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Abstract

Deviations, which are often viewed as outliers, errors, or noises in data, are prevalent
in human activity and understanding. Judging deviated human activity and under-
standing aims to identify unexpected activities that differ from the normal patterns and
biased interpretations of information that can distort the truth and manipulate public
opinions. Various tasks and real-world applications have been investigated under this
topic, such as abnormal event detection, human monitoring, and fake news detection.
Among these tasks, semantic relations are important to understand the entities and their
complex associations, such as the semantic consistency between humans and locations
in human monitoring and the semantic relevance between sentences in news articles.
Since many deviations in human activity and understanding contradict the expected se-
mantic relations, it is crucial to effectively capture and model these relations between
entities for identifying the deviations.

In this thesis, we propose learning semantic attributed graphs for two significant
tasks within the scope of judging deviated human activity and understanding, i.e.,
detecting anomalous image regions in human monitoring and judging credible and
unethical explanations of statistical data. A semantic attributed graph can provide a
structured representation of the complex associations and rich information of entities
in the two tasks, such as the regions and their semantic relations in an image as well
as the phrases and their semantic similarities in an explanation. Moreover, its explicit
modeling of the entities and their relations in the semantic attributed graph enables a
development of more accurate detection and judgment algorithms for the two tasks.

We first focus on image region anomaly detection in human monitoring, which
aims to identify irregular human behaviors and inappropriate interactions between hu-
mans and objects at the region level. Traditional methods typically handle each re-
gion separately without taking their associations into consideration. Therefore, these
methods cannot detect contextual anomalies which violate regular interactions between
humans and objects. Furthermore, prevailing approaches primarily explore visual rela-
tions, such as co-occurrence and spatial relations, of regions to model their interactions.
However, they neglect the importance of capturing semantic relations among regions,
leading to inaccurate predictions of the contextual anomalies. To address their limita-
tions, we introduce a Spatial and Semantic Attributed Graph to represent the regions
and their associations in an image. In addition to connecting regions by considering
their spatial adjacency, the graph further incorporates semantic relations between re-
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gions by leveraging their semantic similarities between their captions. Then we devise
a Spatial and Semantic Graph Auto-Encoder (SSGAE) to estimate the abnormality of
the regions by jointly reconstructing the attributes and the structures of the proposed
graph. Experimental evaluations on three real-world datasets demonstrate that our
method outperforms baselines in terms of ROC curves and AUC scores.

Then we focus on judging credible and unethical statistical data explanations which
exploit human instincts. We propose that unethical explanations that are credible are
more influential and harmful than non-credible ones as they are more likely to be ac-
cepted by humans. To judge such explanations, we first devise three phrase embedding-
based methods. The conditions in the three methods are designed to compare the se-
mantic relevance between the phrases of subjects and characteristics specified in the
explanation. However, experimental results show that counter-intuitive semantic simi-
larities between phrases in the method lead to numerous false predictions. To improve
the accuracy of judgment, we introduce a Phrase Similarity Graph to model an explana-
tion by considering more phrases and their semantic similarities. The proposed graph
enables generating additional conditions for comparison. Then we devise a credibility
score to combine the satisfied conditions and their importance quantified by sub-graph
entropy for a more accurate judgment. Our experiments conducted on 14 types of sta-
tistical data explanations show the superiority of our proposed method compared with
the phrase embedding-based method in terms of accuracy. Scrutiny reveals that our
proposed method mitigates the problem of the counter-intuitive semantic similarities
at a satisfactory level.
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Chapter 1

Introduction

1.1 Background

Deviations, which can be viewed as outliers, errors, or noise in data [5], widely exist

in human activity and understanding. Deviations in human activities refer to human

behaviors and interactions between humans and objects that do not conform to the ex-

pected or normal patterns [6, 7]. Deviated human activities can be observed in various

domains, including surveillance [8], healthcare [9], and public safety [10]. On the other

hand, deviations in human understanding refer to the interpretations and explanations

of information that deviate from factual and ethical standards [11]. Deviated human

understandings can be represented as diverse forms of unethical and biased explana-

tions, such as fake news, rumors, and inflammatory tweets, which can distort human

understanding of reality and lead to errors in judgment [12,13]. Since these deviations

pose potential risks to the security and morality of our society, there has been a grow-

ing interest in judging deviated human activity [6,8,10,14] and understanding [15–18]

in the areas of data mining, machine learning, as well as Artificial Intelligence (AI)

and ethics.
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In the real world, entities are usually interacting with each other through various

relationships [19]. Among these relationships, semantic relations are common and im-

portant between entities in human activity and understanding, such as semantic consis-

tency between humans and locations in human monitoring [6] and semantic relevance

between phrases in human understanding [18]. However, these semantic relations are

not always explicit or easy to identify. A semantic attributed graph [20] is a powerful

representation which can explicitly describe the semantic relations between entities,

where the nodes are entities with attributes that provide necessary information and the

edges are semantic relations that connect them.

Deviations in human activity and understanding often violate expected semantic re-

lations between entities. Specifically, deviated human activities, which are commonly

known as anomalies or outliers, usually happen when they contradict their expected re-

lations with scenes or locations [6,8,10]. For example, a man riding on a bicycle down

a pedestrian sidewalk is anomalous because the human behavior does not conform to

the scene [6]. This kind of anomaly frequently exists in various real-world applica-

tions, including abnormal event detection [10] and human monitoring [7, 14]. On the

other hand, deviated human understandings, such as unethical and biased explanations

can distort the truth and manipulate public opinion often by exploiting human cogni-

tive biases [12] and instincts [2, 18]. To judge such explanations, multiple irregular

semantic relations are explored in their words, phrases, or sentences. For example, the

relations between sentences or phrases and their polarity or subjectivity are commonly

investigated for fake news detection [15]. Consequently, it is necessary to capture and

analyze the semantic relations between entities in judging deviated human activity and

understanding.
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1.2 Motivation and Contribution

1.2.1 Motivation

In this thesis, we focus on learning semantic attributed graphs for two significant tasks

within the problem of judging deviated human activity and understanding, i.e., image

region anomaly detection in human monitoring and judging credible and unethical

explanations of statistical data.

Understanding and capturing semantic relations between entities is crucial in iden-

tifying deviations in the two tasks, including detecting anomalous regions and judging

credible and unethical statistical data explanations. In the former task, a context of a

region is often characterized by other regions with semantic relations. For example, a

kitchen sink and a white chair in the kitchen can be necessary to describe the context

of the resting area when detecting anomalies which do not conform to their contexts.

However, existing methods have limitations in detecting such anomalies because they

either handle each region separately [21–23] or primarily focus on exploring visual

relations, such as co-occurrence [24] and spatial relations between regions [7, 25], as

the contexts of regions. These methods neglect the importance of relations between

regions at the semantic level.

In the latter task, our phrase embedding-based methods employ semantic relations

between phrases, including subjects and characteristics, in their conditions for judg-

ment. The conditions are designed to compare the semantic similarities between differ-

ent kinds of phrases specified in the explanation. However, counter-intuitive semantic

similarities between limited phrases of subjects and properties lead to unsatisfactory

results on the task.

To overcome these limitations, we propose to learn semantic attributed graphs as

3



a common approach for the two tasks. The semantic attributed graphs are capable of

explicitly representing the semantic relations and attributes of entities, including the

regions and their relations in an image and the phrases and their semantic similarities

in an explanation, which can be easily managed by detection and judgment algorithms

for more accurate identification of the deviations.

1.2.2 Contributions of This Thesis

In this thesis, we introduce two main contributions to tackle the two tasks in the prob-

lem of judging deviated human activity and understanding.

In Chapter 2, we focus on the image region anomaly detection task. It is a challeng-

ing yet important task as it focuses on identifying fine-grained anomalies at the region

level [7, 21], including irregular human behaviors and inappropriate interactions be-

tween humans and objects. The region anomalies in the task are diverse and complex,

including single anomalies and contextual anomalies. A single anomaly refers to an

abnormal region which is never observed in normal instances. In addition, a contex-

tual anomaly refers to a region which violates its expected context, where the context

of the region is characterized by its interactions and relationships with other regions

in the same image. For instance, a man making a phone call is normal in the resting

area while abnormal in the working area if the latter is not allowed. Although the two

regions depict the same activity, for the purpose of anomaly detection, they had better

be distinguished from each other [14]. Therefore, effectively capturing the relations

among regions, which represent the contextual information, is critical for the region

anomaly detection task.

To effectively detect the diverse region anomalies in human monitoring, we pro-

pose a Spatial and Semantic Attributed Graph to model the regions and their contexts
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in an image. In contrast to previous methods which primarily consider spatial relations,

our spatial and semantic attributed graph further incorporates the relations among re-

gions at the semantic level. The graph leverages both the spatial adjacency among

regions and the semantic similarities among their captions to characterize the complex

contexts of regions, where a region and its context in an image can be represented as

a node and its neighboring nodes, respectively. Then a Spatial and Semantic Graph

Auto-Encoder (SSGAE) is devised by adopting a sum aggregation strategy [26] to es-

timate the abnormality of regions via dual reconstruction optimizations.

In Chapter 3, we focus on the task of judging deviated human understandings of

statistical data. Explaining quantitative evidence plays a crucial role in various scien-

tific research methods [27–29]. Specifically, here the deviated human understanding

of statistical data refers to an unethical explanation [18], which mainly describes the

semantic relevance between the subject and its characteristics based on the statistical

data. Among these unethical explanations, we propose those that are credible are more

influential and harmful than non-credible ones as they are more likely to be accepted

by people. Based on the subjects and characteristics in the explanations, investigating

semantic relations between such phrases plays an important role in judging credible

and unethical statistical data explanations.

We first define 21 types of such explanations which exploit the human instincts in

Rosling et al. [2]. Based on phrase embedding technique, we devise three judgment

methods α, β, and γ by comparing semantic relevance between phrases specified in

the explanation. However, method β exhibits low accuracy due to the counter-intuitive

semantic similarities between the specified phrases. To address this limitation and

achieve better accuracy for judging the credible and unethical statistical data explana-

tions, we propose a graph-based method β2. In method β2, a Phrase Similarity Graph is

constructed to represent each phrase as a node and connects different kinds of phrases

5



based on their semantic relations. The graph explores semantic similarities between

more phrases by considering their synonyms to generate necessary comparison con-

ditions for judgment. Moreover, to quantify the different importance of the generated

conditions, we adopt graph entropy to measure the uncertainty of the semantic simi-

larities between nodes in the graph. Lastly, a credibility score is devised by combining

the satisfied conditions and their importance for judgment.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce our graph-

based method, including a Spatial and Semantic Attributed Graph and a Spatial and

Semantic Graph Auto-Encoder (SSGAE), to tackle the image region anomaly detection

task in human monitoring. We evaluate the performance of SSGAE on three real-world

datasets compared with several baselines. In Chapter 3, we first define 21 types of

credible and unethical explanations of statistical data. Then we introduce three phrase

embedding-based methods α, β, and γ. To improve the low accuracy of method β, we

introduce a new graph-based method β2 for more accurate judgment of the credible

and unethical statistical data explanations. In Chapter 4, we conclude the thesis and

discuss our future work.
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Chapter 2

Spatial and Semantic Attributed

Graph for Region Anomaly Detection

in Human Monitoring

2.1 Overview

Human monitoring, which focuses on human activities, has drawn attention across

various research areas, including video surveillance [8, 30, 31], healthcare [9, 32], and

human-computer interaction [33, 34]. Within these areas, anomalies in human activ-

ities, e.g., irregular human behaviors and inappropriate interactions between humans

and objects, pose a significant problem in many security-related and healthcare sce-

narios. Such anomalies include abnormal events in video surveillance [10, 35] and

unusual signals in medical monitoring [36]. Therefore, anomaly detection in human

monitoring, which concentrates on discovering unexpected patterns that deviate from

those seen in normal instances, has attracted substantial interest of researchers. It has
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a wide range of real-world applications, such as violence detection [37], fall risk dis-

covery [38], and trajectory outlier detection [39].

Among such works, image region anomaly detection [7, 21, 40–43] is a critical

task for identifying abnormal areas from images in human monitoring. However, it is

challenging to detect region-level anomalies due to their diversity. Traditional methods

focus on discovering unobserved regions that deviate from the patterns learned from

normal image regions [21, 41–43]. Such a region can be defined as a single anomaly

in human monitoring. For instance, the region of a man holding a baseball bat in

the laboratory [21] is a single anomaly, as such behavior is never observed in normal

regions. In addition to the single anomalies, there also exist contextual anomalies

[7, 40], which involve violations of regular interactions among humans and objects,

as the context of a region is characterized by other regions in the same image. For

instance, the region of a man making a phone call is normal when it is located close to a

kitchen sink and a soap bottle in an image, as they are in a resting area, while abnormal

when close to a bookshelf and a notebook PC in another image, as they are in a working

area if the latter is not allowed. Figure 2.1 shows several examples of single anomalies

and contextual anomalies compared with normal regions. The single anomalies, e.g.,

a man holding a baseball bat and a man holding an umbrella, have significant visual

differences from the normal regions. In contrast, contextual anomalies may exhibit

similar human behaviors to those in normal instances. Therefore, capturing contextual

information is crucial in the region anomaly detection task.

As mentioned above, several region-level anomaly detection methods typically

concentrate on identifying single anomalies without considering the contexts of re-

gions [21, 41–43]. These methods mainly discover patch-level deviations by learning

the regularities of normal instances. On the other hand, recent approaches have been

proposed for detecting both single and contextual anomalies by exploring the relation-
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Normal Regions Single Anomalies

Contextual Anomalies

Figure 2.1: Examples of single anomalies and contextual anomalies compared with
normal regions. Green rectangles indicate normal regions, while red rectangles indi-
cate region anomalies. The first row shows single anomalies, including a man holding
a baseball bat and an umbrella, which are not observed in normal regions. The sec-
ond row shows contextual anomalies, including a man making a phone call and eating,
which are not allowed in a working area. All the regions are generated by a deep-
captioning model Densecap [1].

ships among regions as their contexts. They can be classified into an object-label-

based method [24], a spatial-relation-based method [25], and a deep-captioning-based

method [7]. Choi et al. [24] represent all the objects in an image with a tree-structured

model to detect objects that do not conform to the scene. However, utilizing all object

labels beforehand is impractical for the anomaly detection task. The spatial-relation-

based method [25] considers the positions, such as above, below, and inside, of two

objects to detect abnormal semantic relationships between a pair of image segmenta-

tions, while such spatial positions are limited in characterizing diverse region contexts

which are essential for detecting the contextual anomalies. In addition to exploiting

visual features of image regions, deep-captioning-based methods [7, 21] adopt deep-

captioning models, such as DenseCap [1], to obtain region captions as the semantic

information for the target task. Since these methods also consider both the visual and

semantic information of image regions on the same task, they are the most relevant
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works to our proposed method. They focus on detecting anomalous single regions and

anomalous region pairs by exploring the spatial relations between two regions. Nev-

ertheless, they do not consider interactions among more than two regions and are thus

limited in capturing the complex context for detecting contextual anomalies in human

monitoring.

To capture the contexts of image regions for more accurate region anomaly detec-

tion in human monitoring, we propose using graph structures to model regions and

their relations in an image. Graphs are capable of representing complex relations

among data points, making their interactions explicit and easily manageable by graph-

based algorithms. The superiority of graph structures has been demonstrated in many

visual tasks, including representing the co-occurrence of regions in an image for ob-

ject detection [44] and the spatio-temporal relations of regions in video clips for action

recognition [45]. In addition, several existing methods for frame-level video anomaly

detection propose to model the spatio-temporal relations of regions by graphs for bet-

ter performance. For example, A spatio-temporal context graph [46] is constructed to

model visual context information including appearances of objects, as well as spatio-

temporal relationships among objects for discriminating abnormal events. Consider-

ing the spatial similarity and the temporal consistency in video data, a spatio-temporal

graph-based deep model [47] is devised for detecting frame-level anomalies. However,

simply considering the co-occurrence cannot effectively capture the complex relations

of image regions. For instance, some regions should be more strongly correlated, e.g.,

a man and an umbrella in the rightmost image in Figure 2.1, compared with others due

to their close spatial relations. On the other hand, temporal patterns do not exist in

image regions within a single image.

In this Chapter, to address the aforementioned limitations, we introduce a graph-

based framework, including a Spatial and Semantic Attributed Graph and a Spatial and
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Semantic Graph Auto-Encoder (SSGAE), to tackle the region anomaly detection task.

In our method, the Spatial and Semantic Attributed Graph is proposed to model regions

and their contexts within an image by leveraging the spatial and semantic relations

among regions. Specifically, the graph provides a structured representation of each

region with features as a node with attributes1 and connect them by considering the

spatial adjacency among regions and the semantic similarities among their captions.

Then a tailored graph auto-encoder, SSGAE, is devised for detecting anomalous

nodes in the graph via dual reconstruction tasks. In particular, since the regions depict-

ing similar objects, such as a desk, and similar human behaviors, such as a man sitting

on a chair, frequently appear in human monitoring, the neighbors of a node usually

contain similar features in the graph. The mean-pooling or max-pooling strategy cap-

tures the proportions of the node attributes or the most representative node attribute as

the representation of node neighbors. Therefore, existing graph auto-encoders [48,49]

equipped with these strategies are difficult to discriminate such node neighbors rep-

resenting the regional contexts. Consequently, SSGAE adopts the sum aggregation

strategy used in Graph Isomorphism Network (GIN) [26], which is superior in dis-

criminating such node neighbors by capturing all their attributes, as we will give the

details in Chapter 2.4.3.1.

In summary, the contributions of this Chapter are as follows:

• We propose a graph-based framework, including a Spatial and Semantic At-

tributed Graph and SSGAE, to tackle the region anomaly detection task. By

leveraging the visual and semantic information, the Spatial and Semantic At-

tributed Graph characterizes the regions with their contexts based on the spatial

and semantic relations among the regions and their captions, respectively.

1Node attributes and node features are utilized interchangeably in this Chapter.
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• For more accurate region anomaly detection, we devise a customized graph auto-

encoder, SSGAE. SSGAE adopts a sum aggregation strategy [26] to effectively

capture the structure information and detect anomalous nodes in the graph by

jointly reconstructing the node features and structures in the Spatial and Seman-

tic Attributed Graph.

• We conduct extensive experiments on three real-world datasets to evaluate the

performance of our method. The experimental results show that SSGAE out-

performs other advanced anomaly detection methods, which demonstrates the

effectiveness of SSGAE on the region anomaly detection task.

2.2 Related Work

In this section, we mainly introduce related works on two topics: (1) image and region

anomaly detection and (2) graph anomaly detection.

