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ON THE CALCULATION OF FREE OSCILLATIONS 
WITH INTERMEDIATE NON-LINEARITY0 

By Hikoji YAMADA 

Equation of free oscillation is solved approximately in the form 
that the velocity is a function of the displacement. For velocity 
a functional form which contains a polynomial with undetermined 
coefficients is assumed, and these coefficients determined by the 
method of moments. The approximations is fairly accurate either 
when the non-linear term is small or when the number of co­
efficients is large. To secure good approximation in cases of 
intermediate non-linearity, the necessary increase of the number 
of coefficients is replaced by a sucessive approximation method, 
which consists of the calculation of correction terms for velocity 
and amplitude, linearizing the equation by reason of the smallness 
of corrections. As examples non-linear damped oscillation and 
the Van der Pol's self-excited oscillation are treated with good 
accuracies. 

1. Method of approximation. We have proposed a simple method of 
approximate solution of differential equation, especially of the non-linear 
one, and some applications have also been reported.2> Some types of the 
non-linear oscillation seem to be under the scope of this method, and here 
we take up the free oscillation of the type : · · 

dv 
.d (v, a)= v ~ - f (a, v; a) == 0 ( 1) 

where a and v are the non-dimensional displacement and velocity, and a 
the amplitude of oscillation, w:hich is to be determined. 

We consider the velocity v as a function of the displacement a, and 
then take one swing only at a time in view, apart from the other swings. 
This separate treatment of each swing brings with it labors in the calcu­
lation of transcient oscillations, but none in the most important case of 
cyclic oscillations. As the differential equation (1), with the domain of 
solution a (-1, +l), is equivalent to the moment-equations 

~
·t-1 

-1 
.d (a, v; a) a"' da == 0, (2) 

n == 0, 1, 2, •··, N(N➔ oo) 

D Former half of this paper has been reported, in Japanese, in the Reports of 
the Research Institute for Fluid Engineering, Vol. VII, No. 2 (1950). 

2) c.f. On a method of approximate solution of differential equations, Reports of 
the Research Institute for Fluid Engineering, Vol. VI, No. 2 (1950); A method of 
approximate integration of the laminar boundary layer equation, ibid. 
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we consider the problem in the form (2), with a finite and appropriately 
chosen N, i.e. approximately. 

For the solution v of (2) we can assume any function of a w:a.ich satisfies 
the boundary conditions and contains N undetermined constants. In the 
present case, however, two ends of the swing are singular points, and 
introduction of the factor ✓1 - a~ into the assumed solution will secure 
better approximation with fewer number of undetermined constants. This 
factor brings the possibility of ,J = O at the both ends of the swing, as we 
can see by the equation (1). We then assume: 

v = ✓1 - a 2 • P(a; c0, C1, ···, Cn-1) (3) 

where P is a certain function finite (and positive) in a ( -1, + 1), with 
undetermined constants e's. Assumed form of P will have large influence 
on the results; when N tends to infinity linear conbination of functions 
from any complete set which satisfy a certain boundary condition will 
suffice, but with a rather small number N, the degree of approximation 
depends on the form we chose. At present, knowing not the most ade­
quate set of functions, we employ a polynomial, i.e. the set of functions 
1, a, a2, ···, thus: 

p =Co+ C1t1 + ............ ··• + Cn-1 aN-l. (31) 

Introducing (3), (3') into (1) we obtain 

dP 
,J (a)= -a P 2 + (1- a2) P~ - f(a, v; a), ( 11) 

and by (2) N + 1 algebraic equations with regard to the N constants e's 
and the amplitude a, the required approximate solution resulting from the 
values of constants thus determined. The sets of roots of the algebraic 
equations which have physical meanings are, in general, not unique, but 
the selection of the appropriate one is usually easy, and mathematically we 
are guided by the fact that the value of ,J for the selected solution must 
not depart largely from zero along the interval a ( -1, + 1 ). The present 
method of solution is quite parallel to the usual one of employing Fourier 
series of phase angle (} of finite .terms. v = c0 ✓1 - az is a simple har­
mornic oscillation and corresponds to the Fourier's first term b1 cos 0. 
Introduction of terms b,. cosn 0, in non-linear cases, in the latter is re­
sponded by the generalization of co to Co + c1 a + · · · in the former, and 
the methods of determination of the constants arc also parallel. This 
parallelism would have been more direct had we employed any set of 
orthogonal polynomials instead of the set 1, a, a2, •··, but owing to the 
occurrence of the factor ✓1 - az such orthogonalization brings no gain. 
This consideration reveals also the fact that much is not gained by our 
method except in the cases where f (a, v; a) is simple polynomial of a 
and v, but these exceptional cases are rather usual in practice and our 
method may fit in fais respect. More decisive benifit, however, will be 
brought when we intend the improvement of approximation, as will be 
seen in § 4. 



