6.16828096]) 
                        1: Leaf node at depth 6 has 95 points with origin [-6.49671295 29.97262225  6.16828096] 
                        2: Leaf node at depth 6 has 34 points with origin [-6.5124942  29.9884035   6.16828096] 
                        3: Leaf node at depth 6 has 69 points with origin [-6.49671295 29.9884035   6.16828096] 
                        4: Leaf node at depth 6 has 1 points with origin [-6.5124942  29.97262225  6.18406221] 
                        5: Leaf node at depth 6 has 13 points with origin [-6.49671295 29.97262225  6.18406221] 
                        6: Leaf node at depth 6 has 133 points with origin [-6.5124942  29.9884035   6.18406221] 
                        7: Leaf node at depth 6 has 31 points with origin [-6.49671295 29.9884035   6.18406221] 
                6: Internal node at depth 4 has 7 children and 21399 points ([-6.6071817  30.00418475  6.13671846]) 
                    0: Internal node at depth 5 has 8 children and 6367 points ([-6.6071817  30.00418475  6.13671846]) 
                        0: Leaf node at depth 6 has 1390 points with origin [-6.6071817  30.00418475  6.13671846] 
                        1: Leaf node at depth 6 has 179 points with origin [-6.59140045 30.00418475  6.13671846] 
                        2: Leaf node at depth 6 has 801 points with origin [-6.6071817  30.019966    6.13671846] 
                        3: Leaf node at depth 6 has 375 points with origin [-6.59140045 30.019966    6.13671846] 
                        4: Leaf node at depth 6 has 1368 points with origin [-6.6071817  30.00418475  6.15249971] 
                        5: Leaf node at depth 6 has 710 points with origin [-6.59140045 30.00418475  6.15249971] 
                        6: Leaf node at depth 6 has 716 points with origin [-6.6071817  30.019966    6.15249971] 
                        7: Leaf node at depth 6 has 828 points with origin [-6.59140045 30.019966    6.15249971] 
                    1: Internal node at depth 5 has 8 children and 2962 points ([-6.5756192  30.00418475  6.13671846]) 
                        0: Leaf node at depth 6 has 236 points with origin [-6.5756192  30.00418475  6.13671846] 
                        1: Leaf node at depth 6 has 133 points with origin [-6.55983795 30.00418475  6.13671846] 
                        2: Leaf node at depth 6 has 370 points with origin [-6.5756192  30.019966    6.13671846] 
                        3: Leaf node at depth 6 has 581 points with origin [-6.55983795 30.019966    6.13671846] 
                        4: Leaf node at depth 6 has 231 points with origin [-6.5756192  30.00418475  6.15249971] 
                        5: Leaf node at depth 6 has 334 points with origin [-6.55983795 30.00418475  6.15249971] 
                        6: Leaf node at depth 6 has 480 points with origin [-6.5756192  30.019966    6.15249971] 
                        7: Leaf node at depth 6 has 597 points with origin [-6.55983795 30.019966    6.15249971] 
                    2: Internal node at depth 5 has 4 children and 2142 points ([-6.6071817  30.03574725  6.13671846]) 
                        0: Leaf node at depth 6 has 480 points with origin [-6.6071817  30.03574725  6.13671846] 
                        1: Leaf node at depth 6 has 429 points with origin [-6.59140045 30.03574725  6.13671846] 
                        4: Leaf node at depth 6 has 525 points with origin [-6.6071817  30.03574725  6.15249971] 
                        5: Leaf node at depth 6 has 708 points with origin [-6.59140045 30.03574725  6.15249971] 
                    3: Internal node at depth 5 has 6 children and 3206 points ([-6.5756192  30.03574725  6.13671846]) 
                        0: Leaf node at depth 6 has 360 points with origin [-6.5756192  30.03574725  6.13671846] 
                        1: Leaf node at depth 6 has 595 points with origin [-6.55983795 30.03574725  6.13671846] 
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                        3: Leaf node at depth 6 has 108 points with origin [-6.55983795 30.0515285   6.13671846] 
                        4: Leaf node at depth 6 has 812 points with origin [-6.5756192  30.03574725  6.15249971] 
                        5: Leaf node at depth 6 has 675 points with origin [-6.55983795 30.03574725  6.15249971] 
                        7: Leaf node at depth 6 has 656 points with origin [-6.55983795 30.0515285   6.15249971] 
                    4: Internal node at depth 5 has 3 children and 2560 points ([-6.6071817  30.00418475  6.16828096]) 
                        0: Leaf node at depth 6 has 528 points with origin [-6.6071817  30.00418475  6.16828096] 
                        1: Leaf node at depth 6 has 947 points with origin [-6.59140045 30.00418475  6.16828096] 
                        3: Leaf node at depth 6 has 1085 points with origin [-6.59140045 30.019966    6.16828096] 
                    5: Internal node at depth 5 has 4 children and 4161 points ([-6.5756192  30.00418475  6.16828096]) 
                        0: Leaf node at depth 6 has 981 points with origin [-6.5756192  30.00418475  6.16828096] 
                        1: Leaf node at depth 6 has 1047 points with origin [-6.55983795 30.00418475  6.16828096] 
                        2: Leaf node at depth 6 has 1133 points with origin [-6.5756192  30.019966    6.16828096] 
                        5: Leaf node at depth 6 has 1000 points with origin [-6.55983795 30.00418475  6.18406221] 
                    7: Internal node at depth 5 has 1 children and 1 points ([-6.5756192  30.03574725  6.16828096]) 
                7: Internal node at depth 4 has 8 children and 30408 points ([-6.5440567  30.00418475  6.13671846]) 
                    0: Internal node at depth 5 has 4 children and 2992 points ([-6.5440567  30.00418475  6.13671846]) 
                        0: Leaf node at depth 6 has 382 points with origin [-6.5440567  30.00418475  6.13671846] 
                        1: Leaf node at depth 6 has 718 points with origin [-6.52827545 30.00418475  6.13671846] 
                        4: Leaf node at depth 6 has 807 points with origin [-6.5440567  30.00418475  6.15249971] 
                        5: Leaf node at depth 6 has 1085 points with origin [-6.52827545 30.00418475  6.15249971] 
                    1: Internal node at depth 5 has 8 children and 5075 points ([-6.5124942  30.00418475  6.13671846]) 
                        0: Leaf node at depth 6 has 600 points with origin [-6.5124942  30.00418475  6.13671846] 
                        1: Leaf node at depth 6 has 667 points with origin [-6.49671295 30.00418475  6.13671846] 
                        2: Leaf node at depth 6 has 595 points with origin [-6.5124942  30.019966    6.13671846] 
                        3: Leaf node at depth 6 has 617 points with origin [-6.49671295 30.019966    6.13671846] 
                        4: Leaf node at depth 6 has 691 points with origin [-6.5124942  30.00418475  6.15249971] 
                        5: Leaf node at depth 6 has 553 points with origin [-6.49671295 30.00418475  6.15249971] 
                        6: Leaf node at depth 6 has 662 points with origin [-6.5124942  30.019966    6.15249971] 
                        7: Leaf node at depth 6 has 690 points with origin [-6.49671295 30.019966    6.15249971] 
                    2: Internal node at depth 5 has 7 children and 3071 points ([-6.5440567  30.03574725  6.13671846]) 
                        0: Leaf node at depth 6 has 10 points with origin [-6.5440567  30.03574725  6.13671846] 
                        1: Leaf node at depth 6 has 134 points with origin [-6.52827545 30.03574725  6.13671846] 
                        3: Leaf node at depth 6 has 3 points with origin [-6.52827545 30.0515285   6.13671846] 
                        4: Leaf node at depth 6 has 307 points with origin [-6.5440567  30.03574725  6.15249971] 
                        5: Leaf node at depth 6 has 503 points with origin [-6.52827545 30.03574725  6.15249971] 
                        6: Leaf node at depth 6 has 1131 points with origin [-6.5440567  30.0515285   6.15249971] 
                        7: Leaf node at depth 6 has 983 points with origin [-6.52827545 30.0515285   6.15249971] 
                    3: Internal node at depth 5 has 8 children and 5206 points ([-6.5124942  30.03574725  6.13671846]) 
                        0: Leaf node at depth 6 has 288 points with origin [-6.5124942  30.03574725  6.13671846] 
                        1: Leaf node at depth 6 has 601 points with origin [-6.49671295 30.03574725  6.13671846] 
                        2: Leaf node at depth 6 has 735 points with origin [-6.5124942  30.0515285   6.13671846] 
                        3: Leaf node at depth 6 has 944 points with origin [-6.49671295 30.0515285   6.13671846] 
                        4: Leaf node at depth 6 has 548 points with origin [-6.5124942  30.03574725  6.15249971] 
                        5: Leaf node at depth 6 has 580 points with origin [-6.49671295 30.03574725  6.15249971] 
                        6: Leaf node at depth 6 has 733 points with origin [-6.5124942  30.0515285   6.15249971] 
                        7: Leaf node at depth 6 has 777 points with origin [-6.49671295 30.0515285   6.15249971] 
                    4: Internal node at depth 5 has 4 children and 3548 points ([-6.5440567  30.00418475  6.16828096]) 
                        0: Leaf node at depth 6 has 857 points with origin [-6.5440567  30.00418475  6.16828096] 
                        1: Leaf node at depth 6 has 901 points with origin [-6.52827545 30.00418475  6.16828096] 
                        4: Leaf node at depth 6 has 831 points with origin [-6.5440567  30.00418475  6.18406221] 
                        5: Leaf node at depth 6 has 959 points with origin [-6.52827545 30.00418475  6.18406221] 
                    5: Internal node at depth 5 has 8 children and 3288 points ([-6.5124942  30.00418475  6.16828096]) 
                        0: Leaf node at depth 6 has 586 points with origin [-6.5124942  30.00418475  6.16828096] 
                        1: Leaf node at depth 6 has 106 points with origin [-6.49671295 30.00418475  6.16828096] 
                        2: Leaf node at depth 6 has 636 points with origin [-6.5124942  30.019966    6.16828096] 
                        3: Leaf node at depth 6 has 387 points with origin [-6.49671295 30.019966    6.16828096] 
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                        4: Leaf node at depth 6 has 602 points with origin [-6.5124942  30.00418475  6.18406221] 
                        5: Leaf node at depth 6 has 74 points with origin [-6.49671295 30.00418475  6.18406221] 
                        6: Leaf node at depth 6 has 694 points with origin [-6.5124942  30.019966    6.18406221] 
                        7: Leaf node at depth 6 has 203 points with origin [-6.49671295 30.019966    6.18406221] 
