

# Trace analysis of nitrated polycyclic aromatic hydrocarbons based on two-color femtosecond laser ionization mass spectrometry

Wen, Lu  
Faculty of Design, Kyushu University

Yoshinaga, Katsunori  
Faculty of Design, Kyushu University

Imasaka, Totaro  
Kyushu University

Imasaka, Tomoko  
Faculty of Design, Kyushu University

<https://hdl.handle.net/2324/7153241>

---

出版情報 : Talanta. 265, pp.124807-, 2023-12-01. Elsevier  
バージョン :  
権利関係 :



1 **Trace analysis of nitrated polycyclic aromatic hydrocarbons based on**  
2 **two-color femtosecond laser ionization mass spectrometry**

3  
4 Lu Wen <sup>a</sup>, Katsunori Yoshinaga <sup>a</sup>, Totaro Imasaka <sup>b,c</sup>, Tomoko Imasaka <sup>a,\*</sup>

5

6 <sup>a</sup> *Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540: 744*

7 *Motooka, Nishi-ku, Fukuoka 819-0395, Japan*

8 <sup>b</sup> *Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan*

9 <sup>c</sup> *Hikari Giken, Co., 2-10-30, Sakurazaka, Chuou-ku, Fukuoka 810-0024, Japan*

10

11

12

13

14

15

16

17

18

19

20 \* Corresponding author.

21 Graduate School of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540,  
22 Japan

23 *E-mail address:* imasaka@design.kyushu-u.ac.jp (Tomoko IMASAKA)

24

1    **ABSTRACT**

2    Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are suspected to be highly  
3    carcinogenic and mutagenic compounds that are present in the environment. Gas  
4    chromatography combined with mass spectrometry (GC-MS) is the most frequently used  
5    technique for trace analysis. The electron ionization techniques that are currently used in  
6    MS, however, typically do not result in the formation of a molecular ion, thus making the  
7    determination of these compounds more difficult. In this study, we report on the use of a  
8    compact highly-repetitive (low-pulse-energy) ultraviolet (UV) femtosecond laser as the  
9    ionization source in combination with a miniature time-of-flight mass analyzer and a  
10   time-correlated ion counting system. The UV laser pulses emitted at 343, 257, and 206  
11   nm were produced by harmonic generations of a femtosecond Yb laser emitting at 1030  
12   nm and were utilized for single-color multiphoton ionization. A combination of the 343-  
13   nm and 257-nm pulses was further employed to achieve two-color two-photon ionization.  
14   This technique was found to be more useful for sensitive detection and also resulted in  
15   the formation of a molecular ion. A pump-and-probe technique using these pulses was  
16   examined in a proof-of-concept study to measure the femtosecond lifetimes of the nitro-  
17   PAHs separated by GC, providing additional information for use in the characterization  
18   of the analyte. The developed technique was applied in the analysis of an authentic sample,  
19   an organic solvent extract from diesel exhaust particulates. The nitro-PAHs contained in  
20   a standard reference material (SRM1975) were determined on a two-dimensional GC-MS  
21   display, suggesting that this technique would be useful for the practical trace analysis of  
22   nitro-PAHs in environmental samples.

23

1    *Keywords:*

2    Multiphoton ionization; mass spectrometry; two-color femtosecond laser; nitrated

3    polycyclic aromatic hydrocarbon; standard reference material

4

5

6

7    **1. Introduction**

8    Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are analogs of polycyclic

9    aromatic hydrocarbons (PAHs) that contain at least one nitro group in the molecule. They

10   are directly produced by combustion of fossil fuels and also by chemical reactions of

11   PAHs with O<sub>3</sub> and NO<sub>2</sub> in the atmosphere [1-3]. Different types of nitro-PAHs are formed

12   as the result of the atmospheric transformation of PAHs. In fact, 30-40% of the

13   mutagenicity was contributed by 1,3-, 1,6-, and 1,8-dinitropyrene, 1-nitropyrene and 3-

14   and 8-nitrofluorancene in a sample extracted form diesel exhaust particulates [2]. When

15   nitro-PAHs are inhaled into the human body, this exposure increases oxidative stress thus

16   increasing the risk of developing cardiovascular disease [3]. As a result, nitro-PAHs are

17   used as special source markers [3, 4]. However, transformations of these compounds that

18   occur in the environment are still a subject of debate, since photochemical decomposition

19   is considered to be a major factor in decreasing the concentration of nitro-PAHs.

