九州大学学術情報リポジトリ Kyushu University Institutional Repository

Rational Design of Cu-based Catalysts and Synthetic Systems for Carbon Dioxide Electroreduction

孫,明旭

https://hdl.handle.net/2324/7157291

氏 名 : Mingxu Sun

論 文 名 : Rational Design of Cu-based Catalysts and Synthetic Systems for Carbon Dioxide Electroreduction (電気化学的二酸化炭素還元のための銅触媒と合成システムの合理的な 設計)

区 分 : 甲

論文内容の要旨

With the glowing threat of global climate change, reducing CO_2 emissions and achieving sustainable resource use have become urgent priorities. Electrocatalytic CO_2 reduction reaction (CO_2RR) therefore has significant environmental and economic implications by converting CO_2 into organic compounds, fuels, and chemical feedstocks. However, the current limitations of CO_2RR technologies include poor selectivity towards specific products, low reaction rates, insufficient carbon utilization, and a lack of sufficient stability. This study aims to explore catalysts and operating systems for CO_2RRs to convert CO_2 into high-value chemicals.

Chapter 1 presents a comprehensive systematic review of CO₂RR research. Chapter 2 focuses on the elucidation of the reaction mechanism and design/optimization of catalysts to develop highly selective electrocatalysts for various specific products. Chapter 3 emphasizes the design and application of operating systems to enhance reaction rates and carbon utilization, with the aim of achieving efficient and stable CO₂RRs. Chapter 4 focuses on the exploration and prospecting of the CO₂RR pathway, with the aim of understanding the reaction process at the molecular level and establishing a comprehensive CO₂RR network.

Chapter 1: General Introduction

The CO_2RR is an emerging technology with the potential to convert CO_2 into valuable products. The successful development and optimization of CO_2RR necessitate a systematic study encompassing the fundamental principles, performance evaluation indicators, and essential experimental components. In this introduction, I systematically introduce the basic principle of CO_2RR , the indicators used to evaluate its performance, and the important components required for conducting experiments in CO_2RR .

Chapter 2: Understanding the Roles of Hydroxide in CO₂ Electroreduction on a Cu Electrode for Achieving Variable Selectivity

Hydroxide-derived copper (OH/Cu) electrodes exhibit excellent performance for the electrocatalytic CO_2RR . However, the role of hydroxide (OH) in CO_2RR remains controversial and the origin of the selectivity enhancement emerging on OH/Cu has not been fully understood.

In this study, the author synthesized three electrodes characterized by significantly different OH amounts: small (Cu foil), moderate (M-OH/Cu), and large amounts of OH (L-OH/Cu), in which the M-OH/Cu and L-OH/Cu were prepared by electrooxidation method followed by reduction with different degree. The OH amount on the Cu surface was characterized by electroadsorption technique, which is the first time used for OH amount evaluation. The electroadsorption suggested that the amount of OH and the OH-to-Cu⁰ ratio on

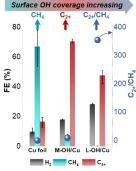


Fig.1. Faradaic efficiency (FE) and the ratio of C_{2+} -to- CH_4 in CO_2RR .

L-OH/Cu were 4.7 times and 2.7 times, respectively, larger than those on **M-OH/Cu**, whereas obvious adsorption was not observed on **Cu foil**. Fig. 1 presents Faradaic efficiencies (FE) for CO₂RR on prepared Cu electrodes. **Cu foil** showed a high CH₄ selectivity with an average CH₄ FE of 67% and **M-OH/Cu** provided a FE of multicarbon products (C₂₊ FE) of 71%. **L-OH/Cu** having large OH amount exhibited a lower C₂₊ FE (54%) than **M-OH/Cu** (71%) but the ratio of C₂₊-to-CH₄ on **L-OH/Cu** is higher than 355 (Fig. 1). Density functional theory calculation conducted by Prof. A. Staykov represented that the OH coverage modifies the work function of Cu surfaces and the reaction energetics for the formation of *CHO and *COCHO, which are deeply related to the variable selectivity observed on the Cu electrodes.

Chapter 3: Designing Enhanced Gas Diffusion Electrode with Ultrathin Super Hydrophobic Macropore Structure for Acidic CO₂ Electroreduction

The development of flow reactors assembled with gas diffusion layer (GDL) electrodes has accelerated the industrial application of CO_2RR technology. Most of CO_2RR to date has focused on alkaline conditions due to the significant selectivity towards carbon products observed under alkaline conditions. However, a major drawback of alkaline electrolytes is their consumption of input CO_2 through reactions with hydroxide ions (OH⁻), leading to reduced carbon utilization efficiency. CO_2RR in acidic electrolytes would weaken carbonate formation, however, its CO_2RR rate is generally limited by the slow CO_2 diffusion compared with alkaline electrolytes.

In this study, the author established a model to investigate the factors affecting CO_2 diffusion based on a commercially available GDE structure and found that the CO_2 diffusion efficiency can be improved by optimizing the thickness, pore size, and hydrophobicity of the GDE. Therefore, a new **Cu-GDL** with an ultra-thin structure, macroporous pores, and superhydrophobicity was newly designed. The preparation method is based on the

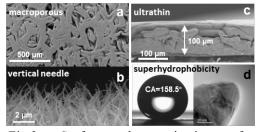


Fig.2. Surface characterization of **Cu-GDL**. a-c SEM, d CA and TEM.

improvement of the chapter 2. Characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle (CA) measurements revealed the unique structure and superhydrophobic characteristics of the **Cu-GDL** (Fig. 3). By using **Cu-GDL**, the author achieved a Faradaic efficiency (C_{2+} FE) of 87% while achieving a high partial current density (C_{2+} *j*) of up to -1.6 A cm^{-2} for multicarbon (C_{2+}) product. Furthermore, to assess the potential of CO₂RR technology in practical applications, we systematically evaluated the influence of CO₂ concentration on CO₂RR performance. The results demonstrated that diluted CO₂ concentrations had minimal impact on CO₂RR selectivity. Even with a diluted 25% CO₂ concentration, we achieved a C₂₊ *j* of -0.34 A cm^{-2} , meeting industrial standards.

Chapter 4: Exploration and Prospect of CO₂RR Pathway Based on In Situ Raman Spectroscopy

Although great progress has been made, Cu catalysts remain the only viable option for CO_2RR to form multicarbon (C_{2+}) compounds. Catalyst development is largely dependent on the understanding of the CO_2RR pathway, in particular the key step in the construction of carbon skeletons, namely the C–C coupling. Knowledge of the details of the CO_2RR process at the molecular level is therefore critical to success. In this exploration and perspective, we have conducted a preliminary analysis of the CO_2RR pathway based on our observations using in situ Raman spectroscopy, laying the foundation for future exploration of the CO_2RR pathway.