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ON THE MOTION OF A TROLLEY-WIRE 

By Jun-ichi OKABE 

Mathematics of the motion of a large number of particles attached uni­
formly to a long string upon which a concentrated load is running with 
a constant speed is discussed. In three cases when the Mach number, 
so to speak, is equal to 1/2, 1 and 2, the motion is calculated in detail 
using the assumed values of the parameters. 

The s tring is a model of the main line of a trolley-wire whose rigidity 
is assumed small and the particles represent auxiliary wires crossing 
the main line perpendicularly at equal intervals. 

1. In those gloomy days after the end of the war it was our daily 
routine to wait for a street-car for a long, long time in a long, long line, 
because the number of the cars had been cut down from terrible shortage 
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112 J. OKABE 

of electricity. When the trolley-wire against the dusk evening sky was 
found moving at last, it was nothing but a sign of the approaching relief 
from both hunger and weariness. The following is a Pride and Prejudice 
.of a young computer who was helpless in the vacuum of the war-torn 
country. 

2. A trolley-line as shown in the picture consists of a long main wire 
upon which a trolley rolls or a pantagraph slides and a number of trans· 
verse wires crossing the main line at equal intervals. If we are interested 
not in the individual movements of the auxiliary (transversal) wires in 
detail but solely in the general aspect of the behavior of the main line, 
it is quite legitimate to suppose that some fraction (we cannot say how 
much exactly) of the mass of each transverse works as an additive mass 
attached to the main line at equal intervals while the latter is in motion. 
Besides, supposing we shall content ourselves with discussing the ideal 
case when the whole system of the wires lies in a horizontal plane, the 
vertical component of the tension of each transverse will resist the motion 
of the main to restore the equilibrium of the system, cf. 4, (iii) and Fig. 3. 

As the model of a trolley-wire let us take the following system: 
great numbers of particles of mass m which is equal to each other are 
attached at equal intervals l to a string of infinite length extending to 
both directions. When a particle is disturbed, it is brought back to the 
position of equilibrium by a spring whose one end is fixed ·at a constant 
level. Take any one of the particles and name it No. 0. Starting from 
No. 0, we shall name the particles No.'s 1, 2, 3, ··· one after another to the 
right, and accordingly No.'s -1, -2, -3, •·· to the left, Fig. 1. Before going 
further we must admit that the rigidity of the wire resisting the bending 
may not be vanishing in some cases when its diameter is not negligible 
compared with the span. Then some modification will become necessary 
to the result of the following computations in which the wire is considered 
as a string to simplify the mathematics. This is a problem reserved for 
another paper and let us go back to our main line. 

Originally the string and the particles were resting on the straight line 
passing through the both extremities of the system, but now they are 
being disturbed.incessantly out of equilibrium by a point load of a constant 
magnitude running since the time t = -= with a constant speed V. We shall 
choose the origin of the time in such a way that the load arrives at x = 0 
(the particle No. O) at t = 0 and runs away in the direction of x increasing 
afterwards. We shall denote the displacement of the particle No. n (n = 0, 
l, 2, · · •) and that of the string at the point of the abscissa x by Y nCt) 
and y(x, t), respectively. If we make use of the delta function of Dirac 
for the mathematical expression of the moving load, the idealized trolley, 
and further if we ignore the effect of gravity which we assume cannot 
have fundamental importance in the nature of the vibration in question, 
then the equation of motion of the string has the form under the well­
known assumptions, 
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where p is the linear density, and T the tension, of the string, both of 
which are assumed. constant spatially as well as temporally: v and f are 
the constants showing the visCO!?ity of the surrounding medium and the 
intensity of the running load respectively. The argument of the delta 
function has been reduced dimensionless by means of the constants l and 
c defined as 

c=i/T/p, (2.2) 

which is the speed of propagation of lateral vibration of the string. 
After multiplying the factor exp ( -ipt), let us integrate the both hand 

sides of (2. 1) with respect to t from -co to co. Denoting by y(x, p) the 
integral 

[.,,.,y(x, t) e-iPt dt, 

the Fourier transform of y, we have finally 

d 2y + (P2 _ i vP) y = _ fl e.-ipx/V. 
dx 2 c2 T cT 

(2.3) 

In deriving this equation from (2. 1) we must take into consideration the 
fact that y and oy jot become zero when t approaches to ± co and the pro­
perty of the delta function as well, i.e. 

r Fa) aa) d~ = F(O) .D 
-eo 

By putting 

D Dirac, P.A.M. Ryoshi Rikigaku (The principles of Quantum Mechanics), Iwa­
nami (1943) , § 20 (3), p. 98. 
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P2 -ivp==fi, 
c2 T (2.4) 

we can rewrite (2. 3) in the form 

d'l:y + 02 y = :_ fl e-ips/V. 
dx2 cT 

(2.5) 

Since two independent solutions of the homogeneous equation derived from 
(2.5) are exp(iOx) and exp(-iOx),D and a particular solution of (2.5) 
can be calculated from the formula 

f l J"' I ei01 e-10~ I I e101 e-10~ I y = __ e-iv11v dr; + 
cT ei0:ri e-10~ i0ei01 -ifJe-101 ' 

we can obtain the integral of (2. 5) as follows: 

y(x, p) = <pet°'" + cp e-10,, + [~ ( :: _ !: + i v: )-i e-ip:rifv; (2.6) 

<p and c/J are constants, which may, however, vary from a span to another . 
If we denote <p and cp in the interval n l < x < (n + 1) l (n = 0, ± 1, ± 2, 
... ) by <p,. and cp,. respectively, they are determined by the boundary con­
ditions 

Yoo=nl = y;,, Y..=(11-t-l)I = ¥11-t-[, 

where Y,,(P) = [
00

Y,.(t) e-1Pt dt, etc. 
(2.7) 

Namely we have from (2, 6) 

'Pn ei0nl + 'Pn e-i0nl + /J e-ipnl/V = Yn ' 

<p,. ei0(n-t-l)! + 'Pn e-iO(n+l)l+ /J e-ip(n-t-1)1/V = Yn-t-1, 
(2.8) 

if we write for shortness 

fl (p2 - p2 + i vp)-1 == a 
cT V 2 c2 T . 

(2.9) 

By solving these equations we readily find that 

i - -'Pn = 2 e-i0nl {Y,. e-i0l - Yn-i-1 - /J e-ipnlfV(e-i0l - e-iplfV)} cosec 01, 

~d c~m 
i - -cp,. = 2 ei8nl {Y,.+i _ Yn eiei _ 11 e-ipnlfV(e-,Pl/V _ ei01)} cosec Ol. 

3. Let us next consider the motion of the particles attached to the main 
line. The force acting on a particle comes from the three sources: i) the 

D We shall specify /J by that branch of the function which tends to p/c as JJ be­
comes zero. 
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restoring force due to the elongated spring, which is therefore propor· 
tional to the deviation of the particle from its position of equilibrium, 
ii) the damping force from the surrounding medium which is assumed 
varying as the speed of the displacement 
of the particle, and iii) they-components 
of the tensions of the two wires, run· 
ning on both sides of the particle, at 
the junction with the particle, cf. Fig. 2. 

If we assume for simplicity that the 
running load. whenever it arrives at 
any particle, jumps immediately into 
the next segment of wire without giv­
ing a blow to that particle, then the 
equati"tm of motion of a particle has 
the form Frn. 2. 