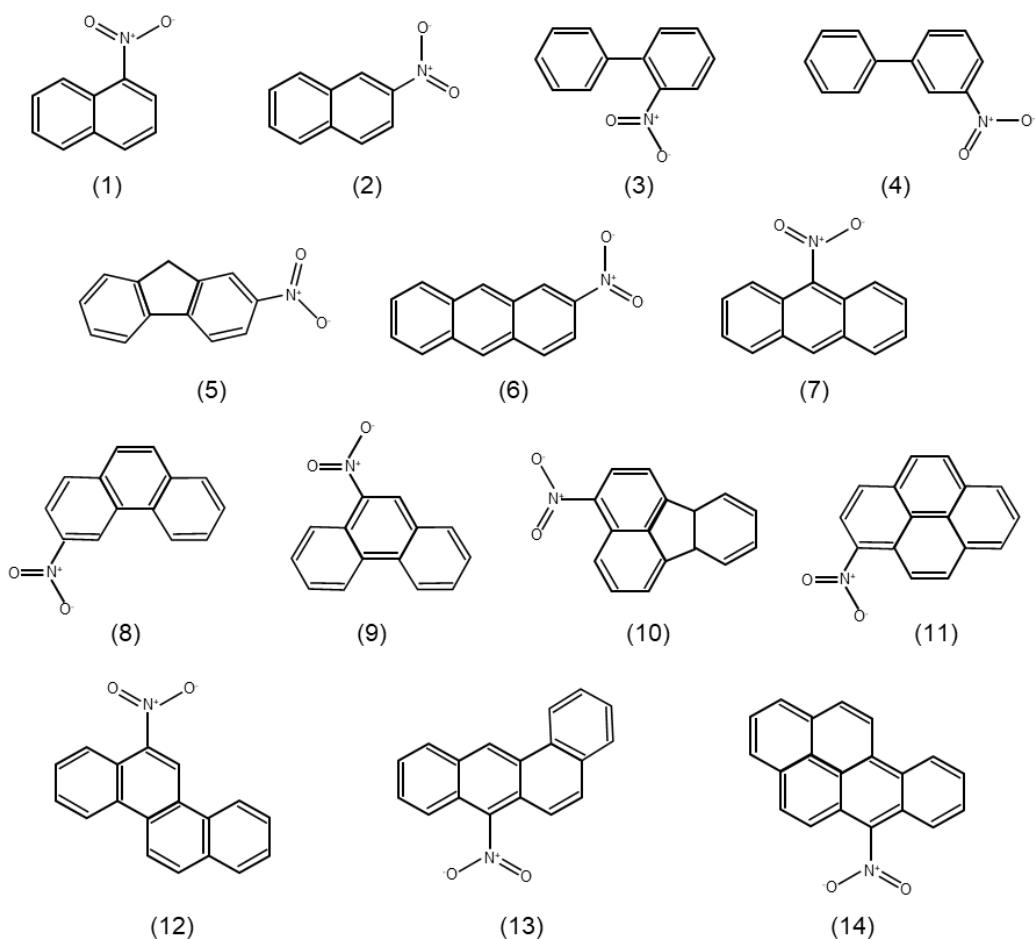
20   Although the levels of these compounds are much lower than those of PAHs, nitro-PAHs

21   have a more potent carcinogenicity and mutagenicity [3, 4]. Indeed, the concentrations of

22   nitro-PAHs that are typically adsorbed on particulate matter are 10-100 times lower than

1 those of PAHs [5, 6]. However, the mutagenicity and carcinogenicity of these nitro-PAHs  
2 are reported to be 200-110000 times higher than that for benzo(a)pyrene [7]. Therefore,  
3 a sensitive as well as a selective method for the analysis of nitro-PAHs is clearly needed.

4 A variety of analytical techniques have been developed for measuring nitro-PAHs in  
5 the environment [8]. Liquid chromatography combined with electrochemical detection,  
6 fluorescence detection, or chemiluminescence detection, has been employed, although a  
7 chemical reaction is needed in these techniques [9-12]. Among them, the most sensitive  
8 technique is reported to be chemiluminescence with detection limits of 0.1-10 pg (cf.  
9 fluorescence 1-10 pg) [12]. Many techniques involve the use of gas chromatography  
10 combined with various detectors, e.g., flame ionization detector, nitrogen-phosphorus  
11 detector, and electron capture detector [13-16]. The most frequently used technique is gas  
12 chromatography coupled with mass spectrometry (GC-MS), because of the superior  
13 separation resolution given by GC and the excellent sensitivity provided by MS. It should  
14 be emphasized that MS is very useful for the identification of analyte molecules. Many  
15 types of MS with different ionization sources have been developed to date. Among them,  
16 electron ionization (EI) is widely used in conventional MS [17-20]. In order to improve  
17 the sensitivity of this method, it is necessary to improve the selectivity for background  
18 suppression. High-resolution MS operated in the selected-ion monitoring (SIM) mode  
19 (HR(SIM)MS) has been utilized for this purpose [21]. However, some organic  
20 compounds (including nitro-PAHs) dissociate readily, and fragment ions are dominantly  
21 observed in EIMS. This can make it difficult to determine the molecular weight of the  
22 analyte by observing a molecular ion and to identify the analytes contained in a complex  
23 sample matrix. To solve this problem, positive/negative ion chemical ionization MS  
24 (PICI/NICIMS) has been developed, since it provides a molecular ion [22-26]. This


1 approach is particularly useful for measuring highly electronegative compounds such as  
2 nitro-PAHs, since it provides excellent selectivity and sensitivity. However, identifying  
3 the analyte by finger-printing is difficult due to a lack of a fragment pattern. Another  
4 approach to improving selectivity is the use of a hyphenated technique such as MS/MS  
5 and GC $\times$ GC. Mass analyzed ion kinetic energy spectrometry (MIKES)-MS/MS and  
6 triple-stage quadrupole (TSQ)MS/MS have been developed for this purpose [17]. These  
7 techniques were employed in a study of the decay/formation mechanism of PAHs/nitro-  
8 PAHs in the environment [18]. A two-dimensional separation technique coupled with MS  
9 such as GC $\times$ GC-MS/MS has superior selectivity and is now frequently used in trace  
10 analysis [21]. However, these techniques make the comprehensive analysis of unknown  
11 nitro-PAHs difficult.