NON-LINEAR OSCILLATION 13 

As the determination of the Fourier coefficients above alluded is labor­
ious when the number of them is large, so also in our case the solution 
of the algebraic equations (2) requires labor and cannot increase the 
number of coefficients sufficiently. In such a case the fulfilment of the 
equation ,d = 0 at a certain particular points of the displacement range 
brings some simplification, For example, at the centre of oscillation 11 = 0 : 

Co Ci = f (0, Co; a) 

and at the ends 11 = -1 and +1: 

P(-1) = ✓ /(-1, O; a), P(+l) = ✓ -/(+1, O;a). 

(4) 

( 4') 

By the introduction of some of these relations the number of the mo­
ment-equations (2) must, of course, be reduced by the number of those 
relations. 

The next integral .i.e. the relation between 11 and 0, (} being an angle 
variable proportional to time, is obtained by a single quadrature w.hich 
can surely be accomplished analytically : 

0= -----. ~

CT d11 . 

_1 ✓1-02. P(11) 
(5) 

2. D.amped oscillation. As the first example we take the simple har- · 
monic system under the hydrodynamical resistance. The governing equa­
tions of motion are: 

v = dx/d(}, v (dv/dx) +Av+ Bv2 + x = 0, (6) 

· which are to be solved under the initial conditions: 

(X)B=O = -1, (V)B=O = 0, ( 6') 

We denote the other end of the swing by x = J., and the transformation 

l+J.=µ, l+x=µs (7) 

brings (6) into the form: 

,J (s) :;:: (v/ µ) (dv/ds) +Av+ Bv2 + µs - 1 =. 0, ( 8) 

here the domain of solution being s (0, 1),3> 
For v we assume a very simple form: 

v = ✓2µ s (1- s) Cao+ a1 s + a2 s2), ( 9) 

and the requirement ,d = 0 at s = 0 (i.e. x = -1) results in ao = 1; the 
remaining three constants a 1, a2 and µ are to be determined by the re­
lations: 

~: J (s) sm ds = 0' m = 0, 1, 2, 

which can easily be written down as follow : 

(10) 

3) We used the variable s accidentally, instead of the preceding section, and as 
the process is all the same we keep to it here. 
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B 2 + 2B B 2 10 µ a1 15 µ a1 a2 + 21 µ a2 

( B A' ✓-) ( B 5A' ✓-) + 3 µ + µ a1 + 5 µ + 8 µ a2 

+ { ( 1 + +) µ + 2A' ✓µ - 1} = 0 
( B l ) 2 (2B l ) ( B l ) 2 15 µ - 20 ai + 21 µ - 15 ai a2 + 28 µ - 42 a2. 

( B 5A' ✓- l ) ( 2B 7 A' ,- l ) + 5 µ + 8 µ - 6 ai + 15 µ + 16 v µ - 10 aa ( 10') 

+ { ( ! + +) µ + A' ✓µ - +} = 0 

( B l) 2 (B 2) (B l) 2 21 µ - 15 ai + 14 µ - 21 a1: aa + 36 µ - 28 a2. 