M d2 ;" = -k Yn - µ d Y,, + T 1 (oy) - (oy) ~. (3.1) 
dt dt OX x=nl-t-0 OX x=nl-o) 

Denoting by .J(oy/ox)ni the quantity within bracket on the right-hand 
side, and then taking the Fourier transform of the equation, we are led 
to the result 

(-M p2 +i µ p + k) Yn = T .J(dy/dx)ni (3.2) 

under the assumption that Y,, = dYn/ dt = 0 when t = ± co. On the other 
hand, however, from the definition of .J(dy/dx) it can readily be found 
that 

.J(dy/dx)ni = i (} {(<Pn - <Pn-1) ei0nl - (¢n - ¢,,-1) e-i0nl}, 

and by making use of the relations (2.10) we can prove that 

.J(dy/dx)n1 = (} {Yn-t-1 - 2Y"n cosOl + ?;,_! 
+ 2a e-ivni1v (cos (}l - cos pl/V)} cosec Ol. (3. 3) 

Accordingly (3, 2) becomes after slight modifications 

- sin /Jl · ~ -
Yn-t-1 - {2 cos Ot + ~ (-M P2 + i µ p + k)} Yn + Yn-1 

= 2a e-ipnl/V (cos~ - cos Ol). (3.4) 

If we write for brevity, 

and 

sin (}l . . 
-2 cos Ol - ~ ( -M p2 + z µ p + k) == P, 

2a (cos Pl/V - cos Ol) == Q, 
} (3. 5) 

Yn will be determined by an infinite number of the equations of the type 

Y,,-t-t + p Y,, + Yn-1 = Q e-ipnl/V, (3.6) 

where n = 0, ±1, ±2, 
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Now that, however, the load has been running uniformly since t = -oo 

and besides the wire extends to an infinite distance on both sides, the 
following recurrence formula necessarily holds among any of the neigh­
boring members : 

Y,,_1 (t - ~) = Y,,(t) = Y,,;-1(t + ~). 

Or, in terms of Fourier transforms, 

and 

Yn-1 = Y,. exp Ci Pl/V), 

Y,.;-1 = ~. exp C -i Pl/V). 
} (3._7) 

By virtue of these relations, (3. 6) can be readily solved, and we have 

Y,. = Q exp (-i pnl/V)(2 cos pl/V + P)-1. ("3. 8) 

Or more explicitly 

. ( Pl oz) ( . pnl) _ _ 211 cos V- cos exp -t V, 
Y,. - -T 2 l · 01 ' c (p P"" . 11p) ~ P sm . } - - - + t - 2 cos - - 2 cos O l - --(-M p2 + t µ p + k) v2 & T V TO 

(3. 9) 
n = Q, ± 1, ± 2, · · · . 

The inversion from Y,.(p) to Y,.(t) is enabled by the formula 

Y,,(t) = _1__ feo Y,.(p) e1Pt dp, (3.10) 
2rr _""' 

and on introducing the non-dimensional quantities -r, (, a, fl, r, e and A 
defined respectively by 

t _ nl = l-r 
y- C' 

ip == cc 
l ' 

Mc2 M µc kl 
Tl = pl== a' T == fJ' T = r' 

11lc r = e, and 
C 

V =:'A' 

we can rewrite (3. 9) in the form 

(3. 11) 

f•l= 
2 /2 1 

Y,.(r) = ~ 2rr i -i= (cosh AC - cosh ✓ c2 + et;) exp(r()((2 - A2(2 + ee)-1 

x {2 cosh AC - 2 cosh ✓ ( 2 + e( - (aC2 + fJC + r)((2 + ec)-112 

x sinh ✓ (2 + e(}-1 dt;; (3.12) 

the integration should be carried out along the imaginary axis of the (­
plane from - i oo to i oo • 
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Incidentally, we have to notice first that the integrand is one-valued, 
and second that · the right-hand side is independent of the number n. 
The latter is a natural consequence, for from our assumption the motion 
of each particle should be equivalent with regard to the non-dimensional 
time -r defined in (3.11), Accordingly we shall omit the suffix n of Y,., 
if no confusion may arise. Before computing the integration, however, 
we feel it convenient to discuss briefly about the expected magnitudes of 
the constants involved in the integral.D 

4. A sketch of a small portion of the vibrating trolley-wire is shown 
in the figure. Suppose the main line running through the joints A, B, 
C, •·· has been deformed into an elevated position A, B', C, •··. An auxiliary 
wire crossing the main line perpendicularly at a joint is denoted by D B' 
E. Bearing in mind that the integral (3.12) depends upon the 6 para­
meters a, {3, r, e, A and -r defined by (3. 11), --

(i) a== M/ pl: pl is obviously the mass of the wire whose span is AB 
or BC. M, on the other hand, which represented in the preceding compu· 
tation the mass of a particle attached to the str.ing, is not in reality neces­
sarily the mass of a joint, e.g. B'. On the contrary, the mass of a single 
joint itself may be comparatively small, a.nd a considerable portion of the 
mass of the auxiliary wire moving with the joint en bloc must be involved 
in M. The magnitude of the additive mass due to the auxiliary wire, 
which presumably constitutes the greater part of M as a matter of fact, 
changes every moment in the course of vibration. Although it is impossible 
therefore to mention the precise value of the additive mass, it would be 

E 

-
D'V r_..., -, 

FIG. 3. 

1) For the convenience of the Note An Illustrative Example of Solving a Sum 
Equation··· (in the present issue), it is added that in terms of the new variables P 
is expressed by 

P = -2cosh ✓C2 + eC - (aC2 +{JC+ r)(C2+ eC)-112 sinh ✓c2 + eC, 

and especially if e = r = 0, then 

P = -2 cosh C - ( a,C + fJ) sinh C • 
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no great error to say if l' is very roughly as long as l that M is of the 
same order of magnitude as pl and this we write for brevity 

M=pl, 

or a=l. (4.1) 

(ii) fJ = µc/T: At the beginning (cf. 2) it was assumed that the value 
of T and C = (T / p )112 were not affected by the motion of a wire and that 
h wire while undisturbed lay on a straight line passing through joints at 
an infinite distance, the effect of gravity being neglected. By the first of 
these assumptions we are enabled to evaluate T or c from the state of 
rest of the wire; by the second, however, T would not be determined 
from the condition of equilibrium. In other words, therefore, in spite of 
the fact that the nature of the vibration of the wire may well be revealed 
under the second assumption, this is not exactly valid so long as the wire 
has its own weight, and we have- to take account of the deformation of 
the wire owing to its own weight in order to know the reasonable value 
of the tension of the wire. 

Pig 

I I 

y 

x-.­
s 

FIG. 4. 

Let the arc AB be a small portion of the main wire stretched through 
the joints A, B, C, · · • , cf. Fig. 4. Now we can approximate the form of 
a resting wire by the parabola whose equation in terms of the coordinates 
X and Y shown in the figure is 

y = 4a1-2xc1 - X), (4.2) 

where a is the deflection of the middle point. From the condition of 
balance of the forces acting on A, we obtain 

Hence 

and 

plg = 2T(d¥/dX)x=o = STaJl. 

T = pl2gJ8a, 

c=1/T =l1/g 
V P V sa • 

fJ = J!£ = }!_ Isa 
T pl Y g· (4. 3) 
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The following example will be useful in giving us an idea about a reason· 
able value of /3: l == 10 m, a== 20 cm, p == 8.93 x 11: x 0.52 == 7.01 gr/cm (linear 
density of copper wire, 1 cm in diameter), g == 980 cm/sec2. From these 
data it is found that 

and 

c=25m/sec, 

/3 = µ/17300. (µ in C.G.S.) (4.4) 

A number of sources of dissipation may be involved in µ, the factor of 
damping of an attached particle: the resistance of air, the inner friction 
of an auxiliary wire, etc, All of these dissipations, linear or non-linear, 
were combined altogether into an equivalent single factor, somewhat ficti­
tious, proportional to the velocity; see (3. 1) . It is very difficult, there­
fore, to specify a definite value of µ in general circumstances. So in order 
to simplify the following calculations, let us confine ourselves to discussion 
of the case when the value of µ in C.G.S. is not very large, being at 
the most of the order of 1000, and accordingly /3 is at the most several 
per cent (we shall ·call /3 infinitesimal of the first order). 

(iii) r == k l/T: As was mentioned in 2, the restoring force acting on 
the elevated joint B' owing to a spring in the model (Fig. 3) results in 
reality from the vertical component of the tension T' of tl?-e auxiliary wire 
crossing perpendicularly the main line at that joint. Remembering that k 
is the constant of restoration and using the notation = in the same 
meaning as in the preceding section, 

k y ( the restoring force)= 2T' y I l' (the vertical c'?mponent) 
n • n of 2T', approximately ' 

where l' is a half-length of the auxiliary wire. Suppose furthermore that 

T'=T, l'=l, 

then from the above estimation we have 

kY.,=2TY,./l, 

that is to say 

kl/T=2. 

