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ON A METHOD OF SOLVING TORSION AND
BENDING PROBLEMS OF CONTINUOUS PANEL STRUCTURES

By Shosaburo NEGORO

In this report we treat the general solution of the torsion and bending
problems of continuous panel structures under transverse forces, twisting,
and bending moments, distributions of the external forces acting on the
members of the structures and positions of the supported bars being
quite arbitrary. The chief topics of the report are as follows:— First,
using the Stieltjes integrations with accumulation functions of the exter-
nal forces acting on a beam, the well-known formulae of the bending are
expressed in a new form. Second, we show that, using the formulae
stated above, the present problems reduce to the simultaneous equations
of the first degree as to the moments and deflections at the intersecting
points of the members, and the number of the equations is the same as
that of the unknown quantities in the preseut problems. Therefore, the
solution of these equations suffices to determine one set of unknown
quantities and the problems are solved. Last, we show an applicable
type for solving the above equations by means of the iteration methods
practically.

1. Introduction. As to the torsion and bending problems of continu-
ous panel structures, many papers have already been published. In this
report we treat the problems again by the method as stated above, that is
to say, first, the well-known formulae of the bending of a beam are ex-
pressed in a new form by using the Stieltjes integrations with accumulation
functions of the external forces acting on the beam. Second, considering
the conditions of the continuity of the inclination, equilibrium of the
twisting, and the bending moments, and equilibrium of the shearing forces
at the intersecting points of the members, the present problems reduce to
the simultaneous equations of the first degree as to the twisting, and the
bending moments and deflections at the intersecting points of the members
and the simultaneous equations have the same number of unknown quant-
ities .as that of the linear equations. Then these equations suffice to define
one set of the unknown quantities and the problems are solved. It is,
however, practically impossible to obtain an exact solution of the equations
by the usual method of employing the determinant, as the number of the
unknown quantities is too large, so that the well-known iteration methods
are needed for the solution of the simultaneous equations. Last, we show
an applicable type for solving the above equations by means of the itera-
tion methods practically.
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92 S. NEGORO

2. Formulae of bending. Using the Stieltjes integrations with the
accumulation functions (v(x), M(x)) of the external forces and the bend-
ing moments acting on a beam, the relations among the shearing force
(F), the bending moment (M ), the inclination (), and the deflection
(») of the beam are expressed by the following formulae

~Fo =Fo+Vi(%), M.=—Mc+F.+ Vix),

; ;o 1 2 Al
EIi=EIi; M‘Jx+2FEx +2V2(x), ,

Ely=EI(o+ine) = $M. 5+ SFo %Va(x)

in which ~

Vo(x) = as(x) = s Bs—1(5), a(x)= J[ (x —t)sdv(t),
0

x

Bs(x) = j (x —t)¥dM(t), s=(0,1,2,3),
0

E = Young’s Modulus, I = Moment‘of Inertia,

and suffix 0 -denotes the value at the starting point and mark (—) the
direction of the outward-drawn normal of a cross-section x.

In the Egs. (1), the functicns V(%) are known functions, if the external
forces acting on the beam are given, and unknown quantities (Fy, My, i,
90) are found from the bending conditions of the beam.

Eliminating the unknown quantities (¢y, Fy) from the 2nd, 3rd and 4th
of the Egs. (1), we have

EIz - _(y - yo) + —(2]1/’ - M~ —Vl(x) + —Vz(x) - Vs(x) @,

and from the 2nd of the Egs. (1)
FF = {M—{ + M«g ViYL = —<F3 + Py) }

= 3),
—F = (M + Mo~ Vi)Y G0
and from the 1st of Egs. (1) and Egs. (3))
- —F-»=F<—+V1(l1)={M—>+M—>+U1(ll)}/11=F<_+P1
1 0 1 0 1 } 3
2 L]

in which .
Py, P, = external forces acting on a beam at the points (0, 1),

n :
Vi) = | (h—adv(®, Vi(h)=Vi(lh) excepting the effect of Py,
Jo .
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131 i1
Us(lD) = 75 + 5 051D, - 1) = J tdo(t), )= J taM(®),
; - . . 0 0

I; = length of the considering span, Ui(})) = Uy(}y) excepting the
effect of P;.

Moreover, eliminating the unkﬁown qﬁantitiés My and Fy from th(_a 3rd
and the 4th of Egs. (1), we have

P =BGy 1 i) + 200 — y/ iy = SVaID b2 + 2V |
| | 4,
M, = 2E~—’ {Qio + 81 + 3Cy0 — 30/} = Vol + VaCl /b2
and from Eqs. (41) directly,
P = =S8 (o + i) + 200 — 9/} = BUID[12 + 20D 1
2EI : (4'2) ’
M-l» = I {(o + 24 + 3(yo — yD/ LY + Ul 1 — US(ZX){ZIZ
in v;rhich

Vﬁ(l,) = Us(l) ’ O(s(l') = Ts(l) ’ Bs(l') = '_‘Bs(l)
!' = the span taking the opposite direction of ! the positive side.

Egs. (4) are the well-known formulea .of the mchnatlons and the deflec-
tions at the ends of a beam.

3. Fundamental principle of the theory. Let us first consider the
relations among the shearing force (F), the twisting moment (7°), the
bending morhent (M), the inclination (i) and the deflection (y) at any
intersecting point (%, 7) of the members of the structures.

Now, we take the Cartesian co-ordinate axes (%, y, 2) of the right hand
system, the y-axis being coincident with the direction of the loads, and
distinguish the quantities referring to the x- and z axes respectively by
suffix s (=1, 2) attached on the left side. And, having discontinuities of
the shearing forces and the moments at the intersecting points of the
members where the external forces and the moments are acting, we take
the shearing forces, the bending moments and the twisting ones at the
points apart infinitesimal small quantities (¢) from the intersecting points
for the convenience of the following calculations. But, as to the inclina-
tion and the displacement, we have no discontinuity in all range of the
structure. Then we take the-inclinations and the displacements at the
intersecting points in the following calculation.

