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Abstract 

In this study, a model for the three-dimensional effective compliance of composite laminates with 

transverse cracks is developed based on continuum damage mechanics. Three-dimensional laminate 

theory is used to reproduce all the thermoelastic properties of the damaged laminate. The damage 

variable, which describes the degree of stiffness reduction caused by transverse cracking, is formulated 

based on a three-dimensional micromechanical model, with a loose boundary condition and assuming 

parabolic crack opening. These assumptions contribute to the analytical accuracy of the stiffness 

reduction model, while simplifying the damage variable expression. The effective thermomechanical 

properties of various composite laminates are predicted using the proposed model and compared with 

finite element analysis (FEA) and experimental results. We found that the proposed model with derived 

damage variable successfully reproduce the FEA and experimental results of stiffness degradation of 

damaged composite laminates.  

 

Keywords: Continuum damage mechanics, Damage variable, Composite laminate, Stiffness 

degradation  
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1 Introduction 

Carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) laminates, which 

consist of unidirectional plies with various fiber angles, are widely used as the main components in 

primary structures owing to their excellent specific strength and rigidity. However, composite 

laminates exhibit nonlinear behaviors, owing due to transverse cracking, delamination, and fiber 

breakage.  

Transverse cracking, which occurs parallel to the fibers in a ply, is typically the first damage mode. 

Transverse cracks cause a reduction in the laminate stiffness as well as crucial damage phenomena 

such as delamination and fiber breakage due to stress concentration at the crack tip. The mechanical 

behavior of composite laminates with transverse cracking must be evaluated during damage tolerance 

design. However, the stiffness reduction arising from transverse cracks varies depending on the 

material type, laminate layup, ply thickness, and fiber volume fraction. Therefore, it is inefficient to 

evaluate the effect of transverse cracks through experiments. Furthermore, in-plane and out-of-plane 

stiffness properties of the damaged laminate are required to evaluate the components under multiaxial 

loading. Therefore, an analytical model that effectively reproduces the stiffness reduction of various 

laminates is required. 

  Shear-lag analysis is commonly used to formulate the stiffness reduction and stress perturbation in 

cross-ply laminates with transverse cracks. Cox [1] first proposed this analysis method to evaluate the 

stress distribution around discontinuous fibers. Later, shear-lag analysis was used to approximate the 

stress distribution around transverse cracking in cross-ply laminates. Many one-dimensional [2–11] 

and two-dimensional [12–14] shear-lag models of cross-ply laminates have been established. One-

dimensional shear-lag models differ only in their shear-lag parameters. Furthermore, two-dimensional 

models are almost equivalent to the one-dimensional models with a minor amendment to Poisson’s 

effect.  

Another method for modeling the stiffness degradation of damaged composite laminates is the 

variational approach. Hashin [15,16] first developed a variational model for stiffness reduction of 

cross-ply laminates with transverse cracking using the minimum complementary energy principle, 

while Lee et al. [17] formulated the minimum energy principle variational model for cross-ply 

laminates. In general, the minimum complementary energy principle results in a lower bound of the 

effective Young’s modulus, whereas the minimum energy principle obtains the upper bound solution 

for Young’s modulus. Hajikazemi [18,19] et al. and Vinogradov and Hashin [20,21] extend the 

variational model based on the minimum complementary energy principle to more general composite 

laminates. 

Continuum damage mechanics (CDM) is an effective approach for treating diffused damage, such 

as transverse cracks. The origin of CDM is Kachanov’s work on isotropic material creep damage [22]. 

Allen et al. [23] and Talreja [24] have both utilized CDM for orthotropic materials, namely, damaged 
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fiber-reinforced composite materials. CDM has good compatibility with laminate theory; therefore, 

CDM can treat composite laminates with various layups. The shear-lag analysis is difficult to 

formulate effective compliance of composite laminate with arbitrary layups. In the CDM, the damaged 

composite laminates with arbitrary layup sequences can be handled by simple formulae, and ordinary 

designers can use them easily. The variational analysis models are accurately reproduced the stress 

concentration of the crack tip and effective damaged laminate compliance, however, the formulated 

equations become complex. FEA can model transverse cracks explicitly and can accurately calculate 

stress concentrations at the crack tip. However, time and effort are required to generate a mesh around 

transverse cracks when the laminate configuration and transverse crack density change. In CDM, the 

effective stiffness/compliance is described as a function of the damage variable 𝑑  (0 ≤ 𝑑 ≤ 1 ); 

therefore, the formulation of the damage variable is essential for developing the stiffness reduction 

model.  

CDM is applied to reproduce the nonlinear behavior of cracked composite laminates using 

analytical [25,26] or finite element [27–29] models. In previous works [30–32], we formulated the 

damage variable associated with transverse cracks as a function of the transverse crack density (the 

number of cracks per laminate length) to clarify the physical meaning of the damage variable. Onodera 

and Okabe simplified the infinite series form of the damage variable in a previous study [30] by 

assuming a parabolic crack opening displacement to loosen the boundary condition of the governing 

differential equation. The derived damage variable is not only simpler than the complicated infinite 

series form but also successfully improves the two-dimensional analysis of the stiffness degradation 

of cracked composite laminates. However, this damage variable is obtained by two-dimensional 

micromechanical model [32,33]. In [31], the damage parameter ω is obtained by three-dimensional 

micromechanical model but this damage parameter has upper limit because of the small damage 

assumption [34]. Three-dimensional stiffness reduction model without such upper limit is required to 

represent nonlinear damage behavior of composite laminate subjected to out-of-plane or fatigue 

loading. Furthermore, the analytical model must be able to handle general composite laminates with 

arbitrary layups. However, those analytical models have seldom been formulated.  