2 on the right-hand side, however, has very little meaning; our conclusion 
should be rather 

r= 1. (4.5) 

(iv) e == J1lc/T: The parameter e relates through JI to the resistance of 
the surrounding air against the lateral vibration of the wire. According 
to (2.1) JI oy /ot is the force from air per unit length of the wire. In order 
to estimate roughly the order of its magnitude, let us use the following 
expedient. Let d and U be the diameter, and the mean, spatial and tem­
poral, speed of vibration, of the wire, respectively. Suppose d == l cm, U 
== 3 cm/sec. Then the Reynolds number for this motion is roughly 
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R = k" · . u_. d f . 2 ·c = 0315 = 20· mematlc v1scos1ty o air at 0 . 

· Now if we assume that we are able to know the order of magnitude of JJ 

by the resistance of air to which the unit length of a circular cylinder 
infinitely long is subjected when placed in a steady flow of air perpendic­
ular to its axis, then the drag coefficient defined by 

Cn =. D (drag) 
(1/2) Pair lJ2 d 

has the value about 2.0 for this Reynolds number,1' Pair being the density 
of air, namely 0.0012 gr/cm3• Therefore 

D 1 1 Y=u= Cn 2 PairUd =2.0 X 2 X 0.0012 X 3 X 1 

= 0.0036 (in C.G.S.). 

Further, by the previous exampie l and c/T being 1000 and 1/17300 in 
C.G.S., respectively, 

s = JJ l c/T = 0.00021. (4.6) 

Next, when U is ten times as large, i.e. 30 cm/sec, by the same procedure 
we find R = 200, C n = 1.3, JJ = 0.023 and s = 0.0014. From these examples 
therefore, we may say, s is an infinitesimal of the second order according 
to our nomenclature. 

Summarizing the above discussions we can arrive at the following con­
clusions : a and r are the numbers of the order of unity and fl and s are 
the infinitesimals of the first and the second order, respectively. However, 
two more parameters are ·still left : A and -r. A is the ratio of the speed 
of propagation of lateral vibration to the speed of a street-car (i.e. the 
reciprocal of the Mach number used in aerodynamics), and is generally 
greater than unity. But it would be of interest to examine the case A~ 1 
to establish an analogy with supersonic aerodynamics. -r, on the other 
hand, which is the non-dimensional time, measured from the instant when 
the trolley arrives at the particle whose motion we are going to discuss, 
is subjected essentially to no restrictions and varies from -= to + =. 

To return to our integral (3.12) , as it has been clarified that e is an 
'infinitesimal of higher order than a, {1 or r, we may safeiy neglect the 
terms including s so long as we are interested in the property of the solu­
tion in the neighborhood of -r = 0. In spite of this neglect of s, however, 
it is assumed as before that the premises underlying our Fourier transforms 
are still valid, viz. 

y = oy/ot =0, when t = ±=. 

In conclusion under this approximation, (3.12) can be written 

D Goldstein, S. Modern Developments in Fluid Dynamics, Oxford (1938), vol. I, I, 
5. Fm. 1, p. 15. 
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Y(-r) = 2fl2 _1_ Jioo (cosh). ( - cosh O exp(-r Ode;; ; 
T 2rr i -ioo (1 - ).2) c;; 2{2cosh ;.c;; - 2cosh c;; - sac:: + {3 + r Jc;;) sinh c;;} 

(4.7) 

this is the integqtl which we are going to evaluate in the following pages. 

5. As is easily verified, ( = 0 is not a singular point of the integrand ; 
the only singularities are an infinite number of the simple poles arising 
from the zeros of the denominator, defined by 

2cosh). ( -2cosh ( - (a(+ {3 + r/0 sinh ( = 0. (5.1) 

The path of integration, on the other hand, is the imaginary axis of the 
(-plane from -i oo to i oo. But if we can prove that the same integral 
vanishes on a semicircle of infinite radius on either side of the imaginary 
axis with center at the origin, then by computing the integral along a 
closed curve consisting of the imaginary axis and one of those semicircles, 
we shall be enabled to reduce the integration to the calculations of the 
residues corresponding to the simple poles above-mentioned. It becomes 
necessary, therefore, to know the asymptotic behavior of the integrand for 
I ( r tending to infinity. 

Writing for brevity 

cosh). ( - cosh ( _ N 
2cosh). ( - 2cosh ( - (a ( + {3 + r J () sinh ( = D' 

and ( =R exp(i (}), 

we shall examine the properties of N 
and D when R ➔ = in the range of (} 
such that 

_:rr__+w<(}<l!.,-@ 
i - -2 

for a sufficiently small value of w 
chosen in such a way that R w ➔ = as 
R ➔ = . The following relations are 
easily obtained : 

jcosh ).( I = {cos2 (). R sin(}) 
+ sinh2 (). R cos (})}1/2, Fm. 5. 

I cosh ( I = {cos2 (R sin(}) + sinh2 (R cos 0)}112, 

and I sinh ( I = {sin2 (R sin iJ) + sinh2 (R cos (})}1/2. 

For various values of )., three cases have to be discussed separately. 

(i) When ). < 1 : - Since 

JNl=Jcoshc;;j, 

and JD I =Ia ( sinh ( I 
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for very large value of I ( /, it follows that 

1
~1= /cosh(I =-1- ➔ 0 
D a I , I I sinh , I a I, I . 

So Q, the integrand of (4. 7), tends to zero as I (I becomes very large. 
(ii) When ). = 1: -At the beginning of 7 by taking the limiting form 

for ;. tending to unity, we shall prove directly that Q ➔ 0; see page 125. 
(iii) When ;. > 1 : - Because 

I cosh J. ( I ~ I cosh ( I , 
it follows that 

and 

I NI = I cosh;. , I , 

ID I = I 2cosh ;. ( I . 

Therefore obviously 

/QI= J1-i211,21 \~\ ➔ o. 
Completely analogous relations hold in the range rrf'!, +@ < {) < (3 rr/2) - w. 

Finally our scrutiny will be completed by evaluating Q at a point lying 
on the imaginary axis. For this purpose, put ( = ir;, where r; is a real 
number, positive or negative. Then we have 

N=cosJ.r;-cosr;, 

and D = 2cos;. r; - 2cos r; + (a r; - i fJ - r Jr;) sin r;. 

So except the points where sin r; = 0 (this restriction is not important), 
IN/Dl ➔ O as r; ➔:±=. 

To sum up, we can conclude that the integrand of (4. 7) vanishes uni­
formly on the circle of infinite radius with center at the origin. According 

r 

0 t'-plane 

B r' 
~ 

Cl H 1a 

~ 1/ 
A 

Fm. 6. 

to Jordan's lemma,D therefore, we can 
deform the path of integration into 
a closed curve consisting of• the imagi­
nary axis and a large semi-circle: viz. 
when -r > 0, 

jt= d( = f d( + f d( = f d( ' 
-i= AB BCA I' 

and when -r < O, 

r= d( = f d( + f d( = f . d( . 
-ioo AB BC' A r 1 

(5.2) 

rand / 1 are the contours shown in the figure. 

ll Whittaker, E.T. and Watson, G. N. A Course of Modern Analysis, 4th ed., 
Cambridge (1928). 6'222. p. 115. 
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6. In the preceding section we were enabled to reduce the evaluation 
of the integral (4. 7) to the calculation of the residues relative to an in· 
finite number of simple poles. But still the computation is very laborious, 
as will be fully shown in the later sections, To treat a similar problem 
preliminarily by means of a model as simplified as possible before enter­
ing into the detailed considerations will help. us, therefore, if the model is 
properly chosen, in obtaining beforehand a general view of the property 
of the solution which we are striving for. 