Here, we consider the conditions of the continuity of .the inclination,
equilibrium of the twisting, and the bending moments and equilibrium of
the shearing forces at the intersecting points of the members as stated in
the introduction.
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That is to say, as to inclination, from Eq. (2)
fnr = A9wr+ Bur + Qury  ner = B'wrt Blur + Qs 50,
in which ' ‘
1490 = Wner = Y1) thur s 24Ynr = (Wner — Puer—1)/2hner »

14Y"nr = (Yner — Vn+1. r)/lln—l-l vy 2490y = (Yner — Yne r-)-l)/Zln 1y
1B = 1. r(21M—> — 1M ), 2Bur = attr (29M —> —oM ),

n—1+te. . mer—g ner—1+e

IB,n-r = ilntler (2 IM--—) IM(—-—— ) ’ ZB ner = 2Mner+] (2 ZM "‘)'— 2M <—"—) ’

nteer nt1— ner+1—¢
@ur = [(37) {=Bvitinn + 3Vt — Evatnn}], s=a-2,
@ = [ (F7) A 500 + 5 U — U} ]

(s:l,q=n+1-1’).(S=2»Q:”’r+1)’”“'T:(GI{Z'I) )

Then considering the condition of the continuity of the inclination (i,.. =
— ¢'y.r) and Egs. (5,), we have

s[ds'ar + By + Blor + Qur + Qs =0 (52),
in which
1418 e = 14Ynr — 14Yn41r s 2428 0 = 24Yner — 24Ynerr1, s = (1, 2),
from the condition of the equilibrium of the moments,

nteger n—=e n-r—e

UMy +M— + M ]+2[T _++T <1=0, }
(6,

My + M S+ M ]+T— +T 1=0

nere ner—g nte.r n—e-r
in which
sM,..., = external bending moment acting at the intersecting point (#,7),

from the relations between the twisting moments and the inclinations,

[znr—‘ Zn r—l] - 2|:Aan —~—>] - ZEAnr-r ——>] - 2[Al znr + Al Bnr+ 41 Qn r]}
@,

ner—1+€

2liny — fne1r] = 1[Aner T——-’ 1 = 1{Anr T——> ] =1[d2 tpr + 42 Br.r + A2 Qu.r]

—1tear
in which
142 T = 24Yn0 — 24Yn—1r s 241 Ener = 14Y0r — 14Ynr—1,
142 Bur = 9Bnr — 2Bn—yur 5 241 Bur = 1Buy — 1Bnar—1,
142 Qner = 2Qnr — 2Qn—1r 5 241 Quor = 1Q@ner — 1Qur—15 Anr = (1/G Crs
G = torsional rigidity, C = torsional constant,

and from the equilibrium condition of the shearing forces,
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IF(—' +1F—> +2F<—+2F —>+P71'I‘+Rnr: (81)

n—gr nter Ner—g ner+¢
in which
P,., = external force acting on the member at the point (#, #),

R,.. = reactional force acting on the supported bar at the point (», 7).

Further, considering Egs. (3), the above equation is also rewritten in
the form

—R,, =M. +Mc___)[/lpy—M_, +Mc_ )lnt1+]
n—gr n—1+e.r ntl—ger nteer

8,
b o Mot M) Jlyr = (M st M D lnrst] + O |
ner—g¢ ner—1+e ner+l—e Nerte

in which

@n-r = l[m(ln-r)/ln-r + v1(ln—|-1'r)/lox-l-l-r]
+ z[l—]l(ln-r)/ln-r + Vl(ln-r-t-l)/ln-rﬂ] + P7.-r .

Moreover, the supported bar being elastic and the form of the cross- sgctlon
being uniform, we have

Ynr = —[RRJE Al | 9

for the relation between the reaction and deflection, in which A,., denotes
the area of the cross-section and /.., the length of the supported bar and,
further, the bar being approximately regarded as a rigid body,

En-r —> oo ’ yn-r # 0 (92)

Here, having the supported bar at the intersecting point (2, ), we have
one independent equation as to y by considering Egs. (8) and (9), and
having no supported bar at the point, Egs. (8) are the independent rela-
tions as to moments.

After all, the above results tell us that, as regards the unknown quanti-
ties, say, the moments (M, T),.. and the deflection (y..») at the intersecting
points (#,7), we have the simultaneous equations of the Ist degree with
the 9 unknown quantities and the same number of the equations. Now,
for simplicity of writing the following parts, we call these equations ((5),
(6), (7), and (8)) the fundamental equations.

Next, let us consider the above relations at the ends of the members.
(a) In such cases when the intersecting points (#, #) are on the boundary

members,

(i) case # = max. or min,:—

In these cases, we have

nerte Ner+e Nerte

Z[F —>> M —>» T »51=0 (7’ = max.), }

2[F <« M <« —)] - 0 (7‘ = min‘) ’ . (101)