In this study, we analytically formulate a model of the three-dimensional effective compliance of 

composite laminates with transverse cracks by extending our previous two-dimensional model [32]. 

Three-dimensional laminate theory [35] is used to predict the in-plane and out-of-plane effective 

laminate elastic moduli. The three-dimensional effective compliance of the damaged ply proposed by 

Lopes et al. [36] is used to describe the stiffness reduction of the ply based on CDM. The damage 

variable, which describes the degree of stiffness reduction caused by transverse cracking, is derived 

from a three-dimensional micromechanics model by assuming a parabolic crack opening. Finally, we 

compare the stiffness reduction curves of the various laminates with our analytical results using finite 

element analysis (FEA) and the experimental results of previous studies. 
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2 Stiffness reduction model 

2.1 Three-dimensional laminate theory 

Three-dimensional theory [35] was used to calculate the effective compliance of a laminate with 

transverse cracks. As shown in Figure 1, the composite laminate was fabricated by stacking in the Z-

direction. Coordinates (X, Y, Z) represent the laminate coordinate system. Stress and strain are 

described as follows: 

𝝈 = {𝜎𝑋𝑋 𝜎𝑌𝑌 𝜎𝑍𝑍 𝜎𝑌𝑍 𝜎𝑋𝑍 𝜎𝑋𝑌}T, (1) 

𝜺 = {𝜀𝑋𝑋 𝜀𝑌𝑌 𝜀𝑍𝑍 𝛾𝑌𝑍 𝛾𝑋𝑍 𝛾𝑋𝑌}T. (2) 

The constitutive law is expressed by 

𝜺 = 𝑺𝝈 + 𝜶Δ𝑇, (3) 

where 𝑺  is the compliance matrix, 𝜶  is the thermal expansion coefficient, and Δ𝑇  is the 

temperature difference from the stress-free temperature 𝑇𝑠𝑓 to the ambient temperature 𝑇. According 

to Gudmundson and Zang [35], the constitutive law of Eq. (3) is divided into in-plane and out-of-plane 

components, such that 

𝜺̅ = 𝑺̅𝝈̅ + 𝜶̅Δ𝑇, (4) 

where 

𝜺̅ = 𝑨𝜺 = {
𝜺̅I

𝜺̅O
}  with 𝜺̅I = {

𝜀𝑋𝑋

𝜀𝑌𝑌

𝛾𝑋𝑌

}  and 𝜺̅O = {

𝜀𝑍𝑍

𝛾𝑋𝑍

𝛾𝑌𝑍

} , (5) 

𝝈̅ = 𝑨𝝈 = {
𝝈̅I

𝝈̅O
}  with 𝝈̅I = {

𝜎𝑋𝑋

𝜎𝑌𝑌

𝜎𝑋𝑌

}  and 𝝈̅O = {

𝜎𝑍𝑍

𝜎𝑋𝑍

𝜎𝑌𝑍

} , (6) 

𝑺̅ = 𝑨𝑺𝑨T = [
𝑺̅II 𝑺̅IO

(𝑺̅IO)T 𝑺̅OO

] , (7) 

𝜶̅ = 𝑨𝜶 = {
𝜶̅I

𝜶̅O
} . (8) 

The subscripts I and O denote the in-plane and out-of-plane components, respectively. 𝑨 is a matrix 

that converts the stress and strain in Eqs. (1) and (2) into Eqs. (5) and (6), respectively. The conversion 

matrix 𝑨 is as follows: 

𝑨 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0]

 
 
 
 
 

. (9) 

In this study, we refer to the notations in Eqs. (4)–(8) as three-dimensional notation, whereas the 

notation in Eqs. (1)–(3) is referred to as normal notation. 

Three-dimensional laminate theory assumes the following conditions. 
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𝝈̅L = ∑𝑉𝑖𝝈̅
𝑖

𝑁

𝑖=1

, (10) 

𝜺̅L = ∑𝑉𝑖𝜺̅
𝑖

𝑁

𝑖=1

, (11) 

𝜺̅I
𝑖 = 𝜺̅I

L, (12) 

𝝈̅O
𝑖 = 𝝈̅O

L . (13) 

The superscripts L and 𝑖 denote the laminate and 𝑖-th ply, respectively. 𝑁 is the number of plies 

and 𝑉𝑖  is the volume fraction of the 𝑖 -th ply in the laminate. Equation (12) represents the 

compatibility condition of the in-plane strains, and Eq. (13) is the equilibrium condition for out-of-

plane stress. Under these conditions, the components of the laminate compliance 𝑺̅L and effective 

thermal expansion coefficient 𝜶̅L in three-dimensional notation are obtained as follows: 

𝑺̅II
L = [∑𝑉𝑖(𝑺̅II

𝑖 )
−1

𝑁

𝑖=1

]

−1

, (13) 

𝑺̅IO
L = 𝑺̅II

L [∑𝑉𝑖(𝑺̅II
𝑖 )

−1
𝑺̅IO

𝑖

𝑁

𝑖=1

] , (14) 

𝑺̅OO
L = (𝑺̅IO

L )
T
(𝑺̅II

L)
−1

𝑺̅IO
L + ∑𝑉𝑖 [𝑺̅OO

𝑖 − (𝑺̅IO
𝑖 )