                    6: Internal node at depth 5 has 5 children and 1742 points ([-6.5440567  30.03574725  6.16828096]) 
                        1: Leaf node at depth 6 has 251 points with origin [-6.52827545 30.03574725  6.16828096] 
                        2: Leaf node at depth 6 has 14 points with origin [-6.5440567  30.0515285   6.16828096] 
                        3: Leaf node at depth 6 has 748 points with origin [-6.52827545 30.0515285   6.16828096] 
                        5: Leaf node at depth 6 has 143 points with origin [-6.52827545 30.03574725  6.18406221] 
                        7: Leaf node at depth 6 has 586 points with origin [-6.52827545 30.0515285   6.18406221] 
                    7: Internal node at depth 5 has 8 children and 5486 points ([-6.5124942  30.03574725  6.16828096]) 
                        0: Leaf node at depth 6 has 561 points with origin [-6.5124942  30.03574725  6.16828096] 
                        1: Leaf node at depth 6 has 577 points with origin [-6.49671295 30.03574725  6.16828096] 
                        2: Leaf node at depth 6 has 818 points with origin [-6.5124942  30.0515285   6.16828096] 
                        3: Leaf node at depth 6 has 737 points with origin [-6.49671295 30.0515285   6.16828096] 
                        4: Leaf node at depth 6 has 657 points with origin [-6.5124942  30.03574725  6.18406221] 
                        5: Leaf node at depth 6 has 539 points with origin [-6.49671295 30.03574725  6.18406221] 
                        6: Leaf node at depth 6 has 872 points with origin [-6.5124942  30.0515285   6.18406221] 
                        7: Leaf node at depth 6 has 725 points with origin [-6.49671295 30.0515285   6.18406221] 
            2: Internal node at depth 3 has 6 children and 51975 points ([-6.7334317  30.06730975  6.07359346]) 
                0: Internal node at depth 4 has 4 children and 12497 points ([-6.7334317  30.06730975  6.07359346]) 
                    4: Internal node at depth 5 has 4 children and 3505 points ([-6.7334317  30.06730975  6.10515596]) 
                        4: Leaf node at depth 6 has 888 points with origin [-6.7334317  30.06730975  6.12093721] 
                        5: Leaf node at depth 6 has 952 points with origin [-6.71765045 30.06730975  6.12093721] 
                        6: Leaf node at depth 6 has 815 points with origin [-6.7334317  30.083091    6.12093721] 
                        7: Leaf node at depth 6 has 850 points with origin [-6.71765045 30.083091    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 2839 points ([-6.7018692  30.06730975  6.10515596]) 
                        4: Leaf node at depth 6 has 759 points with origin [-6.7018692  30.06730975  6.12093721] 
                        5: Leaf node at depth 6 has 637 points with origin [-6.68608795 30.06730975  6.12093721] 
                        6: Leaf node at depth 6 has 711 points with origin [-6.7018692  30.083091    6.12093721] 
                        7: Leaf node at depth 6 has 732 points with origin [-6.68608795 30.083091    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 3179 points ([-6.7334317  30.09887225  6.10515596]) 
                        4: Leaf node at depth 6 has 757 points with origin [-6.7334317  30.09887225  6.12093721] 
                        5: Leaf node at depth 6 has 762 points with origin [-6.71765045 30.09887225  6.12093721] 
                        6: Leaf node at depth 6 has 853 points with origin [-6.7334317  30.1146535   6.12093721] 
                        7: Leaf node at depth 6 has 807 points with origin [-6.71765045 30.1146535   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 2974 points ([-6.7018692  30.09887225  6.10515596]) 
                        4: Leaf node at depth 6 has 683 points with origin [-6.7018692  30.09887225  6.12093721] 
                        5: Leaf node at depth 6 has 823 points with origin [-6.68608795 30.09887225  6.12093721] 
                        6: Leaf node at depth 6 has 710 points with origin [-6.7018692  30.1146535   6.12093721] 
                        7: Leaf node at depth 6 has 758 points with origin [-6.68608795 30.1146535   6.12093721] 
                1: Internal node at depth 4 has 4 children and 11129 points ([-6.6703067  30.06730975  6.07359346]) 
                    4: Internal node at depth 5 has 4 children and 2632 points ([-6.6703067  30.06730975  6.10515596]) 
                        4: Leaf node at depth 6 has 665 points with origin [-6.6703067  30.06730975  6.12093721] 
                        5: Leaf node at depth 6 has 713 points with origin [-6.65452545 30.06730975  6.12093721] 
                        6: Leaf node at depth 6 has 636 points with origin [-6.6703067  30.083091    6.12093721] 
                        7: Leaf node at depth 6 has 618 points with origin [-6.65452545 30.083091    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 2713 points ([-6.6387442  30.06730975  6.10515596]) 
                        4: Leaf node at depth 6 has 684 points with origin [-6.6387442  30.06730975  6.12093721] 
                        5: Leaf node at depth 6 has 738 points with origin [-6.62296295 30.06730975  6.12093721] 
                        6: Leaf node at depth 6 has 648 points with origin [-6.6387442  30.083091    6.12093721] 
                        7: Leaf node at depth 6 has 643 points with origin [-6.62296295 30.083091    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 2952 points ([-6.6703067  30.09887225  6.10515596]) 
                        4: Leaf node at depth 6 has 740 points with origin [-6.6703067  30.09887225  6.12093721] 
                        5: Leaf node at depth 6 has 763 points with origin [-6.65452545 30.09887225  6.12093721] 
                        6: Leaf node at depth 6 has 738 points with origin [-6.6703067  30.1146535   6.12093721] 



142 

 

                        7: Leaf node at depth 6 has 711 points with origin [-6.65452545 30.1146535   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 2832 points ([-6.6387442  30.09887225  6.10515596]) 
                        4: Leaf node at depth 6 has 718 points with origin [-6.6387442  30.09887225  6.12093721] 
                        5: Leaf node at depth 6 has 647 points with origin [-6.62296295 30.09887225  6.12093721] 
                        6: Leaf node at depth 6 has 724 points with origin [-6.6387442  30.1146535   6.12093721] 
                        7: Leaf node at depth 6 has 743 points with origin [-6.62296295 30.1146535   6.12093721] 
                2: Internal node at depth 4 has 4 children and 14728 points ([-6.7334317  30.13043475  6.07359346]) 
                    4: Internal node at depth 5 has 4 children and 3944 points ([-6.7334317  30.13043475  6.10515596]) 
                        4: Leaf node at depth 6 has 1388 points with origin [-6.7334317  30.13043475  6.12093721] 
                        5: Leaf node at depth 6 has 927 points with origin [-6.71765045 30.13043475  6.12093721] 
                        6: Leaf node at depth 6 has 837 points with origin [-6.7334317  30.146216    6.12093721] 
                        7: Leaf node at depth 6 has 792 points with origin [-6.71765045 30.146216    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 3445 points ([-6.7018692  30.13043475  6.10515596]) 
                        4: Leaf node at depth 6 has 800 points with origin [-6.7018692  30.13043475  6.12093721] 
                        5: Leaf node at depth 6 has 919 points with origin [-6.68608795 30.13043475  6.12093721] 
                        6: Leaf node at depth 6 has 955 points with origin [-6.7018692  30.146216    6.12093721] 
                        7: Leaf node at depth 6 has 771 points with origin [-6.68608795 30.146216    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 3679 points ([-6.7334317  30.16199725  6.10515596]) 
                        4: Leaf node at depth 6 has 846 points with origin [-6.7334317  30.16199725  6.12093721] 
                        5: Leaf node at depth 6 has 857 points with origin [-6.71765045 30.16199725  6.12093721] 
                        6: Leaf node at depth 6 has 1034 points with origin [-6.7334317  30.1777785   6.12093721] 
                        7: Leaf node at depth 6 has 942 points with origin [-6.71765045 30.1777785   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 3660 points ([-6.7018692  30.16199725  6.10515596]) 
                        4: Leaf node at depth 6 has 1140 points with origin [-6.7018692  30.16199725  6.12093721] 
                        5: Leaf node at depth 6 has 783 points with origin [-6.68608795 30.16199725  6.12093721] 
                        6: Leaf node at depth 6 has 923 points with origin [-6.7018692  30.1777785   6.12093721] 
                        7: Leaf node at depth 6 has 814 points with origin [-6.68608795 30.1777785   6.12093721] 
                3: Internal node at depth 4 has 4 children and 12710 points ([-6.6703067  30.13043475  6.07359346]) 
                    4: Internal node at depth 5 has 4 children and 3060 points ([-6.6703067  30.13043475  6.10515596]) 
                        4: Leaf node at depth 6 has 775 points with origin [-6.6703067  30.13043475  6.12093721] 
                        5: Leaf node at depth 6 has 708 points with origin [-6.65452545 30.13043475  6.12093721] 
                        6: Leaf node at depth 6 has 746 points with origin [-6.6703067  30.146216    6.12093721] 
                        7: Leaf node at depth 6 has 831 points with origin [-6.65452545 30.146216    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 3180 points ([-6.6387442  30.13043475  6.10515596]) 
                        4: Leaf node at depth 6 has 759 points with origin [-6.6387442  30.13043475  6.12093721] 
                        5: Leaf node at depth 6 has 860 points with origin [-6.62296295 30.13043475  6.12093721] 
                        6: Leaf node at depth 6 has 794 points with origin [-6.6387442  30.146216    6.12093721] 
                        7: Leaf node at depth 6 has 767 points with origin [-6.62296295 30.146216    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 3468 points ([-6.6703067  30.16199725  6.10515596]) 
                        4: Leaf node at depth 6 has 762 points with origin [-6.6703067  30.16199725  6.12093721] 
                        5: Leaf node at depth 6 has 1115 points with origin [-6.65452545 30.16199725  6.12093721] 
                        6: Leaf node at depth 6 has 827 points with origin [-6.6703067  30.1777785   6.12093721] 
                        7: Leaf node at depth 6 has 764 points with origin [-6.65452545 30.1777785   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 3002 points ([-6.6387442  30.16199725  6.10515596]) 
                        4: Leaf node at depth 6 has 745 points with origin [-6.6387442  30.16199725  6.12093721] 
                        5: Leaf node at depth 6 has 720 points with origin [-6.62296295 30.16199725  6.12093721] 
