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THE STRESSES IN THE ORTHOTROPIC SEMI-INFINITE PLATE 

DUE TO AN RIGID BOLT PRESSED AGAINST ON ITS EDGE 

By Masakazu HIGUCHI 

In this paper treated are the stresses produced elastically in the ortho­
tropic semi-infinite plate as well as the pressure of contact on the edge, 
due to a rigid body pressed against. Numerical calculation is worked out 
in the case where the plate of Compreg is compressed on the edge w'ith 
a steel bolt and the result is shown in the annexed figures, in which we 
can recognize the characteristic features peculiar to orthotropic materials 
in the mechanical aspect. At the same time, we can find the spots sub­
jected to the most unfavorable stress in either case where the edge of 
the plate is inclined to or coincides with the directions o{ the axes of 
symmetry of orthotropic elasticity. 

1. Introduction. Having been pioneered by -H. Hertz, the theory of 
the pressure between two isotropic bodies in contact may be now said one 
of the well developed branches of the theory of elasticity. Whereas, as 
far as I know, we have no analytical treatment of the pressure of contact 
of anisotropic material yet. It is the purpose of this paper to study on 
the two-dimensional contact theory of orthotropic elastic material. I have 
dealt with a special case in which an orthotropic semi-infinite plate such 
as Compreg is ccimpressed on one part of its straight edge with a steel bolt. 
Nonetheless, the treatment is considerably general in the sense that it does 
not put any restriction upon the shape of the compressing body so long as 
it is rigid enough in comparison with the material of the plate and that 
it can take the tangential force occurring due to friction or any other cause 
into account in the form of restraint of displacement along the edge. 
Moreover, the axis of symmetry of orthotropic elasticity need not be neces­
sarily parallel to the edge of the plate. 

From the standpoint of the analytical theory of Mechanics, our problem 
belongs to the boundary value problem of mixed type ; that is to ev .1luate 
the distributed pressure on the edge of the plate in contact with a rigid 
body of the given shape under the conditions that the part of contact of 
the edge, on loading, deforms according to the shape of the rigid body, 
and the other point of the edge is free from any constraint, while the extent 
of the part of contact must be determined according to the resultant of 
the distributed pressure working on the edge through the rigid body. 
The stresses produced in the plate are, as a matter of course, obtained 
from the solution. The distributions of the stresses in the plate are also 
interesting because the fact is known in the case of isotropic material that 
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the point with the maximum shearing stress is at a certain depth from 
the edge of contact and the difference of the distributions of the stresses 
will show the mechanical features peculiar to orthotropic material. 

2. Preliminaries. Using the complex functions of the modified complex 
variables Zr = x + i kr y _and Zs = x + i ks y together with 

k,.2 ks"= E,, 
E' y 

k 2+k2- E,,+2 • s--- ~. 
G,,v 

for generalized plane stress, 

k 2k" 1-v v E r S- == Yz :.'!} X 1 .-
- Vmz- J.lz,i; Ey ' 

k,.2 + k? = l - l {GE,, + 2(J.ixy - J.l,,,JJzy)} , 
Va;?. v'z.c xy 

for plane strain, 

we can express the Airy's stress function in the theory of orthotropic 
elasticity in the :form 

X (x, y) = Z.(z.) + Z.(z.) y 

+ comp. conj. y x-
/ 

t,I ,~ 
,p 

Two sets of rectangular coordin­
ate axes are taken as shown in 
Fig. 1 ; one of them is set so that 
the axis of x may coincide with 
the direction of the axis of sy1n­
metry of orthotropic elasticity, and 
the other so that the axis of Y 
may coincide with the straight edge 
of the plate, the angle between the 
axes of x and X being represented 
by <p. Then, taking as our physical 
plane the left half (X < O) of the 
coordinate plane XY, we can obtain 
the stress function from 

----J....-----41.----------'----x -zo 
/' 

/' 

Fig. 1. The coordinate axes and the plate. 

Zr''(Z,-) = ---·· -~ 1 ___ fioo Ms Px + N,P1· dw 
2rr (k,. - ks) N • . -ioo tv - r;,. 