T
(𝑺̅II

𝑖 )
−1

𝑺̅IO
𝑖 ]

𝑁

𝑖=1

, (15) 

𝜶̅I
L = 𝑺̅II

L [∑𝑉𝑖(𝑆I̅I
𝑖 )

−1
𝜶̅I

𝑖

𝑁

𝑖=1

] , (16) 

𝜶̅O = (𝑺̅IO
L )

T
(𝑺̅II

L)
−1

𝜶̅I
L + ∑𝑉𝑖 [𝜶̅O

𝑖 − (𝑺̅IO
𝑖 )

T
(𝑺̅II

𝑖 )
−1

𝜶̅I
𝑖]

𝑁

𝑖=1

. (17) 

Given the effective compliance 𝑺𝑖  and thermal expansion coefficient 𝜶𝑖  of the 𝑖 -th ply in the 

normal notation, their counterparts in the three-dimensional notation can be calculated using Eqs. (7) 

and (8), respectively. The effective laminate compliance 𝑺̅L  and effective thermal expansion 

coefficient 𝜶̅L in three-dimensional notation can be obtained using Eqs. (13)-(17). Then, 𝑺̅L and 𝜶̅L 

are converted into 𝑺L = {𝑆𝑖𝑗
L }  and 𝜶L = {𝛼𝑖

L}  in the normal notation to obtain the thermo-

mechanical properties of the cracked laminate. Thus, the thermomechanical properties of the laminate 

can be obtained: 

𝐸𝑋
L =

1

𝑆11
L , 𝐸𝑌

L =
1

𝑆22
L , 𝐸𝑍

L =
1

𝑆33
L , (18) 

𝐺𝑌𝑍
L =

1

𝑆44
L , 𝐺𝑋𝑍

L =
1

𝑆55
L , 𝐺𝑋𝑌

L =
1

𝑆66
L , (19) 

𝜈𝑌𝑍
L = −

𝑆23
L

𝑆22
L , 𝜈𝑋𝑍

L = −
𝑆13

L

𝑆11
𝐿 , 𝜈𝑋𝑌

L = −
𝑆12

L

𝑆11
L , (20) 

𝛼𝑋
L = 𝛼1

L, 𝛼𝑌
L = 𝛼2

L, 𝛼𝑍
L = 𝛼3

L, 𝛼𝑌𝑍
L = 𝛼4

L, 𝛼𝑋𝑍
L = 𝛼5

L, 𝛼𝑋𝑌
L = 𝛼6

L, (21) 
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where 𝐸 is Young’s modulus, 𝐺 is the shear modulus, 𝜈 is Poisson’s ratio, and 𝛼 is the thermal 

expansion coefficient. The subscripts 𝑋, 𝑌, and 𝑍 indicate the laminate coordinate-directions. 

 

2.2 Effective compliance of damaged ply 

The three-dimensional effective compliance proposed by Lopes et al. [36] was used to describe the 

ply with transverse cracks, as shown in Figure 2 (a). The material coordinates are defined as (1,2,3), 

where “1” is the fiber direction, “2” is the transverse direction, and “3” is the through-thickness 

direction. The origin of the material coordinate system is placed at the center of the ply. In the material 

coordinate system, the effective compliance for orthotropic damaged ply of the Lopes model is 

described as follows: 

𝑺mat =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

(1 − 𝑑1)𝐸1
−

𝜈12

𝐸1
−

𝜈12

𝐸1
0 0 0

1

(1 − 𝑑2)𝐸2
−

𝜈23

𝐸2
0 0 0

1

(1 − 𝑑3)𝐸2
0 0 0

1

(1 − 𝑑4)𝐺23
0 0

1

(1 − 𝑑5)𝐺12
0

sym.
1

(1 − 𝑑6)𝐺12]
 
 
 
 
 
 
 
 
 
 
 
 
 

(22) 

𝑑𝑖 is the damage variable. The thermal expansion coefficient of the ply in the material coordinate 

system is expressed as 

𝜶mat = {𝛼1 𝛼2 𝛼2 0 0 0} (23) 

The effective compliance 𝑺𝑖 and thermal expansion coefficient 𝜶𝑖 of the i-th ply in the laminate 

coordinate system were obtained by rotating the fiber orientation. 

𝑺𝑖 = 𝑹(𝜃𝑖)𝑺mat𝑻(−𝜃𝑖), (24) 

𝜶𝑖 = 𝑹(𝜃𝑖)𝜶mat, (25) 

𝜃𝑖  is fiber angle of the i-th ply. 𝑻(𝜃𝑖)  and 𝑹(𝜃𝑖)  are the coordinate conversion matrices of the 

stress and strain, respectively, defined by 

𝑻(𝜃𝑖) =

[
 
 
 
 
 

cos2 𝜃𝑖 sin2 𝜃𝑖 0 0 0 − sin 2𝜃𝑖

sin2 𝜃𝑖 cos2 𝜃𝑖 0 0 0 sin 2𝜃𝑖

0 0 1 0 0 0
0 0 0 cos𝜃𝑖 sin 𝜃𝑖 0
0 0 0 − sin 𝜃𝑖 cos𝜃𝑖 0

sin 𝜃𝑖 cos𝜃𝑖 −sin𝜃𝑖 cos𝜃𝑖 0 0 0 cos2𝜃𝑖 ]
 
 
 
 
 

, (26) 
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𝑹(𝜃𝑖) =

[
 
 
 
 
 
cos2 𝜃𝑖 sin2 𝜃𝑖 0 0 0 − sin 𝜃𝑖 cos𝜃𝑖

sin2 𝜃𝑖 cos2 𝜃𝑖 0 0 0 sin 𝜃𝑖 cos𝜃𝑖

0 0 1 0 0 0
0 0 0 cos 𝜃𝑖 sin 𝜃𝑖 0
0 0 0 − sin 𝜃𝑖 cos𝜃𝑖 0

sin 2𝜃𝑖 −sin 2𝜃𝑖 0 0 0 cos 2𝜃𝑖 ]
 
 
 
 
 

. (26) 

Once the damage variables are formulated, the effective compliance and thermal expansion coefficient 

can be obtained using Eqs. (24) and (25), respectively. The formulation of the damage variables is 

discussed in the next section. 