ner—e NT—8 N —E
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for boundary conditions, and see easily that the 2nd of Egs. (5,) does not
hold for the case (» = max.) and the 2nd of Egs. (5,) and the 1st of Egs.
(7) do not hold for the case (» =min.). Hence, excepting these equations,
and putting these terms expressed by Egs. (10,) equal to zero, the previous
fundamental equations hold also for the present cases. Then, in the case
(r=max.), we have the simultaneous equations consisting of 7 equations
for 8 unknown quantities, and, in the case (# =min.), consisting of 6
equations for 7 unknown quantities. The above descriptions tell us that, .
considering both of the cases together, we have as many simultaneous as
the unknown quantities. - :
(ii) case # = max. or min,: —
In these cases, we have »
(F—» , M , T 1=0 (n = max.) .
nteer ntesr Ntgr -
. (10,
Fee s, M, Te 1=0 (n=min) . v
n—ge-r N—g.1 n—gr .
for boundary conditions, and see easily that the 1st of Egs. (5,) does not
hold for the case (# =max.) and the 1st of Egs. (5,) and the 2nd of Eqgs.
(7) dé not hold for the case (#=min.). Hence, similarly as in case (i),
excepting the above equations and putting these terms expressed by Egs.
(10,) equal to zero, the fundamental equations hold also for the present
cases. Then, in the case (# =max.), we have the simuitaneous equations
consisting of 8 equations for 7 unknown quantities and, in the case (=
min.), consisting of 6 equations for 7 unknown quantities. These descrip-
tions tell us that, considering both of the cases together, we have as many
simultaneous equations as the unknown quantities.
(iii) case (#, #) = max. or min.: —
In theses cases, we have
(WF s , M, T 1=0, 2[F<—,M<.—,T<—]=0

Atger uter ‘ntger ner+e Nt nerte
((# - ) = max.)
WFe s M , T 1=0, oF «, M ,T 1=0
n—_eer n—er B ot -1 Ner—g Ner—¢ 9T —g

((®+7) =min.,)

(105)

for boundary conditions and see easily that Egs. (5,) do not hold for the
case (#; #)=max. and Egs. (5,) and Egs. (7) do not hold for the case (%, )
=min. Hence, similarly as in the cases (i) and (ii), excepting the above
equations and putting these terms expressed by Egs. (10;) equal to zero,
the others of the fundamental equations hold for each case. Then,: in
the case (#, #) = max., we have the simultaneous equations consisting of 7
" equations for 5 unknown quantities and, in.the case (%, #) =min., consist-
ing of 3 equations for 5 unknown quantities. Therefore, considering both
of the cases together, we have as many simultaneous equations as the un-
known quantities.

(iv) case (# =max., # =min.) or (#=min, ¥ =max.,):—

In these cases, we have
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WFs M, ,T_,1=0, oFf .M -, T ]1=0

nter ntger wter ner—g ner—g ner—g )
(# = max. and 7 = min.) L
IEF‘—" 9M(——- yT‘-h]:Or 2[F,——>,M~—',T——-*]:0’
5 n=gr N—ET n—ger nertg nerte nertg

(7 = min. and » = max.)

(10

for boundary conditions and see easily that Egs. (5,) and the 1st of Egs.
(7) do not hold for the case (# =max. and # = min.) and Egs. (5,) and the
2nd of Egs. (7) do not hold for the case (#=min. and » =max.). Hence,
similarly as in the above cases, excepting the above equations and putting
these terms shown by Egs. (10,) equal to zero, the others of the funda-
mental equations hold for each case. Then in both of the cases, we have
the simultaneous equations consisting of 5 equations for 5 unknown
quantities. These descriptions tell us that, considering both of the cases
togeteher, we have as many simultaneous equations as the unknown
quantities. ,

(b) In such cases when the ends (%, ) of the members of the structure

are built. '
Firstly, as well known, we have

lin-r = Zin-r = 0 > Voper = 0 ) (]1)

for boundary conditions and therefore the following are satisfied.

(i) case » = max. or min.

In these cases, from the boundary ‘conditions (II) and the fundamental
equations, we have

Yar-1/2lnr = 3[Bnr + Quurl (r = max.),
| a2,

yn-r-l'llzln'rfl = ZEB’n-r + Q’n-r] (7’ = mln) ’
AT s+ T ]1=0,3M o+ M 1=0 (r=max. or min) (13,

nert+E Ner—8 nerte ner—8

_1i71—1-r = Q[Xn-r T 5] = ?[Anvr T —-—>] = —1{dy,r-1 + Bwr—l + Qn~r——1]
e nire } 14)

' (r = max.)

and

"'Rn-r = Fn ;—: = 2[{M -—;‘!‘ M <——+ Ul(l,, r)}/ln | . (7’ = max.)
' } (15,)

~Rn,=F = —o[{M .+ M b - Vl(ln 7'1-1)}/l'n 1] (# = min.)

nr+e nrt+l—e

Then, in the case # =max., we have the simultaneous equation consisting
of 5 equations (Egs. (12,), (13,) and (14,)) for 4 unknown quantities and,
in the case # =min., consisting of 3 equations (Egs:. (12,) and (13,)) for 4
unknown -quantities. Therefore, considering both of the cases together,
we have as many equations as the unknown quantities. Moreover, Egs.
(15) give the values of the reactions and the shearing forces at the end
points (», 7).
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(i) case # = max. or min.: — o _
In these cases, similarly as case (i), from the boundary conditions (II)
and the fundamental equations, we have
| Yn-tr [1hner = 1_[B'n-r + Qn.r] (n = max.) 12,
Yntrrf tbntrr = 1[B e + Q'n]) (#n = min.) } 2

e +7-,1=0, M. +M_, ]=0, (#=max.or min.) (13,)
n—g-r nter .

n—ger nte.r

_Zi'n—~1'7‘ = l[lw-r T

— 1 =1l T o 1= —a[dYu-1 + By 1+ Qn-1.r]
el T } (14,)
(# = max.)
and 7
—Ruy=1F . =AM + M + U(ln)}/Ins] (# = max.)
N—ger N—geT n—1+gr

_ (15,)
"‘R'mr = 1F~——> = ”IE{M———e +. M;:s-—e T_ Vl(ln+1~r)}/ln+1.r] (n = min.) }

ntger n+1—gr

Then, in the case (» =max.), we have the simultaneous equation consist-
ing of 5 equations (Egs. (12,), (13,) and (14,)) for 4 unknown quantities
and, in the case (# =min.), consisting of 3 equations (Egs. (12,) and (13,))
for 4 unknown quantities. Therefore, considering both of the cases to-
gether, we have as many simultaneous equations as the unknown quantities.
Moreover, Egs. (15) give the values of the reactions and the shearing
forces at the end points.