12 A photoionization technique has been developed to improve both the selectivity and  
13 the sensitivity of this technique [27]. The ionization energy (*IE*) of nitro-PAHs is 7-11  
14 eV, and 1-nitronaphthalene was measured by single-photon ionization in MS using a  
15 vacuum-ultraviolet (VUV) nanosecond laser [28]. On the other hand, the excitation  
16 energy (*EE*) of nitro-PAHs is 3-4 eV, and such a molecule can be efficiently ionized by  
17 absorbing the first photon for excitation and the subsequent photon for ionization, a  
18 process referred to as resonance-enhanced two-photon ionization (RE2PI), or more  
19 generally as resonance-enhanced multiphoton ionization (REMPI). For example, a solid  
20 sample was directly vaporized and ionized using ultraviolet (UV) nanosecond lasers (266  
21 and 213 nm, 8 ns) for observing positive and negative ions, which provided limits of  
22 detection (LODs) at the picomole level [29- 30]. A near-infrared (NIR) femtosecond laser  
23 (800 nm, 10 mJ, 10 Hz) was used for MPI after laser desorption of a sample using a UV  
24 nanosecond laser (266 nm) [31]. To measure a sample in a complex matrix, GC was

1 combined with MS using UV and NIR femtosecond laser ionization sources (fsLIMS)  
2 [32]. Indeed, this technique has been applied to the trace analysis of nitro-PAHs in a  
3 complex matrix at the sub-picogram level [33-36]. Note that nitro-PAHs were converted  
4 into amino-PAHs for more sensitive/selective detection before mass analysis [37, 38].  
5 Nitro-PAHs have very short lifetimes and relax to the ground state on the femtosecond  
6 time scale. Therefore, it is desirable to use a femtosecond laser for efficient RE2PI. In  
7 this technique, a molecular ion as well as large fragment ions is enhanced significantly,  
8 which was then useful for the assignment of the analyte. It was, however, necessary to  
9 use an MS comprised of a large mass analyzer and a complicated laser system consisting  
10 of a Ti:sapphire laser, an optical parametric amplifier, and harmonic generators as the  
11 ionization source, which prevented the practical analytical use of this approach. In order  
12 to improve ionization efficiency, it was suggested that the analyte be ionized when  
13 measurements are made at around 200 nm because of a strong absorption band located at  
14 shorter wavelengths. This, however, resulted in significantly increased background  
15 signals that arose from interferences present in a complex sample mixture. To suppress  
16 these undesirable signals, it was suggested that the nitro-PAHs be measured in the near-  
17 UV region (345 nm) in the case of an actual trace analysis [34]. In addition, it is preferable  
18 to decrease the excess energy remaining in the ionic state so as to suppress fragmentation.  
19 As a result, it would be preferential to use two femtosecond pulses emitting at different  
20 wavelengths, since the first pulse can be used for optimal excitation and the second pulse  
21 for optimal ionization. This would minimize the effect of interferences and suppress  
22 fragmentation.

23 In this study, we report on the analysis of a standard sample mixture containing 14  
24 nitro-PAHs (see Fig. 1 for their chemical structures) based on GC-MS using the harmonic

1 emissions of a compact femtosecond Yb laser as the ionization source. The UV pulses  
 2 emitting at 343, 257, and 206 nm were generated and used for single-color and two-color  
 3 ionizations to analyze the standard sample mixture and also a real sample extracted from  
 4 diesel exhaust particulates. Furthermore, the two-color pump-and-probe technique was  
 5 examined in a proof-of-concept study to obtain additional information concerning the  
 6 lifetime of the analyte molecule and to improve selectivity in spectrometric analysis.



7

**Fig. 1.** Chemical structures of the nitro-PAHs examined in this study. (1) 1-nitronaphthalene [173] (2) 2-nitronaphthalene [173] (3) 2-nitrobiphenyl [199] (4) 3-nitrobiphenyl [199] (5) 2-nitrofluorene [211] (6) 2-nitroanthracene [223] (7) 9-nitroanthracene [223] (8) 3-nitrophenanthrene [223] (9) 9-nitrophenanthrene [223] (10) 3-nitrofluoranthene [247] (11) 1-nitropyrene [247] (12) 6-nitrochrysene [273] (13) 7-nitrobenz(a)anthracene [273] (14) 6-nitrobenzo(a)pyrene [297]. [ ]: molecular weight.

## 8 2. Material and methods

1      *2.1. Analytical instrument*

2      A block diagram of the experimental apparatus used in this study is shown in Fig. S1  
3      in the Supplementary Material. Briefly, the sample was measured by a GC (6890 N,  
4      Agilent Technologies) combined with a miniature time-of-flight (TOF) mass analyzer  
5      (flight tube length 65 mm, mass resolution 670) that was recently developed in our  
6      laboratory [39]. The analyte eluting from GC was introduced into the mass analyzer  
7      maintained at  $\sim 4 \times 10^{-3}$  Pa using a fused silica capillary. A femtosecond Yb laser  
8      (wavelength 1030 nm, pulse width 400 fs, output power 2.4 W, pulse repetition rate 120  
9      kHz, Calmer Laser) was employed as a fundamental beam to generate the third (343 nm),  
10     fourth (257 nm), and fifth (206 nm) harmonic emissions. The two beams, e.g., the third  
11     and fourth harmonic emissions, were separated and recombined using dichroic mirrors.  
12     A mechanical stage with the dielectric mirrors mounted on it was translated using a high-  
13     precision micrometer head (resolution 1  $\mu\text{m}$ ) to adjust the time delay between the two  
14     pulses. The combined beam was confocally focused together using a pair of UV-enhanced  
15     concave and flat aluminum mirrors onto an analyte in a molecular beam in the MS, in  
16     order to avoid mismatching of the focal lengths at different wavelengths when using a  
17     fused silica lens. The angle between the molecular beam and the laser beam was slightly  
18     tilted (ca. 10 degree) to increase the interaction volume and to improve the ionization  
19     efficiency [39]. The ions produced by MPI were accelerated toward a TOF tube (no delay  
20     extraction field available) and were detected by an assembly of microchannel plates  
21     (response time ca. 600 ps, F14844eY002, Hamamatsu Photonics). The signal was  
22     amplified by 60-fold using an amplifier (bandwidth 1.5 GHz, C5594, Hamamatsu

1 Photonics), and the output signal was measured by a time-to-digital converter (time  
2 resolution 250 ps, TimeHarp 260 NANO, PicoQuant) installed in a personal computer.