We have been dealing so far with the vibrating system consisting of a 
number of particles attached at equal intervals to the string, each particle 
being connected elastically with a fixed level. One of the most natural 
simplifications will be provided by a fictitious model produced by diffusing 
the effects of the particles and of the springs uniformly over the string. 
So a few pages will be devoted to the calculation of this simplified motion 
in order to examine later how much of the real motion can be reproduced 
by this model, The equation written in terms of the same notations as 
before is 

32y oy a2y [c' ( x)] p' - == -IC y - Y' - + r - +fa - t - -a,2 ot ox2 l v ' (6.1). 

where p' == p + M/l, Y1 == Y + µfl, IC== k/l and c' == (T/p')112• The Fourier 
transform of this equation is readily found to be 

d2y + ()'2 Y == _.1.}__ e-tp:r,/v 
dx2 c'T 

(6.2) 

by writing 

p2 i yl p - .!!:._ == ()12 • 
c12- T T (6.3) 

Since the solution of this equation which remains finite where x ➔ ±= is 

-(x P) == _fJ_ exp (-i p x/V) 
y , c' T p2 p2 • y' p " , 

v 2 - c12 + ' r- + r 
(6.4) 

y(x, t) is given by the formula 

y(x t) == fl __!_ J.,exp(-i p x/V + i pt) dp 
' c' T 2rc P2 p2 • y1 p " · 

-Co v2- c'2+iy+y 
(6.5) 

If we put similarly as in (3. 11) 

x l -r' • c' t:' ) t-y=7, iP=-1-• 

k l " l2 Y 1 l c' c' T == T == r, ---;_f"" == e' ·and V == ).', 
(6.6) 

we can transform (6. 5) into the non-dimensional form 
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f 12 1 · exp (-r' C 1) JI= 

-r' - - - ------,-,-----=----"---'----'--- d , 
y( )- T 2n:i _1=(1-,f2)C'2 +e'C'+r C' 

(6. 7) 

Thus the problem will be classified into three cases according to the value 
of ).'. In each case the denominator tends to = uniformly as [ C'I increases 
indefinitely, so by Jordan's lemma the path of integration can be replaced 
by the contours mentioned in (5. 2). The result of the computation will 
be summarized in what follows. 

(i) When ).'> 1 (i.e. c' > V) :- Assuming e' is so small that e'2 may be 
safely neglected, we can prove without difficulty that 

1 --
f z2 1 2e' - ✓ r().'2 -1) 

y(-r') == - . exp { , r'} for -r' > 0, 
T 2v/r().'2-l) ;.2-1 

and \ (6. 8) 
1 

f 12 l 2e' + 1/ r().'2 -1) 
y( r') == - -=-~=== exp {------- -r'} for -r 1 < O. 

T 2i/ r().'2 -1) ;.12 -1 ·• 

In Fig. 7 the general aspect of the motion is shown as a function of r', 
the non-dimensional time; 

y(i-') 

Fro. 7. 

y(i-') 

y(i-') 

i-' 

FIG. 9. 

i-' 

FIG. 8. 

i-' 
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(ii) When ).' = 1 (i.e. c' = V): - We have 

f z2 1 
y(:r') = - -. exp ( -L -r') 

T s 1 e 1 

and y(-r') = 0 

for -r' > 0, 

for -r' < 0. 
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(6.9) 

The wave-pattern is illustrated by Fig. 8. Incidentally it is worth noticing 
that as s' decreases the deflection of the string approaches the figure of 
the delta function itself. 

(iii) And finally when ).' < 1 (i.e. c' < V) :-For -r' > 0 

·(')_f/2 1 {- s' '}. ( 1 / r -r')} 
-' -r - T i,-/ r(l - ;.12) exp 2(1 - ).'2) -r sm V 1 - ).'2 ' (6. 10) 

and y(-r') = O for -r' < 0 ; . see Fig. 9. 

Conclusion: first, when ).' ~ 1, or wben the Mach number 2;, 1 if aero­
dynamically spoken, no disturbance is transferred ahead of the trolley. 
This is of course in accordance with the common sense of physics. Second, 
as ).' decreases the type of motion of a point on the string changes from 
non-oscillatory to oscillatory character. 

7. Let us go back to our integral (4. 7), viz. 

Y('r) = 2f l2 _1_ (cosh). r;: - cosh () exp(-r () dr;: J
i~ 

T 2rr i -i= (1 - ).2) r;: 2 {2cosh A( - 2cosh ( - (a ( + {3 + r/() sinh (} · 

(7.1) 

In evaluating this integral it is convenient to begin with the simplest 
case in which ). = l, i.e. c = V. 

Making ). ➔ l, we can prove without difficulty that the integrand has 
the value 

exp(-r () {2(a r;: 2 + {3 r;: + r)}-1 

as the limit. Evidently the denominator tends to infinity as [ r;: I increases 
indefinitely, so owing to Jordan's lamma we are enabled to replace the path 
of int0egration by the contours I' and I'' for -r > 0 and -r < 0, respectively, 
cf. (5. 2) . The poles of the integrand are situated at the points 

- f3 ± ✓ /32 - 4r a (=--~----, 
2a 

and neglecting /32 which we assumed very small, we can approximate 
them by 

, = _p_ ± i 1 Ir. 
2a Va (7.2) 

So by the well-known procedure of contour integration we can obtain the 
following: 
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Y(T) = 21 12 1 exp (-Ji T) sin (1 /r T) 
T 2v/ra 2a Va 

and Y(T) = 0 

for 

for 

T>O 

T < 0. 
(7.3) 

Obviously Y(0) = 0 consistently from these two different expressions. 
If we assume as a numerical example 

a = r = 2 , /3 = 0.01 , 

then from (7. 3) we have 

KY(T) = l_ exp(-~) sin T 
4 400 

and KY(T) = 0 

where we write for convenience 

T 
K-==2jl; 

for 

for 

T > 0, 

T < 0, 

(7.4) 

(7. 5) 

(7.6) 

The curve of (7.5) was worked out in the range of T from 0 to 10 at 
intervals of 0.1 and is reproduced in Fig. 10 at the end of 10. Note that 
contrary to our expectation (7. 3) has some analogy with (6. 10) instead 
of (6. 9). 

8. Our next problem is to evaluate (7. 1) in. the case when A~ 1 (i.e. 
c ~ V) . Since the origin ( = 0 is not a singular point of the integrand, 
th~ only singularities are situated at those points which satisfy the equa­
tion 

2 cosh A ( - 2 cosh ( - ( a ( + (3 + r I () sinh ( = 0 . (8.1) 

This equation may or may not have real roots and has certainly a num­
ber of conjugate complex roots of the type 

(=~+ir;, 'f.=~-ir;. (8.2) 

To compute the real roots, if any, is not so difficult anyhow. In order to 
calculate the complex roots, substituting for ( in (8.1) (- + i r; and putting 
the real and imaginary parts equal to zero separately, we obtain 

Real Part: 2cosh A~ cos_J r; - 2cosh ~ cos 'f} -(a~+ (3 + ~2 t r;2) sinh ~ cos 'f} 

+ ( a7) - ~2 ~ r; 2) cosh ~ sin 'f} = 0, (8. 3) 

Imaginary Part: 2sinh A~ sin A'/_ - 2sinh ~ sin r; -( ar; - ~2 ~ r; 2) sinh ~ cos r; 

- (a~+ (3 + ~2 ~ r;2) cosh ~ sin r; = 0. (8.4) 



ON THE MOTION OF A TROLLEY-WIRE 127 

Strictly speaking, we have to solve the simultaneous equations (8. 3) and 
(8. 4) for a set of given values of a, /3, r and ).. However, this is too 
laborious as a matter of fact. 

If we put /3 = 0 in these equations, both of them will be reduced to the 
forms symmetrical with respect to ~ and r;, and we have only -to compute 
in detail their common roots lying in the first quadrant of the (-plane. 
Generally the common roots corresponding to (a, (1, r, ).) will not be 
different so much from those for (a, 0, r, ).) , since (1 is assumed quite 
small. It is far simpler to solve the equations (8. 3) and (8. 4) putting 
first /3 = 0 and then to find out the necessary corrections than to treat 
the original equations containing 0.. After simplifying the problem so 
much, we must still work numerically. So we shall take up the following 
example: 

a=r=2, /3=0, 

cf. (7. 4). To visualize the effect of speed of the trolley upon the mode 
of vibration we shall assume two kinds of values for )., viz. 