In conclusion, the above descriptions tell us that we have as many
equations of the form of the fundamental equations as the intersecting
points. Therefore, these equations suffice to define one set of the unknown
quantities and, from these results and Egs. (1), all of the requirements
are found. Then the problems are solved.

1t is, however, practically impossible to obtain the solutions of the equa-
tions by usual method of employing the determinant, as the number of
the unknown quantities is too large in general, so that the well-known
iteration methods are needed for solving the equations practically. For
convinience of the actual calculation, we rewrite the simultaneous equa-
tions with the unknown quantities (iZ, of, ¥)n., referring to the inclinations
and the deflections at the points (#, ) instead of the previous fundamental
equations over again,

First, from Egs. (4)

11‘4';:s = _(lMﬂ:s + an+w) = 1Cn+l-r (lInﬂ-r +3 lAy,n-r) + 1Sntier,
gor 2t 8er
1M.__;> = —{1Cut1- (1l nr1r + 3 1Ay/n~r) + IS—nﬂ-r} ’
Nteger
1]”——-» = —(1M<-—— + 1Mn+1—e-r) = 1Cn+1-r (ll’n—l-l-r + 3 ldy,n-r) + lKn-H-r ’
ntl—ger wtl—gr - .
1]‘4;--_;1——s = ’—{lcn-l-l'r (1I'n+l-r + 3 lAy'n-r) + lKn-H.-r} »
nt1—gr
oM = —GM — 4 2Mre) = 2Cniy Gluer+1 + 3 249 0r) + 2Suert1,
N8 NeT+€
ZM 7—?8 = _{ZCW?"I‘I (ZInor'l‘] + 3 ZAyln-T) + ZSn-T'l‘l} ’
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2Mn renn _; = —(ZM 4-—— + ZMx r+1—e) = 2Cn r+1 (2I ner41 + 3 243’ e r) + an 1
2M7“<T—+1—_E— —-{2Cn 1 (21 wrt1 1 324 ) + 2Kur}

(16)
where

$Coir = 2(ET Dy tper = 100 + 20n-1.0], 10y = 1028, + fn1.0],
elur = alinr + 2ngl,  ol'mr = 2200 + fopil,
1Sut1r = =Vollntrr) [ibuirr + VaGlusir) [ 1utir s 1Sut1or = 1Sutrr + 2Mutenr
2Snrt1 = —Va(aluri ) /obnrta + Vs(alnr1) [2l0r+1,
BSurt1 = 2Snat1 + oMuarve,  2Kprr) = _UZ(Zln rD/2hnrt1 + UsCelnort1) 2l P41,
2?(2..,--,4 = 9Kpt1 + oMoprt1—e
and substituting Egs. (5,) and (7) into the2ad brackets of Egs. (6),

-Bn 7r+1 ler—l
_,I_ _—
2xn r+1 ZAn'r
+ 21—'71~r+1 l[AJ. v+ Blfn-r + Qn'r + an'T] ’

Il

AT —+ 7n<—] = o[ A2 inerpy + A1 Quury] + H27H

ner+e

2B or B,— o
1T— + T(—— :| = 1042 int1er + 42 Quirer] 4+ 2T 4 2onolr
wteer .lln"l-] - lln-r

+ 1Fn+1-r ZI:AZi + B/'n-r + Qn-r + an-r] ’
where

1 )
1 = L + ; ol el = L =+ 1

’
l/ln+1.r ey qum--l-]_ 2

. - in.
ZAIZZwH-I = [u - Al—nz] = (IAyn-r-i-l - IAyn-r)/Zlnﬂ'-I-l
2 An-r-l—l an‘

TAyn-T‘I'l + ]Aync1‘—~]

2 2 — o114 Y0,
24 n.r 41 284nr

- (IAwa - ].Ayn-r-l)/Zin-r =

. i"l . Z.7 ot
142 iy = ][Lﬂr - Az—”] = G4Ynt1r — 24001 At 1or

An+1-1’ An-r

2Ayn+1 o, 2dYu—1
i A
ntlr 14 nr

— QAYnr — 24Y0-12) [1Aner = — 1Dt 24Yer s

2412 Qneri1 = [Al Qrrr1 — 4 Q”'T:I = (LQn-r-l-l - lQn-r)/ZXn.r-l-l
2 A,,.T-ﬂ Zn.,.
1Qn 1¥nr+l 4 -l IQn r—1

I 2l oert11Qner
An rt1l 2/n-r

- (lQn-r - 1Qn~r-—1)/21n r =

IAZZ Qn+l~1‘ — I[AZ Qn-l-]-r _ AZ Qn-r] — (ZQ-n-H-r _ 'ZQwr)/lln-l-l-r

An-H-r An-r

2Qn+1 r ZQ 1e
- (ZQn or T ZQn—l r)/l ner — A ; ‘ lpn+1-r 2Qn~r .
ntler 1Aner
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Then, substituting the above equations and Egs. (16) into Egs. (6) and
(8), the fundamental equations are rewritten in the following forms:—