(1) 

and Zs''(zs) of the similar type, the expression of which is obtained by 
interchanging the suffices r, s each other in the expression Zr''(z,.). Here 
Z,.' 1 and Zs" represent the derivatives of Z,. and Zs with respect to z,. and 
Zs respectively as 

d2 
Z''=----Z,.(z.) ,. ~ dz,.2 ' 

d2 
Z/' =--2 Zs(zs), 

dz., 

and we shall call- them simply stress function. 
Px, py in the integral are the tractions on the edge per unit depth of the 

plate in the directions of the axes of X and Y respectively, which are 
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generally considered the functions of S, the value of coordinate Y on the 
compressed edge (you could hardly be confused with this notation although 
we shall sometimes mention the compressed edge itself by S). 

The complex variable (r represents an arbitrary point in our physical 
region (see Fig. 2) and is transformed back into Zr by 

Zr= -i Nr (r. 

In particular, the value of (r on the edge is denoted with tu, i.e., 

[(rh = tu, 

where we can drop the suffix of tu because 

[(r]l; = [<;-,]l: = i Y, 

as derived from Eq. (2). Here (, is again connected with z, by 

z., = -i N,(,. 

(2) 

(2') 

The remaining notations in the expression (1) and in Eqs. (2), (2') are 
all related to the angle </J and 

Mr = cos <p + i k, sin <p , Nr = -sin </J + i kr cos </J. 

The similar notations with the suffix s in place of r are used. 

M, = cos </J + i k, sin </J , N., = -sin </J + i k, cos <jJ • 

When the extent of the compressed edge is assumed 2b, we can assign 
the value 

-b<S<b 

to S. Then, Px and Pr vanish on the remaining part of the edge and the 
infinite integral in the expression (1) is reduced to the definite integral 

\
ib ~"vf.,Px+N.,Prdtu. 

tu - (r ~ -ib 

3. Evaluation of the integral. Putting 

s -,; = cos lJI, 0<1fl~rr. 

(3) 

(4) 

and using the lJI, we can express Px and p;,, which are the unknown func­
tions of S, in the forms of the following series, 

Px =~A cosn1fl 
"=o " sin 1[I , l 

PY = ~ En cos n lJI CI S l S: b) 
n=O sin 1[I , 

Px =Pr= 0, CISl>b) 

(5) 
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1}r 

)r-Plane 

(.,-plane 

X {r 

~,. 
0 

Fig. 2. Fig. 3. 
Transformation Zr = -_i Nr e:r. Transformation 2i e:r/b = 3r + l/3r. 

where A,, and B,. (n = 0, l, 2, ... ) are to be determined so as to satisfy the 
condition that the displacement of the compressed edge of contact must 
conform to the shape of the rigid body in contact. 

Substituting the expressions (5) in the integral (3), we obtain 

Zr''= A,.M, + B,. N •• 1-j-rt cosn 1Jf d'/Jf. (6) 
2rr (kr - k,) Nr 2 _"cos lJf - i C,/b 

In order to evaluate this integral by the residues, we put again 

?i Cr = 3, + l_ . 
b 3r 

(7) 

Then, with 

(r = ~r + i Y/r, 3,. = Pr eUJr , 

we get from the transformation (7) 

2~r = (Pr_ l_) sin(),., 
b Pr 

27)r ( 1) _o --b = Pr+- COSur, 
Pr 

As known from these equations, the unit circle /' in the plane of 3r is the 
image of the segment on the axis of Y/r on the plane of Cr and the coordi­
nates of the points on the segment are 

~r = O, Y/r = -b COS &r, 
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Using these values in -i Nr (r = Zr, we obtain 

y = -x cot</>, CI y I < b cos </>) 

or referrring to the coordinates X, Y 

X=O, (jYj<b). 

The equations, needless to say, represent the line of the edge of the plate. 
The same result is derived from 

2i Cs_ + l -- -· 3s -
b 3s 

too. That is, the unit circle of the plane of 3s also corresponds to the 
same segment on our physical plane and the identities exist 

Wr]r = [{)s]r = 1fl 

[3r:r = [3s]r = 3, say 

and 3 = erw. 