2.2.1 Image and Region Anomaly Detection

Image-level and region-level anomaly detection have been active research topics for

decades, which can be classified into two categories: those which implicitly consider

the relationships among images or regions and those which explicitly consider them.

The former methods mainly focus on discovering pixel-wise or patch-level deviations

by learning regularities of normal instances, such as defect detection [42,50] and med-

ical image analysis [22, 23]. These works have shown their advantages in detecting

anomalous regions via self-supervised learning [41,42,51,52], where the contextual in-

formation characterized by other regions is implicit in their tasks. Since these methods

consider images or regions separately, they are unable to detect contextual anomalies
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in human monitoring.

On the other hand, the latter methods explicitly combine the images or regions

with their relationships as the contexts to understand and discover diverse image-

level or region-level anomalies, such as video surveillance [10, 35] and human mon-

itoring [7, 14, 21]. Among such works, several approaches [24, 25, 40, 46] consider

the regions and their relations in the visual perspective for region anomaly detection,

while our previous methods [7,21] additionally adopt deep-captioning models, such as

DenseCap [1], to obtain region captions as the semantic information for the task. Sun

et al. [46] proposed a Spatio-Temporal Graph (STG) to represent spatio-temporal rela-

tions among objects to bridge the gap between an anomaly and its context. Moreover,

Spatial-Temporal Graph-based Convolutional Neural Networks (STGCNs) [47] con-

struct a spatial similarity graph and a temporal consistency graph with a self-attention

mechanism to model the correlations of video clips for video anomaly detection. Choi

et al. [24] identified out-of-context objects, i.e., objects which do not conform to the

scene, by modeling all the objects in the same image via a tree-based graphical model.

These works have shown the effectiveness of utilizing graphical models to represent

the relationships among video clips or objects for video or region anomaly detection.

To detect anomalous images in human monitoring, Dong et al. [40] employed inpaint-

ing techniques to coarsen image regions and then generate the regions by utilizing

the remaining part of the image. Moreover, Semantic Anomaly Detection (SAD) [25]

models the relative positions and sizes of all object pairs to detect abnormal semantic

relationships between a pair of image segmentations. These methods have proven their

superiority in exploring visual information of videos and images to detect abnormal

instances. However, in addition to the visual features and relations of image regions

considered by these methods, region captions provide semantic information regard-

less of intra-object variations, which can contribute to more accurate region anomaly
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detection [7, 21]. Our previous methods [7, 21] exploit both the visual features of re-

gions and the semantic information of region captions for the target task. Nevertheless,

they consider each region separately for the anomalous single regions [21] as well as

the relations of two overlapping regions for anomalous region pairs [7]. Therefore,

they cannot capture the relations among more than two regions that indicate the region

context, leading to failures in detecting some of the contextual anomalies in our task.

2.2.2 Graph Anomaly Detection

Graph Neural Networks (GNNs), which are a family of deep learning models for

graph or node embedding [53], have been widely explored for graph anomaly detec-

tion. Graph contrastive learning methods [54–56] sample well-designed instance pairs,

which consist of nodes and their neighboring structures, to devise contrastive learning

models for graph anomaly detection. However, to achieve a satisfactory performance,

elaborate handcrafted contrastive pretext tasks are mandatory for such kind of meth-

ods. On the other hand, several reconstruction-based graph auto-encoder frameworks

with different neighborhood aggregation strategies are devised for the task. Deep

Anomaly Detection on Attributed Networks (DOMINANT) [49] constructs a graph

auto-encoder model equipped with Graph Convolutional Network (GCN) [48] layers

to reconstruct the node attributes and structures for detecting abnormal nodes on large-

scale graphs. Furthermore, Anomaly Dual Auto-Encoders (AnomalyDAE) [57] tackle

the same problem via reconstruction by designing a dual auto-encoder with graph at-

tention layers [58]. By adopting graph attention layers in both the encoder and the

decoder, Graph Attention Auto-Encoder (GATE) [59] exhibits a superior performance

in learning node representations for node classification.

The existing graph auto-encoders are effective for learning typical node represen-
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tations for downstream tasks, such as graph anomaly detection [49, 57] and node clas-

sification [59]. However, the learned representations do not explicitly consider all the

features in node neighbors since they focus on capturing the proportions of the features

or the most representative feature in node neighbors [26]. This limitation would cause

failures in discriminating the representations of different node neighbors, which indi-

cates the contextual information of regions would be useful for detecting anomalies in

human monitoring.

2.3 Problem Formulation

In this Chapter, we utilize bold lowercase Roman letters (e.g., x), bold uppercase Ro-

man letters (e.g., X), and uppercase calligraphic fonts (e.g., D) to denote vectors, ma-

trices, and sets, respectively. All important notations are summarized in Tables 2.1 and

2.2 for convenience.

Our target problem is to detect anomalous regions in human monitoring images

[7, 21]. Due to the diversity and rareness of anomalies, anomaly detection is typ-

ically solved under a one-class anomaly detection scenario, which means that only

normal data is accessible during the training stage [7, 14, 21, 60]. We follow this

paradigm in our method. In the target problem, the input dataset D is composed of

training set Dtrain = {Ik|k = 1, . . . ,K} and test set Dtest = {Ik′|k′ = 1, . . . ,K′}, where

Ik and Ik′ denote the images in the training and test sets, respectively. In the training

phase, each input image Ik contains a number of n salient regions rk
i with captions ck

i

and region labels yk
i as {(rk

i ,c
k
i ,y

k
i )|i = 1, . . . ,n}. Since we tackle the target problem

in the one-class anomaly detection scenario, Dtrain only contains normal regions, in

which yk
i = 0 denotes the class label of the normal region. In the test phase, each

image Ik′ contains n salient regions with captions and region labels yk′
i ∈ {0,1} as
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Table 2.1: Notations of variables for Spatial and Semantic Attributed Graph.

Notation Description

Ik The kth image

rk
i The ith region in the kth image Ik

ck
i The caption of the ith region rk

i

rk
i ∈ Rdr The visual feature vector of the ith region rk

i

ck
i ∈ Rdc The semantic feature vector of caption ck

i of the ith region

Gk = {Ak,Xk} The attributed graph for image Ik

vk
i The ith node in the graph Gk

N(vk
i ) The set of the neighbors adjacent to node vk

i

Ak ∈ Rn×n The adjacency matrix of graph Gk

ak
i ∈ Rd The edge, i.e., structure, information of node vk

i in Ak

Xk ∈ Rn×d The node attribute matrix of graph Gk

xk
i ∈ Rd The ith node feature vector of node vk

i

n The number of regions in image Ik and nodes in graph Gk

d The dimension of node feature

dr,dc The dimensions of the visual feature and the semantic feature

{(rk′
i ,c

k′
i ,y

k′
i )|i = 1, . . . ,n}, where yk′

i = 1 denotes the class label of the abnormal re-

gion. The output of the target problem is the degree of abnormality for each region rk′
i

in Ik′ from Dtest.

Following previous methods for the anomaly detection task [7,14,21,61], we adopt

the Receiver Operating Characteristic (ROC) curve and the Area Under the Curve

(AUC) score as the evaluation metric to quantify the performance of our method. The

ROC curve is plotted by the true positive rate (TPR) and the false positive rate (FPR)
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Table 2.2: Notations of variables and parameters for SSGAE.

Notation Description

H(l) ∈ Rn×dl The hidden representation matrix of graph Gk in the lth

layer of the attributed graph encoder

h(l)
i ∈ Rdl The hidden representation vector of node vk

i in H(l)

Zk ∈ Rn×de The final hidden embedding matrix of nodes in graph Gk

zk
i ∈ Rde The final hidden embedding vector of node vk

i

Ĥ(l) ∈ Rn×dl The hidden representation matrix of graph Gk in the lth

layer of the graph attribute decoder

ĥ(l)
i ∈ Rdl The hidden representation vector of node vk

i in Ĥ(l)

Θ(l) ∈ Rn The learnable parameter vector in the lth layer

Θ
(l)
i The ith learnable parameter in Θ(l)

MLP(l)
Enc,MLP(l)

Att−Dec The multi-layer perception modules in the lth layer of the

attributed graph encoder and the graph attribute decoder

MLPStr−Dec The multi-layer perception module in the graph structure

decoder

L The number of the hidden layers

β The hyper-parameter to balance the attribute and the

structure reconstruction errors in the objective function

dl,de The dimensions of hidden representation h(l)
i and final

hidden embedding zk
i

X̂k, Âk The reconstructions of Xk and Ak

x̂k
i , â

k
i The reconstructions of xk

i and ak
i for node vk

i

sk′
i The anomaly score of node vk′

i in the test phase
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with a range of thresholds. AUC score stands for the value of the area under the ROC

curve, which corresponds to the probability that a positive test sample is ranked higher

than a negative test sample.

2.4 Methodology

2.4.1 Pipeline of Our Method

The overall pipeline of our method is shown in Figure 2.2. Our method consists of two

modules, including the Spatial and Semantic Attributed Graph and the Spatial and the

Semantic Graph Auto-Encoder, which we will introduce in Chapter 2.4.2 and Chapter

2.4.3, respectively. Given an image containing regions with captions, we first construct

the Spatial and Semantic Attributed Graph to represent the regions and their spatial

and semantic relations, which transforms the region anomaly detection into a graph

anomaly detection task. Subsequently, we introduce a customized graph auto-encoder,

SSGAE, to tackle the transformed task through dual reconstruction optimizations.

2.4.2 Spatial and Semantic Attributed Graph

In both the training and test phases, we generate the regions with captions from images

and extract their visual and semantic features through pre-trained deep models [21].

Based on the generated regions with their extracted features, we introduce the criteria

for constructing the graph for each image to represent regions with their spatial and

semantic relations.
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Figure 2.2: The overall pipeline of our method. The left module is the construction of
the Spatial and Semantic Attributed Graph. The right module is the architecture of the
SSGAE.

2.4.2.1 Generating Regions and Captions from an Image

Following our previous works [7, 14, 21], we adopt a dense captioning model Dense-

Cap [1] to generate region candidates with captions from image Ik and select the top-n

salient regions {rk
i |i = 1, . . . ,n} with captions {ck

i |i = 1, . . . ,n} from the region can-

didates. An example of an image containing the generated regions with captions is

shown in the left part of Figure 2.3. Then we explore the visual and semantic informa-

tion of regions from image Ik. Specifically, we utilize an image classification model,

ResNet [62], and a sentence embedding model, SBERT [63], to extract visual features

of regions {rk
i |i = 1, . . . ,n} and semantic features of their captions {ck

i |i = 1, . . . ,n},

respectively.

2.4.2.2 Construction of a Spatial and Semantic Attributed Graph

In human monitoring, humans and objects often appear with specific spatial relations

to one another in an image. For example, a human, a computer screen, and a desk
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typically appear in a regular arrangement [24]. Moreover, the region captions indicate

their relations at the semantic level. For example, the two region captions: “man in

a kitchen” and “white chair in the kitchen”, are highly related to each other to char-

acterize the resting area. Consequently, exploring such spatial and semantic relations

among regions is promising to represent their contexts.

We propose the Spatial and Semantic Attributed Graph Gk to model regions {rk
i |i =

1, ...,n} with their spatial and semantic relations in image Ik. Following previous works

on graph anomaly detection [49,54,56], we define an attributed graph as G= (V,E,X),

where V= {v1, . . . ,vn} represents the set of nodes (|V|= n) and E represents the set of

edges (|E|= m). X ∈ Rn×d represents the node attribute matrix, where vector xi ∈ Rd

in X in the ith row denotes the attribute of the ith node with the dimension d. The

topology of G can be denoted by adjacency matrix A, where Ai j = 1 represents that

there exists an edge between nodes vi and v j, otherwise Ai j = 0. The row vector ai ∈Rn

in A denotes the edge information, i.e., the structure, of the ith node. Therefore, the

attributed graph can also be denoted as G= (A,X).

In the Spatial and Semantic Attributed Graph, a node, its attribute, and its structure

information represent a region, its feature, and its spatial and semantic relations with

other regions in an image, respectively. Formally, in image Ik, region rk
i is represented

as node vk
i in graph Gk. As mentioned in Chapter 2.2.1, region captions can provide

semantic information regardless of intra-object variations for more accurate anomaly

detection [21]. Therefore, we concatenate the visual feature of the region and the

semantic feature of its caption Concat(rk
i ,c

k
i ) as the node attribute xk

i .

Moreover, we make the assumption that the spatially adjacent regions and the re-

gions whose captions have high semantic similarities are informative to characterize

the contextual information. To capture these relations, we build spatial edges be-

tween nodes when their corresponding regions spatially overlap each other and seman-
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tic edges when their region captions have high semantic similarities. Following the

previous works on semantic textual tasks [63–65], we utilize cosine similarity as the

semantic similarity Sim(·) between the region captions, which is computed as follows.

Sim(ck
i ,c

k
j) =

ck
i · ck

j

∥ck
i ∥∥ck

j∥
. (2.1)

If Sim(ck
i ,c

k
j) > θsim, where θsim is a similarity threshold, the two region captions

ck
i and ck

j are judged to have high semantic relations, and thus a semantic edge is built

between nodes vk
i and vk

j. By building the spatial and semantic edges, the structure

information of node vk
i can be represented as ak

i , which represents the contexts of region

rk
i in image Ik. In this setting, the training set Dtrain and test set Dtest can be represented

as Gk
train = {Ak,Xk}K

k=1 and Gk′
test = {Ak′,Xk′}K′

k′=1, respectively.

Figure 2.3 shows an example of constructing a Spatial and Semantic Attributed

Graph to model regions in an image. The no. 1 region with its features is represented

as node 1 with its attribute, respectively. The edges between nodes 1 and 0, as well

as nodes 1 and 2, are built according to their spatially adjacent regions and the high

semantic similarities of their captions, respectively.

2.4.3 Spatial and Semantic Graph Auto-Encoder

We propose SSGAE to tackle the target problem by detecting abnormal nodes in the

Spatial and Semantic Attributed Graph. The architecture of SSGAE is shown in the

right module of our proposed method in Figure 2.2. We present the overall procedure

of SSGAE, including the training and test phrases, in Algorithm 2 in Appendix A.

With a graph auto-encoder [66] as a backbone, SSGAE consists of three compo-

nents: an attributed graph encoder, a graph structure decoder, and a graph attribute
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Figure 2.3: Example of constructing a Spatial and Semantic Attributed Graph to model
regions in an image. The numbers and colors of the regions in the image and the nodes
in the graph correspond to each other.

decoder. Given the constructed graphs as input, SSGAE is devised to estimate the ab-

normality of each node in each graph by leveraging the node structure and the node

attribute reconstruction errors. In particular, we adopt the sum aggregation strategy

from GIN [26] in SSGAE to discriminate the diverse node neighbors containing sim-

ilar node features in the constructed graphs. We will explain the details in Chapter

2.4.3.1.

2.4.3.1 Sum Neighborhood Aggregation Strategy

Different from prevalent graph auto-encoder variants [49, 57, 59, 66], SSGAE adopts

the sum neighborhood aggregation strategy from GIN [26]. The mean-pooling or max-

pooling aggregation strategies in graph auto-encoders [49,66] are capable of capturing

the proportions of features or the representative feature in node neighbors, respectively.

They have shown their advantages in graph anomaly detection on citation networks

and social networks, in which the node features are diverse and rarely identical, as the

proportions of features or the representative feature in node neighbors already provide

strong signals for the task. However, in human monitoring, it is common to have
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regions depicting similar objects, such as a desk, and similar human behaviors, such

as a man sitting on a chair, appearing frequently in images. This leads to the situation

that similar node features often exist in the neighbors of a node in the constructed

graphs. In such a case, the sum neighborhood aggregation strategy [26] is capable of

explicitly capturing all the features in node neighbors compared with mean-pooling,

max-pooling, and weighted average via attention strategies1 [57, 59].

Figure 2.4 illustrates toy examples to show the advantage of the sum aggregation

strategy in discriminating such node neighbors. The no. 0 regions in Ii and I j and

their corresponding nodes are abnormal and normal in red and green colors, respec-

tively. We assume the features of the regions in orange showing laboratory furniture

are similar, and the features of the regions in blue showing the black pants are sim-

ilar. We observe that the mean-pooling or max-pooling strategies aggregate the two

kinds of node neighbors into approximately equivalent representations and thus can-

not discriminate them well. In contrast, the sum strategy compresses the two kinds of

node neighbors into discriminative representations. Consequently, we adopt the sum

aggregation strategy in SSGAE since discriminating the representations of such node

neighbors, which represent the context of regions, plays a critical role in the region

anomaly detection task.

2.4.3.2 Attributed Graph Encoder

To learn discriminative embeddings from the node attributes and structures, the hid-

den layers in the attributed graph encoder are equipped with the sum aggregation

strategy [26] to compress node representations in the aggregation and transformation

scheme. Formally, given the constructed spatial graph Gk = {Ak,Xk}K
k=1, the node

1The weighted average via attention strategy may implicitly capture all the node features by learning
different weights for node neighbors.
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Figure 2.4: Toy examples for different aggregation strategies to discriminate the neigh-
bors of the no. 0 regions in Ii and I j. The numbers and colors of regions in the image
and the nodes in the graph correspond to each other.

representation h(l)
i in the lth layer is iteratively updated as

h(l)
i = MLP(l)

Enc

((
1+Θ

(l)
i

)
h(l−1)

i +∑vk
j∈N(vk

i )
h(l−1)

j

)
, (2.2)

where MLP(l)
Enc represents the multi-layer perceptron module which adopts the ReLU(·)

activation function [67] in the lth hidden layer of the encoder. We initialize h(0)
i = xk

i

as the feature of node vk
i . In the view of the whole matrix, the hidden representation

matrix H(l) is formulated as

H(l) = MLP(l)
Enc

((
Ak +

(
1+Θ(l)

)
· I
)
·H(l−1)

)
. (2.3)

Here H(0) = Xk is the input node attribute matrix. After applying this procedure to

L hidden layers, the final hidden embedding matrix is generated as H(L) = Zk, where

Zk is composed of embedding zk
i of each node vk

i in Gk.