 

2.3 Formulation of damage variable assuming parabolic crack opening 

The damage variables 𝑑2 and 𝑑6 were derived from a three-dimensional micromechanics model by 

assuming a parabolic crack opening of transverse cracks. As shown in Figure 2 (b), the representative 

volume element (RVE) of the damaged ply was considered. Coordinates (x, y, z) represent the RVE 

coordinate system. The origin of the RVE coordinate system is set at the center of RVE, and the origin 

positions between the material and RVE coordinate systems do not necessarily coincide. The length, 

width, and thickness of the RVE were 2l, 2h, and 2t, respectively, where 2l is the transverse crack 

spacing, 2h is the ply width, and 2t is the ply thickness. Both sides of the RVE were cracked surfaces. 

The RVE is symmetric, and the defined analysis domain is the quarter of RVE: 0 ≤ 𝑥 ≤ 𝑡, 0 ≤ 𝑦 ≤

𝑙, and 0 ≤ 𝑧 ≤ ℎ. 

  The strain–stress relationship of transversely isotropic material in the RVE was described as follows. 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=

1

𝐸2
𝜎𝑥 −

𝜈23

𝐸2
𝜎𝑦 −

𝜈21

𝐸2
𝜎𝑧 (27) 

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
= −

𝜈23

𝐸2
𝜎𝑥 +

1

𝐸2
𝜎𝑦 −

𝜈21

𝐸2
𝜎𝑧 (28) 

𝜀𝑧 =
𝜕𝑤

𝜕𝑧
= −

𝜈21

𝐸2
𝜎𝑥 −

𝜈21

𝐸2
𝜎𝑦 +

1

𝐸1
𝜎𝑧 (29) 

𝛾𝑥𝑦 =
𝜎𝑥𝑦

𝐺23
=

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
≅

𝜕𝑣

𝜕𝑥
(30) 

𝛾𝑥𝑧 =
𝜎𝑥𝑧

𝐺12
=

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
≅ 0 (31) 

𝛾𝑦𝑧 =
𝜎𝑦𝑧

𝐺12
=

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
≅

𝜕𝑣

𝜕𝑧
(32) 

The subscripts x, y, and z denote the RVE coordinate directions; u, v, and w are the displacements 

along the x-, y-, and z-axes, respectively. We assumed that 𝜕𝑢/𝜕𝑦 ≪  𝜕𝑣/𝜕𝑥 , 𝜕𝑤/𝜕𝑦 ≪  𝜕𝑣/𝜕𝑧 

and 𝛾𝑥𝑧  ≪  1 in Eqs. (30)-(32). Following our previous study [31], the relationship between 𝜀𝑥, 𝜀𝑦, 

and 𝜀𝑍 was assumed as follows: 
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𝜀𝑥(𝑥, 𝑦, 𝑧) = 𝑎𝜀𝑦(𝑥, 𝑦, 𝑧), (33) 

𝜀𝑧(𝑥, 𝑦, 𝑧) = 𝑏𝜀𝑦(𝑥, 𝑦, 𝑧). (34) 

Constant parameters a and b are the average Poisson’s ratios and are determined by equilibrium 

equations. From Eqs. (27)–(34), the stresses were expressed as functions of the partial differentiation 

of v, as follows. 

𝜎𝑥 = 𝐸2

𝜈23 + 𝜈12𝜈21 + (1 − 𝜈12𝜈21)𝑎 + 𝜈12(1 + 𝜈23)𝑏

(1 + 𝜈23)(1 − 𝜈23 − 2𝜈12𝜈21)

𝜕𝑣

𝜕𝑦
(35) 

𝜎𝑦 = 𝐸2

1 − 𝜈12𝜈21 + (𝜈23 + 𝜈12𝜈21)𝑎 + 𝜈12(1 + 𝜈23)𝑏

(1 + 𝜈23)(1 − 𝜈23 − 2𝜈12𝜈21)

𝜕𝑣

𝜕𝑦
(36) 

𝜎𝑧 = 𝐸1

𝜈21 + 𝜈21𝑎 + (1 − 𝜈23)𝑏

1 − 𝜈23 − 2𝜈12𝜈21

𝜕𝑣

𝜕𝑦
(37) 

𝜎𝑥𝑦 = 𝐺23

𝜕𝑣

𝜕𝑥
(38) 

𝜎𝑥𝑧 = 0 (39) 

𝜎𝑦𝑧 = 𝐺12

𝜕𝑣

𝜕𝑧
(40) 

𝜎𝑥𝑧 is always zero by assuming 𝛾𝑥𝑧 ≅ 0 in Eq. (31). The three-dimensional equilibrium equation 

without the body force was expressed as follows. 

𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜎𝑥𝑦

𝜕𝑦
+

𝜕𝜎𝑥𝑧

𝜕𝑧
= 0 (41) 

𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
+

𝜕𝜎𝑦𝑧

𝜕𝑧
= 0 (42) 

𝜕𝜎𝑥𝑧

𝜕𝑥
+

𝜕𝜎𝑦𝑧

𝜕𝑦
+

𝜕𝜎𝑧

𝜕𝑧
= 0 (43) 

Substituting Eqs. (35)–(40) into Eqs. (41)–(43), the following average Poisson’s ratio and Laplace 

equation for v were obtained: 

𝑎 = −(𝜈23 +
𝐺23

𝐸2

(1 − 𝜈23
2 ) −

𝐺12

𝐸1
𝜈12(1 + 𝜈23)) , (44) 

𝑏 = −(𝜈21 −
𝐺23

𝐸2
𝜈21(1 + 𝜈23) +

𝐺12

𝐸1

(1 − 𝜈12𝜈21)) , (45) 

𝜕2𝑣

𝜕𝑥2
+ 𝜆1

2
𝜕2𝑣

𝜕𝑦2
+ 𝜆2

2
𝜕2𝑣

𝜕𝑧2
= 0, (46) 

where 

𝜆1 = √
𝐸2

𝐺23

1 − 𝜈12𝜈21 + (𝜈12𝜈21 + 𝜈23)𝑎 + 𝜈12(1 + 𝜈23)𝑏

(1 + 𝜈23)(1 − 𝜈23 − 2𝜈12𝜈21)
, (47) 
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𝜆2 = √
𝐺12

𝐺23
. (48) 

The boundary conditions considered for the Laplace equation of v were as follows.  

𝑣 = 0 on the surface 𝑦 = 0 (49) 

𝜕𝑣

𝜕𝑦
= 0 on the surface 𝑦 = 𝑙 (50) 

𝜕𝑣

𝜕𝑥
= 0 on the surface 𝑥 = 0 (51) 

𝜕𝑣

𝜕𝑧
= 0 on the surface 𝑧 = ℎ (52) 

𝜕𝑣

𝜕𝑧
= 0 on the surface 𝑧 = 0 (53) 

𝑣 = 𝜀𝑦
∞𝑦 on the surface 𝑥 = 𝑡 (54) 

The reference position of the displacement v is defined in Eq. (49). Eq. (50) represents the traction-

free condition on the crack surface. Eq. (51) indicates that 𝜎𝑥𝑦 = 0; Eqs. (52) and (53) were obtained 

from 𝜎𝑦𝑧 = 0. Based on previous studies [17,30], we assumed that the whole neighboring plies of the 

cracked ply are rigid in Eq. (54). In other words, the displacement v at the interfaces of the cracked 

ply was deformed by the uniform ply strain 𝜀𝑦
∞ along the y-direction, regardless of the transverse 

crack. Using the variable separation method in Laplace equation (46) under boundary conditions (49)–

(54), the infinite series form of the displacement v was obtained as follows:  

𝑣 =
8𝑙

𝜋2
[∑

(−1)𝑛+1

(2𝑛 − 1)2

cosh[(2𝑛 − 1)𝜋𝜆1𝑥/(2𝑙)]

cosh[(2𝑛 − 1)𝜋𝜆1𝑡/(2𝑙)]
sin (

2𝑛 − 1

2𝑙
𝜋𝑦)

∞

𝑛=1

] 𝜀𝑦
∞. (55) 

Although Eq. (55) is a solution, it is quite complicated. To simplify the solution and loosen the 

boundary condition, we assumed the following parabolic displacement form: 

𝑣(𝑥, 𝑦, 𝑧) = 𝐷(𝑧)(𝐴(𝑦)𝑥2 + 𝐵(𝑦)𝑥 + 𝐶(𝑦)) with 𝐷(𝑧) ≠ 0. (56) 

Here, 𝐴(𝑦) , 𝐵(𝑦) , 𝐶(𝑦) , and 𝐷(𝑧)  are arbitrary functions that satisfy the boundary conditions. 

Substituting Eq. (56) into Eqs. (51) and (54), we obtained: 

𝐵(𝑦) = 0, (57) 

𝐷(𝑧)𝐶(𝑦) = 𝜀𝑦
∞𝑦 − 𝐷(𝑧)𝐴(𝑦)𝑡2. (58) 

Using Eqs. (57) and (58), Eq. (56) was rewritten as 

𝑣 = 𝐷(𝑧)𝐴(𝑦)(𝑥2 − 𝑡2) + 𝜀𝑦
∞𝑦. (59) 

Substituting Eq. (59) into Eqs. (49), (50), (52), and (53), the following equations were obtained. 

𝐴(0) = 0 (60) 

𝐷(𝑧)
𝑑𝐴

𝑑𝑦
(𝑙) ⋅ (𝑥2 − 𝑡2) + 𝜀𝑦

∞ = 0 (61) 
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𝑑𝐷

𝑑𝑧
(ℎ) = 0 (62) 

𝑑𝐷

𝑑𝑧
(0) = 0 (63) 

From Eq. (58), the following equation was obtained. 

𝐷(𝑧)(𝐶(𝑦) + 𝐴(𝑦)𝑡2) = 𝜀𝑦
∞𝑦 (64) 

By comparing the left- and right-hand sides of the above equation, the D(z) can be determined as 

follows. 