Since the real axis on the plane of ir is represented by 

{),. = 0' 

it corresponds to ~,. = 0 on the plane of (,., but it is confined only to the 
part [,;,.J > b of the axis of ,;,., as known from 

2')r _ 1 -~ -· p,.+~. 
b Pr 

Moreover, the correspondence between the regions of the planes (,. and 
3,. becomes as follows : 

When 0 < {) < _-n: -- ,. __ 2 ' ~,.so '}r < 0; 

7r 
2 s::: {),. < -n:' II ,;,. > 0; 

2 
TC S::: {),. ~ 3 rc , ~,.:zo ,;,. > 0; 

3 ":frc < {),. < 2rc , II 
'lr < 0; 

according as Pr S 1. 
We can now evaluate the integral (6). Using the relation 3 = ei'lf on I 

the integral (6) is transformed into 

-~-~-- d3, § t + 3-" 

r (3 - 31) (3 - 32) 

of which the integrand has three singular points 
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0, . 1 / ( . 2 
51 = z ir + V z t) - l ' 52== it-v(ii,r-l. 

The singular point 51, however, is outside the circle r when (r is:=on the 
left half of the plane. Thus, evaluating _the residues we obtain 

Zr''= 2 (k,. =~.,) Nr nt (A,.M, + B,, N.){i ;r - V (i tf - 1} IV (i i~r -1. 

(8) 

The care must be exercised with reference to the case where (r is just 
on I: In such a Gase as both the points 5t and 52 are on the circle, you 
may obtain, their residues cancelling each other, the result given in the 
usual table of definite integrals. Since the integral is discontinuous on the 
line li'Jr! :C:: b, the result is naturally the mean value of both the integrals 
on the circle, one of which is the value at the interior point and the other 
at the exterior point adjacent to the periphery of the circle. 

We should, however, adopt the value at the interior point adjacent to 
the periphery of the circle, the inside of which has been taken as our 
physical region, and should not take the mean value given in the usual 
table of definite integrals. Eq. (8) ought to therefore be used always. On 
the part of contact where -S / b = cos 1JI for O < 1JI :C:: rr, of course, we can 
simplify more or less the equation as 

z,, - i = r - 2 (kr - k) N ~ (A,. Ms+ B N) e-in'¥ 
s r "=O " s sin 1JI • 

(8') 

The function Z,.', or dZ,.(z,.) / dzr, necessary for the calculation of displace­
ments (displacement function, say) is 

Z,.' = Z(k:~ks)[(AoM,+B0 N,) ln{i;r-v(i;rr-1} 

+ ~ An M, + Bn Ns { i (r -v (!_(.,:) 2 
_ l}n], (9) 

n=l n b b 

On the part of contact 

Z,.' = --·· -b [-CA0 Ms+ Bo N,) i 1JI + Z A,. Ms+ Bn N, e-,nw]. (9') 
2(kr - k.) "=l n 

4. Expression of displacements. Leaving out of the displacement and 
the rotation of the plate as a whole, 

-2Gxy Ux = (l + Kr)(Z/ + Z,.') + (1 + Ks)(Z,' + Z/), 

-2Gxy Uy= i kr (l - Kr)(Z,.' - Z,.') + i ks (1 - Ks) (Zs' - Z:') 
are the expressions of the displacements in the directions of the axes x 
and y respectively, where 
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K = -K = (k 2 - k 2 ) Gxv r s- r s Ero , 

for generalized plane stress, 

Kr= -K, == (1 - J.I,,, J.l,ru)(k,.2 - k.,2) Gxy , 
E,, 

for plane strain. 

Referring to the axes X and Y, the displacements are 

-2G.,,y Ux = (Mr+ Kr Mr) Zr'+ (Ms+ Ks Ms) Z~' + comp. conj., 

-2G.,,y Vy= (Nr + Kr N,) Zr'+ (Ns + K., Ms) Z/ + comp. conj. 

By use of Eq. (9') we get the expressions of the displacements of the 
compressed edge 

2G 2b K,. ~ 1 {(sin2 {} + k,. k, cos2 0) A,. } 
.,,y Ux = --- LJ. - • cos n 1Jl 

k, - ks n=1 n - (1 - k,. ks) sm O · cos{} . En 

-b (1- :, + :·' K,.) {B0 1JI + f l En sinn 1Jf} , 
,. - s 1i=l n 

2G _ 2b Kr ~ l {(cos2 {} + k,. ks sin" 0) E,, } nr 1(10) 
xy Uy - --- LJ. - COS n or 

k, - ks n=l n - (l - k,. ks) sin{} . cos{} . An 

+b (1- :: ~ !: K,.) {Ao 1JI + ,,t ~ A,. sin n 111} , 

0<1Jl<n. 

which are to conform with the shape of the rigid body given beforehand 
as the known functions ux(S) and Vv(S). Consequently we can determine 
An and En. In the expressions another notation {} is used for convenience' 
sake without using cp and is the angle between the axes x and Y as shown 
in Fig. 1. The distributed pressures Px(S) and Pv(S) as well as the 
stressas produced in the plate can ba calculated by using An and E,,(n = 
o, 1, 2, ... ) . 