). = 2 (c = 2V) and ). = 1/2 (2c = V). 

When ). = 2, from (8, 3) and (8. 4) we have 

Real Part : cosh 2e cos 2r; - cosh ~ cos r;- ( e + ~2 ! Y/2) sinh e cos r; 

+ ( YJ - e2 2 r;2) cosh~ sin r; = 0, (8. 5) 

Imaginary Part : sinh 2e sin 2r; - sinh e sin r; - ( r; - ~ 2 r;z) sinh ~ cos r; 

- ( e + e2 ! r;2) cosh ~ sin r; = 0; (8. 6) 

when ). = 1/2, on the other hand, 

Real Part: cosh ; cos ~ - cash e cos r; - ( e + e2 ! r;2) sinh e cos r; 

+ (r; - e2 J r; 2) cosh e sin r; = 0, (8. 7) 

Imaginary Part : sinh ; sin ~ - sinh f sin r; - ( r; - e2 2 r;2) sinh ~ cos r; 

- ( e + e2 ! Y/2) cosh f sin r; = 0. (8. 8) 

Evidently (8. 6) and (8. 8) are satisfied by 

~=0 or r;=0. 

So much for the complex roots. 

(8.9) 
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When A = 2, (8. 5) and (8. 6) are satisfied by a pair of the real roots, 
positive and negative, ($, 0), ~ being determined as the root of the equa· 
tion 

cosh2~ - cosh~ -a+ ~-1)sinh~ = o. (8.10) 

When ;. = 1/2, we can readily prove on the contrary that (8. 7) and (8. 8) 
cannot have any real roots. 

Simpler is the case in which ;. = 1/2. Then the values of r; satisfying 
the equations (8. 7) and (8. 8) for various values of ~ are tabulated in 
Tables I and II and are shown by Fig. 11. We can observe that the roots 
of (8. 7) and (8. 8) tend to (n + 1/2) rr and (n + l) rr (n = 0, 1, 2, •··), 
respectively as ~ increases indefinitely. And as mentioned above, by inver­
sion with regard to the ~- , and the r;-axes, we can , find at once those 

'f} 

R, 

l r, 

I. 

1, 

R, 

1, 

5 
R, 

Ii 

R, 

0 10 15 ~ 

FIG. ll. ,l = 1/2. 
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roots which are situated in another quadrant. The common roots of the 
simultaneous equations (8. 7) and (8. 8) are thus found to be 

± i X (0.84727, 3.41095, 6.58957, 9.53629, 12.56637, 15.76959, .. ·). 

TABLE I. Roots of (8. 7) . 

~I R1 R2 R3 R4 Rs R6 

0 

0.1 

0.5 

1.0 

2.0 

4.0 

7.0 

0.84727 3.41095 6.58957 9.53629 12.56637 15.76959 

10.0 

15.0 
C-0 

0.84946 

0.91560 

1.03222 

1.18526 

1.31692 

1.40081 

1.44235 

1.47936 

1.57080 

~I l1 

0 

0.1 

0.5 

1.0 

2.0 

4.0 

7.0 

10.0 

15.0 
co 

2.28268 

2.28341 

2.29997 

2.34556 

2.46852 

2.66199 

2.81049 

2.88721 

2.96010 

3.14159 

3.41363 

3.47128 

3.59648 

3.81111 

4.04916 

4.23527 

4.34159 

4.44349 

4.71239 

6.59046 

6.60989 

6.65643 

6.75929 

6.93626 

9.53737 12.56748 15.77021 

9.56102 12.59174 15.78397 

9.61592 12.64844 15.81700 

9.72798 12.76270 15.88905 

9.90151 12.92870 16.01113 

7.13738 10.10143 13.11596 16.16942 

7.27579 10.25027 13.26186 16.30382 

7.42228 10 42093 13.44081 16.48051 

7.85393 10.99557 14.13717 17.27876 

TABLE II. Roots of ( 8. 8) . 

12 

5,15242 

5.15291 

5.16348 

5.19422 

5.28798 

5.47897 

5.67775 

5.80369 

5.93064 

6,28319 

l3 l4 Is 

8.14844 11.14622 14.25155 

8.14876 11.14658 14.25182 

8.15652 11.15440 14.25797 

8.17868 11.17712 14 27576 

8.24944 11.24855 14.33298 

8.41165 11.40755 14.46552 

8.61252 11.60299 14.63872 

8.75808 11.75176 14.77954 

8.91897 11.92827 14.95834 

9.42478 12.5fi637 15.70796 

The situation is not so favorable in the case when A = 2. Now the roots 
of (8.5) and (8.6) are shown for various values of ~ in Tables III, IV and 
Fig. 12. T t is easily proved as before that each branch of R and I tends to 
(2n + 1) rr/4 and (n + 1) rr/2, respectively as ~ ➔ co. The common roots 
of these equations are therefore 

( i) ±i x (1.59778, 3.60636, 6.28319, 9.62569, 12.56637, 15.83266, ... ) , yielded 
as the intersections of (8.5) and the ']·axis, 

( ii) ± 1.04128, from (8. 5) and the ~-axis,D 
(iii) ±2.08378 ±i 7.46426, ... , from (8. 5) and (8. 6).D 

D It is worth noticing that in spite of the fact that the system, since fl is assumed 
zero, has no damping element, these components of the vibration exhibit some 
decreasing of the amplitude with time, the dissipatioµ of energy. 
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TABLE III. Roots of (8. 5) . 

(An asterisk indicates the absence of the 

~ R1 R2 R3 R4 Rs R5 R1 

0 * 1.59778 3.60636 6.28319 * * 9·62569 

0.1 * 1.60266 3.60969 6.28239 * * 9.62794 

0.5 * 1.70193 3.67539 6.26181 * * 9.67729 

1.0 * 1.88067 3.78605 6.18082 * * 9.79063 

1.04128 0 - - - * * 
1.05 0.07729 - - - * * 
1.1 0.19696 - - - * * 
1.25 0.35216 - - - * * 
1.5 0.48203 - - - * * 
2.0 0.61023 2.12391 3.90237 5.87738 * * 10.00196 

2.05 - - - - 7.51946 7.82960 

2.1 - - - - 7.44365 7.91819 

2.5 - - - - 7.22197 8.23004 

3.0 - - - - 7.13396 8.40148 

4.0 0.75487 2.30925 3.93504 5.56590 7.08206 8.54986 10.18029 

7.0 0.78301 2.35284 3.92834 5.50215 7.06823 8.63400 10.20950 

00 0.78540 2.35619 3.92699 5.49779 7.06858 8.63938 10.21018 

TABLE IV. Roots of (8. 6). 

~ 11 12 13 l4 Is l5 l7 

0 0.64304 2.75284 4.94452 * * 8.27469 11.12864 

0.1 0.64952 2.75398 4.94436 * * 8.27644 11.12864 

0.5 0.77777 2.78040 4.94109 * * 8.31995 11.12954 

1.0 1.00987 2.84733 4.92869 * * 8.46800 11.13016 

1.5 - - - *. * 8.70169 

1.95 - - - 7.02896 7.31395 

2.0 1.32142 2.99043 4.87200 6.94319 7.38781 8.92970 11.11403 

4.0 1.52236 3.11753 4.75727 6.34305 7.80418 9.34370 11.03743 

7.0 1.56709 3.14019 4.71606 6.28603 7.85029 9.42052 10.99922 

00 1.57080 3.14159 4.71239 6.28319 7.85398 9.42478 10.99557 

The procedure to work out the last root is far from being. simple. Being 
difficult to calculate it accurately by graphical method, the following 
alternative was adopted :-Our problem is to find out the essentially coin· 
plex roots of the equation, retaining 0 and A in a general form for the 
future convenience, 

cosh AC - cosh C - (C + 0' + c-1) sinh C == 0, (8.13) 

where 0' == S/2. (8.14) 
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root,) 
Y/ 

Rs Rg Rio Rn Ru -----------
110 

12.56637 * * 15.83266 

15.83415 R10 12.56598 * * l5 ---------
12.55550 * * 15.86780 I, 

12.51324 * 15.95344 .,. 
* (·------ - ---- --------- ----- -- ~-1_ ___ 

* * - \ -- ---- I, 

* * -
* * - R, 

* * - I, 

* * - R, 
12.28910 ? ? 16.16352 lO 

I, 

R, 

Is -R, 
11.88563 - - - ~ 11.78738 - - -
11.78097 13.35177 14.92257 16.49336 R, 

I, 

_,.& 

Is lg l10 I, 

R, 

* * 14.32883 

* * 14.32947 
I, 

* * 14.34571 R, ----
* * 14.40690 

~ u 5 * * -
? ? - FIG. 12. ,l = 2. 