                        6: Leaf node at depth 6 has 755 points with origin [-6.6387442  30.1777785   6.12093721] 
                        7: Leaf node at depth 6 has 782 points with origin [-6.62296295 30.1777785   6.12093721] 
                6: Internal node at depth 4 has 3 children and 851 points ([-6.7334317  30.13043475  6.13671846]) 
                    0: Internal node at depth 5 has 2 children and 773 points ([-6.7334317  30.13043475  6.13671846]) 
                        0: Leaf node at depth 6 has 382 points with origin [-6.7334317  30.13043475  6.13671846] 
                        4: Leaf node at depth 6 has 391 points with origin [-6.7334317  30.13043475  6.15249971] 
                    4: Internal node at depth 5 has 1 children and 62 points ([-6.7334317  30.13043475  6.16828096]) 
                        0: Leaf node at depth 6 has 62 points with origin [-6.7334317  30.13043475  6.16828096] 
                    6: Internal node at depth 5 has 1 children and 16 points ([-6.7334317  30.16199725  6.16828096]) 
                7: Internal node at depth 4 has 1 children and 60 points ([-6.6703067  30.13043475  6.13671846]) 
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                    3: Internal node at depth 5 has 2 children and 60 points ([-6.6387442  30.16199725  6.13671846]) 
                        2: Leaf node at depth 6 has 12 points with origin [-6.6387442  30.1777785   6.13671846] 
                        3: Leaf node at depth 6 has 48 points with origin [-6.62296295 30.1777785   6.13671846] 
            3: Internal node at depth 3 has 8 children and 71609 points ([-6.6071817  30.06730975  6.07359346]) 
                0: Internal node at depth 4 has 4 children and 13612 points ([-6.6071817  30.06730975  6.07359346]) 
                    4: Internal node at depth 5 has 4 children and 3182 points ([-6.6071817  30.06730975  6.10515596]) 
                        4: Leaf node at depth 6 has 715 points with origin [-6.6071817  30.06730975  6.12093721] 
                        5: Leaf node at depth 6 has 760 points with origin [-6.59140045 30.06730975  6.12093721] 
                        6: Leaf node at depth 6 has 767 points with origin [-6.6071817  30.083091    6.12093721] 
                        7: Leaf node at depth 6 has 940 points with origin [-6.59140045 30.083091    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 3829 points ([-6.5756192  30.06730975  6.10515596]) 
                        4: Leaf node at depth 6 has 761 points with origin [-6.5756192  30.06730975  6.12093721] 
                        5: Leaf node at depth 6 has 1164 points with origin [-6.55983795 30.06730975  6.12093721] 
                        6: Leaf node at depth 6 has 1075 points with origin [-6.5756192  30.083091    6.12093721] 
                        7: Leaf node at depth 6 has 829 points with origin [-6.55983795 30.083091    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 3345 points ([-6.6071817  30.09887225  6.10515596]) 
                        4: Leaf node at depth 6 has 804 points with origin [-6.6071817  30.09887225  6.12093721] 
                        5: Leaf node at depth 6 has 834 points with origin [-6.59140045 30.09887225  6.12093721] 
                        6: Leaf node at depth 6 has 905 points with origin [-6.6071817  30.1146535   6.12093721] 
                        7: Leaf node at depth 6 has 802 points with origin [-6.59140045 30.1146535   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 3256 points ([-6.5756192  30.09887225  6.10515596]) 
                        4: Leaf node at depth 6 has 921 points with origin [-6.5756192  30.09887225  6.12093721] 
                        5: Leaf node at depth 6 has 845 points with origin [-6.55983795 30.09887225  6.12093721] 
                        6: Leaf node at depth 6 has 745 points with origin [-6.5756192  30.1146535   6.12093721] 
                        7: Leaf node at depth 6 has 745 points with origin [-6.55983795 30.1146535   6.12093721] 
                1: Internal node at depth 4 has 4 children and 13239 points ([-6.5440567  30.06730975  6.07359346]) 
                    4: Internal node at depth 5 has 4 children and 3130 points ([-6.5440567  30.06730975  6.10515596]) 
                        4: Leaf node at depth 6 has 732 points with origin [-6.5440567  30.06730975  6.12093721] 
                        5: Leaf node at depth 6 has 921 points with origin [-6.52827545 30.06730975  6.12093721] 
                        6: Leaf node at depth 6 has 701 points with origin [-6.5440567  30.083091    6.12093721] 
                        7: Leaf node at depth 6 has 776 points with origin [-6.52827545 30.083091    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 3600 points ([-6.5124942  30.06730975  6.10515596]) 
                        4: Leaf node at depth 6 has 1048 points with origin [-6.5124942  30.06730975  6.12093721] 
                        5: Leaf node at depth 6 has 849 points with origin [-6.49671295 30.06730975  6.12093721] 
                        6: Leaf node at depth 6 has 877 points with origin [-6.5124942  30.083091    6.12093721] 
                        7: Leaf node at depth 6 has 826 points with origin [-6.49671295 30.083091    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 3115 points ([-6.5440567  30.09887225  6.10515596]) 
                        4: Leaf node at depth 6 has 786 points with origin [-6.5440567  30.09887225  6.12093721] 
                        5: Leaf node at depth 6 has 789 points with origin [-6.52827545 30.09887225  6.12093721] 
                        6: Leaf node at depth 6 has 760 points with origin [-6.5440567  30.1146535   6.12093721] 
                        7: Leaf node at depth 6 has 780 points with origin [-6.52827545 30.1146535   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 3394 points ([-6.5124942  30.09887225  6.10515596]) 
                        4: Leaf node at depth 6 has 882 points with origin [-6.5124942  30.09887225  6.12093721] 
                        5: Leaf node at depth 6 has 777 points with origin [-6.49671295 30.09887225  6.12093721] 
                        6: Leaf node at depth 6 has 925 points with origin [-6.5124942  30.1146535   6.12093721] 
                        7: Leaf node at depth 6 has 810 points with origin [-6.49671295 30.1146535   6.12093721] 
                2: Internal node at depth 4 has 4 children and 12935 points ([-6.6071817  30.13043475  6.07359346]) 
                    4: Internal node at depth 5 has 4 children and 3206 points ([-6.6071817  30.13043475  6.10515596]) 
                        4: Leaf node at depth 6 has 914 points with origin [-6.6071817  30.13043475  6.12093721] 
                        5: Leaf node at depth 6 has 716 points with origin [-6.59140045 30.13043475  6.12093721] 
                        6: Leaf node at depth 6 has 827 points with origin [-6.6071817  30.146216    6.12093721] 
                        7: Leaf node at depth 6 has 749 points with origin [-6.59140045 30.146216    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 3116 points ([-6.5756192  30.13043475  6.10515596]) 
                        4: Leaf node at depth 6 has 787 points with origin [-6.5756192  30.13043475  6.12093721] 
                        5: Leaf node at depth 6 has 706 points with origin [-6.55983795 30.13043475  6.12093721] 
                        6: Leaf node at depth 6 has 884 points with origin [-6.5756192  30.146216    6.12093721] 
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                        7: Leaf node at depth 6 has 739 points with origin [-6.55983795 30.146216    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 3473 points ([-6.6071817  30.16199725  6.10515596]) 
                        4: Leaf node at depth 6 has 822 points with origin [-6.6071817  30.16199725  6.12093721] 
                        5: Leaf node at depth 6 has 983 points with origin [-6.59140045 30.16199725  6.12093721] 
                        6: Leaf node at depth 6 has 858 points with origin [-6.6071817  30.1777785   6.12093721] 
                        7: Leaf node at depth 6 has 810 points with origin [-6.59140045 30.1777785   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 3140 points ([-6.5756192  30.16199725  6.10515596]) 
                        4: Leaf node at depth 6 has 779 points with origin [-6.5756192  30.16199725  6.12093721] 
                        5: Leaf node at depth 6 has 921 points with origin [-6.55983795 30.16199725  6.12093721] 
                        6: Leaf node at depth 6 has 785 points with origin [-6.5756192  30.1777785   6.12093721] 
                        7: Leaf node at depth 6 has 655 points with origin [-6.55983795 30.1777785   6.12093721] 
                3: Internal node at depth 4 has 4 children and 12910 points ([-6.5440567  30.13043475  6.07359346]) 
                    4: Internal node at depth 5 has 4 children and 3522 points ([-6.5440567  30.13043475  6.10515596]) 
                        4: Leaf node at depth 6 has 748 points with origin [-6.5440567  30.13043475  6.12093721] 
                        5: Leaf node at depth 6 has 817 points with origin [-6.52827545 30.13043475  6.12093721] 
                        6: Leaf node at depth 6 has 980 points with origin [-6.5440567  30.146216    6.12093721] 
                        7: Leaf node at depth 6 has 977 points with origin [-6.52827545 30.146216    6.12093721] 
                    5: Internal node at depth 5 has 4 children and 3531 points ([-6.5124942  30.13043475  6.10515596]) 
                        4: Leaf node at depth 6 has 915 points with origin [-6.5124942  30.13043475  6.12093721] 
                        5: Leaf node at depth 6 has 882 points with origin [-6.49671295 30.13043475  6.12093721] 
                        6: Leaf node at depth 6 has 880 points with origin [-6.5124942  30.146216    6.12093721] 
                        7: Leaf node at depth 6 has 854 points with origin [-6.49671295 30.146216    6.12093721] 
                    6: Internal node at depth 5 has 4 children and 2579 points ([-6.5440567  30.16199725  6.10515596]) 
                        4: Leaf node at depth 6 has 1071 points with origin [-6.5440567  30.16199725  6.12093721] 
                        5: Leaf node at depth 6 has 1083 points with origin [-6.52827545 30.16199725  6.12093721] 
                        6: Leaf node at depth 6 has 80 points with origin [-6.5440567  30.1777785   6.12093721] 
                        7: Leaf node at depth 6 has 345 points with origin [-6.52827545 30.1777785   6.12093721] 
                    7: Internal node at depth 5 has 4 children and 3278 points ([-6.5124942  30.16199725  6.10515596]) 
                        4: Leaf node at depth 6 has 831 points with origin [-6.5124942  30.16199725  6.12093721] 
                        5: Leaf node at depth 6 has 837 points with origin [-6.49671295 30.16199725  6.12093721] 