24



2.4.3.3 Graph Structure Decoder

The node structure information, which is represented as the edges of the node connect-

ing other nodes, indicates the contexts of the region. To learn the contextual informa-

tion for detecting anomalous regions, the graph structure decoder is devised by recon-

structing the structure information of nodes. With the final hidden embedding matrix

Zk as input, the graph structure encoder utilizes the inner product operation, which has

been widely employed by [49, 57, 66], with an additional MLP module MLPStr−Dec to

estimate the probability of edge Âk
i j between nodes vk

i and vk
j as

P
(

Âk
i j|zk

i ,z
k
j

)
= σ

(
MLPStr−Dec

(
zk

i · zk
j
T
))

, (2.4)

where σ(·) denotes the sigmoid activation function and MLPStr−Dec adopts the ReLU(·)

activation function. The total reconstructed adjacency matrix Ak of Gk is calculated as

Âk = σ

(
MLPStr−Dec

(
Zk ·ZkT

))
. (2.5)

2.4.3.4 Graph Attribute Decoder

The node attribute is composed of both the visual and semantic features extracted from

the corresponding region, providing valuable information for its content. To capture

the node attribute information, the graph attribute decoder is devised to decompress Zk

for reconstructing the original node attributes. Similar to the attributed graph encoder,

we utilize the same hidden layers by adopting the sum aggregation strategy. The node

representation ĥ(l)
i in the lth layer is computed as

ĥ(l)
i = MLP(l)

Att−Dec

((
1+Θ

(l)
i

)
ĥ(l−1)

i +∑vk
j∈N(vk

i )
ĥ(l−1)

j

)
. (2.6)
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The multi-layer perceptron module MLP(l)
Att−Dec in the graph attribute decoder also

adopts the ReLU(·) activation function, where the fully-connected layers are symmet-

ric to the hidden layers in MLP(l)
Enc in terms of the number of their hidden units for

reconstruction. Accordingly, the total hidden representation matrix Ĥ(l) is computed

as

Ĥ(l) = MLP(l)
Att−Dec

((
Ak +

(
1+Θ(l)

)
· I
)
· Ĥ(l−1)

)
. (2.7)

The input to the graph attribute decoder is Ĥ(0) =Zk, and the output in the Lth layer

is the reconstructed node attribute matrix H(L) = X̂k.

2.4.3.5 Objective Function

As suggested in the typical graph auto-encoders [49, 57], the disparities between the

node attribute and its reconstruction, as well as the node structure and its reconstruc-

tion, provide strong signals to estimate the abnormality of the node. Following this

assumption, we optimize SSGAE by jointly minimizing structure reconstruction error

Lstr and attribute reconstruction error Latt. Formally, objective function L of SSGAE

is formulated as

L= (1−β)Lstr +βLatt (2.8)

=
1
K ∑

K
k=1

(
(1−β)∥Âk −Ak∥

2
F +β∥X̂k −Xk∥2

F

)
, (2.9)

where β is a hyper-parameter to balance Lstr and Latt and ∥·∥F denotes the Frobenius

norm.
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2.4.3.6 Anomaly Score

As we mentioned in Chapter 2.3, the target problem is tackled in a one-class anomaly

detection scenario in which only normal data are available in the training stage. Trained

on graphs which contain only normal nodes, SSGAE is capable of reconstructing high-

quality attributes and structures of the normal nodes [49] by optimizing the objective

function. Therefore, in the test stage, the model is supposed to output a high attribute

reconstruction error or a high structure reconstruction error for an abnormal node in

the test set. Based on the two reconstruction errors of nodes, we define anomaly score

function f (·) for node vk′
i to estimate its degree of abnormality as

sk′
i = f (vk′

i ) = (1−β)∥âk′
i −ak′

i ∥
2
2 +β∥x̂k′

i −xk′
i ∥

2
2. (2.10)

Based on the computed anomaly scores of nodes in the graph, the abnormality of

the corresponding regions can be ranked in the image.

2.5 Experiments

In this Chapter, we first introduce three real-world datasets collected by our autonomous

robot. Then we conduct experiments to evaluate the performance of SSGAE compared

with several baseline methods. The experimental results are illustrated, including a

comparison of performance, a parameter study, and an investigation into the effective-

ness of its components.

27



2.5.1 Datasets

We evaluate SSGAE on three real-world datasets: LabPatrolling, BehaviorMonitor-

ing, and AnoVisualGenome. The first two datasets, i.e., LabPatrolling and Behavior-

Monitoring, are constructed from the human monitoring video clips collected by our

autonomous robot in a real laboratory environment, which have been adopted in our

previous work [7, 14, 21]. AnoVisualGenome is constructed by randomly selecting a

subset of human-related images, which includes human activities in various environ-

ments, from a large-scale region caption dataset Visual Genome1. These three datasets

consist of diverse region anomalies, i.e., single and contextual anomalies, and thus

pose a challenge to detection algorithms. The instructions for these datasets are given

as follows.

• LabPatrolling is constructed from the video clips when the mobile robot pa-

trols around the laboratory. It includes various single anomalies, such as a man

holding a baseball bat and a man holding an umbrella in the room, as well as

a small number of contextual anomalies, such as a man making a phone call in

the working area. It contains 5146 normal images for training, as well as 373

normal images and 21 abnormal images for testing.

• BehaviorMonitoring is constructed from another large-scale human monitoring

dataset of video clips (approximately 100 hours). In this dataset, the mobile

robot is navigated to several designated locations by a predefined program to

monitor a variety of human activities taking place in the laboratory environment.

It includes a wide range of contextual anomalies associated with many human

behaviors. For instance, the behaviors of a man eating or sleeping in the working

and resting areas are defined as normal and abnormal behaviors, respectively. It
1https://visualgenome.org/
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contains 5548 normal images for training, as well as 585 normal images and

106 abnormal images for testing.

• AnoVisualGenome is constructed from Visual Genome [68] which provides

dense annotations for regions on over 108K images. It includes several kinds

of human activities in inappropriate environments as contextual anomalies, such

as watching TV on the street and sitting on a couch on the beach. It contains

1427 normal images for training, as well as 218 normal images and 31 abnormal

images for testing.

For our target task, after obtaining salient regions from images, we annotate region-

level anomalies in the images, including anomalous human behaviors or irregular

human-object interactions. Several normal and abnormal regions in the images are

shown in Figure 2.1. We present further examples of normal and abnormal regions in

the three datasets in Figure 2.5.

2.5.2 Experimental Setup

2.5.2.1 Preprocessing

In the preprocessing stage, by utilizing advanced pre-trained deep models, we obtain

regions with their captions in images and generate the visual and semantic features of

regions to construct graphs.

Specifically, we utilize a dense captioning model Densecap1 [1] pre-trained on Vi-

sual Genome [68] in a standard implementation to generate region candidates for the

first two datasets and select the top-n region candidates per image based on their con-

fidence scores. By investigating the qualities of the generated regions with captions, n

1https://github.com/jcjohnson/densecap
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Normal Abnormal

Figure 2.5: Examples of images with normal and abnormal regions. The normal and
abnormal regions are shown in green and red boxes, respectively. The abnormal re-
gions in the upper row are examples of single anomalies in LabPatrolling. In contrast
to the normal regions in the middle and bottom rows, the abnormal regions in the
same rows are examples of contextual anomalies in BehaviorMonitoring and AnoVi-
sualGenome, respectively.

is set to 10 [7, 21, 40]. For AnoVisualGenome, as the number of ground-truth regions

with captions per image ranges from 10 to 60, we randomly select 10 regions for each

image.

Subsequently, ResNet1011 [62] is adopted to extract the visual feature of each

region from the output in the penultimate layer with dimension 2048. An SBERT [63]

model named “all-mpnet-base-v2”2 is adopted for transforming each region caption

into an embedded vector with dimension 768. ResNet101 and SBERT are applied

under their default settings and pre-trained on ImageNet [69] and 14 sentence datasets

[63], respectively.

1https://pytorch.org/vision/stable/models/resnet.html
2https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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2.5.2.2 Baseline Algorithms

We evaluate the performance of SSGAE and compare it with several traditional and

popular anomaly detection algorithms. These baseline methods include a traditional

reconstruction-based algorithm, Auto-Encoders (AE) [70], a popular generative anomaly

detection method, GANomaly1 [61], two clustering-based region anomaly detection

methods, Anomalous Image Region Detection (AIRD) [21] and Fast-and-Slow-Thinking

Anomaly Detection (FSTAD) [7], as well as three variants of graph auto-encoders,

Variational Graph Auto-Encoders2 (VGAE) [66], Deep Anomaly Detection on At-

tributed Networks3 (DOMINANT) [49], and Graph Attention Auto-Encoders (GATE)

[59]. The instructions for the baseline algorithms are given as follows.

• AE [70] is a classical reconstruction-based method for anomaly detection. Both

the encoder and the decoder are designed with fully-connected layers.

• GANomaly [61] is a popular generative anomaly detection method. It adopts

an encoder-decoder-encoder module as a generator and three loss functions to

jointly reconstruct images and features in a latent space.

• AIRD [21] is a one-class region anomaly detection method. It combines the

visual, caption, and coordinate features of each region as its representation and

employs an incremental clustering method to model normal regions.

• FSTAD [7] employs AIRD as its fast module for detecting single anomalies and

devises a slow module recording neighboring regions with their visual features

for detecting anomalous region pairs.

1https://github.com/samet-akcay/ganomaly
2https://github.com/DaehanKim/vgae pytorch
3https://github.com/kaize0409/GCN AnomalyDetection pytorch
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• VGAE [48] is the first model to extend the auto-encoder framework on graph

data. It encodes node representations by GCN layers and utilizes an inner prod-

uct decoder for reconstructing the adjacency matrix of graph data.

• DOMINANT [49] is the state-of-the-art graph auto-encoder for detecting anoma-

lous nodes in attributed graphs by devising GCN-based components and adopt-

ing reconstruction errors as the anomaly scores.

• GATE [59] is a graph auto-encoder variant which stacks graph attention layers

in its encoder and decoder for graph classification tasks.

2.5.2.3 Implementation Details

We implemented SSGAE with the Pytorch1 framework (version 1.6.0) on Ubuntu

18.04 equipped with a GPU of NVIDIA TITAN RTX (24 GB memory) and a CPU

of i9-9820X. The objective function L is optimized by Adam [71] with a learning rate

0.004 and a weight decay 8×10−5.

In the Spatial and Semantic Attributed Graph, the semantic similarity threshold

θsim for building semantic edges is set to 0.5 in our experiments. In SSGAE, the at-

tributed graph encoder is equipped with L = 2 hidden layers along with their MLP

modules MLP(l)
Enc, both of which contain two fully-connected layers with the hidden

units (2816− 256− 256) and (256− 256− 128), respectively, with ReLU activation

function. Accordingly, the graph attribute decoder also contains L = 2 hidden layers

with their MLP modules MLP(l)
Att−Dec, in which the fully-connected layers are sym-

metric to the layers in the encoder in terms of the number of their hidden units for

reconstruction. In the graph structure decoder, the dimensions of the fully-connected

layers in MLPStr−Dec are set to (128− 256− 256). The hidden layers of other graph

1https://pytorch.org/
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auto-encoder variants in the baselines are set to the same dimensions as SSGAE for

a fair comparison. SSGAE and the other graph auto-encoder variants are trained for

T = 400 epochs on the first two datasets and T = 200 epochs on AnoVisuaGenome.

Hyper-parameter β in SSGAE is set to 0.8, 0.8, and 0.9 for LabPatrolling, Behavior-

Monitoring, and AnoVisuaGenome, respectively. When implementing other baseline

methods, we retain the suggested settings in their original papers.

2.5.3 Experimental Results and Analysis

Figure 2.6 and Table 2.3 show the ROC curve and AUC score of SSGAE compared

with the baselines on the three datasets, respectively. Moreover, Figure 2.7 illustrates

the anomaly score distributions of all methods by boxplot, which displays the lower

quartile, the median, and the upper quartile of the scores in a box and extends the box

from the lowest to the highest scores by a line segment. We have the following findings

based on the results.

1. SSGAE outperforms all the baseline methods on the three datasets and achieves

0.016−0.387, 0.038−0.315, and 0.043−0.345 improvements in terms of their

AUC scores on LabPatrolling, BehaviorMonitoring, and AnoVisualGenome, re-

spectively. This validates the superiority of our method for the region anomaly

detection task. The main reason is that SSGAE is capable of discriminating node

representations from the Spatial and Semantic Attributed Graph and thus gener-

ates separated reconstruction errors to measure the abnormalities of regions, as

shown in the example in Figure 2.8.

2. The previous methods, which do not consider region contexts, i.e., AE, GANomaly,

and AIRD, achieve competitive performance on LabPatrolling, where most of

the anomalies are single anomalies. This observation proves their effectiveness
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in detecting single anomalies which are dissimilar to normal regions, e.g., normal

and abnormal regions in the upper row in Figure 2.8. However, these methods do

not perform well on BehaviorMonitoring and AnoVisual Genome, where there

exist a large number of contextual anomalies. For instance, GANomaly achieves

an AUC score of 0.911 on LabParolling, while it only achieves 0.794 and 0.687

on the other two datasets. The distributions of the anomaly scores on the two

datasets shown in Figures 2.7(b) and 2.7(c) demonstrate that AE, GANomaly,

and AIRD are unable to discriminate the normal and abnormal regions very well.

We think the reason would be that without considering the region contexts, the

contextual anomalies include similar human behaviors as normal regions, which

are difficult to detect with these methods. To confirm the reason, we investigate

the anomaly scores of the examples, including a normal region and a contex-

tual anomaly, i.e., the no. 0 regions in the upper and bottom images in the left

part of Figure 2.8. Compared with SSGAE, which outputs the anomaly score of

0.565/0.814 on the normal/abnormal regions in Figure 2.8, AE, GANomaly, and

AIRD output 0.425/0.462, 0.199/0.381, and 0.542/0.639, respectively. These

findings indicate that the methods which do not consider region contexts have

deficiencies in detecting contextual anomalies compared with SSGAE.

3. Compared with other graph auto-encoder variants, SSGAE achieves significant

performance gains with improvements of 0.043, 0.055, and 0.043 on the three

datasets in terms of AUC scores. Accordingly, the anomaly scores of normal and

abnormal regions generated by SSGAE are better discriminated compared with

these baseline methods, as shown in Figure 2.7. The main difference between

SSGAE and other graph auto-encoders is the sum aggregation strategy, which

plays a critical role in discriminating the representations of node neighbors. We
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Table 2.3: AUC scores of SSGAE compared with the baseline methods.

Dataset

Method LabPatrolling BehaviorMonitoring AnoVisualGenome

AE 0.813 0.631 0.709

GANomaly 0.911 0.794 0.687

AIRD 0.881 0.745 0.794

FSTAD 0.868 0.772 0.701

VGE 0.540 0.517 0.524

DOMINANT 0.767 0.695 0.709

GATE 0.884 0.777 0.826

SSGAE1 0.927 0.832 0.869

1 The best performance of the method with AUC scores on the three

datasets is in bold.

verify the effectiveness of the sum aggregation strategy in SSGAE by substitut-

ing it with the aggregation strategies in other graph auto-encoders, as illustrated

in Chapter 2.5.5.

4. We observe that VGAE performs worst on the target task, although its encoder

is similar to the encoders in other graph auto-encoders. We notice that compared

with DOMINANT, GATE, and SSGAE, the decoder in VGAE only aims at re-

constructing the graph structure without considering the reconstruction of node

attributes in the graph. This fact implies that both the structure and the attribute

reconstructions are necessary for our method of the task.
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(c) AnoVisualGenome.

Figure 2.6: ROC curves of all methods on the three benchmark datasets.

We also show an example of detecting normal and anomalous regions by SSGAE

in Figure 2.8. In the upper image, the no. 0 region of a man making a phone call (the

green box) in a resting area is normal, while the no. 0 region of the same behavior

(the red box) in a working area in the bottom image is abnormal due to their differ-

ent contexts. We visualize the original features of two regions and their embeddings

generated by SSGAE with Principal Component Analysis (PCA) [72]. We see that

although the two regions are closely located in the original feature space, trained on

normal data, SSGAE can compress the two regions with their contextual information

into well-separated embeddings and thus generate accurate anomaly scores in the right
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(a) LabPatrolling. (b) BehaviorMonitoring.

(c) AnoVisualGenome.

Figure 2.7: Distributions of anomaly scores on the three datasets.

part of Figure 2.8.

Considering the feasibility of applying our method to real-time region anomaly de-

tection in human monitoring, we also evaluate the actual running time of the method

in the test phase. For each test image, the proposed method outputs the anomaly scores

of all regions with an average running time of 0.53s. We believe this performance

is sufficient as we target human monitoring. Here we assume that the preprocessing

procedure, which includes extracting pre-trained features and constructing graphs, is

conducted before the monitoring process. The computation time of the preprocessing

procedure during testing is about 3m48s, 7m58s, and 2m16s on LabPatrolling, Behav-

iorMonitoring, and AnoVisualGenome, respectively.
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0. man in a yellow shirt. 1. a white
wooden cart. 2. man wearing a yellow
shirt. 3. a white cabinet with a wooden
door. 4. a white refrigerator. 5. a yellow
and black pants. 6. white kitchen cabinets.
7. the floor is made of wood. 8. a laptop
on the table. 9. a sign on the wall.

0. man with a yellow shirt. 1. yellow shirt
on the man. 2. kitchen counter with
white. 3. man wearing black pants. 4.
white chair in front of the room. 5. man
with a beard. 6. a kitchen with a window.
7. blue and white shelf. 8. white metal
railing. 9. a basket on the back of a bike.

Embeddings with Context

Anomaly Score

SSGAE

Features without Context

Figure 2.8: Example of detecting anomalous regions by SSGAE.

2.5.4 Parameter Sensitivity Study

To investigate the effects of embedding dimensions de of the final hidden embedding

and hyper-parameter β in the objective function on the performance of SSGAE, we

conduct experiments by modifying their values.

We first explore the sensitivity to dimension de of the final hidden embedding by

setting the values of de from 4 to 256. We show the performance of SSGAE in Figure

2.9(a). On BehavoringMonitoring and LabPatrolling, the performance steadily im-

proves when de increases from 4 and reaches the peak value of 128, and then drops

slightly when de is 256. On AnoVisualGenome, the AUC score also steadily increases

from de = 4 to de = 128. Then the performance gain becomes smaller when de = 256.

These results show that de should be in an appropriate range, e.g., from 64 to 256, for

the target task.

We then modify the value of β in the range of {0.0,0.1,0.2, . . . ,1.0} and show the

results in Figure 2.9(b). According to the results, the AUC score rises when β increases

and reaches the peak value at 0.8, 0.8, and 0.9 on LabPatrolling, BehaviorMonitoring,

and AnoVisualGenome, respectively. In particular, we can evaluate the performance
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Figure 2.9: Parameter sensitivity study of SSGAE.

of SSGAE only equipped with the structure decoder when β = 0.0 and only equipped

with the attribute decoder when β = 1.0. We observe that our ablated model achieves

poor results as it merely considers the structure reconstruction error, which indicates

that attribute information is necessary for our task. On the contrary, by merely utilizing

an attribute decoder in SSGAE, we cannot achieve the best results, which indicates the

significance of jointly optimizing SSGAE by the structure reconstruction error and the

attribute reconstruction error. These results show that it is necessary to find a trade-off

to balance the two kinds of reconstruction errors for our task.