? ? 14.85930 
The dotted lines indicate those 

12.68776 14.08441 15.57184 parts of the curves which were 
12.57210 14.13347 15.70085 interpolated on the figure. 
12.56637 14.13717 15.70796 

Let an approximate value of the root, found out graphically or other­
wise, be ( 0 = ~o + i 'f)o; we can further the approximation by computing 
a correcting quantity for (o. Namely making use of Newton's method 
for a complex variable, a more accurate value of the root is found 
to be 

Co+ (1 = C~o + ~1) + i ('f)o + '/)1), (8.15) 

where (1, which is assumed small, is given by the relation 
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( 1 = cosh A ( 0 - cash (0 - ( (o + {3' + (o-1) sinh (o . (S. 16) 
-A sinh A (o + (2- (o-2) sinh (o + ((0 + {3' + c:;:0- 1) cash (o 

We can now return to our particular case by putting 

{3' = 0 and A = 2 ; 

then we have 

(i = . cosh2(n - cash (n-: ((n + (o-1) sinh (o , (S. l 7) 
-2smh 2(0 + (2 - c:;: 0- 2) smh (o + ((o + (o-1) cash (o 

or more explicitly, 

~1 + i '1} 1 = [{cash 2~.o cos 2'1}o - cosh ~o cos 'l}o - ( ~o + 2 ~n ) sinh ~o cos 'l}o 
~o + '102 

+ ( 1h - ~02 ~ r;) cosb ~o sin 'l}o} + i {sinh2~0 sin 2'1}0 - sinh ~o sin 'l}o 

- (r;o - ~ 2 'l)o 2) sinh ~o cos 'l)o - (~o + ~ 2 ~o 2) cosh ~0 sin r;0}] 
o + 'l)o o + 'l)o 

[ f ( ~02 - ,;02 ) 
-+- -2 sinh 2~0 cos 2'1}0 + 2 - (~ 2 2 2 sinh ~o cos 'l}o 

- o + 'l)o) 

2~n 'f)o h e • (°' ~o ) - ( °' 2 + ?)Z cos "o sm '/)o + 'i.O + ~ 2 2 cosh ~o cos 'f/o 
"o 'l)o· o + '10 

- (r; - ~ 2 '1o J sinh ~o sin 'l}o l 
o + 'l)o f 

+ i J -2 cash 2~o sin 2'f)o + ~ ;~•1 'l)\y sinh ~o cos 'f)o 
l c o + r;o -

( ~ 02 - '1)02 ) ( 'f)n ) + 2 - a 1 9 )? cosh ~J sin r;~ + 'l)o -- ~ 9 ? cosh ~o cos '1) 0 
o· + 'l}o· , o· + 'l}o· 

+ ( ~,J + ~02 ~ r;) sinh ~o sin '/)n}] . (8.18) 

This procedure can be repeated until at last we have ~1 = 'f)1 = 0 prac· 
tically. 

To sum up, we can solve the simultaneous equations with sufficient 
accuracy for the particular case in which 

a = r = 2, {3 = 0 and A = 2 or 1/2 . 

Our next problem is this: - How much will these · roots vary, if we 
should give a small but positive value to {3, retaining a, r and A un· 
changed? 

9. Before answering this question, bowever, we should have some pre· 
liminary knowledge about the behavior of the roots. As we have shown 
in 7 and 8, the aspect of the figures of the loci of the roots of the equations 



ON THE MOTION OF A TROLLEY-WIRE 133 

(8.3) and (8.4) with respect to various values of ~ are completely different 
from each other among the three cases calculatP.d : A = 1, 1/2 and 2. 
Namely if we regard a common root of (8. 3) and (8. 4), the intersection 
of two loci R and I from them in other words, as the function of our 
parameters a, 0, r and A, that function is thus proved discontinuous at 
the point A = l. Then, is it continuous with regard to 0 in the neighbor­
hood of 0 = 0? If not, it is nonsense to try to estimate the approximate 
value of a root for a small and positive value of 0 from the case 0 = 0. 
It seems, however, very difficult to give a mathematical proof to this pro­
blem. So as a partial suggestion, we shall take up the branch of the locus 
of the root from the case A = 2, denoted by R1 in Table III and also in 
Fig. 12 to solve the original equations (8. 3) for three values of 0 namely 
0.01, 0.1 and 1. Comparing them with each other and with the case 0 = 0, 
we shall be able to obtain some visual conception about the aspect of the 
variation of this root for small values of /3. If we should have plenty of 
time to repeat this calculation for all other branches of the roots, we can 
certainly arrive at far more definite conclusion in this problem. 

Inferring from the result of the computation reproduced in Table V and 
Fig. 13, it is highly plausible that the roots will vary continuously near 

TABLE V. 

0 O.Ql 0.1 1.0 

the point 0 = 0, and that the 
effect of 0 upon the _roots 
will be so small, provided 0 
is small, that we may safely 
take the value corresponding 
to 0 = 0 as the first approxi-

~ ,i--------

mation when we are going 
to work out the root for a 
small but positive value of 
0 (let us denote it by 0 ;2:; 0 
for brevity). Although not 
impossible to describe all 
cases in a unified manner, 
it is more convenient to 
classify the common roots of 
(8. 3) and (8. 4) into two 
groups: those which.are situ­

1.041281 0 * 
1.04312 0 

1.05 0.07729 0.06862 

1.05959 - -
1.1 0.19696 0.19389 

1.21726 - -
1.25 0.35216 0.35068 

15 0.48203 0.48121 

2.0 0.61023 0.60984 

4.0 0.75487 0.75484 

7.0 0.78301 0.78297 

co 0.78540 0.78540 

ated near the imaginary axis and those which are not. 

* * 
* * 
* * 

0 * 
0.16369 * 

- 0 

0.33720 0.14357 

0.47383 0.39167 

0.60651 0.57247 

0.75454 0.75134 

0.78297 0.78280 

0.78540 0.78540 

(i) The roots near the imaginary axis: - In both of the cases when 
A = 1/2 and 2, we have found a number of the common roots ( we shall 
refer simply as the "roots" in what follows) on the imaginary axis. 
These roots will still remain near the axis when 0 ;2:; 0. Now writing 

(=~+i'l), 

we shall neglect the terms containing ~2, 0 ~ and higher orders. In the 
degree of our approximation we have therefore 

cosh ~ ·• 1 and sinh ~ ·. ~. (9. 1) 
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• 
Supposing A is of the order of unity, we shall assume the expansion 

cosh A ~ • • 1 and sinh A ~ • • A ~ • 

Then (8. 3) and (8. 4) reduce to 

2 cos A r; - 2 cos r; + ( a r; - r Jr;) sin r; = 0 , 

and 

2A ~ sin A r; - 2~ sin r; - ( a r; - r /r;) ~ cos r; 

(9.2) 

(9.3) 

- (a~ + 0 + r ~/r;2) sin r; = 0, (9. 4) 
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respectively. From (9. 3) we can readily find that the imaginary parts of 
the roots for {3 2- 0 are, in our approximation, unchanged from their values 
corresponding to {3 = 0. Substituting these values for r; in (9. 4), we can 
solve this equation and we have 

{3 
f = - 2 I ) . (9. 5) 2 + a + r Jr; + ( a r; - r YJ cot YJ - 2J sin A r; cosec r; 

Namely when a = r = 2 and A = 1/2, 

{3' 
f = - 2_+_r; ___ 2_+_(_Y/ ___ r;_-l_)_c_o_t_r; ___ (l-/-4)-se_c_(_r;_/2-)' (9.6) 

and on the other hand when a= r = 2 and A= 2, 

{3' 
f = - 2 + r;-2 + ('/} - r;-1) cot YJ - 4 cos YJ ' 

(9.7) 

where {3' = /3/2, cf. (8.14). It is worth noticing that (9. 5), accordingly 
(9. 6) and (9. 7), are the even functions of YJ. 