3 A 1- $\mu$ L aliquot of sample solution was injected into the GC by means of an auto  
4 sample injector (splitless mode), and the analytes were separated on a capillary column  
5 (DB-5MS, length 30 m, inner diameter 0.25 mm, film thickness 0.25 mm, Agilent  
6 Technologies). Helium was used as a carrier gas, and the flow rate was adjusted to 1  
7 mL/min. The temperature of the sample injection port was set at 280 °C, which was a  
8 compromise that allowed all 14 nitro-PAHs studied here to be measured (dependence of  
9 the signal intensity on the temperature of the sample injection port is shown in Fig. S2).  
10 The temperature program of the capillary column was as follows: the oven temperature  
11 was increased from 40 °C (held for 1 min) to 120 °C at a rate of 20 °C/min (held for 1  
12 min), then increased to 280 °C at a rate of 5 °C/min (held for 10 min). The temperature of  
13 the transfer line between the GC and the MS was maintained at 300 °C.

14

15 *2.2. Reagents and chemicals*

16

17 *CAUTION: Nitro-PAHs are potent direct-acting mutagens and carcinogens, and*  
18 *precautions should be taken to prevent dermal and inhalation exposure to nitro-PAH*  
19 *solutions and vapors.* A standard sample mixture containing 2-nitronaphthalene, 2-  
20 nitroanthracene, 9-nitroanthracene, 3-nitrophenanthrene, 9-nitrophenanthrene, 6-  
21 nitrochrysene, 7-nitrobenz(a)anthracene, and 6-nitrobenzo(a)pyrene was purchased from  
22 AccuStandard. Six nitro-PAHs, i.e., 1-nitronaphthalene, 2-nitrobiphenyl, 3-nitrobiphenyl,  
23 2-nitrofluorene, 3-nitrofluoranthene, and 1-nitropyrene were purchased from Sigma-

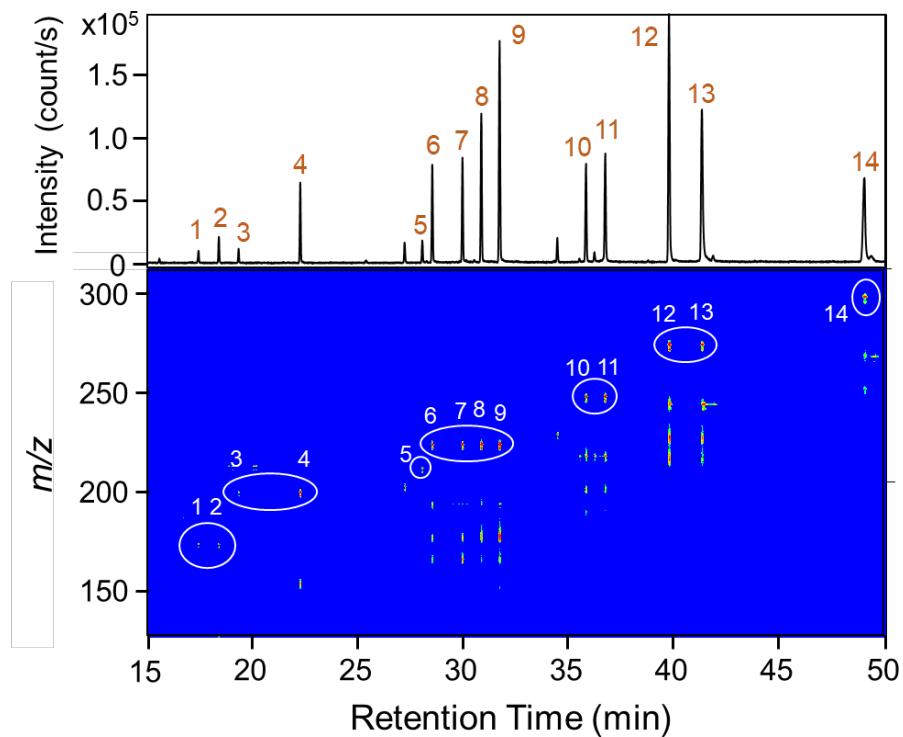
1 Aldrich Japan, which were dissolved in toluene (Wako Pure Chemical Industries, Ltd.)  
2 and were diluted with acetonitrile manufactured for chromatography (Wako Pure  
3 Chemical Industries, Ltd.). A standard sample mixture containing the 14 nitro-PAHs was  
4 prepared by mixing these standard solutions. The concentration was adjusted to 6.5 ppm  
5 for each by diluting with acetonitrile. This stock solution was diluted stepwise with  
6 acetonitrile and was used in the experiments. Standard Reference Material 1975  
7 (SRM1975) supplied from National Institute of Standard and Technology (NIST), which  
8 was extracted from diesel exhaust particulates, was used as an example of a real sample  
9 for performance evaluation of the analytical instrument.