2B 7 A' _ l ) ( 2B 21A' _ 2 ) + ( 15 µ + 16 ✓ µ - 5 ai + 21 µ + 64 ✓ µ - 15 aa 

f ( B 1 ) 5A1 ,- 1 } + 110+4 µ+sv µ -2 =O, 

where A' = 11: A/8✓2. 
General solution of (10') is difficult, and we quote a numerical example : 

A= 1/4 and B = 1/2. This is the case of medium damping and of nearly 
equal contributions of the linear and quadratic terms of resistance. For 
these values (10') gives : 

µ = 1.4196 (i.e. A = 0.4196); a1 = -0.5347, a2. = 0.2553, 

and then we obtain the solutions 

V = 1.6850✓ s (1 - s) (1 - 0.5347 S + 0.2553 S2) 

= ✓ (1 + x) (OA196 - x) (0.8902 - 0.1463 x + 0.1504 X2), (11) 
and 

( o.9598 ✓cf+xfeo:4196--- x) ) 
0 = 1.0317 tan-I - X + 0.2317 

( l - 0.1191 x + 0.3801 ✓ (1 + x) (0.4196 - x) ) 
- 0.1555 log 1 _ 0.1191 x - 0.3801 ✓ (1 + x) (0.4196 - x) • 

(21) 

The methods of error estimation and. correction of the results obtained 
are postponed to § 4, and here we compare the results with the standard 
ones. We have previously calculated this case very minutely by the 
Runge-Kutta's method of numerical integration and the Simpson's rule ; the 
steps of integration were so minite that the results can be regarded as 
the exact ones. Our present results are compared with these at a few 
points of interval in the following table 1 and in the figure 1. In that table 
exact means the numerical integrations and approx. the present results; 
in the figure full lines are the exact ones and circles the approx.; the 
agreement is sufficiently good, 
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TABLE 1 

a I a exact I a approx. I O exact I (J approx. 

-1.0 0.0000 0.0000 0.0000 0.0000 
-0.9 0.4089 0.4155 0.4640 0,4584 
-0.8 0.5358 0.5450 0.6736 0.6650 
-0.7 0.6143 0.6180 0.8464 0.8363 
-0.6 0.6593 0.6591 1.0030 0.9924 

-0.5 0.6825 0.6788 1.1517 1.1412 
-0.4 0.6887 0.6822 1.2973 1.288 
-0.3 0.6804 0.6725 1.4431 1.436 
-0.2 0.6591 0.6516 1.5922 1.586 
-0.1 0.6252 0.6197 1.7477 1.743 

0.0 0.5783 0.5767 1.9137 1.910 
0.1 0.5165 0.5200 2.0961 2.092 
0.2 0.4359 0.4450 2.3058 2.300 
0.3 0.3255 0.3390 2.5680 2.553 
0.4 0.1326 0.1417 3.0042 2.'966 

,l 0.0000 0.0000 3.3100 3.:241 

,l exact = 0 .4202 ,l approx. = 0.4196. 

UdU + lu + lu2 + X - 0 
d'X 4 2 - .s~ i ,~3. 

e 

I • 

. 2 

-x 
-1-;o -.8 -.6 -.4. -.2 0 .2 

FIG. l 
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simplified process along this line of thought. In our present problem, 
however, the differential equation is nothing but the presentation of direc­
tion field on the v-x plane (x: displacement), and we can see the deviation 
of the direction of integral curve from the field directly; this deviation 
may serve as a sort of the estimation of error, which is probably much 
severer than the estimation about the mtegral itself. This comparison of 
directions was done, by the solution (21), at several points of the curve, 
which is under the column vo' in the table 3, numbers in parentheses be­
ing the field directions; we see deviations 1in spite of the accord of the 
general aspects. 

TABLE 2 

(1 

I Vo I Y/1 I V1 I Y/2 I V2 

-1.00 0.0000 0.0000 0.0000 0.0000 0.0000 
-0.97 0.2149 -0.0231 0.1918 -0.0015 0.1903 
-0.93 0.2789 -0.0238 0.2551 -0.0013 0.2538 
-0.90 0.2987 -0.0138 0.2849 -0.0007 0.2842 
-0.80 0.3245 +0.0345 0.3590 -0.0018 0.3572 

-0.70 0.3643 +0.0614 0.4257 -0.0032 0.4225 
-0.50 0.5443 +0.0296 0,5739 +0.0006 0.5745 
-0.40 0.6639 +0.0002 0.6641 +0.0011 0.6652 
-0.20 0.9022 -0.0329 0.8693 +0.0003 0.8696 