Incidentally, the physical common sense that when A< l (i.e. c < V), 
no disturbance can travel ahead of the trolley, the source of disturbance 
in other words, is equivalent in mathematical language to the fact that 
when A < l no singular points can exist on the right of the imaginary axis, 
that is to say all possible values of ,; given by (9. 5) in a case when A < 1 
are negative. That they are actually so can be proved very easily. In 
order to do this, from (9. 3) we have 

a YJ _ _r_ = 2 cos YJ --:- 2 cos A YJ 
Y) Sln Yj 

Substituting this in the denominator of (9. 5), it becomes 

D = a + _r_ + 2 - 2 cos A YJ cos YJ - 2A sin A r; sin_YJ_ 
_ r;2 sin2 YJ 

But since O < A < l, 

-2 j sin A Y) sin'/} I < 2A sin A Y) sin r; < 2 j sin A r; sin r; I . 

D lies therefore between 

a + _r_ + 2 - 2co~ s1 =f J) r; , 
'/) 2 sm• r; 

so that D > 0, which means f < 0, Q.E.D.D 
To return, when a = r = 2, /3 = 0.01 and A = 1/2, from (9. 6) we ob­

tain 

D Notice that when ,l = 1/2 all the roots are found near the imaginary axis. 
This will be a general conclusion when O < ,l < 1. 
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~ = -0.001770 (corresponding to r; = 0.84727), 

-0.000328 Cr; = 3.41095), -0,000221 Cr; = 6.58957), 

-0.000061 Cr; = 9.53629), o Cr; = 12.56637) ,* 

-0.000019 Cr; = 15.76959), · ·· . 

The fifth one with an asterisk is clearly extraordinary, but if we remember 
that 12.56637 • • • = 4rr, we find that this is not the pole of the integrand of 
C7.1) and must be removed from the list, because this makes the numerator 
vanish at the same time. Thus the poles of the integrand are shown for 
,l = 1/2 in Table VI. As there are no roots of (8.1) which are not near 
the imaginary axis, this series will exhamt the poles when ,l = 1/2. 

When, on the other hand, a = r = 2, {3 = 0.0l and ,l = 2, removing by 
the same reason 6.28319 = 2rr and 12.56637 = 4rr from the list the following 
poles have been found; see the first columm of Table VII. However, 
since there are still other roots which do not belong to this kind when, 
,l = 2, they will be discussed separately in what follows. 

(ii) The real roots: - We can easily estimate the real roots for {3 ~ 0 
from their values corresponding to {3 = 0. Or it does not take so much 
labor to solve directly the equation 

2cosh ,l ~ - 2 cash ~ - ( a ~ + {3 + r / ~) sinh ~ = 0, C9.8) 

derived from (8. 3) by putting r; = 0. By the latter procedure we obtain 

~ = 1.04312 and -1.03944 

when a = r = ,l = 2 and 13· = 0.01. Since they were situated originally at 
~ = ±1.04128 when {3 = 0, we note the symmetry has been slightly broken 
by introduction of small but finite magnitude of friction. 

(iii) Other roots: - When ,l = 2, in addition to two kinds of the roots 
above-mentioned, there still remain others which were calculated by suc­
cessive approximation in (8.17) or (8.18), namely those roots which are 

TABLE VI. 
a, = r = 2, 0 = 0.01, ,i = 1/2. 

-0.001770 ± i 0.84727 

-0.000328 ± i 3.41095 

-0.000221 ± i 6.58957 

-0.000061 ± i 9.53629 

-0.000019 ± i 15.76959 

TABLE VII. 
a, = r = 2, 0 = 0.01, ,i = 2. 

-0.002022 ± i 1.59778 1.04312 2.08394 ± i 7.46364 

-0.000407 ± i 3.60636 -1.03944 -2.08361 ± i 7.46489 

-0.000095 ± i 9.62569 

-0.000038 ± i 15.83266 
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represented by ±2.08378 ± i 7.46426. How much change will they undergo 
when we give a positive value to (3? In order to know it, we shall return 
to (8.16). Supposing now (o =~a+ i r;0 is the pole when (3 = 0, we write 
( 2 as a necessary correction of (o owing to f/ .::C 0. Then, since ( 0 satisfies 
the equation 

cosh 2 (o - cosh ( 0 - ( (o + (o-1) sinh (o = 0 

(put {3' = 0 in (8.13)), from (8.16) ( 2 is given by the equation 

-(3' sinh(o 
' 2 = -2sinh2(0 + (2 - ( 0- 2) sinh (o + ((o + {3' + (o-1) cosh (o 

However, {3' being assumed small, we have approximately 

( = . -0'~inh(o . (9_7) 
-2smh 2(0 + (2 - ( 0- 2) smh (o + ((o + (o-1) cosh (o 

After· some tedious computations we find that 

2.08378 ± i 7.46426 move to 2.08394 ± i 7.46364, 

and -2.08378 ± i 7.46426 move to -2.08361 ± i 7.46489, 

respectively. Note that the new roots are symmetrical with regard to the 
real axis, but slightly unsymmetrical with regard to the imaginary axis. 
Table VII was constructed in this way. It is observed that there are 
only two real roots, while both of the series of the complex roots are 
infinite. 

10. We are now in a position to evaluate the integral (7.1). By putting 

T 
a= r = 2, (3 = 2(3' = 0.01, ,l = 2 or 1/2, 2112 = K, (10.1) 

we can rewrite (7.1) in the form 

KY( ) = ~ 1 (cosh ,l ( - cosh () exp(-r () d( J
i~ 

-r 2rri 2(1- ,l2) -i~ ( 2{cosh ,l ( - cosh ( - (( + {3' + C-1) sinh (} · 

(10.2) 

And as we showed in 5, owing to Jordan's lemma we can evaluate the in­
tegral in the following manner: for -r > 0, KY('r) = the sum of the residues 
arising from the poles existing on the left of the imaginary axis, and for 
-r < 0, -KY(-r) = the sum of the residues arising from the poles existing 
on the right of the imaginary axis. To write in a unified manner, let us 
introduce another notation ± 2, to denote the summation of two kinds 
above-mentioned. Since ( = 0 is an ordinary point and the poles are all 
simple, we have by differentiating the terms within brace of (10. 2) 

1 
KY(-r) = ± 202 _ l) 2, [(cosh ,l ( - cosh () exp(-r () c-2 

{-,l sinh ,l' + (2 - c-2) sinh ( + (( + 0' + C-1) cosh (}-1J~=PJ!e• (10.3) 
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Taking into consideration the fact that in (10. 3) the pole represented by 
,; + i r; is always accompanied by its conjugate ,; - i r;, we can rewrite 
the above formula in the form 

KY(',)= ± ,l2 ~ 1 ~, !lt [(cosh ,l ( - cosh () exp(r () c;-2 

{ -,l sinh ,l ( + (2 - ,-2) sinh ( + (( + /3' + C-1) cosh 0-1],=pole' (10.4) 

where ~' means the summation with regard to the poles lying above the 
real axis and !lt[ J is the real part of the function within bracket. The 
expression (10. 4) ceases to be valid for the real roots, then we have to 
go back to (10. 3). 