                        6: Leaf node at depth 6 has 877 points with origin [-6.5124942  30.1777785   6.12093721] 
                        7: Leaf node at depth 6 has 733 points with origin [-6.49671295 30.1777785   6.12093721] 
                4: Internal node at depth 4 has 1 children and 1212 points ([-6.6071817  30.06730975  6.13671846]) 
                    1: Internal node at depth 5 has 2 children and 1212 points ([-6.5756192  30.06730975  6.13671846]) 
                        1: Leaf node at depth 6 has 413 points with origin [-6.55983795 30.06730975  6.13671846] 
                        5: Leaf node at depth 6 has 799 points with origin [-6.55983795 30.06730975  6.15249971] 
                5: Internal node at depth 4 has 6 children and 4129 points ([-6.5440567  30.06730975  6.13671846]) 
                    0: Internal node at depth 5 has 4 children and 2610 points ([-6.5440567  30.06730975  6.13671846]) 
                        0: Leaf node at depth 6 has 98 points with origin [-6.5440567  30.06730975  6.13671846] 
                        1: Leaf node at depth 6 has 368 points with origin [-6.52827545 30.06730975  6.13671846] 
                        4: Leaf node at depth 6 has 1074 points with origin [-6.5440567  30.06730975  6.15249971] 
                        5: Leaf node at depth 6 has 1070 points with origin [-6.52827545 30.06730975  6.15249971] 
                    1: Internal node at depth 5 has 2 children and 217 points ([-6.5124942  30.06730975  6.13671846]) 
                        0: Leaf node at depth 6 has 129 points with origin [-6.5124942  30.06730975  6.13671846] 
                        4: Leaf node at depth 6 has 88 points with origin [-6.5124942  30.06730975  6.15249971] 
                    3: Internal node at depth 5 has 3 children and 18 points ([-6.5124942  30.09887225  6.13671846]) 
                    4: Internal node at depth 5 has 2 children and 1253 points ([-6.5440567  30.06730975  6.16828096]) 
                        1: Leaf node at depth 6 has 691 points with origin [-6.52827545 30.06730975  6.16828096] 
                        5: Leaf node at depth 6 has 562 points with origin [-6.52827545 30.06730975  6.18406221] 
                    5: Internal node at depth 5 has 2 children and 25 points ([-6.5124942  30.06730975  6.16828096]) 
                    7: Internal node at depth 5 has 1 children and 6 points ([-6.5124942  30.09887225  6.16828096]) 
                6: Internal node at depth 4 has 3 children and 3721 points ([-6.6071817  30.13043475  6.13671846]) 
                    2: Internal node at depth 5 has 3 children and 55 points ([-6.6071817  30.16199725  6.13671846]) 
                        2: Leaf node at depth 6 has 35 points with origin [-6.6071817  30.1777785   6.13671846] 
                        6: Leaf node at depth 6 has 17 points with origin [-6.6071817  30.1777785   6.15249971] 
                        7: Leaf node at depth 6 has 3 points with origin [-6.59140045 30.1777785   6.15249971] 
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                    3: Internal node at depth 5 has 4 children and 2188 points ([-6.5756192  30.16199725  6.13671846]) 
                        1: Leaf node at depth 6 has 319 points with origin [-6.55983795 30.16199725  6.13671846] 
                        3: Leaf node at depth 6 has 735 points with origin [-6.55983795 30.1777785   6.13671846] 
                        5: Leaf node at depth 6 has 357 points with origin [-6.55983795 30.16199725  6.15249971] 
                        7: Leaf node at depth 6 has 777 points with origin [-6.55983795 30.1777785   6.15249971] 
                    7: Internal node at depth 5 has 4 children and 1478 points ([-6.5756192  30.16199725  6.16828096]) 
                        1: Leaf node at depth 6 has 421 points with origin [-6.55983795 30.16199725  6.16828096] 
                        3: Leaf node at depth 6 has 982 points with origin [-6.55983795 30.1777785   6.16828096] 
                        5: Leaf node at depth 6 has 13 points with origin [-6.55983795 30.16199725  6.18406221] 
                        7: Leaf node at depth 6 has 62 points with origin [-6.55983795 30.1777785   6.18406221] 
                7: Internal node at depth 4 has 5 children and 9851 points ([-6.5440567  30.13043475  6.13671846]) 
                    1: Internal node at depth 5 has 1 children and 8 points ([-6.5124942  30.13043475  6.13671846]) 
                    2: Internal node at depth 5 has 7 children and 4232 points ([-6.5440567  30.16199725  6.13671846]) 
                        0: Leaf node at depth 6 has 877 points with origin [-6.5440567  30.16199725  6.13671846] 
                        1: Leaf node at depth 6 has 873 points with origin [-6.52827545 30.16199725  6.13671846] 
                        2: Leaf node at depth 6 has 11 points with origin [-6.5440567  30.1777785   6.13671846] 
                        3: Leaf node at depth 6 has 682 points with origin [-6.52827545 30.1777785   6.13671846] 
                        4: Leaf node at depth 6 has 864 points with origin [-6.5440567  30.16199725  6.15249971] 
                        5: Leaf node at depth 6 has 781 points with origin [-6.52827545 30.16199725  6.15249971] 
                        7: Leaf node at depth 6 has 144 points with origin [-6.52827545 30.1777785   6.15249971] 
                    3: Internal node at depth 5 has 2 children and 639 points ([-6.5124942  30.16199725  6.13671846]) 
                        4: Leaf node at depth 6 has 119 points with origin [-6.5124942  30.16199725  6.15249971] 
                        6: Leaf node at depth 6 has 520 points with origin [-6.5124942  30.1777785   6.15249971] 
                    6: Internal node at depth 5 has 6 children and 4766 points ([-6.5440567  30.16199725  6.16828096]) 
                        0: Leaf node at depth 6 has 910 points with origin [-6.5440567  30.16199725  6.16828096] 
                        1: Leaf node at depth 6 has 831 points with origin [-6.52827545 30.16199725  6.16828096] 
                        2: Leaf node at depth 6 has 1277 points with origin [-6.5440567  30.1777785   6.16828096] 
                        3: Leaf node at depth 6 has 830 points with origin [-6.52827545 30.1777785   6.16828096] 
                        4: Leaf node at depth 6 has 486 points with origin [-6.5440567  30.16199725  6.18406221] 
                        6: Leaf node at depth 6 has 432 points with origin [-6.5440567  30.1777785   6.18406221] 
                    7: Internal node at depth 5 has 2 children and 206 points ([-6.5124942  30.16199725  6.16828096]) 
                        0: Leaf node at depth 6 has 48 points with origin [-6.5124942  30.16199725  6.16828096] 
                        2: Leaf node at depth 6 has 158 points with origin [-6.5124942  30.1777785   6.16828096] 
            4: Internal node at depth 3 has 8 children and 115411 points ([-6.7334317  29.94105975  6.19984346]) 
                0: Internal node at depth 4 has 8 children and 27393 points ([-6.7334317  29.94105975  6.19984346]) 
                    0: Internal node at depth 5 has 5 children and 3087 points ([-6.7334317  29.94105975  6.19984346]) 
                        0: Leaf node at depth 6 has 710 points with origin [-6.7334317  29.94105975  6.19984346] 
                        1: Leaf node at depth 6 has 813 points with origin [-6.71765045 29.94105975  6.19984346] 
                        4: Leaf node at depth 6 has 794 points with origin [-6.7334317  29.94105975  6.21562471] 
                        5: Leaf node at depth 6 has 767 points with origin [-6.71765045 29.94105975  6.21562471] 
                        7: Leaf node at depth 6 has 3 points with origin [-6.71765045 29.956841    6.21562471] 
                    1: Internal node at depth 5 has 6 children and 3572 points ([-6.7018692  29.94105975  6.19984346]) 
                        0: Leaf node at depth 6 has 885 points with origin [-6.7018692  29.94105975  6.19984346] 
                        1: Leaf node at depth 6 has 1033 points with origin [-6.68608795 29.94105975  6.19984346] 
                        4: Leaf node at depth 6 has 713 points with origin [-6.7018692  29.94105975  6.21562471] 
                        5: Leaf node at depth 6 has 930 points with origin [-6.68608795 29.94105975  6.21562471] 
                        6: Leaf node at depth 6 has 9 points with origin [-6.7018692  29.956841    6.21562471] 
                        7: Leaf node at depth 6 has 2 points with origin [-6.68608795 29.956841    6.21562471] 
                    2: Internal node at depth 5 has 4 children and 2917 points ([-6.7334317  29.97262225  6.19984346]) 
                        0: Leaf node at depth 6 has 730 points with origin [-6.7334317  29.97262225  6.19984346] 
                        1: Leaf node at depth 6 has 729 points with origin [-6.71765045 29.97262225  6.19984346] 
                        4: Leaf node at depth 6 has 729 points with origin [-6.7334317  29.97262225  6.21562471] 
                        5: Leaf node at depth 6 has 729 points with origin [-6.71765045 29.97262225  6.21562471] 
                    3: Internal node at depth 5 has 6 children and 4393 points ([-6.7018692  29.97262225  6.19984346]) 
                        0: Leaf node at depth 6 has 762 points with origin [-6.7018692  29.97262225  6.19984346] 
                        1: Leaf node at depth 6 has 774 points with origin [-6.68608795 29.97262225  6.19984346] 
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                        3: Leaf node at depth 6 has 668 points with origin [-6.68608795 29.9884035   6.19984346] 
                        4: Leaf node at depth 6 has 819 points with origin [-6.7018692  29.97262225  6.21562471] 
                        5: Leaf node at depth 6 has 1002 points with origin [-6.68608795 29.97262225  6.21562471] 
                        7: Leaf node at depth 6 has 368 points with origin [-6.68608795 29.9884035   6.21562471] 
                    4: Internal node at depth 5 has 5 children and 3262 points ([-6.7334317  29.94105975  6.23140596]) 
                        0: Leaf node at depth 6 has 877 points with origin [-6.7334317  29.94105975  6.23140596] 
                        1: Leaf node at depth 6 has 864 points with origin [-6.71765045 29.94105975  6.23140596] 
                        3: Leaf node at depth 6 has 2 points with origin [-6.71765045 29.956841    6.23140596] 
                        4: Leaf node at depth 6 has 719 points with origin [-6.7334317  29.94105975  6.24718721] 
                        5: Leaf node at depth 6 has 800 points with origin [-6.71765045 29.94105975  6.24718721] 
                    5: Internal node at depth 5 has 4 children and 3202 points ([-6.7018692  29.94105975  6.23140596]) 
                        0: Leaf node at depth 6 has 764 points with origin [-6.7018692  29.94105975  6.23140596] 