For all that, it may not be simple procedure strictly to solve the problem, 
because the expressions (10) are not the usual forms of Fourier series. 
It is rather advisable to seek to obtain the approximate solution with the 
several top terms. Some examples are shown in the following paragraph. 

5. Some examples. 
a) The case, A 0 =r= 0 and all the remaining vanish: 
In the first place we get 

Ux = 0 

on the part of the edge of contact, and it corresponds to the case where 
the rigid beam of width 2b is pressed against the edge of the plate. 

The distribution of the reacting pressure is 
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A 0 b A 0 

P x = sin 'JI' = ✓ b2 - 5 2 ' 

or using the total force working 
through the rigid beam, viz., 

Px= r Pxd5 === bA0 11:, (11) 
• -b 

it is expressed as 

y 

-P 

2b 

Px 
Px = /-b2 _ 5 2 rrv 

(12) 
Fig. 4. Plate compressed on its 

edge with a rigid die of width 2b. 

where the pressure has positive value when directed along the axis X. 
On the other hand, 

py = 0, 

that is to say, there is no frictional force along the edge, and the displace­
ment is 

2G Cl kr + ks K) Px (-5) xy Vy = - ---=- ,. - Cos-I ~ • 
kr - ks lT b 

C13) 

If we can expect friction persistent enough to keep the edge from 
slipping sideways between the surfaces compressed together, 

Vy= 0, 

Consequently Bn * 0 and from 

Cl5l<b). 

Cl kr+ksK)Px,rr 2bKr ~ l C 2(J+k k . 2(J)B ,rr 
- --- ,. - 1: = -----'- L.. ~ COS r s Sln ,. COS n 1:, 

kr - ks rr kr - ks n=l n C14) 

we can determine the values of BnCn = l, 2, ···). Then, the distribution 
of py can be evaluated with (5). 

b) The case, A 1 * 0 and all other coefficients vanish: 
We have under these conditions 

and 

2GxY Ux = -;.~~1 fr Csin2 (J + kr ks COS2 (}) • 5 

k 
4K; T b2 Csin2 0 + kr ks cos2 0) • 5 

( ,. - s) lT 

p;,i: = A1 cos 'JI'= 2T 5 
' sin 'JI' rr b2·v b2 - 5 2 

where T, the torque exerted clockwise, is determined as 

Cl5) 

(16) 
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T = rb S • Px dS = - ;rb; Ai . 
• -b 

X 

This is the case illustrated in 
Fig. 5. 

We have infinite pressures at 
IS I = b in the above two cases as 
known from Eq. (5). Combining 
the terms of Ao and A 2 , or A 1 and 
A 3 adequately, we obtain the solu­
tions in the cases where the pressure 
is finite at the ends of the part of 
contact. 

!; 
y-4-;6, 

c) The case A 2 = -A 0 and all 
the remaining vanish: 

Fig. 5. Plate twisted on its edge. 

2Gxv Ux = t:: ~: (sin2 8 + kr ks cos2 8) (2;: - 1) 
or leaving out of the term not containing S which is the displacement of 
the plate as a whole, 

and 

2G 2b A~ Kr ( . 2 8 k k 2 8) (S2 ) xy Ux = kr _ ks Sin + r s COS b2 

Px = -2A2 ✓1 - S 2 /b2 , 

Px = Jb Px dS = b A,, i'l" • 

-b 

py = 0, 

(17) 

If we approximate the form of the rigid bolt of radius R to such a para­
bolic curve as Eq. (17), 

Ux * S"/2R 

is derived. Consequently, the extent of the compressed part is 

2b = 2 1 /sin" 8 + k,. ks cos2 8 • 2b A:-Kr R 
V kr - ks Gxy 

= 2 1 / sin2 8 + k,. ks cos" 8 • 2Kr R P x , 
V kr - ks i'l" Gxv 

(18) 

that is, the compressed part of the edge is proportional both to the square 
roots of the total load Px and of the radius R of the bolt. 