0.00 1.1008 -0.0213 1.0795 +0.0007 1.0802 

0.10 1.1822 -0.0087 1.1735 +0.0010 1.1745 
0.30 1.3063 +0.0004 1.3067 +0.0010 1.3077 
0.40 1.3394 -0.0090 1.3304 +0.0009 1.3313 
0.50 1.3386 -0.0241 1.3145 +0.0005 1.3150 
0.70 1.1593 -0.0356 1.1237 -0.0005 1.1232 

0.80 0.9360 -0.0136 0.9224 -0.0005 0.9219 
0.90 0.5980 +0.0293 0.6273 -0.0016 0.6257 
0.93 0.4715 +0.0359 0.5074 -0.0021 0.5053 
0.97 0.2759 +0.0300 0.3059 -0.0019 0.3040 
0.985 0.1847 +0.0193 0.2040 -0.0011 0,2029 

I.CO 0.0000 0.0000 0.0000 0.0000 o.ooco 

TABLE 3 

~-"---I~-~- Vo' V1' I V2' 

---------------~--~--

-1.0 00 ( 00 ) 00 ( 00 ) 00 ( 00 ) 
-0.9 0.4607 ( 0.6255) 0.8718 ( 0.886 ) 0.8876 ( 0.888 ) 
-0.8 0.2453 ( 0.7962) 0.6759 ( 0.641 ) 0.6488 ( 0.649 ) 
-0.7 0.5764 ( 0.8863) 0.6700 ( 0.663 ) 0.6734 ( 0.673 ) 
-0.5 1.1440 ( 0.8977) 0.8449 ( 0.8608) 0.8581 ( 0.8583) 

-0.4 1.2271 ( 0.9620) 0.9556 ( 0.9557) 0.9535 ( 0.9537) 
-0.2 1.1109 ( 1.0883) 1.0685 ( 1.0683) 1.0676 ( 1.0681) 

0.0 0.8724 ( 1.0356) 0.9967 ( 1.0000) 0.9999 ( 1.0000) 
0.1 0.7558 ( 0.9090) 0.8732 ( 0.8744) 0.8743 ( 0.8744) 
0.3 0.4550 ( 0.4256) 0.4068 ( 0.4067) 0.4063 ( 0.4063) 

0.5 -0.2332 ( -0.3943) -0.3876 ( -0.3909) -0.3923 ( -0.3922) 
0.7 -1.7140 ( -1.6888) -1.6044 (-1.6033) -1.6066 ( -1.6066) 
0.8 -2.7827 ( -2.5235) -2.4568 ( -2.4540) - 2.4585 ( - 2.4584) 
0.9 -4.0051 ( -3.8922) -3.6986 ( -3.709 ) -3.7172 (-3.717 ) 
1.0 -oo ( - 00 ), -00 ( - 00 ) -00 ( - 00 ) 
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For the oscillation problems there are ingeneous methods of graphical 
integration which give good results. Our results in the preceding sections 
are, then, useless as far as the numericals are concerned, and in this 
respect need is the method of correction. To increase the degree of poly­
nomial will certainly improve the results and the solution of the algebraic 
equations there will be accomplished by some iterration processes, but pro­
bably tedious. Here we prefer rather to treat the differential equation 
directly by the iterration process, employing as the zeroth approximation 
the results given by the preceding method. 

For comvenience ·sake, we introduce a parameter E into the differential 
equation (1) : 

dv J=vdi-f(11, v; E, a)=O, (l") 

and denote its solution by 

E=Eo+a, a=ao+/3, V = Vo+'/, (22) 

u 

dU 2 2) UJ6-(1-c1.e1 U+6'=o 

cs 
-w -.8 -.6 -. -.2 0 .2 ;;i; .6 .8_ f';O 

Fm. 2 

where ( E 0, ao, Vo) is the approximate solution somehow given. E is usu­
ally a given constant, but the introduction of its variation enables us to 
pass to another value of E. With (22) into (1'1) and neglecting terms higher 
than first order with regard to (8, {3, ,;), it results the linear equation: 

d ( 1 of) ( of) (of) -(Vo'}) - ~ ~~ (Vo'}) = - i"j + - {3 - ,:Jo (11), 
d11 V ov O . 0 E O oa 0 