                        1: Leaf node at depth 6 has 739 points with origin [-6.68608795 29.94105975  6.23140596] 
                        4: Leaf node at depth 6 has 851 points with origin [-6.7018692  29.94105975  6.24718721] 
                        5: Leaf node at depth 6 has 848 points with origin [-6.68608795 29.94105975  6.24718721] 
                    6: Internal node at depth 5 has 4 children and 3348 points ([-6.7334317  29.97262225  6.23140596]) 
                        0: Leaf node at depth 6 has 707 points with origin [-6.7334317  29.97262225  6.23140596] 
                        1: Leaf node at depth 6 has 942 points with origin [-6.71765045 29.97262225  6.23140596] 
                        4: Leaf node at depth 6 has 866 points with origin [-6.7334317  29.97262225  6.24718721] 
                        5: Leaf node at depth 6 has 833 points with origin [-6.71765045 29.97262225  6.24718721] 
                    7: Internal node at depth 5 has 4 children and 3612 points ([-6.7018692  29.97262225  6.23140596]) 
                        0: Leaf node at depth 6 has 983 points with origin [-6.7018692  29.97262225  6.23140596] 
                        1: Leaf node at depth 6 has 999 points with origin [-6.68608795 29.97262225  6.23140596] 
                        4: Leaf node at depth 6 has 821 points with origin [-6.7018692  29.97262225  6.24718721] 
                        5: Leaf node at depth 6 has 809 points with origin [-6.68608795 29.97262225  6.24718721] 
                1: Internal node at depth 4 has 8 children and 32096 points ([-6.6703067  29.94105975  6.19984346]) 
                    0: Internal node at depth 5 has 5 children and 3240 points ([-6.6703067  29.94105975  6.19984346]) 
                        0: Leaf node at depth 6 has 895 points with origin [-6.6703067  29.94105975  6.19984346] 
                        1: Leaf node at depth 6 has 927 points with origin [-6.65452545 29.94105975  6.19984346] 
                        2: Leaf node at depth 6 has 1 points with origin [-6.6703067  29.956841    6.19984346] 
                        4: Leaf node at depth 6 has 744 points with origin [-6.6703067  29.94105975  6.21562471] 
                        5: Leaf node at depth 6 has 673 points with origin [-6.65452545 29.94105975  6.21562471] 
                    1: Internal node at depth 5 has 4 children and 3228 points ([-6.6387442  29.94105975  6.19984346]) 
                        0: Leaf node at depth 6 has 862 points with origin [-6.6387442  29.94105975  6.19984346] 
                        1: Leaf node at depth 6 has 897 points with origin [-6.62296295 29.94105975  6.19984346] 
                        4: Leaf node at depth 6 has 739 points with origin [-6.6387442  29.94105975  6.21562471] 
                        5: Leaf node at depth 6 has 730 points with origin [-6.62296295 29.94105975  6.21562471] 
                    2: Internal node at depth 5 has 8 children and 6868 points ([-6.6703067  29.97262225  6.19984346]) 
                        0: Leaf node at depth 6 has 994 points with origin [-6.6703067  29.97262225  6.19984346] 
                        1: Leaf node at depth 6 has 959 points with origin [-6.65452545 29.97262225  6.19984346] 
                        2: Leaf node at depth 6 has 541 points with origin [-6.6703067  29.9884035   6.19984346] 
                        3: Leaf node at depth 6 has 780 points with origin [-6.65452545 29.9884035   6.19984346] 
                        4: Leaf node at depth 6 has 1244 points with origin [-6.6703067  29.97262225  6.21562471] 
                        5: Leaf node at depth 6 has 1133 points with origin [-6.65452545 29.97262225  6.21562471] 
                        6: Leaf node at depth 6 has 598 points with origin [-6.6703067  29.9884035   6.21562471] 
                        7: Leaf node at depth 6 has 619 points with origin [-6.65452545 29.9884035   6.21562471] 
                    3: Internal node at depth 5 has 8 children and 6143 points ([-6.6387442  29.97262225  6.19984346]) 
                        0: Leaf node at depth 6 has 1017 points with origin [-6.6387442  29.97262225  6.19984346] 
                        1: Leaf node at depth 6 has 816 points with origin [-6.62296295 29.97262225  6.19984346] 
                        2: Leaf node at depth 6 has 591 points with origin [-6.6387442  29.9884035   6.19984346] 
                        3: Leaf node at depth 6 has 1 points with origin [-6.62296295 29.9884035   6.19984346] 
                        4: Leaf node at depth 6 has 1212 points with origin [-6.6387442  29.97262225  6.21562471] 
                        5: Leaf node at depth 6 has 1271 points with origin [-6.62296295 29.97262225  6.21562471] 
                        6: Leaf node at depth 6 has 598 points with origin [-6.6387442  29.9884035   6.21562471] 
                        7: Leaf node at depth 6 has 637 points with origin [-6.62296295 29.9884035   6.21562471] 
                    4: Internal node at depth 5 has 4 children and 3078 points ([-6.6703067  29.94105975  6.23140596]) 
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                        0: Leaf node at depth 6 has 703 points with origin [-6.6703067  29.94105975  6.23140596] 
                        1: Leaf node at depth 6 has 695 points with origin [-6.65452545 29.94105975  6.23140596] 
                        4: Leaf node at depth 6 has 832 points with origin [-6.6703067  29.94105975  6.24718721] 
                        5: Leaf node at depth 6 has 848 points with origin [-6.65452545 29.94105975  6.24718721] 
                    5: Internal node at depth 5 has 4 children and 3161 points ([-6.6387442  29.94105975  6.23140596]) 
                        0: Leaf node at depth 6 has 693 points with origin [-6.6387442  29.94105975  6.23140596] 
                        1: Leaf node at depth 6 has 698 points with origin [-6.62296295 29.94105975  6.23140596] 
                        4: Leaf node at depth 6 has 838 points with origin [-6.6387442  29.94105975  6.24718721] 
                        5: Leaf node at depth 6 has 932 points with origin [-6.62296295 29.94105975  6.24718721] 
                    6: Internal node at depth 5 has 4 children and 3143 points ([-6.6703067  29.97262225  6.23140596]) 
                        0: Leaf node at depth 6 has 845 points with origin [-6.6703067  29.97262225  6.23140596] 
                        1: Leaf node at depth 6 has 741 points with origin [-6.65452545 29.97262225  6.23140596] 
                        4: Leaf node at depth 6 has 747 points with origin [-6.6703067  29.97262225  6.24718721] 
                        5: Leaf node at depth 6 has 810 points with origin [-6.65452545 29.97262225  6.24718721] 
                    7: Internal node at depth 5 has 4 children and 3235 points ([-6.6387442  29.97262225  6.23140596]) 
                        0: Leaf node at depth 6 has 863 points with origin [-6.6387442  29.97262225  6.23140596] 
                        1: Leaf node at depth 6 has 799 points with origin [-6.62296295 29.97262225  6.23140596] 
                        4: Leaf node at depth 6 has 857 points with origin [-6.6387442  29.97262225  6.24718721] 
                        5: Leaf node at depth 6 has 716 points with origin [-6.62296295 29.97262225  6.24718721] 
                2: Internal node at depth 4 has 2 children and 539 points ([-6.7334317  30.00418475  6.19984346]) 
                    1: Internal node at depth 5 has 2 children and 535 points ([-6.7018692  30.00418475  6.19984346]) 
                        1: Leaf node at depth 6 has 241 points with origin [-6.68608795 30.00418475  6.19984346] 
                        5: Leaf node at depth 6 has 294 points with origin [-6.68608795 30.00418475  6.21562471] 
                    7: Internal node at depth 5 has 1 children and 4 points ([-6.7018692  30.03574725  6.23140596]) 
                3: Internal node at depth 4 has 4 children and 2173 points ([-6.6703067  30.00418475  6.19984346]) 
                    0: Internal node at depth 5 has 4 children and 1110 points ([-6.6703067  30.00418475  6.19984346]) 
                        1: Leaf node at depth 6 has 2 points with origin [-6.65452545 30.00418475  6.19984346] 
                        4: Leaf node at depth 6 has 534 points with origin [-6.6703067  30.00418475  6.21562471] 
                        5: Leaf node at depth 6 has 569 points with origin [-6.65452545 30.00418475  6.21562471] 
                        7: Leaf node at depth 6 has 5 points with origin [-6.65452545 30.019966    6.21562471] 
                    1: Internal node at depth 5 has 3 children and 1036 points ([-6.6387442  30.00418475  6.19984346]) 
                        0: Leaf node at depth 6 has 1 points with origin [-6.6387442  30.00418475  6.19984346] 
                        4: Leaf node at depth 6 has 514 points with origin [-6.6387442  30.00418475  6.21562471] 
                        5: Leaf node at depth 6 has 521 points with origin [-6.62296295 30.00418475  6.21562471] 
                    4: Internal node at depth 5 has 1 children and 8 points ([-6.6703067  30.00418475  6.23140596]) 
                    7: Internal node at depth 5 has 3 children and 19 points ([-6.6387442  30.03574725  6.23140596]) 
                4: Internal node at depth 4 has 8 children and 27008 points ([-6.7334317  29.94105975  6.26296846]) 
                    0: Internal node at depth 5 has 5 children and 3848 points ([-6.7334317  29.94105975  6.26296846]) 
                        0: Leaf node at depth 6 has 905 points with origin [-6.7334317  29.94105975  6.26296846] 
                        1: Leaf node at depth 6 has 931 points with origin [-6.71765045 29.94105975  6.26296846] 
                        3: Leaf node at depth 6 has 1 points with origin [-6.71765045 29.956841    6.26296846] 
                        4: Leaf node at depth 6 has 1079 points with origin [-6.7334317  29.94105975  6.27874971] 
                        5: Leaf node at depth 6 has 932 points with origin [-6.71765045 29.94105975  6.27874971] 
                    1: Internal node at depth 5 has 4 children and 3387 points ([-6.7018692  29.94105975  6.26296846]) 
                        0: Leaf node at depth 6 has 904 points with origin [-6.7018692  29.94105975  6.26296846] 
                        1: Leaf node at depth 6 has 714 points with origin [-6.68608795 29.94105975  6.26296846] 
                        4: Leaf node at depth 6 has 881 points with origin [-6.7018692  29.94105975  6.27874971] 
                        5: Leaf node at depth 6 has 888 points with origin [-6.68608795 29.94105975  6.27874971] 
                    2: Internal node at depth 5 has 4 children and 3156 points ([-6.7334317  29.97262225  6.26296846]) 
                        0: Leaf node at depth 6 has 784 points with origin [-6.7334317  29.97262225  6.26296846] 