10

### 11 **3. Results and discussion**

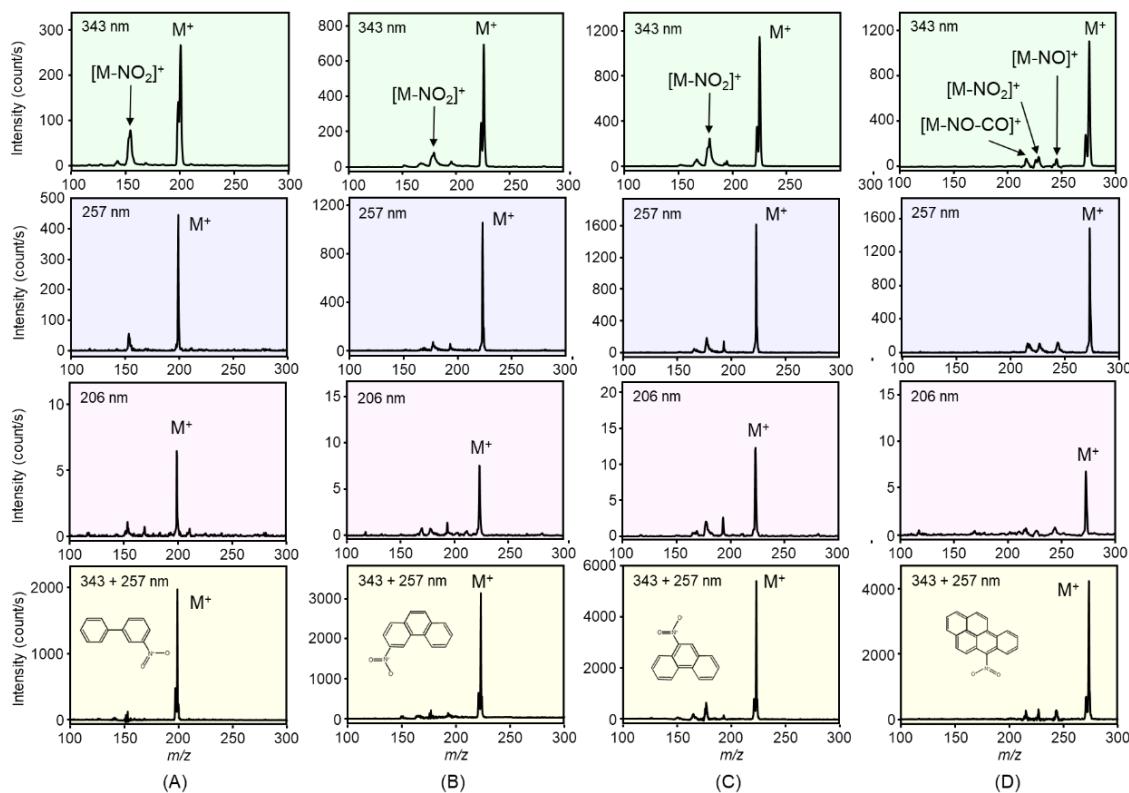
#### 12 *3.1. Spectral properties*

13 The absorption spectra were calculated for the 14 nitro-PAHs. The results are shown  
14 in Fig. S3 (see the absorption spectra calculated by density functional theory, DFT), and  
15 the spectral properties are summarized in Table S1. In single-color ionization, nitro-PAHs  
16 are ionized mainly through RE2PI at 257 and 206 nm and through resonance-enhanced  
17 three-photon ionization (RE3PI) or nonresonant three-photon ionization (NR3PI) at 343  
18 nm depending on the molecule. In two-color ionization that is achieved using a  
19 combination of optical pulses at 257 and 343 nm, nitro-PAHs can be ionized through  
20 RE2PI or nonresonant two-photon ionization (NR2PI) for large molecules, which is in  
21 contrast to RE3PI or nonresonant three-photon ionization (NR3PI) for small molecules,  
22 depending on the order of introducing the two optical pulses, e.g., 257 nm (first) + 343  
23 nm (second), referred to as “257 + 343 nm”, and vice versa. It is noteworthy that the


1 excess energy can be reduced by using a two-color RE2PI scheme (total photon energy  
 2 8.43 eV) for large nitro-PAHs and by single-color RE3PI/NR3PI (total photon energy  
 3 10.83 eV) for small nitro-PAHs (see the caption of Table S1).

4

5 *3.2. Two-dimensional display of GC-MS for a standard sample mixture*


6

7 Figure 2 shows a two-dimensional GC-MS display that was measured for a standard  
 8 sample mixture containing 14 nitro-PAHs, based on two-color ionization using the optical  
 9 pulses at 257 + 343 nm (three two-dimensional displays of GC-MS measured at 343, 257,  
 10 and 206 nm are shown in Fig. S4). The analytes were separated in the order of volatility



**Fig. 2.** Two-dimensional display of GC-MS measured for a sample mixture containing 14 nitro-PAHs (6.5 ppm for each) ionized using a combination of UV pulses at 343 (70 mW) and 257 nm (90 mW). The delay time was adjusted to  $t_{DL} = 0$ . A total ion chromatogram is shown at the top of the figure. The signals with numbers can be assigned to 14 nitro-PAHs (see the chemical structures shown in Fig. 1), and the other signals with no number are attributed to impurities in the sample. The signals arising from the molecular ions are indicated by circles in the figure.