2.5.5 Effectiveness of Components

We further investigate the effectiveness of components in our method, i.e., the impacts

of jointly considering the spatial and semantic relations in the proposed graph and the

sum aggregation strategy in SSGAE.

We first conduct an ablation study by building two variants of the graph, i.e., the
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Table 2.4: The effectiveness of different components in our method.

Dataset

LabPatrolling BehaviorMonitoring AnoVisualGenome

Spatial Attributed Graph 0.915 0.807 0.833

Semantic Attributed Graph 0.924 0.778 0.791

Mean-pooling Aggregation 0.922 0.798 0.821

Max-pooling Aggregation 0.923 0.805 0.836

SSGAE1 0.927 0.832 0.869

1 The best performance of the method with AUC scores on the three datasets is in bold.

spatial attributed graph and the semantic attributed graph which consider spatial rela-

tions only and semantic relations only among regions, respectively. Table 2.4 shows the

results of SSGAE with these graphs. We observe that SSGAE on the spatial or seman-

tic attributed graph achieves suboptimal performance, which implies the superiority of

building both the spatial and semantic edges in the graph. We present several normal

(green color) and abnormal (red color) examples in Figures 2.10(a)-2.10(e) with their

anomaly scores in Figure 2.10(f). These examples in Figures 2.10(a)-2.10(e) include

several human behaviors, such as a human sleeping, making a call, eating, and sitting

on a couch, in different contexts. We observe that with the spatial attributed graph

and the semantic attributed graph, the anomaly scores in Figure 2.10(f) of the normal

and abnormal regions are not well-separated compared to SSGAE with the Spatial and

Semantic Attributed Graphs. These results validate the effectiveness of the Spatial and

Semantic Attributed Graphs on the target task.

We then verify the effectiveness of the sum aggregation strategy by substituting it
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Figure 2.10: Examples of abnormal and normal regions with anomaly scores. (a)-(d):
examples of abnormal regions with red boxes and normal regions with green boxes in
a laboratory environment. (e): examples of an abnormal region with a red box outside
a room and a normal region with a green box inside a room. (f): anomaly scores of the
abnormal regions with red color and normal regions with green color in (a)-(e) by the
different kinds of graphs. (g): anomaly scores of the abnormal regions with red color
and normal regions with green color in (a)-(e) by the different aggregation strategies.

with the mean-pooling and the max-pooling strategies in SSGAE. Based on the results

in Table 2.4, SSGAE adopting the mean-pooling or max-pooling aggregation strat-

egy achieves competitive performance on LabPatrolling. The reason would be that

most anomalous regions in LabPatrolling are single anomalies and are thus easy to be

detected by any of the aggregation strategies. However, the diverse contextual anoma-

lies in BehaviorMonitoring and AnovisualGenome need to be judged by combining

the regions with their contexts. Figure 2.10 shows the anomaly scores of regions in

Figures 2.10(a)-2.10(e) with different strategies in Figure 2.10(g). We observe that

SSGAE adopting the sum aggregation strategy discriminates the normal and abnormal

regions better than SSGAE adopting the other two strategies in terms of their anomaly
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scores. For instance, the normal and abnormal regions in Figure 2.10(a) show a human

sleeping in the working and resting areas. SSGAE with the sum aggregation strat-

egy generates the highest anomaly score for the abnormal region and a relatively low

score for the normal region in Figure 2.10(a) compared to SSGAE with the other two

strategies. This implies the effectiveness of adopting the sum aggregation strategies in

SSGAE for detecting contextual anomalies in our task.

2.6 Summary

In this Chapter, we tackled the region anomaly detection task in human monitoring by

constructing the Spatial and Semantic Attributed Graph and devising the graph auto-

encoder framework SSGAE. To characterize the anomalous region based on its content

and context, we built the graph to model regions with their spatial and semantic rela-

tions in the image. Subsequently, SSGAE which is equipped with the sum aggregation

strategy [26] and consists of one encoder and dual decoders, was introduced for our

task. Due to the lack of rare and diverse anomalies in human monitoring, SSGAE

is trained to reconstruct the node attributes and structures in the graph in a one-class

anomaly detection manner. In the test stage, the structure and the attribute reconstruc-

tion errors are then jointly employed in the anomaly score to estimate the abnormality

of nodes as well as their corresponding regions. We conducted extensive experiments

and analyzed the results to evaluate the superiority of SSGAE on the target problem.
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Chapter 3

Phrase Similarity Graph for Judging

Credible and Unethical Statistical

Data Explanations

3.1 Overview

As the impact and the presence of AI systems on our societies increase, their unethi-

cal misconducts are prone to severe reproach. The misconducts of Deepfakes pose a

serious threat to truth, trust, and privacy by spreading false information and manipu-

lating public opinions [73]. The hijacking event of the chatbot Tay clearly shows that

pure benevolence could turn into an opposite outcome [74], e.g., inflammatory tweets

by a chatbot are often unethical, and harm the reputation of its producer. Moreover,

although the advent of ChatGPT1 has the potential to revolutionize various industries

and aspects of our daily lives [75], such a practical large language model also holds

the possibility of generating and spreading seemingly convincing yet biased informa-

1https://openai.com/blog/chatgpt
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tion [76,77], such as fake news. These kinds of information pose a significant challenge

to the morality of our society. Among such misinformation, those that are credible are

more influential than others, as their contents are more likely to be believed by people.

In this Chapter, among such reasons, we tackle exploitation of human instincts in

statistical data explanation. Rosling et al.’s book “Factfulness” has known a global

success and emphasizes the importance of thinking based on facts and correct under-

standings [2]. The book includes examples of unethical and biased explanations each

of which is denied by the accompanied statistical data. We, however, argue that such

a thinking attitude is not always adopted and even accepted. Take as an example an

explanation “Asia is the cause of the large amount of CO2 emissions”1 with its statisti-

cal data depicting GDP per capita, total amount of CO2 emissions, and CO2 emissions

per capita of four continents in Figure 3.1. The statistical data show that although Asia

seems to be the cause in the view of total emissions in the first plot, the explanation

is refuted by the per-person emission view with respect to the GDP per capita in the

second plot. However, due to the single perspective instinct, i.e., our tendency to prefer

a single cause or solution [2], some portion of people would believe the explanation,

even though the statistical data clearly contradicts it. Such an unethical explanation

deserves special attention as it highlights challenges to our rationality and understand-

ing. In this Chapter, we are going to define 21 types of such credible and unethical

explanations each with its statistical data.

Moreover, we provide countermeasures to such explanations. In Chapter 3.5, we

first devise three methods α, β, and γ for judging whether an explanation is credi-

ble and unethical based on phrase embedding and carefully designed conditions. The

phrase embedding technique is an extension of word embedding [64,78–81] to project

1All unethical examples in this thesis are either adopted from other sources or slightly modified
from them and do not reflect the beliefs of the author nor our organizations. In all cases, such examples
are not believed by the authors of the sources, either.
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phrases in a high dimensional vector space, where semantically similar phrases are

embedded near each other. The conditions in the three judgment methods are designed

to compare semantic relevance between phrases specified in the explanations. We con-

duct experiments on the statistical data explanations to evaluate the effectiveness of the

three methods.

Based on the experimental results, only method β achieves relatively low accu-

racy on the target task due to numerous counter-intuitive semantic similarities between

phrases in the designed conditions. To address the limitation and improve the accuracy

of method β, in Chapter 3.6, we propose a new graph-based method β2. Method β2

first constructs a Phrase Similarity Graph to model the statistical data explanation by

considering more phrases. The graph can explicitly represent these phrases and their

semantic similarities, where the conditions for the judgment can be simply generated

based on node combinations. Then a credibility score for judging the credibility of the

explanation is proposed based on the generated conditions and graph entropy.

The main contributions of this Chapter as summarized as follows.

• We define 21 types of credible and unethical explanations with the exploitation

of Rosling et al.’s ten human instincts [2], each of which is accompanied by its

statistical data.

• We devise three methods α, β, and γ for judging credible and unethical statistical

data explanations. The three judgment methods investigate the credibilities of

the unethical explanations by comparing semantic relevance degrees between

specified phrases in the explanations.

• To address the limitation of method β, we propose a graph-based judgment

method β2. Method β2 constructs a Phrase Similarity Graph to consider more
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phrases for generating necessary conditions and adopts graph entropy to quantify

the different importance of the generated conditions for more accurate judgment.

Figure 3.1: Statistical data of GDP per capita and the total amount of CO2 emissions
versus GDP per capita and CO2 emissions per capita.

3.2 Related Work

3.2.1 Unethical Explanations

Unethical and biased explanations are widely generated in diverse fields around the

world [82], such as fake news and misinformation. Misinformation can be defined as

incorrect or counterfactual information, while fake news is a specific type of misin-

formation which is intentionally created to mislead the audience [82]. Detecting fake

news is a challenging Natural Language Processing (NLP) task involving two prob-

lems: characterization and detection [83]. Considering feature selection and extraction,

Reis et al. [84] designed informative features, which consider semantic and syntactic
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properties, political biases, credibility, and environments of news, for automatic de-

tection of fake news. Vlachos et al. [85] introduced fact-checking tasks and discussed

baseline approaches to assess truthfulness of explanations by measuring their seman-

tic similarities. Detecting fake news is usually formulated as a classification task in a

supervised manner [86,87]. Through integrating meta data with texts, a hybrid Convo-

lutional Neural Network (CNN) is devised to classify fake news based on surface-level

linguistic patterns [88]. Moreover, since fake news with images or videos is becoming

increasingly prevalent with the development of multimedia technology, multimodal

information including visual and textual features has been explored for more accurate

detection [89–91].

In this Chapter, we limit our attention to explanations of statistical data and focus

on their unethical nature and credibility due to instinct exploitation. Statistical ethics

refers to the ethical consideration and principles which guide the collection, analy-

sis, interpretation, and communication of statistical information [92]. Statistical ethics

covers a wide range of topics, such as the selection bias in data collection for clinical

research [93], the misuse and abuse of statistical data for biomedical research [94],

and the survivorship bias in statistical for longitudinal mental health surveys during

the COVID-19 pandemic [95]. These works mainly focus on addressing ethical con-

cerns in statistical data, aiming to promote the integrity and responsible use of data in

their domains. Different from these works, we argue that credible and unethical expla-

nations of statistical data due to human instinct exploitation deserve special attention

since they can lead to the formation of stereotypes and prejudice against people. Such

explanations may hinder people from developing correct understandings of the facts

even if statistical data support them. To the best of our knowledge, no previous work

tackles the problem of judging credible and unethical explanations on statistical data

with AI methods. Our work is the first one to define and investigate such explanations
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through AI techniques.

3.2.2 Semantic Similarity-Based Methods for NLP Tasks

As we explained in Chapter 3.1, our methods α, β, and γ are based on phrase embed-

ding and carefully designed comparisons to judge the credibility of the statistical data

explanation. Measuring semantic similarity between various text components such as

words, sentences, or documents has been explored in a wide range of downstream

NLP tasks, such as machine translation [96], information retrieval [97] and question

answering [98]. Li et al. [99] measured semantic similarity between words using mul-

tiple information sources, including attributes path lengths, depths, and local densities

in a hierarchical semantic knowledge base. To reduce the ambiguity in words, a robust

semantic similarity measure [100] was devised by utilizing information including page

counts and lexico-syntactic patterns from text snippets of a Web search engine. Simi-

lar to [100], Normalized Google Distance (NGD) [101] was proposed to measure the

similarity between two terms based on query results of Google search engine.

Semantic similarity methods have exploited the recent developments in neural net-

works and word embedding to enhance their performance [102]. In contrast to adopt-

ing traditional static word embedding [79, 103] for semantic similarity measurement

between words [104], contextualized word embedding generated from modern neural

language models, such as ELMo [80], GPT-2 [81], and BERT [64], has been widely

employed for semantic similarity tasks [105]. The latter approach possesses over the

former an advantage of capturing rich syntactic and semantic properties of words un-

der diverse linguistic contexts. Moreover, for semantic similarity tasks between two

sequences of multiple words, such as phrases and sentences, InferSent [106] employs

a bi-directional Long-Short Term Memory (LSTM) with a max-pooling operator as a
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sentence encoder to generate sentence embedding. Trained on a number of natural lan-

guage prediction tasks, Universal Sentence Encoder [107] models the meaning of word

sequences to encode sentences into high dimensional vectors. Sentence-BERT [63]

adopts Siamese and triplet architectures based on the pre-trained BERT network to

generate semantically meaningful embedding for sentences. Furthermore, the seman-

tic similarities of sentences can be directly compared with cosine-similarity between

their embeddings.

3.2.3 Graph-Based Methods for Misinformation Detection

To address the limitation of method β, we propose a graph-based method β2. Graph

structures have been widely employed in fact-checking and misinformation detection,

as they can make the structure of free text explicit and easily manageable by down-

stream algorithms. These works can be mainly classified into similarity-based and

knowledge-based approaches. Similarity-based approaches often represent social me-

dia posts [108], sentences, or words in news articles [109–111] as nodes and build

edges to represent their relations in a graph. TextRank [112] is adopted to identify

credible statements from a graph in which the sentences and their semantic similari-

ties represent nodes and edges [109], respectively. Utilizing the same kind of graph,

Biased TextRank [110] associates an explanation extraction with a fact-checking task

by comparing the similarities between the extracted statements with the ground truth.

On the other hand, knowledge-based approaches often retrieve evidence which sup-

ports or refutes the information from a large and reliable knowledge graph [83, 113].

Vedula et al. [114] jointly exploit concept-relationship structures and semantic contex-

tual cues from a knowledge graph to detect the veracity of an input fact and generate

a human-comprehensible explanation justifying the fact. For health misinformation
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detection, a knowledge-guided graph attention network is devised by incorporating a

medical knowledge graph and an article-entity bipartite graph [115]. Different from

these graph-based methods for misinformation detection tasks, the Phrase Similarity

Graph in our method considers more phrases and their semantic similarities to address

the issue of counter-intuitive semantic similarities, which improves the accuracy for

judging the statistical data explanations.

We adopt sub-graph entropy in our graph-based method β2. Graph entropy is a

measure to understand and analyze the structure and complexity of a graph, which

is often utilized to quantify the degree of uncertainty for graph data. Graph entropy is

usually task-specific, i.e., it depends on the characteristics of the network. These works

include structure and feature entropy for node embedding dimension selection [116],

parametric graph entropy for analyzing information processing [117], and conditional

substructure entropy for graph anomaly detection [118]. Among such works, Sen et

al. [119] define the sub-graph entropy by focusing on the complexity of connections

between nodes in functional brain networks. The sub-graph entropy is computed by

exploring the node connectivity, i.e., edge weights, to evaluate the importance of each

sub-graph in a whole graph. Since the Phrase Similarity Graph in method β2 considers

node combinations and their connections from its sub-graphs to generate comparison

conditions for judgment, we utilize sub-graph entropy to measure the importance of

the comparison conditions from different sub-graphs.
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3.3 Problem Formulation

3.3.1 Rosling et al.’s Ten Human Instincts

As we stated in Chapter 3.1, we focus our attention on the credible and unethical

explanations of statistical data with the exploitation of Rosling et al.’s ten human in-

stincts [2]. The ten instincts are listed below, which could be considered as innate,

typically fixed patterns of human thinking.

(1) The gap instinct: our tendency to divide all kinds of things into two distinct and

often conflicting groups, with an imagined, huge gap in between.

(2) The negativity instinct: our tendency to notice the bad more than the good.

(3) The straight line instinct: our tendency to believe that the increase is a straight

line.

(4) The fear instinct: our tendency to focus our attention on what we are afraid of.

(5) The size instinct: our tendency to misjudge the size of things or the importance

of a single number/instance.

(6) The generalization instinct: our tendency to categorize and generalize things all

the time.

(7) The destiny instinct: our tendency to consider that several things never change

due to their innate characteristics.

(8) The single perspective instinct: our tendency to prefer a single cause or solution.

(9) The blame instinct: our tendency to find a clear, simple reason for why some-

thing bad has happened.
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(10) The urgency instinct: our tendency to want to take an immediate action in the

face of a perceived imminent danger.

3.3.2 Judging Credible and Unethical Statistical Data Explana-

tions

We assume the following five conditions for the credible and unethical explanations of

statistical data.

(1) Data seem to be valid, ideally taken from an authoritative source, e.g., WHO.

(2) The explanation is significant.

(3) The explanation seems to be believed by a certain number of people.

(4) The data can prove why the explanation is not valid.

(5) The explanation exploits at least one of the ten human instincts in Chapter 3.3.1.

Conditions (1), (4), and (5) contribute to the unethical nature of a statistical data

explanation, which consider its validity, objectiveness, and exploitation of human in-

stincts, respectively. As we are going to consider variants for each explanation by

replacing its phrases while keeping the data, we have inserted the phrase “seem to” in

condition (1). Condition (4) assures that we can refute the explanation based on the

accompanied data only. Without this condition, the unethical nature of the explanation

depends on the beliefs and the knowledge of the judge, which are diverse. The ten

instincts mentioned in condition (5) are prone to unethical notions such as segrega-

tion, prejudice, fear, and inequality. Conditions (2) and (3) are also necessary as they

consider the significance and the credibility, respectively. Condition (3) also needs

the phrase “seem to” as it depends on subjectivity and knowledge of various people.
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Without (2) and (3), the explanation is not harmful as people do not pay attention to

them.

As we discussed in Chapter 3.1, unethical statistical data explanations which are

credible deserve more attention than those that are not because they have a greater

negative impact on correct human understanding. Therefore, our target problem is to

judge whether a given explanation is credible and unethical (class 1) or not (class 0).

The target problem is formulated as the test phase of a binary classification task,

where the goal is to predict the class labels of the explanations. The ground-truth

class labels are given by humans for evaluation purposes only. The input of the target

problem is an explanation, its statistical data, and its phrases, which will be explained

in Chapter 3.5. The output is the predicted class label (0 or 1) of the explanation. To

evaluate our judgment methods, we utilize accuracy as the evaluation metric.