                        1: Leaf node at depth 6 has 826 points with origin [-6.71765045 29.97262225  6.26296846] 
                        4: Leaf node at depth 6 has 780 points with origin [-6.7334317  29.97262225  6.27874971] 
                        5: Leaf node at depth 6 has 766 points with origin [-6.71765045 29.97262225  6.27874971] 
                    3: Internal node at depth 5 has 4 children and 3468 points ([-6.7018692  29.97262225  6.26296846]) 
                        0: Leaf node at depth 6 has 839 points with origin [-6.7018692  29.97262225  6.26296846] 
                        1: Leaf node at depth 6 has 816 points with origin [-6.68608795 29.97262225  6.26296846] 
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                        4: Leaf node at depth 6 has 796 points with origin [-6.7018692  29.97262225  6.27874971] 
                        5: Leaf node at depth 6 has 1017 points with origin [-6.68608795 29.97262225  6.27874971] 
                    4: Internal node at depth 5 has 4 children and 3854 points ([-6.7334317  29.94105975  6.29453096]) 
                        0: Leaf node at depth 6 has 998 points with origin [-6.7334317  29.94105975  6.29453096] 
                        1: Leaf node at depth 6 has 1189 points with origin [-6.71765045 29.94105975  6.29453096] 
                        4: Leaf node at depth 6 has 749 points with origin [-6.7334317  29.94105975  6.31031221] 
                        5: Leaf node at depth 6 has 918 points with origin [-6.71765045 29.94105975  6.31031221] 
                    5: Internal node at depth 5 has 4 children and 3436 points ([-6.7018692  29.94105975  6.29453096]) 
                        0: Leaf node at depth 6 has 938 points with origin [-6.7018692  29.94105975  6.29453096] 
                        1: Leaf node at depth 6 has 904 points with origin [-6.68608795 29.94105975  6.29453096] 
                        4: Leaf node at depth 6 has 878 points with origin [-6.7018692  29.94105975  6.31031221] 
                        5: Leaf node at depth 6 has 716 points with origin [-6.68608795 29.94105975  6.31031221] 
                    6: Internal node at depth 5 has 4 children and 2828 points ([-6.7334317  29.97262225  6.29453096]) 
                        0: Leaf node at depth 6 has 728 points with origin [-6.7334317  29.97262225  6.29453096] 
                        1: Leaf node at depth 6 has 672 points with origin [-6.71765045 29.97262225  6.29453096] 
                        4: Leaf node at depth 6 has 709 points with origin [-6.7334317  29.97262225  6.31031221] 
                        5: Leaf node at depth 6 has 719 points with origin [-6.71765045 29.97262225  6.31031221] 
                    7: Internal node at depth 5 has 4 children and 3031 points ([-6.7018692  29.97262225  6.29453096]) 
                        0: Leaf node at depth 6 has 713 points with origin [-6.7018692  29.97262225  6.29453096] 
                        1: Leaf node at depth 6 has 853 points with origin [-6.68608795 29.97262225  6.29453096] 
                        4: Leaf node at depth 6 has 727 points with origin [-6.7018692  29.97262225  6.31031221] 
                        5: Leaf node at depth 6 has 738 points with origin [-6.68608795 29.97262225  6.31031221] 
                5: Internal node at depth 4 has 8 children and 25723 points ([-6.6703067  29.94105975  6.26296846]) 
                    0: Internal node at depth 5 has 4 children and 3274 points ([-6.6703067  29.94105975  6.26296846]) 
                        0: Leaf node at depth 6 has 730 points with origin [-6.6703067  29.94105975  6.26296846] 
                        1: Leaf node at depth 6 has 754 points with origin [-6.65452545 29.94105975  6.26296846] 
                        4: Leaf node at depth 6 has 987 points with origin [-6.6703067  29.94105975  6.27874971] 
                        5: Leaf node at depth 6 has 803 points with origin [-6.65452545 29.94105975  6.27874971] 
                    1: Internal node at depth 5 has 4 children and 2952 points ([-6.6387442  29.94105975  6.26296846]) 
                        0: Leaf node at depth 6 has 752 points with origin [-6.6387442  29.94105975  6.26296846] 
                        1: Leaf node at depth 6 has 706 points with origin [-6.62296295 29.94105975  6.26296846] 
                        4: Leaf node at depth 6 has 790 points with origin [-6.6387442  29.94105975  6.27874971] 
                        5: Leaf node at depth 6 has 704 points with origin [-6.62296295 29.94105975  6.27874971] 
                    2: Internal node at depth 5 has 4 children and 3578 points ([-6.6703067  29.97262225  6.26296846]) 
                        0: Leaf node at depth 6 has 871 points with origin [-6.6703067  29.97262225  6.26296846] 
                        1: Leaf node at depth 6 has 771 points with origin [-6.65452545 29.97262225  6.26296846] 
                        4: Leaf node at depth 6 has 935 points with origin [-6.6703067  29.97262225  6.27874971] 
                        5: Leaf node at depth 6 has 1001 points with origin [-6.65452545 29.97262225  6.27874971] 
                    3: Internal node at depth 5 has 4 children and 3524 points ([-6.6387442  29.97262225  6.26296846]) 
                        0: Leaf node at depth 6 has 754 points with origin [-6.6387442  29.97262225  6.26296846] 
                        1: Leaf node at depth 6 has 742 points with origin [-6.62296295 29.97262225  6.26296846] 
                        4: Leaf node at depth 6 has 1156 points with origin [-6.6387442  29.97262225  6.27874971] 
                        5: Leaf node at depth 6 has 872 points with origin [-6.62296295 29.97262225  6.27874971] 
                    4: Internal node at depth 5 has 4 children and 3272 points ([-6.6703067  29.94105975  6.29453096]) 
                        0: Leaf node at depth 6 has 904 points with origin [-6.6703067  29.94105975  6.29453096] 
                        1: Leaf node at depth 6 has 809 points with origin [-6.65452545 29.94105975  6.29453096] 
                        4: Leaf node at depth 6 has 734 points with origin [-6.6703067  29.94105975  6.31031221] 
                        5: Leaf node at depth 6 has 825 points with origin [-6.65452545 29.94105975  6.31031221] 
                    5: Internal node at depth 5 has 5 children and 2874 points ([-6.6387442  29.94105975  6.29453096]) 
                        0: Leaf node at depth 6 has 731 points with origin [-6.6387442  29.94105975  6.29453096] 
                        1: Leaf node at depth 6 has 713 points with origin [-6.62296295 29.94105975  6.29453096] 
                        2: Leaf node at depth 6 has 1 points with origin [-6.6387442  29.956841    6.29453096] 
                        4: Leaf node at depth 6 has 727 points with origin [-6.6387442  29.94105975  6.31031221] 
                        5: Leaf node at depth 6 has 702 points with origin [-6.62296295 29.94105975  6.31031221] 
                    6: Internal node at depth 5 has 4 children and 3279 points ([-6.6703067  29.97262225  6.29453096]) 
                        0: Leaf node at depth 6 has 925 points with origin [-6.6703067  29.97262225  6.29453096] 
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                        1: Leaf node at depth 6 has 901 points with origin [-6.65452545 29.97262225  6.29453096] 
                        4: Leaf node at depth 6 has 729 points with origin [-6.6703067  29.97262225  6.31031221] 
                        5: Leaf node at depth 6 has 724 points with origin [-6.65452545 29.97262225  6.31031221] 
                    7: Internal node at depth 5 has 4 children and 2970 points ([-6.6387442  29.97262225  6.29453096]) 
                        0: Leaf node at depth 6 has 814 points with origin [-6.6387442  29.97262225  6.29453096] 
                        1: Leaf node at depth 6 has 704 points with origin [-6.62296295 29.97262225  6.29453096] 
                        4: Leaf node at depth 6 has 716 points with origin [-6.6387442  29.97262225  6.31031221] 
                        5: Leaf node at depth 6 has 736 points with origin [-6.62296295 29.97262225  6.31031221] 
                6: Internal node at depth 4 has 2 children and 24 points ([-6.7334317  30.00418475  6.26296846]) 
                7: Internal node at depth 4 has 4 children and 455 points ([-6.6703067  30.00418475  6.26296846]) 
                    2: Internal node at depth 5 has 2 children and 39 points ([-6.6703067  30.03574725  6.26296846]) 
                        6: Leaf node at depth 6 has 26 points with origin [-6.6703067  30.0515285   6.27874971] 
                        7: Leaf node at depth 6 has 13 points with origin [-6.65452545 30.0515285   6.27874971] 
                    4: Internal node at depth 5 has 4 children and 136 points ([-6.6703067  30.00418475  6.29453096]) 
                        0: Leaf node at depth 6 has 21 points with origin [-6.6703067  30.00418475  6.29453096] 
                        1: Leaf node at depth 6 has 28 points with origin [-6.65452545 30.00418475  6.29453096] 
                        2: Leaf node at depth 6 has 52 points with origin [-6.6703067  30.019966    6.29453096] 
                        3: Leaf node at depth 6 has 35 points with origin [-6.65452545 30.019966    6.29453096] 
                    5: Internal node at depth 5 has 1 children and 31 points ([-6.6387442  30.00418475  6.29453096]) 
                        2: Leaf node at depth 6 has 31 points with origin [-6.6387442  30.019966    6.29453096] 
                    6: Internal node at depth 5 has 2 children and 249 points ([-6.6703067  30.03574725  6.29453096]) 
                        2: Leaf node at depth 6 has 155 points with origin [-6.6703067  30.0515285   6.29453096] 
                        3: Leaf node at depth 6 has 94 points with origin [-6.65452545 30.0515285   6.29453096] 
            5: Internal node at depth 3 has 8 children and 149566 points ([-6.6071817  29.94105975  6.19984346]) 
                0: Internal node at depth 4 has 8 children and 28696 points ([-6.6071817  29.94105975  6.19984346]) 
                    0: Internal node at depth 5 has 4 children and 3174 points ([-6.6071817  29.94105975  6.19984346]) 
                        0: Leaf node at depth 6 has 845 points with origin [-6.6071817  29.94105975  6.19984346] 
                        1: Leaf node at depth 6 has 815 points with origin [-6.59140045 29.94105975  6.19984346] 
                        4: Leaf node at depth 6 has 759 points with origin [-6.6071817  29.94105975  6.21562471] 
                        5: Leaf node at depth 6 has 755 points with origin [-6.59140045 29.94105975  6.21562471] 
                    1: Internal node at depth 5 has 4 children and 2662 points ([-6.5756192  29.94105975  6.19984346]) 
                        0: Leaf node at depth 6 has 548 points with origin [-6.5756192  29.94105975  6.19984346] 