1 that is mainly determined by the molecular weight of the analyte, since a slightly polar  
 2 capillary column (DB-5MS) was used for GC separation. The mass spectra measured at  
 3 the retention times, at which four compounds appear, were extracted from Figs. 2 and S4  
 4 and are shown in Fig. 3. A large signal arising from a molecular ion was observed in mass  
 5 spectra for all of the nitro-PAHs. The situation remained unchanged even when three  
 6 photons were required for ionization at 343 nm. This favorable result can be attributed to  
 7 rather efficient RE3PI for large nitro-PAHs such as 6-nitrochrysene (see Table S1), which  
 8 can be preferentially used for selective determination of nitro-PAHs. Note that even small  
 9 nitro-PAHs such as 3-nitrobiphenyl can be ionized with sufficient efficiency via NR3PI  
 10 because of a short optical pulse width (high peak power) and the large output power of



**Fig. 3.** Mass spectra measured at 343 nm (140 mW), 257 nm (140 mW), 206 nm (29 mW), and 343 nm (70 mW) + 257 nm (90 mW) at  $t_{DL} = 0$ . (A) 3-nitrobiphenyl (B) 3-nitrophenanthrene (C) 9-nitrophenanthrene (D) 6-nitrochrysene. The data were extracted from the two-dimensional data shown in Figs. 2 and S4. Since the analytes were measured at the same concentration (6.5 ppm for each), the signal intensity (the y-axis) is in proportion to the ionization efficiency at different wavelengths.

1 the third harmonic emission (140 mW). It is interesting to note that a fragment ion of  $[M-1]^+$  was always observed only when the third harmonic emission (343 nm) was used for  
2 ionization, suggesting a unique ionization channel associated with the dissociation of a  
3 hydrogen atom at the three-photon energy of 10.83 eV. A molecular ion,  $[M]^+$ , as well as  
4 large fragment ions such as  $[M-NO]^+$ ,  $[M-NO_2]^+$ , and  $[M-NO-CO]^+$ , was enhanced at  
5 257 nm, since all of the nitro-PAHs were efficiently ionized through RE2PI and a smaller  
6 excess energy (two-photon energy 9.63 eV), in addition to a large output power of the  
7 fourth harmonic emission (140 mW). On the other hand, the signal intensity was rather  
8 low at 206 nm, because of a large excess energy (two photon energy 12.04 eV) and a low  
9 output power of the fifth harmonic emission (29 mW). When a two-color ionization  
10 scheme was used, larger signals were observed for molecular ions because of efficient  
11 RE2PI, a small excess energy (two photon energy 8.43 eV), and a large total output power  
12 at 343 nm (70 mW) and 257 nm (90 mW). It should be noted here that the signal intensity  
13 of the fragment ion,  $[M-NO]^+$ , was sometimes very weak, e.g., 3-nitrobiphenyl, as shown  
14 in Fig. 3 (A), although the fragment ion of  $[M-NO_2]^+$  as well as  $[M-NO-CO]^+$  was more  
15 clearly observed for all of the nitro-PAHs. This is probably due to the fact that a nitro-  
16 nitrite rearrangement is necessary for a C-ONO to be formed prior to the dissociation of  
17 NO. On the other hand, there are two possibilities for producing  $[M-NO_2]^+$ , i.e., one being  
18 the direct cleavage of the C-NO<sub>2</sub> bond of a molecular ion and the other being the cleavage  
19 of the C-ONO bond after the rearrangement [29, 31, 40]. The fragment ion undergoes  
20 further dissociation by breaking the ring structure, which results in the production of a  
21 variety of  $C_xH_y^+$  fragment ions [31]. It is interesting to note that the fragmentation can be  
22 controlled by using a chirp optical pulse of the femtosecond laser [41].

24

1      3.3. Comparison

2

3      In MPI, the excess energy in the ionic state can be reduced by optimizing the laser  
 4      wavelengths and the molecular ion can be enhanced, which is beneficial for the  
 5      identification of nitro-PAHs. Table 1 shows the ratio of the signal intensities,  $[M]^+/[F]^+$ ,

**Table 1**

Comparison of the  $[M]^+/[F]^+$  values measured using fsLIMS and EIMS.

|    | Compound                           | This work | EIMS (NIST) | fsLIMS (reported)                                                                 |
|----|------------------------------------|-----------|-------------|-----------------------------------------------------------------------------------|
| 1  | 1-nitronaphthalene (173/127)       | 22        | 0.63        | NA                                                                                |
| 2  | 2-nitronaphthalene (173/127)       | 5.5       | 0.92        | NA                                                                                |
| 3  | 2-nitrobiphenyl (199/143)          | 46.8      | 0.38 (/152) | NA                                                                                |
| 4  | 3-nitrobiphenyl (199/153)          | 8.5       | 0.9 (/152)  | NA                                                                                |
| 5  | 2-nitrofluorene (211/165)          | 12.7      | 0.6         | NA                                                                                |
| 6  | 2-nitroanthracene (223/177)        | 11.2      | NA          | NA                                                                                |
| 7  | 9-nitroanthracene (223/165)        | 9.5       | 1.63 (/176) | 1.6 <sup>1)</sup> ,<br>0.68 <sup>2)</sup> , 0.8 <sup>3)</sup> , 8.9 <sup>4)</sup> |
| 8  | 3-nitrophenanthrene (223/177)      | 19.0      | NA          | NA                                                                                |
| 9  | 9-nitrophenanthrene (223/177)      | 7.8       | 0.61 (/165) | NA                                                                                |
| 10 | 3-nitrofluoranthene (247/217)      | 6.7       | 1.38 (/200) | 1.0 <sup>1)</sup> ,<br>0.56 <sup>2)</sup> , 1.2 <sup>3)</sup> , 2.5 <sup>4)</sup> |
| 11 | 1-nitropyrene (247/217)            | 5.4       | 0.84 (/201) | 1.2 <sup>1)</sup> ,<br>0.56 <sup>2)</sup> , 1.2 <sup>3)</sup> , 5.0 <sup>4)</sup> |
| 12 | 6-nitrochrysene (273/243)          | 15.7      | 1.32 (/226) | NA                                                                                |
| 13 | 7-nitrobenz(a)anthracene (273/227) | 7.4       | NA          | NA                                                                                |
| 14 | 6-nitrobenzo(a)pyrene (297/267)    | 10.9      | 1.21 (/251) | NA                                                                                |

The  $m/z$  values of the molecular ion and the largest fragment ion are shown in parenthesis. NA, not available. The values reported in this work were obtained using a two-color ionization scheme (257 + 343 nm) at  $t_{DT} = 0$ . The  $[M]^+/[F]^+$  values were measured at 345 nm<sup>1)</sup> [34] and 400 nm<sup>2)</sup>, 800 nm<sup>3)</sup>, and 1200 nm<sup>4)</sup> [36]. Large values were obtained at 1200 nm due to no absorption band for ionic species of nitro-PAHs (see the details in the reference: [36]).