1L fir1 + Qi1 + O bporr1 + QF fny1r + (202 - ) inar]
— 1B Yn-1r + (B — B) ¥ynr — B’ ynt1.r] = [1Hnrlo,
ol Entr + Q2 8t + O ingrer + & Gnrry + 2oty + a3') 2,1
) — 2B Ynra1+ (B — B) Yur — B Yur+1) = 2Hnrlo,s (17,),
1B inetr + (B — B irr — B intrr] + 2B tnery + (B — B') iy — B Lpur1]
+ 1001 Yutar + 02 Yn1.r] + 201 Ynri1 + 02 Yor—1]
+ 0¥ = —(Rpur + Op.r),

in which
100 = (GC/ Dy 18y = LGC[Der1 5 102 = — 21(ET [Dner,
10y = —21(ET[Dut1er» 103 = —{41(ET/Dyr + (GC[ D1 + (GC/ 1,0},
10 = —{41(ET/ D)1 + 2(GClDneri1 + 2 GC/Dur} , 1B = 6,(EL]12),.r,
18" = 6 (ET/PP)nt1r, 101 = 121(ET]Dns1.r » 102 = 12 (ET/13),.r,
201 = ((GC/Dnr, 20 = 1(GC|Dirr, 202 = —2(EI[Dier
20y = =2 (ET[Dner1, . ‘
203 = —{42(ET/Dner + ((GC/Dysrr + 1(GC[Dur} s
203 = —{4 (ET [ Dnerv1 + 1(GC[Dntr1r + 1(GC[Dnr}
2B = 62(EL[1)sr, 2B = 63(ET/PInat1, 201 =12o(ET[1)nrr1, 202 = 122(ET[ 1)y,

0= —(0, + 102 + 201 + 202), E = Young’s Modulus, G = Torsional Rigidity,
C = Torsional Constant,

—

241 @nrty _ 241 @n-r

21 ner+1 zﬂn.r

r.lHn-r]() = ‘—IEMn-r + 21—;;-r+1 (Qwr + qum‘) +
2 (9 Kty — Snort) + 277 (2 Ky oy — Sprcy)
2Anr+1 ZAn-r
— (1 -+ 2 grn.r-}-] 1#n+1.r)_sﬂ+1-.r - ],Fn'?‘ + ZPn-r-l-l;lI_{n'i-l-r] ’

142 Qui1r  14s Quer
1A71.+1~'r ]Aﬂ'?'

[ZHn-r-JO = —o[Mpy., + 1Fn+1"~'r (Qnr + Q’n.r) +

-+ 2/~‘n—+]r (2 Kn-l-l'r - Sn-l—l-r) +2%1;7‘ (2 Kn—l-r - Sn—[.r)

1An+1r 1A%ner
- (1 + 2 1E1+1'r Zlun‘T‘l‘l) S—n-r'l‘]. - K:-?‘ + lrn-i-l-r 2ler+1 Xn-ﬁlj ’
1 1 1 1 1

= =+ s elpr =
lxnﬂ-r 1Aner

1L ot - ,
! Amrtr | ghmr

Awr = (l/GG)H'T ’ :u'n'r = (l/6E1)n-r ’
sSn-r = ‘_Vz(slnor)/sln-r + Va(sln-r)/slzn-r ’
sKn.r = —Uz(slr;-r)/sln-r + Ua<slqz-r)/slzn-r ’ 27{-1:-7‘ = ZKn-r + ZM'IM'—E ’
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2Sn.r = ZSn ot ZM‘ =118 » 1Kn-r = lKn-r + 1Mn—e~r, 151]-T =1Sar + IA’[n—l—l—E-r ’
24| Q’n T‘l‘l lQn o+l T lQn-r ’ 142 Qn-f—l-r = ZQn—r-l-r - 2Qn~r ’

ln or
Quer = [ =22V + S Vil = 1= Vikh)],
@“.T = Pu, +- [ﬁICIn-r> + 171(11;-&1-7’)] + [Ul(ln r) Vl(ln~r+1)
1 ln-r ln—l—l-r 2 ln o ln¢r+1

+ GEoer + 1S0r) — (Knt1er + 1Snti)

llwr 1laz-l-1 or
Kur + 2Snor) — (2Knort1 + 2Snrt1)

ZZﬂ or 2ln 1

Next, at the points (%, ) on the boundary, we have forms slightly
different from Egs. (17,), because some of Egs. (5) and (7) do not hold
as the previous discriptions. Then, let us show these equations at the
points (#, »)on the boundary.

(i) case  =max. or min.:—

In these cases, the boundary conditions are expressed by Egs. (10,) and
the 2nd of Egs. (5,) does not hold, as the previous descriptions. Moreover,
in the case (#=min.), we take the following equations for the 2nd of
Egs. (7) ‘

— ] = lrjf 'rT——-» ]

n—ltger n—ger

—2['ner — t'notr] = 1[Aner T
= —1[ds?"nr + A2 B"nr + 42 Q" uier
in which :
1428 ey = 249" e — 2491100 = (Vuer — Yner+1)/2luer+1
L — Wa—1or — Yu—ter+) ] 2dn—1or+1
142 B"sor = 9B'ner — 3B'n1r = ollnrr1202 M — — M ]

nertE nertl-—¢
- oMn—1rv1222M s — M L]
n—1-rt¢e n—lsr+l—¢

, IA"Q nr—ernr Qn—lr]

’lhen considering the suffix of the unknown quantities in the fundamental
equations and putting the quantities about the fictious members equal to
zero,  we have the following equations by similar ways as the case (i):—

R . . Oy L
[azl,ln-r-l-r + Qo+ as) i + dgin_gr + {alz rrt }:I
1L 1 Znertl
{wf,. Y }(r = max.)
([1 ne r]l (r = min-) ’

+ 1[B'(ynﬂ.r = 3nr) + B(Yrer — Ins r)]

A3 ipy + gt rmg H

o'ty + O fpger + { . .
02[ a3’ iy + ay inol

Baer — Ymor—t) H,, ]| (r=max.)
'[{ﬁ'cyyn.m > yn.la} ] N {Esz.rhl”} <: = f:lf:) ’
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]'[B itor (B — B ey — B z'n-l.r] + 2[(3 B i +

09 mer—1 ]
+ a.'Vn-r + ltaly%fl-r + 623’72-—1‘7'] + 2[{613’”.#1}

_ {[Rn-r + @n-rjll
[Rmr + @wr]l

in which

B NG pee

it = {4 () * T )yd 7 i,

=Y
Il

{
5 = —12

{

28 n.r

24 ner+1

pinnd]

'} (7 =min.) ’

(r = max.)