3.4 21 Types of Statistical Data Explanations

We define 21 types (I-XXI) of credible and unethical explanations, which describe 7

kinds of statistical data. The data are (A) values of a probabilistic variable under 2

conditions, (B) a scatter plot of 2 probabilistic variables, (C) scatter or bar plots in dif-

ferent categories or times, (D) a probability density function of a probabilistic variable

and a plot of its average value, (E) a time-series chart or scatter plots in chronological

order, possibly with an additional one, (F) scatter plots of 2 probabilistic variables fo-

cusing on the total values and the average values, and (G) a funnel plot. Examples of

the statistical data are shown in Figures 3.2, 3.3, and 3.4.

For each type of explanation, we code the exploited instincts and its statistical data.

For example, in type I explanation, A-2 represents that the explanation exploits instinct

(2) to explain the statistical data (A). X and Y are phrases which are respectively spec-
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ified as a subject and its characteristics in the explanation. In addition, we clarify why

the explanation is not valid according to its statistical data. Lastly, we provide candi-

dates of phrases X and Y to generate variants of each type. The variants are generated

by replacing phrases X and Y in the original explanation with the provided candidates.

(Type I) A-2, A-4: Deep-fried food boosts pancreatic cancer risk.

X : deep-fried food. Y : pancreatic cancer.

(Clarification) The relative risk of pancreatic cancer is only increased by 0.25% [3].

Statistically testing the difference between the two groups will fail.

(Candidates for variants) X : alcohol abuse, heavy drinking, long-distance running.

Y : Alzheimer’s disease, periodontal disease, flu, alopecia areata, bone fracture, nose-

bleeds.

We have two variations for type II explanation, which are used for upper-left and lower-

right countries in Figure 3.2 II.

(Type II-1) B-8: Cuba is the poorest of the healthiest countries.

X : Cuba. Y : poorest.

(Type II-2) B-8: United Arab Emirates (UAE) is the richest of the unhealthiest coun-

tries.

X : United Arab Emirates. Y : richest.

(Clarification) (Type II-1) Cuba is also the healthiest of the poorest countries. It is

inappropriate to consider only one side.

(Type II-2) The same reason applies to UAE, which is also the unhealthiest of the

richest countries.

(Candidates for variants) (Type II-1) X : Bangladesh, North Korea, Nicaragua. Y :

richest.
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Figure 3.2: (Best in color) Statistical data in explanations (I-IX). Data are adopted or
modified from [2], [3], or Gapminder [4].
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(Type II-2) X : Qatar, Equatorial Guinea, Botswana. Y : poorest.

Note that Cuba and UAE are respectively compared among the healthiest and unhealth-

iest countries in these explanations.

(Type III) B-3: Life expectancy continues to grow in proportion to GDP per capita.

X : life expectancy. Y : proportional to GDP.

(Clarification) Note that the horizontal axis in Figure 3.2 III is set to a logarithmic

scale, which is non-linear. The average life has an upper bound.

(Candidates for variants) X : healthy life expectancy. Y : inversely proportional to

GDP, not correlated to GDP.

(Type IV) C-1, C-6, C-7, C-8: Muslims have many babies compared to Christians.

X : Muslims. Y : many babies.

(Clarification) All the 3 plots show that the number of babies decreases as the

income increases, and there is no significant difference in the distribution. In fact,

the average number of children per woman is 3.1 among Christians and 2.7 among

Muslims.

(Candidates for variants) X : Judaisms, Christians. Y : few babies.

(Type V) D-1, D-2, D-6, D-8: Women have lower math scores than men.

X : women. Y : low math score.

(Clarification) The left plot shows that girls (women) have lower average scores

than boys (men). However, the right plot shows that there exists an almost complete

overlap between the two groups.

(Candidates for variants) X : men. Y : high math score, low English score, high

English score.

56



(Type VI) E-7, E-8: Iranians have many children compared to Americans in the 21st

century.

X : Iranians. Y : many children.

(Clarification) In the past centuries, Iranians had more children than Americans. In

this century the two groups are similar in the number of children.

(Candidates for variants) X : Afghans, Americans, French. Y : few children.

(Type VII) E-1, E-6, E-7, E-8: Infant mortality rates in developing countries are still

significantly higher than in advanced countries.

X : developing countries. Y : high infant mortality rates.

(Clarification) The percentage of children living up to 5 years is now over 85% in

most countries, and there is no significant difference between advanced and developing

countries.

(Candidates for variants) X : advanced countries. Y : low infant mortality rates, low

enrollment rates, high enrollment rates.

(Type VIII) E-2, E-5: Child labor is about 15% and is not decreasing.

X : child labor. Y : not decreasing.

(Clarification) The percentage of child labor is decreasing.

(Candidates for variants) X : child hunger, child mortality. Y : increasing, decreas-

ing, not increasing, constant.

(Type IX) E-3: The world’s population will just increase.

X : world population. Y : will just increase.

(Clarification) The bottom plot shows that the populations of younger generations
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are stable and those of older ones slowly increase. As the results, the population growth

will be controlled.

(Candidates for variants) Y : will rapidly increase, will just decrease, will rapidly

decrease, will keep constant.

(Type X) E-2, E-4: Since year 2000, compared to 1980, there is an increasing in natu-

ral disasters and an increasing in deaths from natural disasters.

X : increasing in natural disasters. Y : increasing in deaths from natural disasters.

(Clarification) The number of natural disasters is increasing, whereas the number

of deaths from disasters is fluctuating and tends to decrease.

(Candidates for variants) From this type, we use {} as there are many candidates.

A variant should discuss one of the three topics. X : {increasing in, decreasing in, con-

stant} {natural disasters, epidemic damages, industrial accidents}. Y : {increasing in,

decreasing in, constant} deaths from {natural disasters, epidemic damages, industrial

accidents}.

(Type XI) E-2, E-5, E-10: The death of many babies (4 million) is increasing.

X : death of many babies. Y : increasing.

(Clarification) Nearly 10 million babies died 40 years ago, but recently the number

has fallen to 4 million and the situation is improving.

(Candidates for variants) X : death of many {children, adults, old people}. Y : not

decreasing, decreasing, not increasing, constant.

(Type XII) F-1, F-6, F-7, F-8, F-9: Asia is the cause of the large amount of CO2

emissions.

X : Asia. Y : large amount of CO2 emissions.
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Figure 3.3: (Best in color) Statistical data in explanations (X-XVIII). Data are adopted
or modified from [2], [3], or Gapminder [4].
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(Clarification) Asian countries seem to be the cause in the view of total emissions,

which is denied by the per person emission view with respect to the GDP per capita.

(Candidates for variants) X : Africa, Europe1.

Y : small amount of CO2 emissions.

(Type XIII) E-2, E-8: The risk of death from cancer is increasing worldwide.

X : risk of death from cancer. Y : increasing.

(Clarification) The number of deaths from cancer is increasing, which is the result

of the increase of the elderly in number.

(Candidates for variants) X : risk of death from {Alzheimer’s, heart} disease. Y :

decreasing, constant.

(Type XIV) F-8, F-9, F-10: China is the cause of the large amount of CO2 emissions.

X : China. Y : large amount of CO2 emissions.

(Clarification) A large population inevitably leads to an increase in CO2 emissions.

In terms of CO2 emissions per person, the explanation is denied.

(Candidates for variants) X : United Kingdom, India, United States. Y : small

amount of CO2 emissions.

Note that this type gives a more precise view than type XII, which explains continents.

(Type XV) G-1, G-8, G-9: Small hospitals are dangerous hospitals2. X : small hos-

pitals. Y : dangerous hospitals.

(Clarification) The funnel plot shows that most of the data points are within the

confidence interval [3]. Thus there is no such tendency.

1We omitted Americas, which is diverse.
2We repeated the word “hospitals” to correctly measure the relevance between X and Y .
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(Candidates for variants) X : large hospitals. Y : safe hospitals.

(Type XVI) E-1, E-6, E-7, E-8: Omicron strain of COVID-19 is less dangerous than

Delta strain.

X : Omicron strain. Y : less dangerous.

(Clarification) Judging the dangerous degree of Omicron strain only by the number

of deaths is inadequate. Omicron strain is more dangerous than Delta strain in the view

of infections.

(Candidates for variants) X : Alpha strain, Beta strain, Delta strain, Gamma strain.

Y : more dangerous.

(Type XVII) B-1, B-6, B-7: Africa has lower GDP per capita than other regions.

X : Africa. Y : low GDP.

(Clarification) Not all African countries have lower GDP per capita than other re-

gions.

(Candidates for variants) X : Asia, Americas, Europe. Y : high GDP.

(Type XVIII) B-2, B-6, B-7, B-8: The average 5-year survival rate for cancer is 64%

so short life expectancy is predicted than other diseases.

X : cancer. Y : short life expectancy.

(Clarification) The explanation is an overgeneralization because the survival rates

for several less dangerous cancers are higher.

(Candidates for variants) X : Alzheimer’s disease, periodontal disease, heart dis-

ease, pneumonia. Y : long life expectancy.

We hesitated between “short” and “long” in Y but finally chose the former as it is more

credible than the latter. The term “than other diseases” has been added as without it
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one would compare cancer patients with people with no disease. Note that this type

is kept to show the difficulty of the target problem despite its flaw, i.e., the statistical

data do not contain survival rates of other diseases, which reflects the difficulty of dis-

cussing the remaining diseases all at once.

XXI

XIX XX

Figure 3.4: (Best in color) Statistical data in explanations (XIX-XXI). Data are adopted
or modified from Gapminder [4], or Our World in Data1.

(Type XIX) C-1, C-7, C-8: Americas have more members of the United Nations than

Africa.

X : Americas. Y : many members of the United Nations.

(Clarification) In the last century, Americas and Europe had more members of the

1https://ourworldindata.org/
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United Nations compared with Asia and Africa. Currently, the United Nations has a

truly global coverage. The number of members of the United Nations in Asia or Africa

is almost the same as the number in Americas and Europe.

(Candidates for variants) X : Europe, Asia, Africa. Y : few members of the United

Nations.

(Type XX) F-8, F-9, F-10: India is the cause of the large amount of mismanaged

plastic waste.

X : India. Y : large amount of mismanaged plastic waste.

(Clarification) Countries with large populations, such as China and India, inevitably

lead to an increase in mismanaged plastic waste. In terms of mismanaged plastic waste

per person, the explanation is denied.

(Candidates for variants) X : China, United Kingdom, United States. Y : small

amount of mismanaged plastic waste, large amount of plastic emissions, small amount

of plastic emissions.

(Type XXI) F-1, F-7, F-8: Australia has lower fossil fuel consumption than China.

X : Australia. Y : low fossil fuel consumption.

(Clarification) Australia seems to have lower fossil fuel consumption than China

in the view of total consumption, which is denied by the per-person consumption view

with respect to the GDP per capita.

(Candidates for variants) X : United Kingdom, United States. Y : high fossil fuel

consumption.
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3.5 Phrase Embedding-Based Judgment Methods

Based on the subjects and characteristics, i.e., phrases X and Y , the 21 types of expla-

nations can be classified into three categories including (α) habits and diseases, (β)

subjects and properties, and (γ) subjects and trends. Following this criteria, type I

belongs to (α) category. Types II, IV-VII, XII, and XIV-XXI belong to (β) category.

Types III, VIII-XI, and XIII belong to (γ) category.

Accordingly, we devise three methods α, β, and γ to judge the explanations of

their respective categories based on phrase embedding and carefully-designed condi-

tions. They mainly assess the credibility of the statistical data explanations and their

variants. The three methods all employ semantic relevance degrees as the basis of

their judgments. Each relevance degree is either a semantic similarity between a pair

of phrases or a ratio of such semantic similarities. The semantic similarity Sim(·)

is a cosine-similarity of the embedded vectors of the phrases generated by Sentence-

BERT [63], which is a state-of-the-art deep model for sentence and phrase embeddings.

Specifically, the semantic similarity Sim(·) between X and Y is given as follows.

Sim(X ,Y ) =
s(X) · s(Y )∥∥s(X)
∥∥∥∥s(Y )

∥∥ , (3.1)

where s(·) represents the function of Sentence-BERT to generate embedding vectors.

3.5.1 Judgment Method α

Judgment method α is devised to judge explanations in (α) category, which take the

form of a habit X and a disease Y . This method judges an explanation as credible and

unethical based on three conditions: 1) if habit X is bad, 2) if disease Y is dangerous,

and 3) if the two are highly relevant. These three conditions correspond to three types
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Figure 3.5: Relevance degrees between diseases (Y ) and base words for X for method
α.

of credibility.

IF (θrelevance > θ1)∧ (θfear > θ2)∧ (θbad habit > θ3), THEN 1, ELSE 0, (3.2)

where θ1,θ2,θ3 are user-supplied thresholds and θrelevance, θfear, θbad habit are the rele-

vance ratio, the fear ratio, and the bad habit ratio, respectively, given below.

θrelevance represents the relevance between X and Y . The values of the semantic

similarity Sim(·) largely depend on its arguments, i.e., X and Y , which forbids to use

the same value for θ1 in different explanations. To mitigate this variability, θrelevance is

defined as follows, by selecting a base word of which semantic similarity is neutral to

major diseases.

θrelevance =
Sim(X , Y )

Sim(base word,Y )
. (3.3)

We conducted preliminary experiments on the relevance degrees between a disease

and such words. The results are shown in Figure 3.5, where each row and column
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represent a candidate of the base word and a major disease1, respectively. We see that

“day” and “earth” have neither small nor large degrees to all the tested diseases. We

select the latter as the base word. Similar relevance degrees using base words can

be found in a sentiment analysis paper [120]. However, Araque et al. adopted the

maximum value for a set of base words for each lexicon word for normalization [120].

On the other hand, we select a base word of which value is not extreme for all diseases

to use in Equation 3.3. This difference is due to the nature of the two target problems.

θbad habit represents the bad habit ratio of X .

θbad habit =
Sim(X , “bad habit”)

Sim(X , “good habit”)
. (3.4)

Note that θbad habit compares the closeness of the habit in X to the phrase “bad

habit” than “good habit” through the ratio of the two semantic similarities.

Finally, θfear represents the fear ratio of Y . θfear was first devised as follows.

θfear =
Sim(Y, “major illness”)
Sim(Y, “minor illness”)

. (3.5)

However, a series of preliminary experiments proved that Equation 3.5 shows quite

counter-intuitive results, probably due to our highly-variable subjectivity in assessing

the risk of diseases2. To address this issue, we adopt a summary (GBD Cause and

Risk Summaries3) of Disability Adjusted Life Years (DALYs) in Burden of Disease4

as θfear. DALYs are a time-based measure that combines years of life lost due to

premature mortality (YLLs) and years of life lost due to time lived in states of less

1The diseases are sorted from the heaviest one to the lightest one from the leftmost to the rightmost
with a method explained later.

2For instance, we have witnessed a young man and a middle-aged man having very different opin-
ions on alopecia areata.

3https://www.thelancet.com/gbd/summaries
4https://ourworldindata.org/burden-of-disease
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than full health, or years of healthy life lost due to disability (YLDs). One DALY

represents the loss of the equivalent of one year of full health. DALYs are calculated

by the sum of YLLs and YLDs, which allows us to compare different diseases and

other kinds of damages.

Take type I explanation “Deep-fried food boosts pancreatic cancer risk” as an ex-

ample. X : “deep-fried food” and Y : “pancreatic cancer” are specified as input. If

these phrases satisfy the conditions in Equation 3.2, i.e., “deep-fried food” being a

bad habit, “pancreatic cancer” being a dangerous disease, and the two being highly

relevant, method α judges this explanation as class 1, i.e., credible and unethical.

3.5.2 Judgment Method β

Judgment method β is devised to judge explanations in (β) category, which take the

form of subject X being more likely to have property Y compared with other subjects.

To judge the explanation, 5 kinds of phrases X , X ′, Ybase, Y , and Y are specified. X and

Y are explicitly mentioned in the explanation. X ′ is a subject or a set of subjects in the

opposite class of X , which can be specified explicitly or generated based on knowledge

of the English language. Y is specified as the inverse property of Y , which is typically

in the form of an adjective followed by a noun phrase Ybase.

Method β judges the explanation based on two conditions: 1) if subject X is more

relevant to property Y than its inverse property Y and 2) if property Y is more relevant

to subject X than any other subject X ′ belonging to the opposite class.

IF (θ
β

XY > θ
β

XY )∧∀X ′(θ
β

XY > θ
β

X ′Y ), THEN 1, ELSE 0, (3.6)

where θ
β

XY , θ
β

XY , and θ
β

X ′Y represent the semantic relevance degrees between X and Y ,

X and Y , as well as X ′ and Y , respectively. The relevance degrees are computed by the
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semantic similarities between phrases as follows.

θ
β

XY =
Sim(X ,Y )

Sim(X ,Ybase)
, θ

β

XY =
Sim(X ,Y )

Sim(X ,Ybase)
, θ

β

X ′Y =
Sim(X ′,Y )

Sim(X ′,Ybase)
. (3.7)

Note that the variability problem of the semantic similarity Sim(·) also exists in

method β and the meaning of an adjective is decided by the following noun phrase.

Thus the noun phrase Ybase is selected to mitigate this problem, which serves as a base

in comparison.

Take type IV explanation “Muslims have many babies compared to Christians” as

an example. X and X ′ are “Muslims” and “Christians”, respectively. Y and Y are

“many babies” and “few babies” with respect to a base word Ybase, i.e., “babies”, re-

spectively. If these phrases satisfy the conditions in Equation 3.6, i.e., “Muslims” is

more relevant to “many babies” than “few babies” and “many babies” is more rele-

vant to “Muslims” than “Christians”, method β judges this explanation as credible and

unethical. However, the semantic similarity between “Muslims” and “many babies”

Sim(“Muslims”,“many babies”) = 0.234 is counter-intuitively lower than the simi-

larity between “Muslims” and “few babies” Sim(“Muslims”,“few babies”) = 0.245.

Thus the first condition is not satisfied, leading to a false negative.

It should be noted that type II (including II-1 and II-2) explanations have no Ybase

because their properties, i.e., “poorest” and “richest”, take the form of the superlative

of an adjective. In such a case, the semantic relevance degrees between phrases are

directly calculated by their semantic similarities without considering Ybase, e.g., θ
β

XY =

Sim(X ,Y ).
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3.5.3 Judgment Method γ

Judgment method γ is devised to judge explanations in (γ) category, which take the

form of subject X having a trend Y . To judge the explanation, 3 kinds of phrases X , Y ,

and Y ′ are specified. X and Y are explicitly mentioned in the explanation. Y ′ is a set

of other kinds of trends. Similar to specifying X ′, Y , and Ybase for explanations in (β)

category, Y ′ is also generated based on knowledge of the English language.