(23) 

.Jo (11) = Vo ~o - f (11, v0 ; E o, ao), 
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whose solution can be written · down at once : 

r; = __!_eR'Co-l{ a\"' e-R'Ca-) ( .lL) d11 + fJ \"' e-R'<a-) (.lL) d11 
Vo )_l Of O Li oa O 

-\"' Ao(11)e-R'Ca-ld11,} (24) 
-1 

where 

)"' ( 1 of E(11)= ~-,,) d11. 
-I V uV o 

(25) 

This easy solubility is an effect of our solution v as a function of 11, 
contrary to the use of Fourier series in fJ, alluded in § 1. When 11 = ±1 r; 
must vanish, and from this condition we obtain 

\
H O )+l )-t-1 a e-R'(o-) ( _J_) d11 + fJ e-Ji.'(o-)(.lL) d11 = e-E(o-) Ao (11) d11' (26) 
-l O E o -l oa o -l 

which determines the correction a or fJ when either of them is assigned 
beforehand.· Inserting then these values in (24) ~e have the correction 
r; just determined. · 

This process of correction may be repeated to the higher orders step by 
step, until the required accuracy is reached. Useful formulae are always 
(24), (25), (26). The quadratures which appear in these fornmlae are, 
however, not analytically integrable and, in general, numerical or graphical 
methods are to be consulted. This fact prohibits also any simple analytical 
expression for v, and then the next integral i.e. the relation between fJ 
and 11 is necessarily numerical. 

As an example we take the case of Van der Pol (13). We have, 
denoting a 2 by a and regarding a as a in the formulae above, 

\
"' 1 - a 112 

E (11) = E o O d11 
_ 1 Vo 

(27) 

and 

~

(Y ( of) ·· _ e-R'Co-) 3E o d11 -
-1 

{ er (1 - a0 112 ) Vo e-Ji.(a-) d11 , 
L1 

{ o- e-E(cr) (.lL) d11 = - f O ( er Vo 112 e-R'(er) d11 , 
)_1 oa o L1 (28) 

("' Ao (11) e-R'(o-) d11 = __l_ v02 (11) e-E(er) 
)_l 2 

-+ E O ) er (1 - ao 112 ) Vo, e-E(o-) d11 + ( 0- 11 e-Ji.'(cr) d11 , 
-1 L1 

in w h_ich we are required for four quadratures. 
As the zeroth approximation we can perhaps use a rough one, which 
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save much the labors of §3. But here we take (21) as Vo and require for 
the correction for . E = 1. Then 

Eo = 1.0356, 

ao = 4.0804, 

o = -0.0356, } 

a= ao + fl. 
(29) 

Quadratures are all evaluated numerically with the Simpson's rule, which 
presents no difficulty but the E (11), whose values near the ends 11 = ±1 
were estimated by power series expansions. The results are 

fl = -0.03856 i.e. a= 4.0418 (a= 2.0104) , 

and r;, whose values are under the column r; 1 in the table 2, and inscribed 
in figure 2 (enlarged). Now the corrected v is v 0+r;; whose values are 
under the column v 1 and represented by black points in the same table 
and figure. Agreement of the direction of the integral curve with the 
field is much improved as will be seen under the column vi' in the table 3. 
·we have thus arrived at the practically correct solution. 

Once the quadratures in (28) are calculated we obtain, if desired, at once 
the corrections r; and fl ( or o) for every value E ( or a) in the neighbor­
hood of E O ( or a 0). In the above example if we fix a, a = ao = 2.02, a is 
-0.1643 i.e. E = 0.8713, and the corrected v has the tangent which accord 
to the field within one degree of angle. Thus the neighborhood seems to 
be moderately wide. 

With the view of examining the convergency of the iterration process, 
we advanced the correction once more for the case E = 1; the results are 

fl= +0.00602 i.e. a= 4.0478 (a= 2.0119), 

and r;2 , v2 in table 2, and v.' in table 3; in the figure 2 we also see V2 

inscribed with full line and r;2 (enlarged). Agreement of directions is 
almost perfect, i.e. within about one minute of angle. 

(Received December 20, 1951) 