(171) ’

3

l
2{(5),. 0 ()4 (), o=ma,

1< 3 >n+l~r + 1< 3 )n.r + 2\ /3 n-r-l-l} (r - mln-) ’

[lHn.,.jl’ - [an Q ner Qn er—1 + 1#nar—1 (2 I{ﬂ e sn r—l)
1 21,, or Zln or
- (1 + 2 E R ’”;—*‘—"I_fnﬂ-r] ,
24ner
LHpo D) = — [Mn.r Querrt + Qo 4 Mnrr] 2 Kyrt1 — Snert1)
1 2Aner+1 2Anertl ,
—_ (1 + 2 ]2';‘#—1-12) §w+l~r - _I?nor + lﬁ&m Km'l’l'?‘] ’
ner+
[2Hn-r]11 = [Mz o+ lA22 Qn-l—l o T Kn o+ ?IZ’H‘] : (2 Kﬂ'ﬂ or T S”'ﬂ ")

14n+1-r

+2“;-“<2Kn tor = Sue1) = 1Fyekterabtner @ Koop —

1ner

2 +
o ! = —_2[Mn v — 1422 Q" t1r — Snert1 + /';"ﬂ ad

1A n+t1er

@ Snr1-rt1 — Knt1ort1)

- 1Fn+1-r olper+1 (2 §n-r+l - I?n-r—l-l) + ZLIHT—I_.EI (2 §7:—1~r+1 - Kn—l'r—rl)

14ner

{Qﬁ-r]l’ = Ppo+ l[ﬁl(lnor)/lw-r + 71(1n+1~r)/laz+l-r + ﬁl(zlmw)/zl'n'?‘

(lKn ot lsn r) -

| lln o lln-r-l or

4+ ——

Zln-r

(IK'n-l-l o+ lsn-f-l r)

(ZKn-r + 2311‘7‘) ’

~sw]s

]
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EQW?‘]II, = Pnor + l[ﬁl(ln-r)/ln-r -+ I_fl(ln+1-r)/ln+}-r:| -+ I71(2ln~r+l)/2l71-r+1

1
+ (I»Kwr + lsn-r) - (lKnﬂ-r =+ lsn-l-l‘r)
1lnor 1o ntler
1
-3 G@Euort1 + 2Snr1)
20 ner+41
A 2 D" _ AZ Q'/7n+1or AZ Q"n-r . 2Q’n+1-1‘ - Zan-r ZQ/n-r — ZQ,n-—]-r
142 ntler = - 2 = -
1 Xn-l-l-r ner 11n+1-r lln-r

— Zan-l-l-r + ZQ'n—M'

i
]l 1/1 S 1Fn+1-r ZQ nery
Loy ner

1422 Qn-{-pr = %QW/—1"1~7’ -+ M_—I'Z - 11—111+1-T ZQn-r s
nitr  1hner
and the other coefficients coincide with that of Egs. (17,).

(ii) case # =max, or min.: —

In these cases, the boundary conditions are expressed by Egs. (10,) and the
1st of Eqgs. (5;) does not hold as the previous descriptions. Moreover, in the
case (#=min.), we take the following equations for the 1st of Egs. (7)

"‘l[iln-r "i/nor—lj = ZEAWT T — ] = 2 [171'7‘ T —]

ner—1+e Ner—8

= —ald1 Z.”n-r + 4; Ve + 41 "n-r]
in which

24| iy = 14Y"ner — 1Ay’n-r—1 = (Ynr — Ynrter)/1lnt1r
’ — (Pner-1 - yn+1-r—1)/lln+l~r-—1 ’
241 B"nr = 1B'nr — 1B'nr-1 = 1011-(2 1M7;‘_—; M — D

n+1—8.r

—1attr—1 @M — 1M ).
nte

r—1 ntl—ger
Then, considering the suffix of the unknown quantities in the fundamental
equations, and putting the quantities about the fictious members equal to
zero, we have the following equations by a similar method as in the treat-
ments for case (i) and (ii):—

o3 Iner + A2 in—l-r}]

. re
Ay iga—y + ot Ty + { . .
1[ oy i + Olz' Lutler

+ {1‘9 Yner — yn—lor)} — {[1Hn-r]2'} (n = max.)
B Ynv1r — Ynr) [1Hp.» 12" (# = min.) ’

. . , A Lptor
2[“2 lpr—1 t+ o inor1 + oz + ag’) in, + {ai/ i:i-:or}]
+ 2lBYur — yn;r—l) + B'Gnert1 — Yner)] 17y,

_ {[an.,.jg'} (7 = max.)
[eHp.rld")  (# = min.)’
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2[(B - B,) in-r ‘I‘ {_g, ::;:i‘:}] - 2[3, inoﬁ-l + (B’ - B) ir;r —_ B incr—ﬂ
102 Yn—1. r}

+ 3ynr+2L81yn r+1 03Yn. r—1] + {0 y
W01V pt1er

_{[Rn-r + @n-r—_lz } (n = max.)
[Rpo 4+ 0,8 (2 =min)’

in which ’ ' P v ' !
1 = {4 1<£l£)n+1;r + 2<GTC)1¢~M-1} (” B min.) '
g = - {42(_—1-1>n r+1 + 1<G—lc)n.r} <n N max') ’