𝐷(𝑧) = 1 (= Const. ) (65) 

Since D(z) is constant, the displacement v is constant in the thickness direction. Eq. (65) obviously 

satisfied Eqs. (62) and (63). Using Eqs. (59) and (64), the Laplace equation (46) was rewritten as 

2𝐴(𝑦) + 𝜆1
2
𝑑2𝐴

𝑑𝑦2
(𝑥2 − 𝑡2) = 0. (66) 

From Eq. (65), 𝐴(𝑦) = 0 was obtained. However, the boundary condition of Eq. (61) could not be 

satisfied. To clear this roadblock, Eqs. (46) and (50) were averaged across the x-direction [37]. 

1

𝑡
∫

𝜕𝑣

𝜕𝑦
𝑑𝑥

𝑡

0

|
𝑦=𝑙

= 0 (67) 

1

𝑡
∫ (

𝜕2𝑣

𝜕𝑥2
+ 𝜆1

2
𝜕2𝑣

𝜕𝑦2
+ 𝜆2

2
𝜕2𝑣

𝜕𝑧2
)

𝑡

0

𝑑𝑥 = 0 (68) 

Eqs. (67) and (68) considering the loose boundary condition implies that the boundary condition (Eq. 

(50)) and governing equation (Eq. (46)) are averaged over the thickness direction following 

McCartney [37]. Therefore, Eqs. (67) and (68) are not exact expressions but approximate equations 

following Ref. [37]. In the process of deriving damage variable d2, the displacement v is averaged over 

x and z-direction to derive the inelastic strain, so the effect of this approximation is small. By 

substituting Eqs. (59) and (64), Eqs. (66) and (67) were rewritten as  

𝑑𝐴

𝑑𝑦
(𝑙) =

3𝜀𝑦
∞

2𝑡2
, and (69) 

𝑑2𝐴

𝑑𝑦2
(𝑦) − 𝛽3𝐷

2 𝐴(𝑦) = 0, (70) 

where 

𝛽3𝐷 =
√3

𝜆1𝑡
(71) 

Under the boundary conditions in Eqs. (60) and (68), the ordinary 2nd order differential equation in Eq. 

(69) could be solved. 

𝐴(𝑦) =
3𝜀𝑦

∞

2𝑡2𝛽3𝐷

sinh𝛽3𝐷𝑦

cosh𝛽3𝐷𝑙
(72) 
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The displacement v was obtained using Eqs. (59), (64), and (71). 

𝑣 =
3𝜀𝑦

∞

2𝑡2𝛽3𝐷

sinh𝛽3𝐷𝑦

cosh𝛽3𝐷𝑙
(𝑥2 − 𝑡2) + 𝜀𝑦

∞𝑦 (73) 

The parabolic form of v (Eq. (72)) is simpler than that in the infinite form (Eq. (55)). According to our 

previous paper [30], the damage variable 𝑑2 is the ratio of the inelastic strain due to crack opening 

to the ply strain 𝜀𝑦
∞; therefore, 𝑑2 was formulated using Eq. (72). 

𝑑2 =
1

𝜀𝑦
∞

(𝜀𝑦
∞ −

1

𝑙𝑡ℎ
∫ ∫ 𝑣(𝑥, 𝑙, 𝑧)𝑑𝑥

𝑡

0

ℎ

0

𝑑𝑧) =
2𝜌

𝛽3𝐷
tanh

𝛽3𝐷

2𝜌
 (Parabolic Solution) (74) 

where 𝜌 = 1/(2𝑙) is the transverse crack density. Eq. (73) refers to the parabolic solution used in this 

study; the infinite form of the damage variable 𝑑2 was derived using Eq. (55) [31]: 

𝑑2 = 1 −
8

𝜋3𝜆1𝑡
∑

1

(2𝑛 − 1)3

tanh[(2𝑛 − 1)𝜋𝜆1𝑡𝜌]

𝜌

∞

𝑛=1

 (Infinite Series Solution). (75) 

The parabolic solution of 𝑑2 (Eq.(73)) is much simplified compared with that of the infinite series 

solution (Eq.(74)). These two solutions are compared in detail later.  

  The damage variable 𝑑6  was formulated from three-dimensional micromechanics model 

developed in our previous studies [31,32]. The parabolic and infinite solutions of 𝑑6 were expressed 

as follows: 

𝑑6 =
2𝜌

𝛽12
tanh

𝛽12

2𝜌
 (Parabolic solution), (76) 

𝑑6 = 1 −
8

𝜋3𝑡
∑

1

(2𝑛 − 1)3

tanh[(2𝑛 − 1)𝜋𝑡𝜌]

𝜌

∞

𝑛=1

 (Infinite series solution). (77) 

The remaining damage variables were 𝑑1, 𝑑3, 𝑑4, and 𝑑5. The ply has transverse cracks only; 

therefore, 𝑑1 and 𝑑3 were postulated as follows: 

𝑑1 = 0, 𝑑3 = 0. (78) 

The shear damage variables 𝑑4  and 𝑑5  were calculated using the following approximate 

expressions [38]: 

1

1 − 𝑑4
=

1

2
(

1

1 − 𝑑2
+

1

1 − 𝑑3
),   

1

1 − 𝑑5
=

1

2
(

1

1 − 𝑑1
+

1

1 − 𝑑3
) . (79) 

 

3 Results and discussion 

The effective thermoelastic properties of CFRP and GFRP composite laminates with various layups 

were predicted by the three-dimensional stiffness reduction model presented in the previous section. 

The predicted results were compared with the FEA and experimental results from previous studies to 

validate the proposed model. The material properties used for validation are listed in Table 1.  