Method γ judges the explanation based on the condition that if subject X is more

relevant to trend Y than any different trend Y ′. The condition is implemented by com-

paring if relevance degree θ
γ

XY between subject X and trend Y is larger than relevance

degree θ
γ

XY ′ between X and any other relevant trend Y ′.

IF ∀Y ′(θ
γ

XY > θ
γ

XY ′), THEN 1, ELSE 0. (3.8)

We typically specify the relevant trends in Y ′ by replacing the verb or the adverb

used in Y with the opposite one, keeping other words as they are1. Unlike methods α

and β, the variability problem is not serious due to the forms of Y and Y ′ in (γ) category.

Therefore, θ
γ

XY and θ
γ

XY ′ are directly defined as the semantic similarities between the

phrases as follows.

θ
γ

XY = Sim(X ,Y ), θ
γ

XY ′ = Sim(X ,Y ′). (3.9)

Take type XIII explanation “The risk of death from cancer is increasing world-

wide” as an example. X : “risk of death from cancer”, Y : “increasing”, and Y ′ ∈

{“decreasing”, “constant”} are specified as input. If these phrases satisfy the condi-

tions in Equation 3.8, i.e., “risk of death from cancer” is more relevant to “increasing”

compared with “decreasing” and “constant”, respectively, method γ judges this expla-

1We used the term “typically” as we also replace a specific trend with a neutral trend. See the
example of type XIII.
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Table 3.1: Results of methods α, β, and γ.

α
Predicted

Positive

Predicted

Negative
β

Predicted

Positive

Predicted

Negative
γ

Predicted

Positive

Predicted

Negative

Actual

Positive
9 0

Actual

Positive
12 32

Actual

Positive
13 4

Actual

Negative
0 19

Actual

Negative
13 35

Actual

Negative
3 62

nation as credible and unethical.

3.5.4 Experiments

We conduct experiments on 18 types (I-XVIII)1 of statistical data explanations to eval-

uate the judgment methods α, β, and γ. We choose a Sentence-BERT model named

“all-mpnet-base-v2”2 trained on a large amount of data (more than 1 billion training

pairs) which can map each phrase to a 768 dimensional dense vector. The thresholds

θ1, θ2, and θ3 are all set to 1 in method α.

Table 3.1 shows the confusion matrices of the three judgment methods. The ac-

curacies of the methods α, β, and γ on the 18 types of explanations are 1, 0.511, and

0.918, respectively. We see that methods α and γ exhibit relatively high accuracies in

judging the explanations of (α) and (γ) categories, respectively, probably due to the

simpler nature of their target explanations. Though method β needs substantial refine-

ment, we believe that the results are quite promising as the first step toward judging

credible and unethical explanations of statistical data.

We show detailed results of the three methods in Appendix B. In summary, our

method α exhibits the perfect results, which proves the effectiveness of our proposed

1Types XIX-XXI were not employed as they were invented later.
2https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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ratios θrelevance, θfear, and θbad habit for representing the semantic relevance between

diseases and habits. Likewise, our method γ exhibits an accuracy of nearly 92%. Most

of the mistakes (6 out of 7) are committed on type VIII explanation, possibly due to

the difficulty in handling a negated phrase, i.e., “not decreasing”. With a hindsight,

we see that changing “not decreasing” in Y from class label 1 to 0 reduces 3 mistakes

and “increasing” from class label 0 to 1 reduces 1 mistake. We do not adopt such a

modification but learn the difficulty in handling these expressions and capturing the

credibility of people. In overall, however, our method γ achieves impressive results of

nearly 92%, which proves the effectiveness of our approach.

On the contrary, the performance of our method β when judging (β) category seems

to be unacceptable because it is below the accuracy (0.543) of the baseline method

which always predicts the majority class label 0. A closer look at the performance

of each type reveals a binary classification of the 11 types. The first group consists

of easier types, i.e., type V (7-1), type XIV (7-1), type II-1 (5-3), type VI (5-3), type

XVII (5-3), and type XII (4-2), where the numbers in parentheses represent correct

and wrong predictions in this order. The accuracy of method β is 0.717 (33/46), which

we believe is relatively high due to the difficulty of the target problems. On the other

hand, the second group consists of more difficult types, i.e., type IV (3-3), type XVIII

(4-6), type II-2 (3-5), type XVI (1-9), and type XV (0-4). The accuracy of method β is

0.304 (14/46).

As we explained in Chapter 3.4, type XVIII has a serious flaw, i.e., the difficulty

of discussing the remaining diseases all at once, but was kept to show the difficulty of

the problem. Type XVI also shows the difficulty in handling a serious issue related to

the recent pandemic, which hasn’t been clarified scientifically and is a subject of fierce

debate. Type XV also poses a challenge because small hospitals are in general less

well-equipped but receive fewer serious patients than large hospitals. Their degrees of
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safety are controversial, which might have influenced our phrase embedding. Omitting

these three types yields an accuracy of 0.617 (42/68) for the remaining types, which

we believe promising.

A closer look at the remaining difficult types revealed challenges in our defined se-

mantic similarity and relevance degree. Most false predictions are due to the counter-

intuitive semantic similarities between the specified phrases for judgment. In type II-2,

4 out of the 5 mistakes were due to the fact that Sim(“Somalia”,“richest”) = 0.29137

being larger than that for “UAE” (0.29136), “Qatar” (0.244), “Equatorial Guinea”

(0.238), and “Botswana” (0.271). These results are against the statistical data of type

II shown in Figure 3.2. The remaining mistake was caused by our choice of “Japan”

and “Singapore” for X ′ in “Botswana is the poorest of the healthiest countries” (class

0). The semantic similarities with “poorest” are 0.179, 0.162, and 0.278 for “Japan”,

“Singapore”, and “Botswana”, respectively, which match the data of type II in Fig-

ure 3.2. However, this explanation was labeled as 0 due to the numerous countries

that have longer life expectancy (healthier) and smaller GDP per capita (poorer) than

“Botswana”. We believe our choice of X ′ is correct, as the two countries are represen-

tatives of the healthiest ones. We thought of comparing “Botswana” with countries of

similar life expectancy, but gave it up as they would not be recognized as “the healthi-

est countries”. Similarly, the majority of the mistakes in types IV and VII were due to

semantic similarity that is against our class labeling, e.g., “Muslims” are more similar

to “few babies” than “many babies”, “Christians” are more similar to “many babies”

than “few babies”. The remaining mistakes were due to the division by the semantic

similarity to the base word, e.g., Sim(“Judaisms”,“babies”) = 0.278 is small and thus

boosts the relevance degree while that for Christians (0.446) and Muslims (0.437) do

not. Note that the semantic similarity and relevance degree in method β are effective

for many explanations, which proves the difficulty in handling these exceptions.
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In summary, the examples of counter-intuitive semantic similarities may be at-

tributed to the fact that our phrase embeddings are directly generated from the pre-

trained Sentence-BERT. Sentence-BERT utilizes multiple language datasets for train-

ing, without fine-tuning on task-specific corpus. Thus there may exist several phrase

embeddings that harm our credibility judgment task. In general, the relevance de-

gree defined by semantic similarity exhibits encouraging performance on judging the

credibility of the explanations on statistical data. The underlying semantic relatedness

between phrases is worth exploring in the next step.

3.6 Graph-Based Judgment Method β2

As we discussed in Chapter 3.5.4, the experimental results show that methods α and γ

exhibit nearly perfect performance, respectively, due to the simple nature of their target

explanations in (α) and (γ) categories. However, since the phrases used in the condi-

tions for comparison are more complex in (β) category, including multiple subjects

and properties, several counter-intuitive semantic similarities between these subjects

and properties lead to undesired results of method β.

To address this limitation and improve the low accuracy of method β, we introduce

a new graph-based method β2. Method β2 first considers more phrases by utilizing

their synonyms and constructs a Phrase Similarity Graph to model these phrases and

their semantic similarities. Afterward, the conditions for judgment are generated from

subgraphs selected from the Phrase Similarity Graph. The importance of the condi-

tions generated from the subgraphs is quantified by their sub-graph entropy. Lastly,

a credibility score is devised by aggregating the conditions with their importance to

judge the explanations.

We show the overall procedure of method β2 in Algorithm 1. Given an explanation,
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Algorithm 1 Overall procedure of method β2.

Input: Statistical data explanation, Phrases X , X ′, Ybase, Y , and Y , Credibility thresh-

old θcredible.

Output: Credible and unethical (class label 1) or not (class label 0).

1: Xsyno,X
′
syno,Ybase,syno,Ysyno,Ysyno = Extend(X ,X ′,Ybase,Y,Y );

2: Phrase Similarity Graph G= GetGraph(Xsyno,X
′
syno,Ybase,syno,Ysyno,Ysyno);

3: Subgraphs Gk,(k = 1, ...,K) = GetSubgraph(G);

4: for k = 1, ...,K do

5: Generate conditions via four criteria (1)-(4);

6: Calculate sub-score sk via Equation 3.17;

7: Calculate sub-graph entropy H(Gk) via Equation 3.18;

8: end for

9: Calculate important weight λk for each sub-score via Equation 3.20;

10: Calculate credibility score S for the explanation via Equation 3.21;

11: If S > θcredible, output class label 1; else output class label 0.

in step 1, the specified phrases X , X ′, Ybase, Y , and Y are extended to the phrase sets

Xsyno, X′
syno, Ybase,syno, Ysyno, and Ysyno, respectively. The Phrase Similarity Graph

G is constructed based on the extended phrase sets in step 2 and the subgraphs Gk are

extracted by selecting node groups from G in step 3. Then the conditions for judgment

are generated via four criteria (1)-(4) based on the selected node combinations in the

subgraph Gk. We are going to explain the details of each step in the rest of this Chapter.
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3.6.1 Phrase Similarity Graph for Statistical Data Explanations

Given a statistical data explanation with its phrases, we first generate more phrases by

considering their synonyms. Then we construct a Phrase Similarity Graph to model an

explanation by representing its phrases as nodes and the semantic similarities between

different sets of nodes as edges.

Since the unsatisfactory performance of method β is due to the counter-intuitive

semantic similarities between limited phrases, we propose to consider more phrases to

explore their relevance for judgment. Specifically, each kind of phrase is extended to

a phrase set by considering its synonyms. As explained in Chapter 3.5.2, we specify

5 kinds of phrases for judging each explanation in (β) category, i.e., X , X ′, Ybase, Y ,

and Y . To obtain more phrases, we adopt an emerging powerful large language model

ChatGPT1 to generate top-n synonyms of each phrase, as we will introduce the details

in Chapter 3.6.6.2. The extended phrase sets are represented as Xsyno, X′
syno, Ybase,syno,

Ysyno, and Ysyno according to X , X ′, Ybase, Y , and Y , respectively.

We propose a Phrase Similarity Graph to explicitly model the phrase sets and their

semantic similarities. Following several graph-based works [121–123], our graph is

an attributed graph defined as G= (V,E,X,W), where V= {v1, . . . ,vn} represents the

set of nodes. X ∈ Rn×d represents the attribute matrix, where the vector xi ∈ Rd in

X represents the attribute of node vi. E = {ei, j|i, j = 1, . . . ,n} and W = {wvi,v j |i, j =

1, . . . ,n} represent the set of edges with weights between nodes vi and v j, respectively.

In the Phrase Similarity Graph, a node, a node attribute, and an edge with the

weight between two nodes represent a phrase, a phrase embedding vector, and a se-

mantic relation computed by cosine-similarity between two phrases in the explanation,

respectively. As shown in Figure 3.6, the graph is constructed as a tripartite graph

1https://openai.com/blog/chatgpt
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G=(V,E,X,W) where node set V consists of three disjoint node subsets Vbase, Vsubject,

and Vproperty. Nodes in Vbase represent the phrases of base words in Ybase,syno. Nodes in

Vsubject represent the phrases of subjects in Xsyno ∪X′
syno. Nodes in Vproperty represent

the phrases of properties in Ysyno ∪Ysyno.

𝒴base,syno

𝒴syno

𝒱base

𝒱property𝒱subject

𝒳syno
′

𝒳syno

ത𝒴syno

Figure 3.6: Phrase Similarity Graph to model phrase sets and their semantic similari-
ties.

Following method β, we consider the semantic similarities between different kinds

of phrases for judgment, i.e., the similarities between subjects and base words and the

similarities between subjects and properties. Therefore, the edges in E are built be-

tween nodes in Vbase and Vsubject, as well as between nodes in Vsubject and Vproperty, re-

spectively. The node attribute matrix X is composed of embedding vectors of phrases,

which are generated by Sentence-BERT [63]. The edge weight wvi,v j in W represents

the semantic similarity between two nodes vi and v j, which is calculated by the cosine-

similarity Sim(·) between their node attributes xi and x j. Formally, the edge weight

wvi,v j between nodes vi and v j is given as follows.

wvi,v j = Sim(vi,v j) =
xi ·x j

∥xi∥
∥∥x j
∥∥ . (3.10)
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We present an example of a Phrase Similarity Graph for type XII statistical data

explanation in Figure 3.7. Given the explanation, each kind of phrase is first extended

as a phrase set by considering its synonyms. Then the Phrase Similarity Graph is

constructed to represent all the phrases in the phrase sets as nodes and the semantic

similarities between nodes from different subsets of nodes as edges. For simplicity,

heavy edge weights are shown by the thick width of edges in the graph in Figure 3.7.

(Type XII) Asia is the cause of the large amount of CO2 emissions.

X : Asia, Y : large amount of CO2 emissions.

(Phrases) X : Asia, X ′ ∈{Africa, Europe}, Ybase: CO2 emissions, Y : large amount of

CO2 emissions, Y : small amount of CO2 emissions.

(Phrase sets) Xsyno:{Asia, Asian countries, Asian nations},

X′
syno:{Europe, European countries, European nations, Africa, African countries, African

nations},

Ybase,syno:{CO2 emissions, greenhouse gas emissions, carbon dioxide emissions},

Ysyno:{large amount of CO2 emissions, large amount of greenhouse gas emissions,

large amount of carbon dioxide emissions},

Ysyno:{small amount of CO2 emissions, small amount of greenhouse gas emissions,

small amount of carbon dioxide emissions}.

3.6.2 Additional Conditions by Subgraphs

In addition to the two designed comparison conditions in method β, we propose to

consider further conditions for judgment. In method β, the two conditions are devised

to compare the relevance between subject X and different properties Y and Y , as well as

property Y with different subjects X and X ′, represented as θ
β

XY > θ
β

XY and θ
β

XY > θ
β

X ′Y .
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CO2 emissions
Asia

Asian countries

Asian nations

Europe

European countries

European nations

Africa

African countries

African nations

large amount of CO2 Emissions

large amount of greenhouse gas emissions

large amount of carbon dioxide emissions

small amount of CO2 Emissions

small amount of greenhouse gas emissions

small amount of carbon dioxide emissions

greenhouse gas emissions

carbon dioxide emissions

Figure 3.7: Constructing the Phrase Similarity Graph for type XII statistical data ex-
planation. The graph considers 2 synonyms for each kind of phrase.

However, the relevance between the opposite subjects X ′ with different properties Y

and Y , as well as the opposite property Y with different subjects X and X ′, represented

as θ
β

X ′Y > θ
β

X ′Y and θ
β

X ′Y > θ
β

XY , has not been considered, though these conditions also

have the potential to contribute to the judgment. Nevertheless, as shown in Figure 3.7,

as the number of phrases increases in the extended phrase sets, designing necessary

conditions for judgment becomes more difficult and complex. To simplify the design

of conditions, we propose to generate the necessary conditions from the subgraphs

extracted from the Phrase Similarity Graph.

Specifically, each subgraph is extracted by selecting one node from each phrase

set, e.g., X , X ′, Ybase, Y , and Y from Xsyno, X′
syno, Ybase,syno, Ysyno, and Ysyno with

the weighted edges, represented as Gk = (Vk,Ek,Xk,Wk),k = 1, . . . ,K, where K is the

number of all subgraphs extracted from Phrase Similarity Graph G. As the conditions

78



are to compare the relevance between subjects and properties for judgment, the subjects

in the opposite classes, i.e., nodes in Xsyno and X′
syno, are selected in pairs. Similarly,

two opposite properties, i.e., nodes in Ysyno and Ysyno, are also selected in pairs with

the same base word in Ybase,syno. Take the phrase sets in type XII explanation as an

example, The subject “Asian countries” is selected together with the other subjects

“African countries” and “European countries”. Similarly, the properties “large amount

of CO2 emissions” and “small among of CO2 emissions” are selected together with the

base word “CO2 emissions”. Therefore, when extracting a subgraph from the Phrase

Similarity Graph, the nodes from Xsyno and X′
syno, as well as the nodes from Ybase,syno,

Ysyno, and Ysyno are selected in pairs to generate conditions for judgment.

As each subgraph Gk represents a group of subjects and properties with their seman-

tic similarities, the aforementioned conditions from a subgraph can be simply gener-

ated by considering the node combinations constructed by each node and its neighbor-

ing nodes in Vsubject∪Vproperty. Given the node combinations, we design the conditions

by comparing the relevance between the nodes of subjects and the nodes of properties.

The conditions for judgment are designed following four criteria.

(1) Nodes in Xsyno are more relevant to nodes in Ysyno than nodes in Ysyno.

(2) Nodes in X′
syno are more relevant to nodes in Ysyno than nodes in Ysyno.

(3) Nodes in Ysyno are more relevant to nodes in Xsyno than nodes in X′
syno.

(4) Nodes in Ysyno are more relevant to nodes in X′
syno than nodes in Xsyno.

Following the definition in Chapter 3.5.2, we adopt θ
β

XY as the semantic relevance

degree between two nodes X and Y , which can be calculated by the edge weights in

our graph.

θ
β

XY =
Sim(X ,Y )

Sim(X ,Ybase)
=

wX ,Y

wX ,Ybase

. (3.11)
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We present a subgraph of type XII explanation in Figure 3.8 extracted from the

Phrase Similarity Graph in Figure 3.7 by selecting a group of nodes X , X ′
1, X ′

2, Ybase,

Y , and Y . The numbers in the subgraph represent the edge weights, i.e., the semantic

similarities, between nodes.

(Type XII) Asia is the cause of the large amount of CO2 emissions.

(Selected nodes from Phrase Similarity Graph) X : Asian countries, X ′
1: African coun-

tries, X ′
2: European countries, Ybase: CO2 emissions, Y : large amount of CO2 emis-

sions, Y : small amount of CO2 emissions.