1 in which  $[M]^+$  is the molecular ion and  $[F]^+$  is the largest fragment ion in MS. As expected,  
2 the molecular ion was strongly enhanced in this study. The intensity of the fragmentation  
3 ion can, if necessary, be increased by tightly focusing the laser beam onto the molecular  
4 beam, permitting finger-printing identification of the analyte. On the other hand, the  
5 signal intensity of the molecular ion is rather small in EIMS, making the identification of  
6 an analyte more difficult due to congested signals observed in the case of measuring a  
7 real sample. Table 2 shows the observed LODs compared with the reported data [20, 33,  
8 34]. The values were in the 0.03-0.38 pg range for the 14 nitro-PAHs used in this study.  
9 Higher values for small nitro-PAHs can be attributed to RE3PI/NR3PI, which is less  
10 efficient than RE2PI/NR2PI for large nitro-PAHs. These values are smaller than the  
11 reported values of 4.5-22.2 pg obtained by GC-EIMS and 20-28 pg obtained by GC-  
12 EI/HR(SIM)MS [21]. The LODs can be improved by two orders of magnitude by using  
13 present GC-fsLIMS. This favorable result was obtained by optimal two-color MPI, which  
14 is useful for the more sensitive detection of nitro-PAHs and for the suppression of the  
15 background signal arising from interferences. It should be noted that the LODs achieved  
16 here are several times lower than the values reported using a large (more expensive)  
17 fsLIMS consisting of a complicated Ti:sapphire laser/optical parametric  
18 amplifier/harmonic generator system. This favorable result can be attributed to the use of  
19 a higher-average-power low-pulse-energy (low-cost) femtosecond Yb laser that increases  
20 the signal intensity and reduces the number of subsequent photons to be absorbed from  
21 the ionic state, in addition to a combination of the two pulses emitting at optimal  
22 wavelengths to minimize the excess energy. The present LODs were comparable to the  
23 0.03-0.07 pg and 0.09-12 pg values obtained by GC-NCI(SIM)MS [22-26] and 0.03-0.11  
24 pg obtained by GC $\times$ GC-MS/MS [21]. As mentioned above, these techniques, however,

**Table 2**

Comparison of the LODs measured using EIMS and fsLIMS.

|    | Compounds                | This work<br>(pg) | EIMS (ref. 20)<br>(pg) | fsLIMS (reported)<br>(pg)                                                           |
|----|--------------------------|-------------------|------------------------|-------------------------------------------------------------------------------------|
| 1  | 1-nitronaphthalene       | 0.2               | 22                     | NA                                                                                  |
| 2  | 2-nitronaphthalene       | 0.38              | 16.4                   | NA                                                                                  |
| 3  | 2-nitrobiphenyl          | 0.27              | 16.8                   | NA                                                                                  |
| 4  | 3-nitrobiphenyl          | 0.06              | 19.1                   | NA                                                                                  |
| 5  | 2-nitrofluorene          | 0.31              | 8.8                    | NA                                                                                  |
| 6  | 2-nitroanthracene        | 0.06              | 10.9                   | NA                                                                                  |
| 7  | 9-nitroanthracene        | 0.13              | 4.5                    | 0.2 <sup>1)</sup> ,<br>0.94 <sup>2)</sup> , 0.54 <sup>3)</sup> , 0.42 <sup>4)</sup> |
| 8  | 3-nitrophenanthrene      | 0.04              | 22.2                   | NA                                                                                  |
| 9  | 9-nitrophenanthrene      | 0.03              | 11.5                   | NA                                                                                  |
| 10 | 3-nitrofluoranthene      | 0.08              | 10.8                   | 0.3 <sup>1)</sup> ,<br>0.20 <sup>2)</sup> , 1.09 <sup>3)</sup> , 1.19 <sup>4)</sup> |
| 11 | 1-nitropyrene            | 0.07              | 14.5                   | 0.3 <sup>1)</sup> ,<br>0.27 <sup>2)</sup> , 0.68 <sup>3)</sup> , 0.93 <sup>4)</sup> |
| 12 | 6-nitrochrysene          | 0.05              | 8.0                    | NA                                                                                  |
| 13 | 7-nitrobenz(a)anthracene | 0.06              | 17.7                   | NA                                                                                  |
| 14 | 6-nitrobenzo(a)pyrene    | 0.13              | 8.5                    | NA                                                                                  |

The LODs were measured at 345 nm<sup>1)</sup> [33] and at 200 nm<sup>2)</sup>, 267 nm<sup>3)</sup>, and 343 nm<sup>4)</sup> [34]. NA, not available.

1 make a comprehensive analysis of unknown nitro-PAHs difficult. Note that the LODs  
 2 obtained in this study could be further improved by using a cool on-column (or cooled)  
 3 sample injection method in GC to reduce the thermal decomposition of nitro-PAHs (see  
 4 Fig. S2) [21, 26].