 

3.1 Cross-ply laminate 
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In the calculation of the effective properties of the cross-ply laminate, the stiffness reduction model 

with parabolic solutions of the damage variables (Eqs. (73) and (75)) are compared with those of the 

more complicated model with infinite series (Eqs. (74) and (76)) and National Physical Laboratory 

(NPL) models [39,40]. The NPL model is the generalized plane strain model that satisfy the 

equilibrium and compatibility equations. Therefore, the NPL model is exact solution, and the stress 

perturbation along the interfaces of the cracked ply is considered. Our proposed model is the 

approximate solution that does not satisfy the compatibility equation because of Eqs. (33) and (34). 

Furthermore, the stress distribution along the interfaces of the cracked ply in our model is constant 

due to Eq. (54), regardless of transverse cracking. To verify our model, the present model is compared 

with the NPL model that is exact solution. The effective Young’s moduli of the [0/902]s, [0/902/0]s, and 

[0/90/0/90]s CFRP laminates and the crack opening displacement of a transverse crack in the [0/90]s 

CFRP laminate were predicted. The material parameters of CFRP1 were used in the calculation, as 

summarized in Table 1. 

Figure 3 shows the nominal axial Young’s modulus of cross-ply laminates with a ply thickness of 

0.127 mm as a function of the transverse crack density. Compared with the infinite series solution, the 

present model with a parabolic solution of the damage variables is in good agreement with the NPL 

model results. Figure 4 shows the crack opening displacement of a transverse crack in the [0/90]s 

CFRP laminate with 0.25 mm ply thickness at 4.0 mm transverse crack spacing and an applied 

laminate stress 0.2 GPa. The maximum crack opening displacement of the parabolic solution of the 

damage variables was higher than that of the infinite series solution. Therefore, the parabolic crack 

opening assumption and loosening of the boundary condition (Eqs. (67) and (68)) contributed to 

improving the crack opening displacement. The high crack opening displacement results in a large rate 

of stiffness reduction; therefore, this assumption contributes to the analytical accuracy of stiffness 

reduction, as well as the simplification of the damage variable form. 

  The effective thermal expansion coefficient of the [02/902]s CFRP laminate with a ply thickness of 

0.125 mm was calculated and compared with experimental results [41]. The material parameters of 

CFRP2 were used for calculation. Figure 5 shows the predicted effective thermal expansion 

coefficients. By assuming the parabolic opening displacement and loosening the boundary conditions, 

the parabolic solution results were closer to the experimental results than the infinite series solution 

results. The result is clear from the fact that the crack opening displacement of the parabolic solution 

is higher than that of infinite series solution. The thermal stress of a ply in composite laminate is 

induced as temperature changes due to mismatch in the thermal expansion coefficients between plies 

with different orientations [41,42]. The large crack opening of the damaged 90° ply results in low 

effective ply stiffness. Therefore, the load bearing capacity of the 90° ply is reduced, and the thermal 

stress in the 0° layers becomes large. As a result, the effective laminate thermal expansion coefficient 

approaches the thermal expansion coefficient of 0° plies that have low thermal expansion coefficient. 
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However, the parabolic solution results are slightly higher than the experimental results at high crack 

density because of the assumption that the neighboring ply is rigid. 

 

3.2 Angle-ply laminate 

Unlike conventional shear-lag analyses, the present model uses the three-dimensional laminate theory; 

therefore, all effective thermoelastic properties of composite laminates with various layups can be 

determined. Figure 6 shows the effective Young’s moduli, shear moduli, Poisson’s ratios, and thermal 

expansion coefficients of the angle-ply [55/-55]s GFRP laminate with a 0.203 mm ply thickness, where 

the material parameters of GFRP1 were used for calculations. The FEA results [35] are plotted for 

comparison. Thus, the present model with a parabolic solution can reproduce the change in all effective 

thermoelastic properties due to transverse cracking. The effective laminate Young’s modulus 𝐸𝑍
L in 

the thickness direction is slightly reduced due to Poisson’s effect. 

   Figure 7 depicts the normalized effective axial Young’s modulus of the [0/θ/0] (θ = 90°, 60°, 45°) 

CFRP laminate based on the present and experimental results [43] to verify the present model for 

cracking in off-axis plies. The material parameter CFRP3 was used, and the ply thickness was 0.15 

mm. The laminate layups were [0/908/0]s, [0/608/0]s, and [0/458/0]s. The present model quantitatively 

agrees with the experimental results regardless of the fiber angle in the middle plies. Therefore, the 

proposed model can be applied to express the effective mechanical properties of cracked composite 

laminates in structural components subjected to multiaxial loading.  

 

3.3 Quasi-isotropic laminate 

Quasi-isotropic laminates develop transverse cracks in multiple ply orientations. Tong et al. [44] 

examined the cracks in the [0/90/-45/45]s GFRP laminate with a 0.5 mm ply thickness. In Tong’s 

experiments, the cracks in the 90° plies traversed the width and thickness of the 90° plies, while the 

cracks did not fully propagate in the 45° and -45° plies. Singh and Talreja [45] defined the relative 

density factor 𝜌𝑟 as the ratio of the actual surface area for partial cracks to the surface area for full 

cracks is defined as follows: 

𝜌𝑟 =
Actual surface area for partial cracks

Surface area for full cracks
. (80) 

By introducing 𝜌𝑟, the crack density is defined as the sum of crack area contained per volume of the 

damaged ply. It means that a one large crack is equivalent to two small cracks with same crack surface 

area of the one large crack. The relative density factor could not be calculated using the data from 