                        1: Leaf node at depth 6 has 434 points with origin [-6.55983795 29.94105975  6.19984346] 
                        4: Leaf node at depth 6 has 936 points with origin [-6.5756192  29.94105975  6.21562471] 
                        5: Leaf node at depth 6 has 744 points with origin [-6.55983795 29.94105975  6.21562471] 
                    2: Internal node at depth 5 has 8 children and 5715 points ([-6.6071817  29.97262225  6.19984346]) 
                        0: Leaf node at depth 6 has 747 points with origin [-6.6071817  29.97262225  6.19984346] 
                        1: Leaf node at depth 6 has 723 points with origin [-6.59140045 29.97262225  6.19984346] 
                        2: Leaf node at depth 6 has 655 points with origin [-6.6071817  29.9884035   6.19984346] 
                        3: Leaf node at depth 6 has 464 points with origin [-6.59140045 29.9884035   6.19984346] 
                        4: Leaf node at depth 6 has 1137 points with origin [-6.6071817  29.97262225  6.21562471] 
                        5: Leaf node at depth 6 has 1070 points with origin [-6.59140045 29.97262225  6.21562471] 
                        6: Leaf node at depth 6 has 536 points with origin [-6.6071817  29.9884035   6.21562471] 
                        7: Leaf node at depth 6 has 383 points with origin [-6.59140045 29.9884035   6.21562471] 
                    3: Internal node at depth 5 has 8 children and 4819 points ([-6.5756192  29.97262225  6.19984346]) 
                        0: Leaf node at depth 6 has 841 points with origin [-6.5756192  29.97262225  6.19984346] 
                        1: Leaf node at depth 6 has 620 points with origin [-6.55983795 29.97262225  6.19984346] 
                        2: Leaf node at depth 6 has 459 points with origin [-6.5756192  29.9884035   6.19984346] 
                        3: Leaf node at depth 6 has 782 points with origin [-6.55983795 29.9884035   6.19984346] 
                        4: Leaf node at depth 6 has 988 points with origin [-6.5756192  29.97262225  6.21562471] 
                        5: Leaf node at depth 6 has 985 points with origin [-6.55983795 29.97262225  6.21562471] 
                        6: Leaf node at depth 6 has 100 points with origin [-6.5756192  29.9884035   6.21562471] 
                        7: Leaf node at depth 6 has 44 points with origin [-6.55983795 29.9884035   6.21562471] 
                    4: Internal node at depth 5 has 5 children and 3141 points ([-6.6071817  29.94105975  6.23140596]) 
                        0: Leaf node at depth 6 has 726 points with origin [-6.6071817  29.94105975  6.23140596] 
                        1: Leaf node at depth 6 has 746 points with origin [-6.59140045 29.94105975  6.23140596] 
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                        3: Leaf node at depth 6 has 1 points with origin [-6.59140045 29.956841    6.23140596] 
                        4: Leaf node at depth 6 has 865 points with origin [-6.6071817  29.94105975  6.24718721] 
                        5: Leaf node at depth 6 has 803 points with origin [-6.59140045 29.94105975  6.24718721] 
                    5: Internal node at depth 5 has 4 children and 3006 points ([-6.5756192  29.94105975  6.23140596]) 
                        0: Leaf node at depth 6 has 736 points with origin [-6.5756192  29.94105975  6.23140596] 
                        1: Leaf node at depth 6 has 777 points with origin [-6.55983795 29.94105975  6.23140596] 
                        4: Leaf node at depth 6 has 758 points with origin [-6.5756192  29.94105975  6.24718721] 
                        5: Leaf node at depth 6 has 735 points with origin [-6.55983795 29.94105975  6.24718721] 
                    6: Internal node at depth 5 has 4 children and 2953 points ([-6.6071817  29.97262225  6.23140596]) 
                        0: Leaf node at depth 6 has 765 points with origin [-6.6071817  29.97262225  6.23140596] 
                        1: Leaf node at depth 6 has 703 points with origin [-6.59140045 29.97262225  6.23140596] 
                        4: Leaf node at depth 6 has 755 points with origin [-6.6071817  29.97262225  6.24718721] 
                        5: Leaf node at depth 6 has 730 points with origin [-6.59140045 29.97262225  6.24718721] 
                    7: Internal node at depth 5 has 4 children and 3226 points ([-6.5756192  29.97262225  6.23140596]) 
                        0: Leaf node at depth 6 has 718 points with origin [-6.5756192  29.97262225  6.23140596] 
                        1: Leaf node at depth 6 has 790 points with origin [-6.55983795 29.97262225  6.23140596] 
                        4: Leaf node at depth 6 has 768 points with origin [-6.5756192  29.97262225  6.24718721] 
                        5: Leaf node at depth 6 has 950 points with origin [-6.55983795 29.97262225  6.24718721] 
                1: Internal node at depth 4 has 8 children and 20010 points ([-6.5440567  29.94105975  6.19984346]) 
                    0: Internal node at depth 5 has 5 children and 748 points ([-6.5440567  29.94105975  6.19984346]) 
                        0: Leaf node at depth 6 has 53 points with origin [-6.5440567  29.94105975  6.19984346] 
                        2: Leaf node at depth 6 has 21 points with origin [-6.5440567  29.956841    6.19984346] 
                        4: Leaf node at depth 6 has 581 points with origin [-6.5440567  29.94105975  6.21562471] 
                        5: Leaf node at depth 6 has 90 points with origin [-6.52827545 29.94105975  6.21562471] 
                        6: Leaf node at depth 6 has 3 points with origin [-6.5440567  29.956841    6.21562471] 
                    1: Internal node at depth 5 has 4 children and 308 points ([-6.5124942  29.94105975  6.19984346]) 
                        3: Leaf node at depth 6 has 108 points with origin [-6.49671295 29.956841    6.19984346] 
                        4: Leaf node at depth 6 has 8 points with origin [-6.5124942  29.94105975  6.21562471] 
                        5: Leaf node at depth 6 has 74 points with origin [-6.49671295 29.94105975  6.21562471] 
                        7: Leaf node at depth 6 has 118 points with origin [-6.49671295 29.956841    6.21562471] 
                    2: Internal node at depth 5 has 6 children and 5114 points ([-6.5440567  29.97262225  6.19984346]) 
                        0: Leaf node at depth 6 has 906 points with origin [-6.5440567  29.97262225  6.19984346] 
                        1: Leaf node at depth 6 has 1233 points with origin [-6.52827545 29.97262225  6.19984346] 
                        2: Leaf node at depth 6 has 555 points with origin [-6.5440567  29.9884035   6.19984346] 
                        3: Leaf node at depth 6 has 657 points with origin [-6.52827545 29.9884035   6.19984346] 
                        4: Leaf node at depth 6 has 978 points with origin [-6.5440567  29.97262225  6.21562471] 
                        5: Leaf node at depth 6 has 785 points with origin [-6.52827545 29.97262225  6.21562471] 
                    3: Internal node at depth 5 has 5 children and 3327 points ([-6.5124942  29.97262225  6.19984346]) 
                        0: Leaf node at depth 6 has 815 points with origin [-6.5124942  29.97262225  6.19984346] 
                        2: Leaf node at depth 6 has 922 points with origin [-6.5124942  29.9884035   6.19984346] 
                        3: Leaf node at depth 6 has 3 points with origin [-6.49671295 29.9884035   6.19984346] 
                        4: Leaf node at depth 6 has 800 points with origin [-6.5124942  29.97262225  6.21562471] 
                        6: Leaf node at depth 6 has 787 points with origin [-6.5124942  29.9884035   6.21562471] 
                    4: Internal node at depth 5 has 5 children and 3076 points ([-6.5440567  29.94105975  6.23140596]) 
                        0: Leaf node at depth 6 has 817 points with origin [-6.5440567  29.94105975  6.23140596] 
                        1: Leaf node at depth 6 has 685 points with origin [-6.52827545 29.94105975  6.23140596] 
                        2: Leaf node at depth 6 has 5 points with origin [-6.5440567  29.956841    6.23140596] 
                        4: Leaf node at depth 6 has 825 points with origin [-6.5440567  29.94105975  6.24718721] 
                        5: Leaf node at depth 6 has 744 points with origin [-6.52827545 29.94105975  6.24718721] 
                    5: Internal node at depth 5 has 4 children and 945 points ([-6.5124942  29.94105975  6.23140596]) 
                        0: Leaf node at depth 6 has 235 points with origin [-6.5124942  29.94105975  6.23140596] 
                        1: Leaf node at depth 6 has 135 points with origin [-6.49671295 29.94105975  6.23140596] 
                        4: Leaf node at depth 6 has 414 points with origin [-6.5124942  29.94105975  6.24718721] 
                        5: Leaf node at depth 6 has 161 points with origin [-6.49671295 29.94105975  6.24718721] 
                    6: Internal node at depth 5 has 4 children and 3107 points ([-6.5440567  29.97262225  6.23140596]) 
                        0: Leaf node at depth 6 has 841 points with origin [-6.5440567  29.97262225  6.23140596] 
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                        1: Leaf node at depth 6 has 754 points with origin [-6.52827545 29.97262225  6.23140596] 
                        4: Leaf node at depth 6 has 757 points with origin [-6.5440567  29.97262225  6.24718721] 
                        5: Leaf node at depth 6 has 755 points with origin [-6.52827545 29.97262225  6.24718721] 
                    7: Internal node at depth 5 has 6 children and 3385 points ([-6.5124942  29.97262225  6.23140596]) 
                        0: Leaf node at depth 6 has 817 points with origin [-6.5124942  29.97262225  6.23140596] 
                        2: Leaf node at depth 6 has 791 points with origin [-6.5124942  29.9884035   6.23140596] 
                        4: Leaf node at depth 6 has 871 points with origin [-6.5124942  29.97262225  6.24718721] 
                        5: Leaf node at depth 6 has 69 points with origin [-6.49671295 29.97262225  6.24718721] 
                        6: Leaf node at depth 6 has 765 points with origin [-6.5124942  29.9884035   6.24718721] 
                        7: Leaf node at depth 6 has 72 points with origin [-6.49671295 29.9884035   6.24718721] 
                2: Internal node at depth 4 has 4 children and 2943 points ([-6.6071817  30.00418475  6.19984346]) 
                    0: Internal node at depth 5 has 2 children and 1156 points ([-6.6071817  30.00418475  6.19984346]) 
                        4: Leaf node at depth 6 has 599 points with origin [-6.6071817  30.00418475  6.21562471] 
                        5: Leaf node at depth 6 has 557 points with origin [-6.59140045 30.00418475  6.21562471] 