[lHn.-r]Z’ = - [Mn~r + 2412 Qn-r-l—l —]K_n-r + l_l;n__-r-l-l <2Kn-r+1 - Sn-r-rl)

2Aner+1

]/:; r=1 (2 lKn =1 1Sn or— 1) - zrn r+1 1M4ner (2 lKn T 1S»,,.,«)(] ’

"o / S
LHy 2 = —I[MW — 2412 Q" port1 — 1Sntter

4 Wntlrtl g Surirts — Kurporsr) + 1'””;'1;1 2 Sn-]—l o1 — Knrpret)

2%n.r+1 - 3

- Zrn'r-l-l 1HMn41er (2 §n+1~r - Kn+l~7’)] ’

’
Q' nr + Qn-—l - + 2"";_1 r (2 I{n—l-r - Sn—]°7')

lxn-r 1Aner

[Z ne r, = _‘ZI:MnT +

- <1 + 2 Wn_wﬂ) §n-r+1 - Kn-r + ZIZ.L_CTJ ZEW'+1:| >

1Aner 14ner

= - Mnr+Qnr-‘_Qn_ﬂT+Zﬂn+lr(2Kn+lr“‘Sn+lr)

[A " “2 ]}n-l—l or 1 n+1 o7
(1 -+ 22//‘7& r+1) Sn rt+l T Kn .7 + S—— 2‘un Sad ZK ner+1
14n+1-r 14n+1er
[@n-r]2' = Pn-r + ﬁl(llnﬂ)/llnw "I‘ ZEﬁl(ln-r)/ln-r + Vl(lnrr+l)/lnfr+1] .

+ ll—:;r(]an + ISn-'r) + ”[l_l— (Kn-r + Sn-r)

(Kn r+l + Sn r+1)]

ln» rt+1
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[@n-rjz', = Pn-r + 71(ll1z-l-l~r)/1ln-l-l-r + Ztﬁl(ln'r)/ln-r + V](ln-r+l)/ln~r+1]

1 .
- (lKn+1-r + 1Sn+l-r) =+ [ 1 (Kn-r =+ Sn'r)
lln+1.r ‘ 2 ln-r )
1
- (Kn~r+1 + Sn~r+1) ’
nert1 E .
2 A2 Q g r = [41 Q"1 _ 51 Qs _1Q"%rn1 n 1Q" 1 ZI;M'-H @ er
., 2 An-r-}-l ln-r 21n~r+l ZAn-r

@n. Qner—
241 Qu1or = Wnrtl 4 1¥ner=1

— ol prr11Qnr
Zln-r-l—l Zlnw'

and the other coefficients coincide with that of Eqgs. (17p).

(iii) case (n,#) = max. or min.:—

In these cases, the boundary conditions are expressed by Egs. (10;) and
Egs. (55) do not hold for the case (%, ) =max., and Egs. (52) and Egs. (7)
do not hold for the case (#, #) =min. as the previous descriptions. Then,
considering the suffix of the unknown quantities in the fundamental equa-
tions and putting the quantities about the fictious members equal to zero,
we have the following equations by a similar method as the above cases:—

103 Ener + Qpin_tv + A1inr1] + 1BYnir —Yn-1r) = [1Hur 13
‘ ((n - ) = max.),
1L tner + O T + 0 Enrr] + 18 Dntrer — Yner) = [1Hpords
» ((nm+7) =min.),
A0 Ener + g iner—y + Qin 1] + 2BIner — Yner—) = [pHply
((» - r) = max.),
oLad Tner 4+ QA Tnerr1 + QA Engrr] + 2B’ Fnerr1 — Ynor) = Hpo D3
(- 7) = min.),
(B = B iner + Bin-14] + 2[(B — B iner + Bineri] v
+ 0Ymr + 102 Yn-tor + 202 Yuer—1 = —[Rur + Ol
((n+7) = max.),
1L(B — B tnr — Blinsrr] + 2l(B— B tnr — Blinor1]
+0Ynr+1 + 101 Ynr1or + 201 Ynery = —[Rpur + Oy ls"”
((#-7r) = min.),

173,

in which

103 = _‘{‘?K%)W + 2<%Q>M} ((n+7) =max.),
= (47, 7 (T 0o = mind,

+ (%—C) } (o7 = max),

ner 1 T
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=12 [ (TI> ]’;f) } @ =max),
§=—12 <% n*i;l o (%)nw-rl} (G- 7) = min),

[1Hn~r]31 = _l[an + —QM—T‘ — I_{n-r + W;—H (2 Kn-r-l - S’n'r-l)

2An «r 2Aner

lﬂn oy (2 Kn - — Snor)] ,
217» or

»[lHn-r]:%” = _1[Mn o T Q et Q — §n+1-r + ]/1;+—1-r+1 (2 §n+1ar+1 - Eb+l'r+i)

2Aner+1 ’ 2Aner+1

- M (2 §n+1-r - En-ﬂ-r)] ).

2Aner+1

[ZHnnr]S’ = “Z[er 63;—1 r + 2,:; —1r (2 Kn—l or T Sn—l r) - Kn 7] )
ner ner

[an-r]Ii” — _Z[an‘ 4 Yner Q By <1 + 22#7& r+1> Sn oy et 2l nr+l Kn 7+l]

-lin-l-l'r 14nt-1-r 14n+]1r
[@n-rjs’ = Py, + Ul(llnor)/lln-r ner + 1Sn)
1
+ 'l— (ZKn-r + 2Sn.r) ’
2¢mer . .