Tong’s experiments. Therefore, the transverse crack density in -45° and 45° plies was assumed to be 

a 90° transverse crack density multiplied a relative density factor 𝜌𝑟 . Three values of 𝜌𝑟  were 

considered: 0.25, 0.5, and 1. Figure 8 shows the normalized axial Young’s modulus and in-plane 

Poisson’s ratio of the quasi-isotropic GFRP laminate as functions of 90° transverse crack density, as 
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predicted by the proposed model using the material parameters of GFRP2, as well as the experiments 

of Tong et al. [44]. The present model with 𝜌𝑟 = 0.5 is in the best agreement with the experimental 

results, which is consistent with the study of Singh and Talreja [45]. The results indicate that the 

present model can quantitatively predict the stiffness reduction of cracked composite laminate with 

arbitrary layups.  

The three-dimensional stiffness reduction model for composite laminates containing transverse 

cracks is formulated, and thermomechanical properties of damaged composite laminate is predicted 

as a function of transverse crack density. To discuss crack growth in each layer of laminates with 

arbitrary layups, formulation of a crack growth analysis method using stress and energy criteria is a 

future task. 

 

4 Conclusion 

In this study, a three-dimensional effective compliance model is developed for composite laminates 

with transverse cracking. Three-dimensional laminate theory is used to reproduce all the thermoelastic 

properties of damaged laminates with various layups. Lopes’ effective compliance [36] of the damaged 

ply is used to represent the stiffness degradation due to transverse cracking based on CDM. The 

damage variable 𝑑2 is formulated based on a three-dimensional micromechanical model, where the 

boundary conditions are loosened and parabolic crack opening is assumed. 

  The effective thermomechanical properties of various composite laminates are predicted using the 

proposed model with both infinite series and simple parabolic solutions and compared with FEA and 

experimental results. The parabolic solution results showed better agreement with the FEA and 

experimental results than the infinite series solution, regardless of the laminate layup configuration. 

Therefore, this assumption contributes to the analytical accuracy of the stiffness reduction prediction 

while simplifying calculation of the damage variable.  
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Tables and Figures 

 

Table 1 Material properties of CFRP and GFRP plies. 

Material 
Fig. 

No. 

𝐸1 

(GPa) 

𝐸2 

(GPa) 

𝐺12 

(GPa) 

𝐺23 

(GPa) 
𝜈12 𝜈23 

𝛼1 

(10-6/deg.) 

𝛼2 

(10-6/deg.) 

CFRP1 

[39,40] 

Figs. 

3 & 4 
144.78 9.58 4.785 3.090 0.31 0.55 - - 

CFRP2 

[21,41] 
Fig. 5 138 10.3 5.5 3.6 0.3 0.43 0.43 25.8 

GFRP1 

[35] 
Fig. 6 41.7 13 3.4 4.58 0.3 0.42 6.72 29.3 

CFRP3 

[43] 
Fig. 7 135 8.5 4.8 2.7 0.34 0.49 - - 

GFRP2 

[46] 
Fig. 8 46 13 5 4.6 0.3 0.42 - - 

 

 

Figure 1 A laminate formulated by stacking plies in the Z-direction, where the coordinates (X, Y, Z) 

represent the laminate coordinate system. 

 

 

Figure 2 (a) A ply with transverse cracks and (b) RVE of the damaged ply; (1, 2, 3) is the material 

coordinate system, while (x, y, z) is the RVE coordinate system. 
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Figure 3 Nominal axial Young’s modulus of cross-ply CFRP laminates as a function of transverse 

crack density. Layups of Laminate A, B, and C are [0/902]s, [0/902/0]s, and [0/90/0/90]s, respectively. 

Results shown are from the present stiffness reduction model with parabolic and infinite series 

solutions and NPL model [40]. 

 

 

Figure 4 Crack opening displacement of a transverse crack in [0/90]s CFRP laminate with transverse 

crack spacing of 4.0 mm at applied laminate stress of 0.2 GPa. Results shown are from the present 

stiffness reduction model with parabolic and infinite series solutions and NPL model [39]. 
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Figure 5 Thermal expansion coefficient as a function of transverse crack density of [02/902]s CFRP 

laminate with surface cracking. Results shown are from the present stiffness reduction model with 

parabolic and infinite series solutions and the experimental results of Tong et al. [41]. 
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(a) Young’s modulus                         (b) Shear modulus 

 

          (c) Poisson’s ratio                   (d) Thermal expansion coefficient 

 

Figure 6 (a) Young’s moduli, (b) shear moduli, (c) Poisson’s ratios, and (d) thermal expansion 

coefficients as a function of transverse crack density of [55/-55]s angle-ply GFRP laminate. FEA 

results [35] are plotted for comparison. 
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     (a) [0/908/0]                (b) [0/608/0] 

 

 

(c) [0/458/0] 

 

Figure 7 Normalized axial Young’s modulus of (a) [0/908/0], (b) [0/608/0], and (c) [0/458/0] CFRP 

laminates as a function of transverse crack density. Experiment results [43] are plotted for comparison. 
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(a) Young’s modulus                         (b) Poisson’s ratio 

Figure 8 (a) Normalized axial Young’s modulus and (b) normalized in-plane Poisson ratio of [0/90/-

45/45]s quasi-isotropic GFRP laminate as a function of 90° transverse crack density. Experimental 

results [44] are plotted for comparison. 
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