(i) When ,l = 1/2: - Using the approximate expansions (9.1) and (9. 2), 
we can derive from (10. 4) the following result: 

KY(r) = _ _!~'et~ [cos r; r [$ {ccos !l - cos r;) {-rz: cos!}__+ r; sin!}__ 
3 2 4 2 2 

- 5,;2 cos r; + C,;3 - 5r;) sin r;} + ( ~ sin ~ - sin r;) {12 sin ~ 

- (r;3 - r;) cos r; - c2r;2 + 1) sin r;}}- /3' (cos ~ - cos r;) r;2 cos r;J 

+ sin r; '!" [(cos ~ - cos r;) { r sin ~ - (,;3 - r;) cos r; 

- (2,;2 + 1) sin,;}]] 

+ { r sin ~ - (r;3 - r;) cos r; - (2,;2 + 1) sin r;F for r > o, 

and KY(r) = 0 for r < 0. (10.5) 

The necessary values of $ aud r; being shown in Table VI, we have 

KY(r) = 0.21896 exp ( -0.001770r) sin (0.84727r) 

+0.04 1813 exp ( -0.001770r) cos (0.84727r)D 

-0.02344 exp ( -0.000328r) sin (3.41095r) 

-0.04 1215 exp (-0.000328r) cos (3.41095r) 

-0.00874 exp ( -0.000221r) sin (6.58957r) 

-0.0° 480 exp ( -0.000221'1") cos (6.58957r) 

-0.00169 exp ( -0.000061r) sin (9.53629r) 

-0.06 92 exp (-0.000061'1") cos (9.53629r) 

-0.00032 exp (-0.000019r) sin (15.76959r) 

-0.07 9 exp ( -0.000019r) cos (15.76959r) 

for r > 0, 

1) E.g. 0.031 =c 0.0001. 
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and KY('r) = 0 for T < 0. 
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(10.6) 

In order that these different solutions may connect with each other 
smoothly at -r = 0, the algebraic sum of the cosine terms must vanish at 
-r = 0. In reality, however, we have, by putting -r = 0, 

KY(0) = 0.01 1813 -0.04 1215 -o.os 480 -0.06 92 -0.07 9 = 0.06 17, 

which does not satisfy our requirement completely. But we can expect 
with certainty that if we ~re so untiring as to take into account of higher 
harmonics on one hand and of smaller quantities ,;2, 0 .;, ··· on the other, 
this remainder will be found to vanish finally. 

(ii) When A = 2: - By the similar procedure, only a little more tedious, 
let us omit the general expression similar to (10. 5) which is too lengthy, 
we can arrive at the final result 

KY(-r) = 0.113192 exp (-1.039440-r)t 
-0.002715 exp ( -2.083614-r) sin (7.46489-r)* 
-0.004754 exp ( -2.083614-r) cos (7.46489-r)* 
+0.051307 exp ( -0.002022-r) sin (1.59778-r) 
-0.000353 exp (-0.002022-r) cos (1.59778-r) 
+0.006941 exp ( -0.000407-r) sin (3.60636-r) 
-0.05 17 exp ( -0.000407-r) cos (3.60636-r) 
+0.000650 exp ( -0.000095-r) sin (9.62569-r) 
+0.06 2 exp ( -0.000095-r) cos (9.62569-r) 
+0.000159 exp ( -0.000038-r) sin (15.83266-r) 
+0.07 4 exp (--0.000038-r) cos (15.83266-r) 

for T > 0, 

and KY(-r) = 0.112839 exp (1.043117-r)t 
+0.002717 exp (2.083940-r) sin (7.46364-r)* 
-0.004755 exp (2.083940-r) cos (7.46364-r)* 

for T < 0. (10. 7) 

Substituting -r = 0, we have from these expressions KY(0) = 0.108083 and 
0.108084, respectively; this discrepancy will be removed provided we should 
further the approximation as before. 

The curves of vibration embodied by (10. 6) and (10. 7) were calculated 
varying -r at intervals of 0.1. They are shown in Figs. 14 and 15, respect­
ively. The terms with an asterisk in (10.7) are the waves travelling ahead 
of the trolley running at subsonic speed. Because they are almost masked 
by other larger vibrations, they are reproduced in Fig. 16 in particular. 
The terms with a cross resemble the deflection mentioned in 6, cf. (6 .8). 
To compare the order of magnitude, we put -r' = 0, r = 2 in (6. 8), then 
we have 

1 
Ky(O) - -4✓--:=2(=A=,z=_=l=) 
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FIG. 16. 

A: -0.004755 exp (2.083940-r) cos (7.46364-r) 

B : -0.004754 exp ( -2.083614-r) cos (7.46489-r) 

C: 0.002717 exp (2.083940-r) sin (7.46364-r) 

D: -0.002715 exp (-2.083614-r) sin (7.46489-r) 
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Since 

).' = c'/V =). c'/ c =).✓ pf p' = )./✓3 = 2/i/3, 

we find 

Ky(O) =½: 0,31, 

i.e. three times as large as the exact value. 

11. Unfortunately we have no appropriate data just at present to com­
pare with the results calculated in the preceding section. So they must 
remain only theoretical for the time being. The writer is well aware 
that the model used is too much simplified. so that the mathematical 
treatment may be possible and that accordingly a few more steps are 
necessary to .. connect the mathematics with the phenomena actually ob­
served. He hopes to have another chance in future to discuss this problem 
from more practical view-point .. Such being the case the conclusion of 
this paper will be reserved. , 

Supplementary notes: - i) We have calculated only the vibration of any 
of the particles attached to the string at equal intervals. If we should 
like to discuss the motion of the string itself, first we must obtain <p,. and 
(/J,. explicitly by substituting (3. 9) or its equivalent for Y,. in (2.10). 
Then introducing <p,. and cp,. in (2. 6) , we shall be led to the expression 
of y(x, p) in terms of the known quantities. The answer will be completed 
by inversing y(x, P) to y(x, t). The solution thus obtained will contain 
obviously the frequencies due to Y,. together with those of the natural 
vibrations of the string. 

ii) Suppose a trolley is approaching an end where the string is fixed and 
all the incident waves reflect; the solution can be easily constructed from 
ours by superposing at the point of the image of the load another fictitious 
force having the intensity of -f and running with the same speed in 
the direction of x decreasing. 

iii) It may appear somewhat peculiar that in (10. 6) and (10. 7) the higher 
the frequency goes up, the smaller becomes the damping, for usually in 
the linear vibrations higher harmonics are aocompanied by larger dampings. 
The reason why this general rule does not hold good in our problem can· 
not be definitely clarified at present. That the numerical calculations were 
carried out carefully enough maY, be the only explanation now available. 
However, the writer's opinion is that our model is so more complicated 
than the ordinary vibration of a particle -attached .to an elastic string that 
there is some possibility that the rule ceases to be v:aljc;L 

iv) We must admitfinally that the genelal asJ?ectof th~ motion embodied 
by (10. 7), for c is la.,rger th::m V witho~t ~:x;ceptions _J?r~c-tically, is different 
more or less from what fs observed in ''our daUy life. We are able to 
mention a number of plausible causes responsible for this discrepancy : 
the model might be oversimplified, the assumed values of the paramaters 
might not be appropriate, etc. But above all we need to remember that 
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we neglected the up-and-down motion of a trolley itself when a street­
car is running. If we had treated the problem as the combined vibration 
of a trolley-wire and a trolley-pole (or a pantagraph) running in contact 
with it, then the solution would have become very realistic, although the 
discussion far more complicated would have been inevitable. 

12. The theoretical part of the foregoing is the result of the discussions 
between Professor Yamada and the writer continued from time to time 
for years. The calculation was frequently interrupted by other more seri­
ous works and was stopped longer because of the writer's travelling ab­
road. Meanwhile the increasing supply of electricity in this country has 
made us all indifferent to the motion of a trolley-wire. The writer must 
apologize to the professor for publishing this paper too late. In numerical 
calculations and drawings the friends in the institute were so kind as to 
render help to the writer. 

(Received July I, 1953) 