[@n r-_|3 =Py, + Vl(llnﬂ 7‘) /lln-rl ot Vl(Zln r+1)/zln o+l

- (lKn—l-l o7 + 1Sn-|—l r) 1 (Kn rtl + Sn r-!-l) ’
lln-h or zln r-r-l

and the other coefficients coincide with that of Egs. (17y)."

(iv) case (# =max. and 7 =min.) or (# =min. and 7 = max.):—

In these cases, the boundary conditions are expressed by Egs. (10y) and
Egs. (5;) and-the 1st of Egs. (7) do not hold for the case (#=wax. and
7 =min.) and Egs. (5;) and the 2nd of Egs. (7) do not hold for the case
(#=min. and 7 =max.) as the previous descriptions. Then, considering
the suffix of the unknown quantities in the fundamental equations and
putting the quantities about the fictious members equal to zero, we have
the following equations by similar method as the above cases:—

Loy inerr1 + a2 inﬁl-r + dain] + 1B@ner — Yn-1.) = [1Hporld

(# = max. and 7 = min,)
i[al inor—l + 052’_ inﬂ»r + 053' inr] + IB,<yn—i§1'r _ yn'r) = [lHn~r]4”

‘(# = min. and » = max.)
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olon in—lor + az’ in-r+1 + 063' imr] + z[ﬁl(yn-r-t-l - yn-r)] = [an-r]4'
' (# = max. and 7 = min.)
Zl:al, z.n-l-lw' + ap in-r—l + 243 inor] + ZEB(yn'r - ynor—l)] = [Zerli”
(# = min., and 7 = max.)
LB — B iy + Bin—1] + 2l(B — B") iy — B'inr+1]

+ 0Yner + 102 Y1 + 201 Ynrt1 = —[Ruer + 6., )d
(# = max. and 7 = min.)

(174) ’

I[(B = B igr — Blinrar] + o[(B — B) ipur + Bineri]
+ 5yn'r + 161 Yntler + 262 Ynr—1 = —[Rn-r + @n~r]4”

(# = min. and 7 = max.)

in which
s = —{41<Tl>n -+ 2<979)Wﬂ} (# = max. and # = min.),
2 = _{42(%1)7‘%1 1( GTCL} (# = max. and 7 = min.),
EI EI

(? nﬂ.r N 2<_ld—)nr} (% = min. and 7 = max.),
0= —12 {l(ﬂ)w + Z(E—I)Mﬂ} (n ='max. and 7 = min,),

[lHn-rJ4’ = _1[ ner T M - Kﬂ,-r + Ll;_nr_ﬂ (2 Kn-r-l—l - Sn-r+1)

an-r-l-l 2Aner+1

_aler g, s,,.,)] ,

2Aner+1

' — 0O — — — .
[lHnar]«i" = —‘ll:Mn-r - Qn_r_l“gﬂ - ISn+1~r + hl‘_n;-ﬁl (2 Sn+]~r—l - Kn+l~r—1)

2/ ner

- llu_:-l-;-_r (2 §n+1~r - Kn-l—l.r)] ’
28Aner

r_ 0 — _ —
[ZHnorll’ = "‘J:Mn-r + %M‘ - 2Sn-r+1 - 2#;“7‘-'-1 (2 Sn-r—i-l - Kn-r-i-])

14ner - 1Aner

+ ?“nl-_lrﬂ 2Sn-1rt1 — I_fn—l-r’rl)]'

14ner
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[ZHn-r]4'i = - [Mn Qn+1 s Qn r ZKnor + 2/;"—*-1.7" (2 Kn+1-r - sn-l—l'r)

1/1,“_1 o 1An+1.r

[0n)s = Py, +ﬁl(lln-r)/lln ot Vl@ln 1) 2bner1
o (B + S0e) =

lln o 2bner+]

[@norll" = Pn-r + .Vl(lln—p-].r)/lln-r}-r + I_Il(Zlnor)/Zln-r
L (lKn—H-r + 1Sn+1~r> + ll (ZKn-r + ZSnwr) ’

lln-f-br 2°ner

(ZKnor+1 + 2Sn-r+l) ’

and the other coefficients coincide with that of Egs. (17).
Moreover, in such case when the end of the member is built, as well
known, we have the following equations instead of Egs. (17)

snr =0,  Ypp =10 an.

In conclusion, the above results tell us that the simultaneous equations
(17) can always be solved by the well-known iteration methods and the
solution suffices to determine one set of the quantities (sn.r, ¥»r) at the
intersecting points in the structure. Then it is clear that substituting these
values into Egs. (1) and (4), all of the requirements are directly found
and the present problems are solved.

4, Conclusion, By the present method, the torsion and bending pro-
blems of continuous panel structures can always be solved when the deflec-
tions of the members of the structure are all small. But the method, as
it is, cannot be used for the large deflections, beacuse both of the restriction
conditions at the supported points and the boundary conditions become far
more complex than stated in the report. Moreover, when the size of the
cross-sections of the members are large, the restrictions received by the
deformations occured in the cross-sections of the members under the ex-
ternal forces are sensible quantities, so that we need consider these points
fully in the practical designs of the structures.

Further, it is also obvious that vector analysis can be applied for the
moments, as well known, when deflections of the members are small, so
that the theory and the method presented in this report are also applicable
to such cases when the members of the structures cross each other with
angles slightly - different from rectangle by modifying the coefficients of
the fundamental equations stated in the report.

Last, in this report we neglected the effect which must appear when
an external twisting moment acts on a member of the structure at any point.
Thus, we are still .in the course of research of the theory in which the
effect of fhe twisting moment stated above is considered. And, moreover,
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it is intended to calculate some actual examples by the method mentioned
in this report.

The auther expresses his gratitude to assistant researcher M. Ikui for
his valuable helpfulness.
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