𝑌base
𝑋1
′

𝑋2
′

𝑋

𝑌

ത𝑌

Figure 3.8: Example of a subgraph extracted from the Phrase Similarity Graph of type
XII explanation.

In the subgraph, by selecting each node and its neighboring nodes in Vsubject ∪

Vproperty, the conditions are generated by following the four criteria (1)-(4) as follows.

X ∪N(X) = {X ,Y,Y}→ IF θ
β

XY > θ
β

XY , (3.12)

X ′
1 ∪N(X ′

1) = {X ′
1,Y,Y}→ IF θ

β

X ′
1Y > θ

β

X ′
1Y , (3.13)

X ′
2 ∪N(X ′

2) = {X ′
2,Y,Y}→ IF θ

β

X ′
2Y > θ

β

X ′
2Y , (3.14)

Y ∪N(Y ) = {Y,X ,X ′
1,X

′
2}→


IF θ

β

XY > θ
β

X ′
1Y ,

IF θ
β

XY > θ
β

X ′
2Y ,

(3.15)
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Y ∪N(Y ) = {Y ,X ,X ′
1,X

′
2}→


IF θ

β

X ′
1Y > θ

β

XY ,

IF θ
β

X ′
2Y > θ

β

XY ,

(3.16)

where N(X) represents the neighboring nodes of node X . Among the group of con-

ditions from the subgraph, each satisfied condition increases the credibility of the ex-

planation. We define a sub-score sk to represent the proportion of satisfied conditions

over all conditions from each subgraph Gk as follows.

sk =
the number of satisfied conditions in Gk

the number of all conditions in Gk . (3.17)

3.6.3 Graph Entropy for Importance of Conditions

As we mentioned above, a group of conditions for judging an explanation is generated

from each subgraph. Since the conditions for judgment are based on the diverse node

attributes and edge weights from different subgraphs, they should be assigned different

importance to judge an explanation. For example, Figure 3.9 shows two subgraphs

G1 and G2 extracted from the Phrase Similarity Graph in Figure 3.7. As the nodes

and the edge weights representing their semantic similarities are different in the two

subgraphs, the semantic similarity-based conditions generated from G1 and G2 should

have different importance for judgment.

Sen et al. [119] utilize the sub-graph entropy based on edge weights to calculate the

importance of subgraphs in functional brain networks. Following this work, we adopt

the sub-graph entropy to quantify the importance of the generated conditions from each

subgraph. In our approach, the edge weights refer to the semantic similarities between

nodes, so the graph entropy measures the uncertainty of semantic similarities between

nodes in a subgraph. A subgraph with high graph entropy indicates a greater uncer-
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(a) Subgraph G1.

(b) Subgraph G2.

Figure 3.9: Two subgraphs extracted from the Phrase Similarity Graph in Figure 3.7.

tainty in the semantic similarities between its nodes, which suggests that the conditions

generated from this subgraph should be assigned less importance. The graph entropy

H(Gk) of a subgraph Gk is negatively related to the importance of its generated con-

ditions. To keep the weight value within the range of [0,1], we utilize the normalized

exponential function of negative graph entropy e−H(Gk) as the weight λk to represent

the importance of the conditions from the subgraph Gk.

As introduced in [119], sub-graph entropy represents the uncertainty of a sub-

graph within a whole graph. Sub-graph entropy is calculated by the normalized edge

weights, which allows a fair comparison between subgraphs with different ranges of

edge weights. Formally, given a subgraph Gk = (Vk,Ek,Xk,Wk), its sub-graph entropy
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H(Gk) is calculated as follows.

H(Gk) =−∑
i, j

pk
vi,v j

logpk
vi,v j

, (3.18)

where pk
vi,v j

=
wk

vi,v j

∑i, j wk
vi,v j

. (3.19)

Take the two subgraphs G1 and G2 in Figure 3.9 as an example. Based on the nor-

malized edge weights between nodes, the sub-graph entropy for G1 and G2 are calcu-

lated as H(G1) = 3.04 and H(G2) = 2.93, which indicates that G2 has less uncertainty

in the semantic similarities between its nodes, and thus the conditions generated from

G2 should be assigned more importance. The weight λk representing the importance of

the conditions generated from subgraph Gk is calculated by the normalized exponential

function of negative sub-graph entropy e−H(Gk) as follows.

λk =
e−H(Gk)

∑
K
k=1 e−H(Gk)

. (3.20)

3.6.4 Credibility Score for Judgment

The credibility score of an explanation is defined by summing up all sub-scores and

their corresponding weights, which are determined by the conditions generated from

all subgraphs and their importance evaluated by sub-graph entropy. Given sub-scores

sk and weight λk of all subgraphs {Gk|k = 1, . . . ,K}, credibility score S is calculated as

follows.

S =
K

∑
k=1

λksk. (3.21)

Credibility score S ranges from 0 to 1, where a higher score indicates stronger cred-

ibility of the explanation. We define user-supplied threshold θcredible for our method
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β2. If S > θcredible, the explanation is judged as credible and unethical.

As we explained in Chapter 3.5.2, type II explanations have no Ybase. Therefore,

the Phrase Similarity Graph is constructed as a bipartite graph without subset Vbase.

Accordingly, semantic relevance θ
β

XY is also simply defined as θ
β

XY = Sim(X ,Y ). The

judging procedure for type II explanations is the same as judging other types, except

for the shape of the Phrase Similarity Graph and the extracted subgraphs, as well as

the definition of θ
β

XY .

3.6.5 Complexity Analysis

We analyze the time complexity of the proposed method β2 when judging a statis-

tical data explanation. Given a statistical data explanation, let m be the number of

its phrases and we consider n synonyms for each phrase. The number of nodes in the

Phrase Similarity Graph is mn. By considering the semantic similarities between nodes

in different subsets to build edges, the time complexity of constructing a Phrase Simi-

larity Graph is O(mn2). We propose to extract the subgraphs in the Phrase Similarity

Graph by selecting nodes in groups from subjects and properties, respectively, so the

time complexity for the extraction is O(n2). For each subgraph, the time complexi-

ties for generating conditions and calculating its graph entropy are O(m2) and O(m),

respectively. Therefore, the time complexity for judging an explanation based on the

graph is O(m2n2). To sum up, the overall time complexity for method β2 is O(m2n2).

In our experiments, the values of m and n are less than ten and there are hundreds of

explanations, which demonstrate that our method β2 is fast and efficient for the target

problem.
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3.6.6 Experiments

We conduct experiments to evaluate the performance of the proposed method β2. The

experimental results are illustrated including a comparison of performance and detailed

analysis.

3.6.6.1 Datasets

Our method β2 is evaluated on statistical data explanations in (β) category. Our defined

21 types of explanations contain 14 types within (β) category, including types II, IV-

VII, XII, and XIV-XXI. The details of the explanations with their statistical data have

been introduced in Chapter 3.4. The 14 types of explanations cover a wide range of

topics, which involve health, economy, education, collaboration, religion, and energy.

The phrases specified from each explanation, including the subject and the property,

are shown in Table 3.3.

The total number of the explanations (including their variants) in (β) category is

122, consisting of 59 credible and unethical explanations and 63 not credible and un-

ethical explanations. We settle on an approximate 50− 50 class balance in our ex-

periments as it is the most difficult setting for a classification task. The ratio of the

anomalies in the real world can vary. We avoid the problem of an arbitrary ratio of

anomalies by this equal distribution setting. The ground-truth class labels of these ex-

planations were manually assigned through a careful and consistent discussion among

the authors [18].

3.6.6.2 Experimental Setup

We utilize method β as the baseline method to evaluate the performance of the pro-

posed method β2. To generate phrase sets, we adopt a large language model, ChatGPT
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with the released version named “ChatGPT Jan 9 Version”1 in 2023, to search for the

top-n synonyms of each kind of phrase. Specifically, the top-n synonyms are obtained

by utilizing the prompt “what are similar words to 〈phrase〉?” and selecting the top-n

answers, where 〈phrase〉 is replaced by each kind of phrase when searching for its syn-

onyms. In our experiments, by investigating the qualities of the generated synonyms,

n is set to 3. We notice that some of the synonyms of the proper nouns generated by

ChatGPT are far from their original meanings, e.g., “East Asia” is generated as the syn-

onym for “China”. Therefore, we exclude the synonyms for phrases which are proper

nouns, including countries and disease names in types II, XIV, XVIII, XX, and XXI.

When generating phrase embeddings, we choose a Sentence-BERT model named “all-

mpnet-base-v2”2 pre-trained on a large amount of data (more than 1 billion training

pairs), which can map each phrase to a 768 dimensional dense vector. The credibility

threshold θcredible is set to 0.5.

3.6.6.3 Experimental Results and Analysis

The experimental results were obtained by measuring the agreement between the pre-

dicted class labels and the ground-truth class labels. Table 3.2 shows the confusion

matrices of our graph-based method β2 compared with method β on the 14 types of

statistical data explanations. Due to the large number of false negatives in the results,

method β exhibits a relatively low accuracy, which is 0.574. In contrast to method β,

our proposed method β2 shows a significant improvement, which achieves an accuracy

of 0.811. In summary, our method β2 significantly outperforms the baseline method β

with about 0.237 improvement in accuracy. The results demonstrate the effectiveness

of the proposed method β2 for the target problem.

1https://help.openai.com/en/articles/6825453-chatgpt-release-notes
2https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Table 3.2: Results of method β2 compared with method β.

β
Predicted

Positive

Predicted

Negative
β2

Predicted

Positive

Predicted

Negative

Actual

Positive
20 39

Actual

Positive
48 11

Actual

Negative
13 50

Actual

Negative
12 51

Similar to the experimental results discussed in Chapter 3.5.4, we show detailed

results of method β2 on 14 types of explanations (including their variants) in Table

3.3. In the Table, each explanation is represented by subject X with property Y in each

row, where property Y in parentheses represents that the explanation belongs to class

0. For example, in type IV, X : Muslims and Y : many babies form an explanation

“Muslims have many babies compared to Christians” with class label 1. By replacing

the property Y , X : Muslims and Y : (few babies) form its variant “Muslims have few

babies compared to Christians” with class label 0. FP and FN with bold fonts represent

that the explanation is judged as a false positive and a false negative, respectively. A

blank in the Result column either represents a true positive or a true negative.

Based on the results in Table 3.3, our method β2 achieves almost perfect perfor-

mance on 10 types of explanations, including types II (16-0), IV (6-0), V (7-1), VI

(8-0), XII (6-2), XIV (7-1), XVIII (9-1), XIX (6-2), XX (16-0), and XXI (6-0), where

the numbers in parentheses represent correct and wrong predictions in this order. The

baseline method β obtains 31 false predictions on these 10 types, where 26 false pre-

dictions are caused by the counter-intuitive semantic similarities between subjects and

properties. In contrast, our method β2 yields 7 false predictions, with only 5 false pre-
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dictions caused by this issue. This fact demonstrates that β2 is capable of providing

more accurate answers compared with method β. Take an explanation with class 1 in

type VI from Table 3.3 as an example, i.e., “Iranians have many children compared to

Americans in the 21st century”. Method β obtains a false negative due to the counter-

intuitive semantic similarities between “Iranians” and “many children” (0.285) and

between “Iranians” and “few children” (0.294). While our method β2 gives a correct

answer to this explanation by considering the synonyms in the phrase sets, e.g., “Ira-

nian nationals”, “many babies”, and “few babies”, which do not have counter-intuitive

similarities. The 2 false predictions in types V and XIV are attributed to the fact that

both two explanations describing one subject with two opposite properties are assigned

class 0. The class labels of these two explanations reflect the subjectivity of persons,

which is difficult to be estimated with no mistakes.

On the other hand, our method β2 achieves relatively low accuracy on 4 types,

including VII (4-4), XV (0-4), XVI (6-4), XVII (4-4), by obtaining 16 false predictions,

while method β obtains 21 false predictions. There exist several explanations where

method β2 fails while method β succeeds. Take an explanation of class 0 in type

XVII from Table 3.3 as an example, i.e., “Europe has lower GDP per capita than other

regions”. Method β gives a correct prediction for it as the similarity between “Europe”

and “low GDP” (0.300) is intuitively lower than the similarity between “Europe” and

“high GDP” (0.369). On the other hand, our method β2 yields a false positive because

several synonyms in their phrase sets, e.g., “Europe”, “weak economy”, and “strong

economy”, have counter-intuitive similarities. However, it is worth noting that our

method β2 achieves equal or higher accuracy on 12 types (106 explanations) while

lower accuracy on only 2 types (16 explanations) compared with method β. In addition,

type XV poses a challenge because small hospitals are in general less well-equipped

but receive fewer serious patients than large hospitals. Their degrees of safety are
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controversial, which might have influenced the phrase embeddings. Type XVI shows

the difficulty in handling a serious issue related to the recent pandemic, which has

not been clarified scientifically and is a subject of fierce debate. Omitting these two

controversial types, our method β2 can achieve an accuracy of 0.861 compared to 0.639

achieved by method β. We believe these results show the performance of the two

methods more appropriately.

We investigate the issue of the counter-intuitive semantic similarities between phrases

in the results of the two methods β and β2 under scrutiny. Take the type IV explana-

tion, “Muslims have many babies compared to Christians”, as an example. Method

β fails in judging it because the semantic similarity between “Muslims” and “many

babies” (0.234) is counter-intuitively lower than the similarity between “Muslims”

and “few babies” (0.245). In contrast, our method β2 succeeds because the major-

ity of the synonyms of “Muslims” exhibits higher semantic similarities to the syn-

onyms of “many babies” compared to the synonyms of “few babies” in the extended

phrase sets. For instance, Sim(“Muslims”, “many infants”)=0.230, Sim(“Islam fol-

lowers”, “many babies”)=0.173, and Sim(“Islam followers”, “many kids”)=0.195 are

higher than Sim(“Muslims”, “few infants”)=0.228, Sim(“Islam followers”, “few ba-

bies”)=0.165, and Sim(“Islam followers”, “few kids”)=0.177, respectively. The in-

vestigation suggests that the intuitive semantic similarities among the majority of the

synonyms mitigate the problem of the counter-intuitive similarities between specified

phrases, and thus help our credibility score for accurate judgment.

The results of our method show a characteristic that among the explanations in

one type, the credibility scores of two explanations which describe one subject with

two opposite properties sum up to 1. For example, in type V, the credibility scores

for two explanations “women have lower math scores than men” and “women have

higher math scores than men” are 0.527 and 0.473, respectively, where the two scores
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sum up to 1. The reason is that the two groups of conditions for judging these two

explanations are complementary. When the conditions for judging one explanation

hold, the complementary conditions for judging the other explanation, which has the

same subject with the opposite property, will not be satisfied. This fact leads to the

two explanations having complementary credibility scores, which sum up to 1. We

believe that this is a desirable characteristic of our proposed method for the target

problem since humans are unlikely to believe that a subject can simultaneously have

both a property and its opposite property compared to other subjects. Therefore, the

credibility scores among the explanations in one type are consistent with this intuition.

3.7 Summary

In this Chapter, we have investigated the exploitation of ten human instincts [2] in sta-

tistical data explanations as a first yet important step toward ethical AI. We first defined

21 types of credible and unethical explanations of statistical data with the exploitation

of the instincts. Then we introduced three methods α, β, and γ based on carefully-

designed conditions for judging credible and unethical statistical data explanations.

Experiments on the statistical data explanations show the effectiveness of methods α

and γ. However, method β achieves relatively low accuracy due to the counter-intuitive

semantic similarities between phrases when judging the explanations in (β) category.

To address the limitation and improve the unsatisfactory performance of method β, we

proposed a graph-based method β2. In method β2, the Phrase Similarity Graph is con-

structed to explicitly model the phrases in phrase sets and their semantic similarities,

where the phrase sets are generated by considering synonyms of phrases specified from

the explanation. The credibility score is devised by combining the conditions gener-

ated from the Phrase Similarity Graph with their corresponding importance measured
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Table 3.3: Detailed results and credibility scores of method β2, where the abbrevia-
tions MR, ER, CO2E, UNs, MPW, and PE represent mortality rates, enrollment rates,
CO2 emissions, United Nations, mismanaged plastic waste, and plastic emissions, re-
spectively.

Type X Y Score Result Type X Y Score Result
II-1 Cuba poorest 0.750 0-4 (safe hospitals) 0.646 FP
8-0 (richest) 0.250 large hospitals safe hospitals 0.354 FN

Nicaragua poorest 1.000 (dangerous hospitals) 0.646 FP
(richest) 0.000 XVI Omicron strain less dangerous 0.512

Bangladesh poorest 0.644 6-4 (more dangerous) 0.488
(richest) 0.356 Alpha strain less dangerous 0.497 FN

North Korea poorest 0.571 (more dangerous) 0.503 FP
(richest) 0.429 Beta strain less dangerous 0.531

II-2 United Arab Emirates richest 0.892 (more dangerous) 0.469
8-0 (poorest) 0.108 Gamma strain less dangerous 0.483 FN

Qatar richest 0.679 (more dangerous) 0.517 FP
(poorest) 0.321 Delta strain more dangerous 0.512

Equatorial Guinea richest 0.785 (less dangerous) 0.488
(poorest) 0.215 XVII Africa low GDP 0.795

Botswana richest 0.536 4-4 (high GDP) 0.205
(poorest) 0.464 Asia high GDP 0.600

IV Muslims many babies 0.515 (low GDP) 0.400
6-0 (few babies) 0.485 Americas high GDP 0.481 FN

Judaisms many babies 0.531 (low GDP) 0.519 FP
(few babies) 0.469 Europe high GDP 0.424 FN

Christians few babies 0.515 (low GDP) 0.575 FP
(many babies) 0.485 XVIII cancer (long life expectancy) 0.371

V women low math score 0.527 9-1 short life expectancy 0.629
7-1 (high math score) 0.473 Alzheimer’s disease (long life expectancy) 0.500

men high math score 0.527 short life expectancy 0.500 FN
(low math score) 0.473 heart disease (long life expectancy) 0.436

women (low English score) 0.395 short life expectancy 0.564
high English score 0.605 pneumonia (long life expectancy) 0.309

men (high English score) 0.395 short life expectancy 0.691
(low English score) 0.605 FP periodontal disease (short life expectancy) 0.326

VI Iranians many children 0.583 long life expectancy 0.674
8-0 (few children) 0.417 XIX Americas many members of the UNs 0.513

Afghans many children 0.708 6-2 (few members of the UNs) 0.487
(few children) 0.292 Europe many members of the UNs 0.515

French few children 0.434 (few members of the UNs) 0.485
(many children) 0.566 Asia many members of the UNs 0.438 FN

Americans few children 0.391 (few members of the UNs) 0.562 FP
(many children) 0.609 Africa few members of the UNs 0.530

VII developing countries high infant MR 0.468 FN (many members of the UNs) 0.470
4-4 (low infant MR) 0.532 FP XX India large amount of MPW 0.576

advanced countries low infant MR 0.468 FN 16-0 (small amount of MPW) 0.424
(high infant MR) 0.532 FP China large amount of MPW 0.781

developing countries low ER 0.718 (small amount of MPW) 0.219
(high ER) 0.282 United Kingdom small amount of MPW 0.856

advanced countries high ER 0.718 (large amount of MPW) 0.144
(low ER) 0.282 United States small amount of MPW 0.536

XII Asia large amount of CO2E 0.470 FN (large amount of MPW) 0.464
4-2 (small amount of CO2E) 0.530 FP India large amount of PE 0.573

Africa small amount of CO2E 0.571 (small amount of PE) 0.427
(large amount of CO2E) 0.429 China large amount of PE 0.644

Europe small amount of CO2E 0.613 (small amount of PE) 0.356
(large amount of CO2E) 0.387 United Kingdom small amount of PE 0.713

XIV China large amount of CO2E 0.750 (large amount of PE) 0.287
7-1 (small amount of CO2E) 0.250 United States small amount of PE 0.664

India large amount of CO2E 0.686 (large amount of PE) 0.336
(small amount of CO2E) 0.314 XXI Australia low fossil fuel consumption 0.750

United States large amount of CO2E 0.573 6-0 (high fossil fuel consumption) 0.250
(small amount of CO2E) 0.427 United Kingdom low fossil fuel consumption 0.810

United Kingdom (large amount of CO2E) 0.251 (high fossil fuel consumption) 0.190
(small amount of CO2E) 0.749 FP United States low fossil fuel consumption 0.750

XV small hospitals dangerous hospitals 0.354 FN (high fossil fuel consumption) 0.250
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by the sub-graph entropy. Experiments on the explanations demonstrate the superiority

of the proposed method β2 on the target problem compared with the baseline method

β.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this thesis, we focused on learning semantic attributed graphs for judging deviated

human activity and understanding. We explored two specific tasks within this area,

i.e., image region anomaly detection task in human monitoring and judging credible

and unethical explanations of statistical data in Chapters 2 and 3, respectively.