The maximum pressure is at the middle point of the part of contact and 

4 
Px, ,uax = 2Ao = - Px, mean 

i'l" 

* l.27Px,n,e.cn (19) 
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Px.mean being Px/2b. 
Using the coefficients 

A 2 == -Ao== Px/rr b, An== 0 (n == l, 3, 4, ···) 
Bn == 0 (n == 0, 1, 2, 3, ···) 

and referring to Eq. (8), we can evaluate the stresses 

and 

ax== Ni Zr''+ N,2 Zs''+ comp. conj., 

<Jy == Ml Zr''+ M.2 Zs" + comp. conj., 

-rxr == -Mr NrZr'' - MsNsZs" - comp. conj .. 

The distributions of the stresses produced in the plate, 'in the cases 

and 

D == O', 
(} == 90°, 

( rp == 90') 

( rp == O') 

0 == 45', (rp == 45'), 

are shown in Figs. 7 -10 perspectively; some of them are compared with 
those of the isotropic plate in Fig. 11, the broken lines in which are the 
distributions of the stresses in the isotropic plate due to a concentrated 
load on the middle point of the edge. 

The peak of the shearing stress, -r,,y, max, attracting our particular attention, 
occurs 

at X * 0.35b, Y--:- ±0.9b in the case (} == 0', 

at X--:- 0.6b, Y * ±0.9b in the case (} == 90', 

or at X == 0, Y * -0.96b in the case D == 45', 

and amounts to nearly 

2P 2P 2P 
-r.,v, max == 0.345 ~, 0.167 rr b or -0.335 rr b 

respectively. 
The point where the maximum shearing stress is to occur in the isotropic 

plate is shifted a little from on the center line as found in Fig. 10 and 
there it does not take the greatest value although there is surely a peak. 

A similar shifting from on the center line is also found in Fig. 9 as to 
the ridge of the distribution of the normal stress ax. The ridge has the 
tendency to run along the fibers of the plate as if every fiber were a net 
perpendicular to the plane of the plate to resist to flowing of water, as 
it were, poured into the field of the plate from the part of contact. 
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X 

-Jl 

y ~/,Llr== 
Fig. 6. Plate compressed on its edge with a rigid bolt. 

ltfx't ft Oi 
' t 

JP. 

/ ~JII>:,~ ~v · 14< I K'--./ /8 

/' 
Fig. 7. Perspective view of distributions of generalized 

plane stresses ax and rxy in Compreg when the edge of the 
plate is perpendicular to the direction of the fibers. 
Ex= l,794kg/mm2 , Ev= 366.6kg/mm2 , Gwy = 219.9kg/mm2, 

))xy = -0.497, k,. = 2.530, ks= 0.874. 

0cW 
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Max,ca, 0.345 

( X";>0-35b 
YdfaOJlb 

""b-c, ... I "h -ZP, iP-<Jx 

t t 

)'t,X 

I 'W i '!l ))ll II X I Y ) I l'-.JI',~ 1,0 x,-Y 

/' 
Fig. 8. Perspective view of distributions ~f generalized 

plane stresses ax and -rmy in Compreg when the edge of 
the plate is parallel to the direction of the fibers. The 
elasticity constants are the same as those mentioned in 
the preceding figure .. 

e-o· 
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~~ 

t 

x-

2/, . -y 

~ Yf I JYl==-tJs{t Li,-, -bK' , ~~ X / e~4s• 

/ .... 
.,.,e,'\\ \~~,., /' 

-?••lo\ II-

Fig. 9. Perspective view of distribution of generalized 
plane stress ax in Compreg when the edge of the plate is 
inclined 45° to the direction of the fibers. 
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1rb 
2P-f,:,-

t 
1.0 

QS /x 

Fig.10. Perspective view of distribution of generalized 
plane stress 1:,,,y in Compreg when the edge of the plate is 
inclined 45° to the direction of the fibers. 

nb 
_2pO'x 

0.5 

Concentrated 
Force 

- o .1 ___ L.___..l-....__..i__ __ - X -
0 2f! 4b 6b 

Fig. 11. Diminishing of ax, stress normal to the edge of 
the plate, along the axis X. 
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~ 
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