                    1: Internal node at depth 5 has 4 children and 1458 points ([-6.5756192  30.00418475  6.19984346]) 
                        0: Leaf node at depth 6 has 9 points with origin [-6.5756192  30.00418475  6.19984346] 
                        1: Leaf node at depth 6 has 624 points with origin [-6.55983795 30.00418475  6.19984346] 
                        4: Leaf node at depth 6 has 613 points with origin [-6.5756192  30.00418475  6.21562471] 
                        5: Leaf node at depth 6 has 212 points with origin [-6.55983795 30.00418475  6.21562471] 
                    5: Internal node at depth 5 has 3 children and 76 points ([-6.5756192  30.00418475  6.23140596]) 
                        0: Leaf node at depth 6 has 7 points with origin [-6.5756192  30.00418475  6.23140596] 
                        2: Leaf node at depth 6 has 67 points with origin [-6.5756192  30.019966    6.23140596] 
                        6: Leaf node at depth 6 has 2 points with origin [-6.5756192  30.019966    6.24718721] 
                    7: Internal node at depth 5 has 4 children and 253 points ([-6.5756192  30.03574725  6.23140596]) 
                        0: Leaf node at depth 6 has 81 points with origin [-6.5756192  30.03574725  6.23140596] 
                        2: Leaf node at depth 6 has 38 points with origin [-6.5756192  30.0515285   6.23140596] 
                        4: Leaf node at depth 6 has 63 points with origin [-6.5756192  30.03574725  6.24718721] 
                        6: Leaf node at depth 6 has 71 points with origin [-6.5756192  30.0515285   6.24718721] 
                3: Internal node at depth 4 has 5 children and 21618 points ([-6.5440567  30.00418475  6.19984346]) 
                    0: Internal node at depth 5 has 3 children and 1044 points ([-6.5440567  30.00418475  6.19984346]) 
                        0: Leaf node at depth 6 has 505 points with origin [-6.5440567  30.00418475  6.19984346] 
                        1: Leaf node at depth 6 has 536 points with origin [-6.52827545 30.00418475  6.19984346] 
                        3: Leaf node at depth 6 has 3 points with origin [-6.52827545 30.019966    6.19984346] 
                    1: Internal node at depth 5 has 7 children and 3830 points ([-6.5124942  30.00418475  6.19984346]) 
                        0: Leaf node at depth 6 has 968 points with origin [-6.5124942  30.00418475  6.19984346] 
                        1: Leaf node at depth 6 has 49 points with origin [-6.49671295 30.00418475  6.19984346] 
                        2: Leaf node at depth 6 has 689 points with origin [-6.5124942  30.019966    6.19984346] 
                        3: Leaf node at depth 6 has 329 points with origin [-6.49671295 30.019966    6.19984346] 
                        4: Leaf node at depth 6 has 820 points with origin [-6.5124942  30.00418475  6.21562471] 
                        6: Leaf node at depth 6 has 710 points with origin [-6.5124942  30.019966    6.21562471] 
                        7: Leaf node at depth 6 has 265 points with origin [-6.49671295 30.019966    6.21562471] 
                    3: Internal node at depth 5 has 8 children and 5745 points ([-6.5124942  30.03574725  6.19984346]) 
                        0: Leaf node at depth 6 has 745 points with origin [-6.5124942  30.03574725  6.19984346] 
                        1: Leaf node at depth 6 has 553 points with origin [-6.49671295 30.03574725  6.19984346] 
                        2: Leaf node at depth 6 has 775 points with origin [-6.5124942  30.0515285   6.19984346] 
                        3: Leaf node at depth 6 has 758 points with origin [-6.49671295 30.0515285   6.19984346] 
                        4: Leaf node at depth 6 has 726 points with origin [-6.5124942  30.03574725  6.21562471] 
                        5: Leaf node at depth 6 has 642 points with origin [-6.49671295 30.03574725  6.21562471] 
                        6: Leaf node at depth 6 has 795 points with origin [-6.5124942  30.0515285   6.21562471] 
                        7: Leaf node at depth 6 has 751 points with origin [-6.49671295 30.0515285   6.21562471] 
                    5: Internal node at depth 5 has 7 children and 4351 points ([-6.5124942  30.00418475  6.23140596]) 
                        0: Leaf node at depth 6 has 858 points with origin [-6.5124942  30.00418475  6.23140596] 
                        2: Leaf node at depth 6 has 813 points with origin [-6.5124942  30.019966    6.23140596] 
                        3: Leaf node at depth 6 has 296 points with origin [-6.49671295 30.019966    6.23140596] 
                        4: Leaf node at depth 6 has 957 points with origin [-6.5124942  30.00418475  6.24718721] 
                        5: Leaf node at depth 6 has 79 points with origin [-6.49671295 30.00418475  6.24718721] 
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                        6: Leaf node at depth 6 has 1133 points with origin [-6.5124942  30.019966    6.24718721] 
                        7: Leaf node at depth 6 has 215 points with origin [-6.49671295 30.019966    6.24718721] 
                    7: Internal node at depth 5 has 8 children and 6648 points ([-6.5124942  30.03574725  6.23140596]) 
                        0: Leaf node at depth 6 has 894 points with origin [-6.5124942  30.03574725  6.23140596] 
                        1: Leaf node at depth 6 has 674 points with origin [-6.49671295 30.03574725  6.23140596] 
                        2: Leaf node at depth 6 has 941 points with origin [-6.5124942  30.0515285   6.23140596] 
                        3: Leaf node at depth 6 has 740 points with origin [-6.49671295 30.0515285   6.23140596] 
                        4: Leaf node at depth 6 has 941 points with origin [-6.5124942  30.03574725  6.24718721] 
                        5: Leaf node at depth 6 has 593 points with origin [-6.49671295 30.03574725  6.24718721] 
                        6: Leaf node at depth 6 has 1122 points with origin [-6.5124942  30.0515285   6.24718721] 
                        7: Leaf node at depth 6 has 743 points with origin [-6.49671295 30.0515285   6.24718721] 
                4: Internal node at depth 4 has 8 children and 25539 points ([-6.6071817  29.94105975  6.26296846]) 
                    0: Internal node at depth 5 has 4 children and 3015 points ([-6.6071817  29.94105975  6.26296846]) 
                        0: Leaf node at depth 6 has 735 points with origin [-6.6071817  29.94105975  6.26296846] 
                        1: Leaf node at depth 6 has 743 points with origin [-6.59140045 29.94105975  6.26296846] 
                        4: Leaf node at depth 6 has 768 points with origin [-6.6071817  29.94105975  6.27874971] 
                        5: Leaf node at depth 6 has 769 points with origin [-6.59140045 29.94105975  6.27874971] 
                    1: Internal node at depth 5 has 4 children and 3172 points ([-6.5756192  29.94105975  6.26296846]) 
                        0: Leaf node at depth 6 has 855 points with origin [-6.5756192  29.94105975  6.26296846] 
                        1: Leaf node at depth 6 has 713 points with origin [-6.55983795 29.94105975  6.26296846] 
                        4: Leaf node at depth 6 has 827 points with origin [-6.5756192  29.94105975  6.27874971] 
                        5: Leaf node at depth 6 has 777 points with origin [-6.55983795 29.94105975  6.27874971] 
                    2: Internal node at depth 5 has 4 children and 3298 points ([-6.6071817  29.97262225  6.26296846]) 
                        0: Leaf node at depth 6 has 918 points with origin [-6.6071817  29.97262225  6.26296846] 
                        1: Leaf node at depth 6 has 854 points with origin [-6.59140045 29.97262225  6.26296846] 
                        4: Leaf node at depth 6 has 794 points with origin [-6.6071817  29.97262225  6.27874971] 
                        5: Leaf node at depth 6 has 732 points with origin [-6.59140045 29.97262225  6.27874971] 
                    3: Internal node at depth 5 has 4 children and 3352 points ([-6.5756192  29.97262225  6.26296846]) 
                        0: Leaf node at depth 6 has 856 points with origin [-6.5756192  29.97262225  6.26296846] 
                        1: Leaf node at depth 6 has 735 points with origin [-6.55983795 29.97262225  6.26296846] 
                        4: Leaf node at depth 6 has 777 points with origin [-6.5756192  29.97262225  6.27874971] 
                        5: Leaf node at depth 6 has 984 points with origin [-6.55983795 29.97262225  6.27874971] 
                    4: Internal node at depth 5 has 4 children and 3318 points ([-6.6071817  29.94105975  6.29453096]) 
                        0: Leaf node at depth 6 has 744 points with origin [-6.6071817  29.94105975  6.29453096] 
                        1: Leaf node at depth 6 has 908 points with origin [-6.59140045 29.94105975  6.29453096] 
                        4: Leaf node at depth 6 has 735 points with origin [-6.6071817  29.94105975  6.31031221] 
                        5: Leaf node at depth 6 has 931 points with origin [-6.59140045 29.94105975  6.31031221] 
                    5: Internal node at depth 5 has 4 children and 3383 points ([-6.5756192  29.94105975  6.29453096]) 
                        0: Leaf node at depth 6 has 764 points with origin [-6.5756192  29.94105975  6.29453096] 
                        1: Leaf node at depth 6 has 1006 points with origin [-6.55983795 29.94105975  6.29453096] 
                        4: Leaf node at depth 6 has 839 points with origin [-6.5756192  29.94105975  6.31031221] 
                        5: Leaf node at depth 6 has 774 points with origin [-6.55983795 29.94105975  6.31031221] 
                    6: Internal node at depth 5 has 4 children and 2885 points ([-6.6071817  29.97262225  6.29453096]) 
                        0: Leaf node at depth 6 has 749 points with origin [-6.6071817  29.97262225  6.29453096] 
                        1: Leaf node at depth 6 has 712 points with origin [-6.59140045 29.97262225  6.29453096] 
                        4: Leaf node at depth 6 has 728 points with origin [-6.6071817  29.97262225  6.31031221] 
                        5: Leaf node at depth 6 has 696 points with origin [-6.59140045 29.97262225  6.31031221] 
                    7: Internal node at depth 5 has 5 children and 3116 points ([-6.5756192  29.97262225  6.29453096]) 
                        0: Leaf node at depth 6 has 762 points with origin [-6.5756192  29.97262225  6.29453096] 
                        1: Leaf node at depth 6 has 861 points with origin [-6.55983795 29.97262225  6.29453096] 
                        3: Leaf node at depth 6 has 2 points with origin [-6.55983795 29.9884035   6.29453096] 
                        4: Leaf node at depth 6 has 694 points with origin [-6.5756192  29.97262225  6.31031221] 
                        5: Leaf node at depth 6 has 797 points with origin [-6.55983795 29.97262225  6.31031221] 

 