In Chapter 2, we first introduced the diverse anomalies, i.e., single and contextual

anomalies, at the region level in human monitoring. In addition to considering the spa-

tial relations, we explored the semantic relations among regions and proposed a Spatial

and Semantic Attributed Graph to capture the contexts of regions. In the Spatial and

Semantic Attributed Graph, each region with its features is represented as a node with

attributes. The edges are built between regions by considering their spatial adjacency

and semantic similarities between their captions. Then we devised a tailored graph

auto-encoder SSGAE with the adoption of the sum aggregation strategy [26]. SSGAE

is trained to reconstruct both the node attributes and the node structures in the graph.

The attribute and structure reconstruction errors are utilized in the anomaly score to
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estimate the abnormality of regions. Our experiments show that our method SSGAE

outperforms other baseline algorithms in terms of the ROC curve and AUC score.

In Chapter 3, we first defined 21 types of credible and unethical statistical data

explanations with the exploitation of ten human instincts in Rosling et al. [2]. We

introduced three judgment methods α, β, and γ by comparing the semantic relevance

between phrases specified from the explanations. Experiments on the explanations of

statistical data show the effectiveness of methods α and γ. Nevertheless, method β

exhibits unsatisfactory performance due to the counter-intuitive semantic similarities

between phrases when judging the explanations in (β) category. To improve the low

accuracy of method β, we proposed a graph-based method β2. Method β2 first con-

structs a Phrase Similarity Graph for more reliable semantic relations between phrases

in the explanation. By extracting subgraphs in the Phrase Similarity Graph, neces-

sary comparison conditions are generated for judgment. We adopted the graph entropy

to quantify the importance of the generated conditions in each subgraph. Lastly, we

devised a credibility score to aggregate the satisfied conditions and their importance

for more accurate judgment. The experiments on the 14 types of statistical data ex-

planations demonstrate the superiority of the proposed method β2 compared with the

baseline method β in terms of accuracy. In addition, scrutiny reveals that method β2

effectively mitigates the problem of counter-intuitive semantic similarities in method

β.

4.2 Future Work

In future work, we will consider more informative attributed graphs for better perfor-

mance in judging deviated human activity and understanding. For the region anomaly

detection task in Chapter 2, we plan to construct a weighted attributed graph, where
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the weights can represent the importance of relations among regions. Such a model

would promote our future method toward more real-world applications in complex

scenarios. Our proposed method β2 in Chapter 3 opens a new opportunity to bridge

the gap between graph models and judging explanations of statistical data. However,

we notice that the significance of the statistical data explanation, which is a neces-

sary condition to define the credible and unethical explanation, has not been taken into

account. Our future work will extend the Phrase Similarity Graph by incorporating

neutral base words and their semantic relations with other phrases. Based on the ex-

tended graph, we plan to develop an objective measure of the significance, which can

contribute to a more comprehensive judgment of the credible and unethical statistical

data explanations.
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Appendix A. Algorithm of SSGAE for Region Anomaly

Detection

Algorithm 2 Overall procedure of SSGAE (training stage).

Input: Graph Gk
train = {Ak,Xk}K

k=1, Gk′
test = {Ak′,Xk′}K′

k′=1; Learnable parameter Θ;

Hyper-parameter β; Number L of the hidden layers in SSGAE; Number T of the

training epochs.

Output: Anomaly score sk′
i for each node vk′

i via function f (·).

1: ▷ Training Stage.

2: Randomly initialize Θ and the trainable parameters in MLPEnc, MLPStr−Dec and

MLPAtt−Dec;

3: for t = 1,2, · · · ,T do

4: for k = 1,2, · · · ,K do

5: for l = 1,2, · · · ,L do

6: Calculate H(l) via Equation 2.3;

7: end for

8: Zk = H(L);

9: for l = 1,2, · · · ,L do

10: Calculate Ĥ(l) via Equation 2.7;

11: end for

12: X̂k = Ĥ(L);

13: Calculate Âk via Equation 2.5;

14: Update Θ and the trainable parameters in MLPEnc, MLPStr−Dec, and

MLPAtt−Dec via Equation 2.8 with the backpropagation algorithm.
15: end for

16: end for
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Algorithm 2 Overall procedure of SSGAE (test stage).
17: ▷ Test Stage.

18: for k′ = 1,2, · · · ,K′ do

19: for l = 1,2, · · · ,L do

20: Calculate H(l) via Equation 2.3;

21: end for

22: Zk′ = H(L);

23: for l = 1,2, · · · ,L do

24: Calculate Ĥ(l) via Equation 2.7;

25: end for

26: X̂k′ = Ĥ(L);

27: Calculate Âk′ via Equation 2.5;

28: Calculate anomaly score sk′
i of each node vk′

i in Gk′
test via Equation 2.10.

29: end for

Appendix B. Detailed Experimental Results of Phrase

Embedding-Based Methods

The detailed results of the three judgment methods α, β, and γ are shown in Tables

4.1 - 4.3. In the tables, a phrase in parentheses represents that the explanation belongs

to class 0. We discussed carefully in assigning a class label, e.g., both explanations

on English score for men in type V were judged class 0, as we agree that it is widely

known that men who are good at English exist as those who are not. FP and FN

with bold fonts represent that the explanation is judged as a false positive and a false

negative, respectively. A blank in the Result column either represents a true positive or
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a true negative.

In method β, as we explained in Chapter 3.5.2, we specify X ′ for each X . We de-

note the assignment in the form of (X , X ′), though a phrase could be a set of phrases to

save space. Refer to Table 4.2 for the following assignments. In type IV, ({Muslims,

Judaisms}, Christians) and vice versa. Type V, (men, women) and vice versa. Type

VI, ({Iranians, Afghans}, Americans) and ({Americans, French}, Iranians). Note that

in this type, X ′ is specified with the word “than” to one country. Type VII, (developing

countries, advanced countries) and vice versa. Note that X ′ is specified in the text.

Type XII, (Asia, {Africa, Europe}) and vice versa. Type XIV, ({China, India, United

States}, United Kingdom) and vice versa. Note that the United Kingdom is considered

to be the representative of the countries with a small amount of CO2 emissions in the

current era. Type XV, (large hospitals, small hospitals) and vice versa. Type XVI,

({Omicron strain, Alpha strain, Beta strain, Gamma strain}, Delta strain) and vice

versa. Type XVII, (Africa, {Asia, Americas, Europe}), (Asia, {Africa, Americas, Eu-

rope}), (Americas, {Africa, Asia, Europe}), and (Europe, {Africa, Asia, Americas}).

Note that this assignment results from using the expression “than other regions” in the

explanation. Type XVIII, ({cancer, Alzheimer’s disease, heart disease, pneumonia},

periodontal disease) and vice versa. Note that this assignment follows a similar reason

to type XIV.

Note that in types II-1 and II-2, X ′ is rather specified at the end of the explanation as

“of the healthiest” or “of the unhealthiest”, which has a fixed correspondence to Y , i.e.,

“poorest” or “richest”, respectively. Thus for these types, we denote the assignment

in the form of (Y , X ′), which are (poorest, {Japan, Singapore}) and (richest, {Central

African Republic, Somalia}). These 4 countries are selected as the representatives of

the healthiest or unhealthiest as they are located in the upper-right or lower-left corners

in Figure 3.2 II, respectively.
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In method γ, as we explained in Chapter 3.5.3, we specify Y ′ for each Y . The

assignment is straightforward, as for each Y , Y ′ consists of its variants belonging to the

opposite class. For instance, as shown in Table 4.3, in type III, when Y is “proportional

to GDP”, Y ′ is {“inversely proportional to GDP”, “not correlated to GDP”} and vice

versa.

Table 4.1: Detailed results of method α.

Type X Y θrelevance θfear θbad habit Result

I deep-fried food pancreatic cancer 2.309 11.5 2.070

28-0 Alzheimer’s disease 1.968 25.3 2.070

periodontal disease 1.715 7.10 2.070

(flu) 0.941 0.00 2.070

(alopecia areata) 2.736 0.60 2.070

(bone fracture) 1.374 0.00 2.070

(nosebleeds) 1.363 0.00 2.070

alcohol abuse pancreatic cancer 1.921 11.5 1.755

Alzheimer’s disease 4.211 25.3 1.755

periodontal disease 4.055 7.10 1.755

(flu) 1.474 0.00 1.755

(alopecia areata) 4.522 0.60 1.755

(bone fracture) 1.852 0.00 1.755

(nosebleeds) 1.933 0.00 1.755

heavy drinking pancreatic cancer 1.624 11.5 1.528

Alzheimer’s disease 3.557 25.3 1.528

periodontal disease 2.965 7.10 1.528

(flu) 1.656 0.00 1.528

(alopecia areata) 3.159 0.60 1.528

(bone fracture) 1.893 0.00 1.528

(nosebleeds) 1.962 0.00 1.528

long distance running (pancreatic cancer) 0.048 11.5 0.922

(Alzheimer’s disease) 0.509 25.3 0.922

(periodontal disease) -0.133 7.10 0.922

(flu) 0.769 0.00 0.922

(alopecia areata) 1.415 0.60 0.922

(bone fracture) 1.509 0.00 0.922

(nosebleeds) 1.262 0.00 0.922
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Table 4.2: Detailed results of method β, where the abbreviations MR, ER, and CO2E
represent mortality rates, enrollment rates, and CO2 emissions, respectively.

Type X Y θ
β

XY Result Type X Y θ
β

XY Result

II-1 Cuba poorest 0.273 XII Asia large amount of CO2E 0.848

5-3 (richest) 0.266 4-2 (small amount of CO2E) 0.227

Nicaragua poorest 0.245 Africa small amount of CO2E 0.193 FN
(richest) 0.192 (large amount of CO2E) 0.534

Bangladesh poorest 0.267 FN Europe small amount of CO2E 0.216 FN
(richest) 0.284 (large amount of CO2E) 0.812

North Korea poorest 0.258 FN XIV China large amount of CO2E 0.951

(richest) 0.314 FP 7-1 (small amount of CO2E) 0.265

II-2 United Arab Emirates richest 0.291 FN India large amount of CO2E 0.741

3-5 (poorest) 0.185 (small amount of CO2E) 0.435

Qatar richest 0.244 FN United States large amount of CO2E 0.520 FN
(poorest) 0.223 (small amount of CO2E) 0.143

Equatorial Guinea richest 0.238 FN United Kingdom (small amount of CO2E) 0.481

(poorest) 0.180 (large amount of CO2E) 0.570

Botswana richest 0.271 FN XV small hospitals dangerous hospitals 0.826 FN
(poorest) 0.278 FP 0-4 (safe hospitals) 0.861 FP

IV Muslims many babies 0.536 FN large hospitals safe hospitals 0.860 FN
3-3 (few babies) 0.561 FP (dangerous hospitals) 0.867 FP

Judaisms many babies 0.621 XVI Omicron strain less dangerous 1.012 FN
(few babies) 0.570 1-9 (more dangerous) 1.138 FP

Christians few babies 0.552 FN Alpha strain less dangerous 0.855 FN
(many babies) 0.526 (more dangerous) 0.935 FP

V women low math score 0.020 FN Beta strain less dangerous 1.023 FN
7-1 (high math score) 0.299 (more dangerous) 1.155 FP

men high math score 0.327 Gamma strain less dangerous 0.812 FN
(low math score) 0.163 (more dangerous) 0.845 FP

women (low English score) 0.106 Delta strain more dangerous 0.672 FN
high English score 0.270 (less dangerous) 0.709

men (high English score) 0.199 XVII Africa low GDP 0.809 FN
(low English score) 0.081 5-3 (high GDP) 0.875

VI Iranians many children 0.597 FN Asia high GDP 1.009

5-3 (few children) 0.616 FP (low GDP) 0.709

Afghans many children 0.634 Americas high GDP 0.884 FN
(few children) 0.593 (low GDP) 0.699

French few children 0.670 Europe high GDP 0.955 FN
(many children) 0.662 (low GDP) 0.776

Americans few children 0.505 FN XVIII cancer (long life expectancy) 0.910

(many children) 0.531 4-6 short life expectancy 1.027 FN
VII developing countries high infant MR 1.264 FN Alzheimer’s disease (long life expectancy) 0.972

3-5 (low infant MR) 1.365 FP short life expectancy 1.108 FN
advanced countries low infant MR 1.355 FN heart disease (long life expectancy) 0.901

(high infant MR) 1.407 FP short life expectancy 1.066 FN
developing countries low ER 1.206 FN pneumonia (long life expectancy) 0.926

(high ER) 1.272 short life expectancy 1.107 FN
advanced countries high ER 1.484 periodontal disease (short life expectancy) 1.500 FP

(low ER) 1.033 long life expectancy 1.224 FN
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Table 4.3: Detailed results of method γ, where the abbreviations ED, IA, and ND,
represent epidemic damages, industrial accidents, and natural disasters, respectively.

Type X Y θ
γ

XY Result Type X Y θ
γ

XY Result

III life expectancy proportional to GDP 0.144 X constant ED (increasing in deaths from ED) 0.838

6-0 (inversely proportional to GDP) 0.033 (decreasing in deaths from ED) 0.778

(not correlated to GDP) 0.079 (constant deaths from ED) 0.915

healthy life proportional to GDP 0.168 increasing in IA increasing in deaths from IA 0.945

expectancy (inversely proportional to GDP) 0.059 (decreasing in deaths from IA) 0.891

(not correlated to GDP) 0.150 (constant deaths from IA) 0.791

VIII child labor not decreasing 0.061 FN decreasing in IA (increasing in deaths from IA) 0.862

9-6 (decreasing) 0.062 (decreasing in deaths from IA) 0.942

(not increasing) 0.090 (constant deaths from IA) 0.752

(increasing) 0.111 FP constant IA (increasing in deaths from IA) 0.764

(constant) 0.111 (decreasing in deaths from IA) 0.714

child hunger not decreasing 0.146 FN (constant deaths from IA) 0.879

(decreasing) 0.148 XI death of many babies increasing 0.133

(not increasing) 0.187 20-0 (decreasing) 0.114

(increasing) 0.177 (not increasing) 0.129

(constant) 0.188 FP (not decreasing) 0.112

child mortality not decreasing 0.195 FN (constant) 0.064

(decreasing) 0.206 death of many children increasing 0.129

(not increasing) 0.207 (decreasing) 0.102

(increasing) 0.217 FP (not increasing) 0.116

(constant) 0.127 (not decreasing) 0.092

IX world population will just increase 0.203 FN (constant) 0.076

4-1 will rapidly increase 0.221 death of many adults increasing 0.169

(will just decrease) 0.130 (decreasing) 0.114

(will rapidly decrease) 0.126 (not increasing) 0.158

(will keep constant) 0.211 (not decreasing) 0.141

X increasing increasing in deaths from ND 0.898 (constant) 0.052

27-0 in ND (decreasing in deaths from ND) 0.820 death of many old increasing 0.156

(constant deaths from ND) 0.650 people (decreasing) 0.122

decreasing (increasing in deaths from ND) 0.793 (not increasing) 0.138

in ND (decreasing in deaths from ND) 0.896 (not decreasing) 0.130

(constant deaths from ND) 0.638 (constant) 0.030

constant (increasing in deaths from ND) 0.636 XIII risk of death from increasing 0.082

ND (decreasing in deaths from ND) 0.563 9-0 cancer (decreasing) 0.033

(constant deaths from ND) 0.844 (constant) -0.012

increasing increasing in deaths from ED 0.940 risk of death from increasing 0.064

in ED (decreasing in deaths from ED) 0.851 Alzheimer’s disease (decreasing) 0.018

(constant deaths from ED) 0.801 (constant) -0.042

decreasing (increasing in deaths from ED) 0.881 risk of death from increasing 0.094

in ED (decreasing in deaths from ED) 0.934 heart disease (decreasing) 0.063

(constant deaths from ED) 0.787 (constant) 0.006

101



Bibliography

[1] J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap: Fully Convolutional Lo-

calization Networks for Dense Captioning,” in Proc. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp. 4565–4574, 2016.

[2] H. Rosling, O. Rosling, and A. R. Roennlund, Factfulness: Ten Reasons We’re

Wrong about the World - and Why Things are Better than You Think. London:

Sceptre, 2018.

[3] M. Blastland and D. Spiegelhalter, The Norm Chronicles: Stories and Numbers

About Danger and Death. New York: Basic Books, 2014.
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