5

6 *3.4. Pump-and-probe technique*

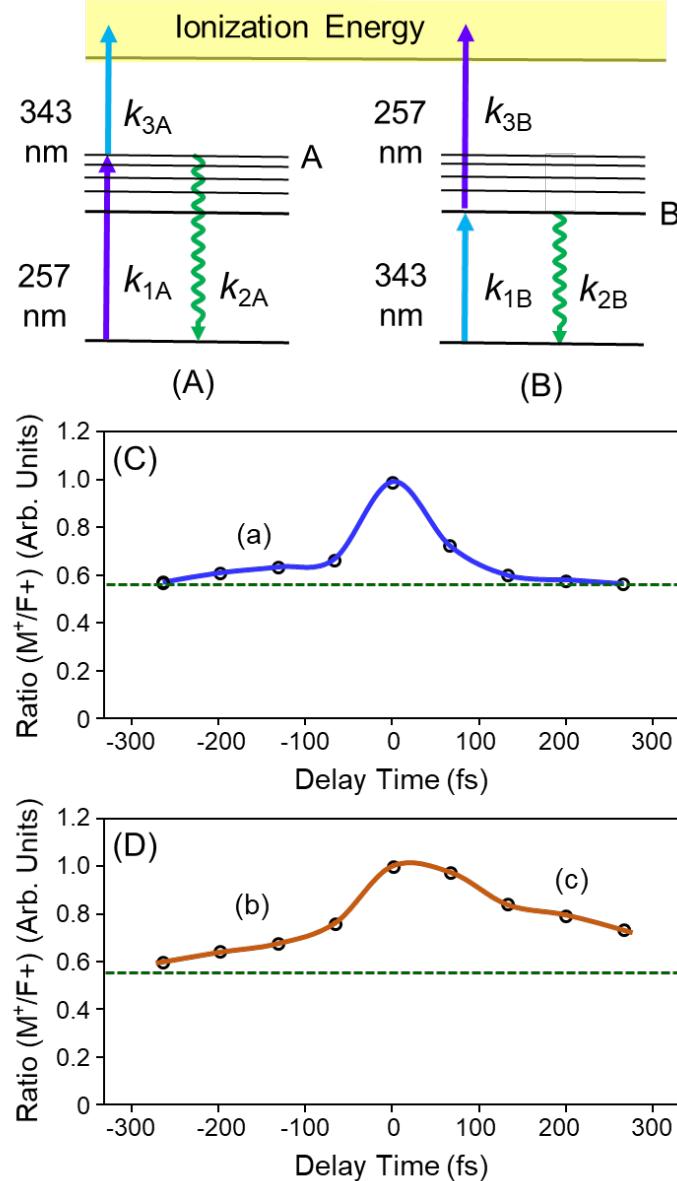
7

1 A pump-and-probe technique is currently used for measuring femtosecond lifetimes  
2 of the excited states for large molecules such as pyrene [42]. In this study, this technique  
3 was examined in an attempt to study dynamics of nitro-PAHs and to improve the  
4 selectivity in the spectrometric analysis, in which the two-color two-photon ionization  
5 scheme (343 + 257 nm) was utilized because of the larger signal intensity (see Fig. 3) and  
6 lower background signals arising from interference such as PAHs when a real sample was  
7 measured at shorter wavelengths (e.g., at 267 nm) [33,34].

8

#### 9 3.4.1. Model

10 Figures 4 (A) and (B) show the energy diagrams for the ionization of nitro-PAHs  
11 that were used in this study. The signal intensity of the molecular ion can be calculated  
12 by equations (1) and (2) (see the details for derivation of the equations shown in the  
13 Supplementary Material).


14  $[N_2] = k_{3A} I_{(343)} [N_1]_0 e^{-(t_{DT}/\tau_A)}$  (1)

15  $[N_2] = k_{3B} I_{(257)} [N_1]_0 e^{-(t_{DT}/\tau_B)}$  (2)

16 where  $[N_1]_0$  and  $[N_2]$  are the populations of the excited state immediately after excitation  
17 and of the ionic state, respectively,  $k_{3A}$  and  $k_{3B}$  are the rate constants for ionization,  $I_{(343)}$   
18 and  $I_{(257)}$  are the intensities of the optical pulses at 343 nm and 257 nm, respectively,  $t_{DT}$   
19 is the delay time between the 257-nm and 343-nm pulses,  $\tau_A$  and  $\tau_B$  are the lifetimes of  
20 excited states A and B, respectively. The ratio of the signal intensities,  $[M]^+/[F]^+$ , can be  
21 calculated by equations (3) and (4).

$$1 \quad \frac{[M]^+}{[F]^+} \sim e^{-(t_{DT}/\tau_A)} + K_5 \quad (t_{DT} \leq 0) \quad (3)$$

$$2 \quad \frac{[M]^+}{[F]^+} \sim e^{-(t_{DT}/\tau_B)} + K_5 \quad (t_{DT} \geq 0) \quad (4)$$



**Fig. 4.** Energy diagram of two-color two-photon ionization at (A) 257 + 343 nm (B) 343 + 257 nm and dependence of the ratio,  $[M^+]/[F^+]$ , on the delay time between the excitation (pump) and ionization (probe) pulses for (C) 1-nitronaphthalene (D) 3-nitrofluoranthene. The pump pulse (257 nm) appears earlier than the probe pulse (343 nm) at negative delay times ( $t_{DL} < 0$ ).

3 where  $K_5$  is a constant and is independent of the delay time. The lifetime of the excited  
 4 state can then be evaluated by measuring the value of  $[M^+]/[F^+]$  at different time delays.

1

2     3.4.2. *Evaluation of the laser pulse width*

3

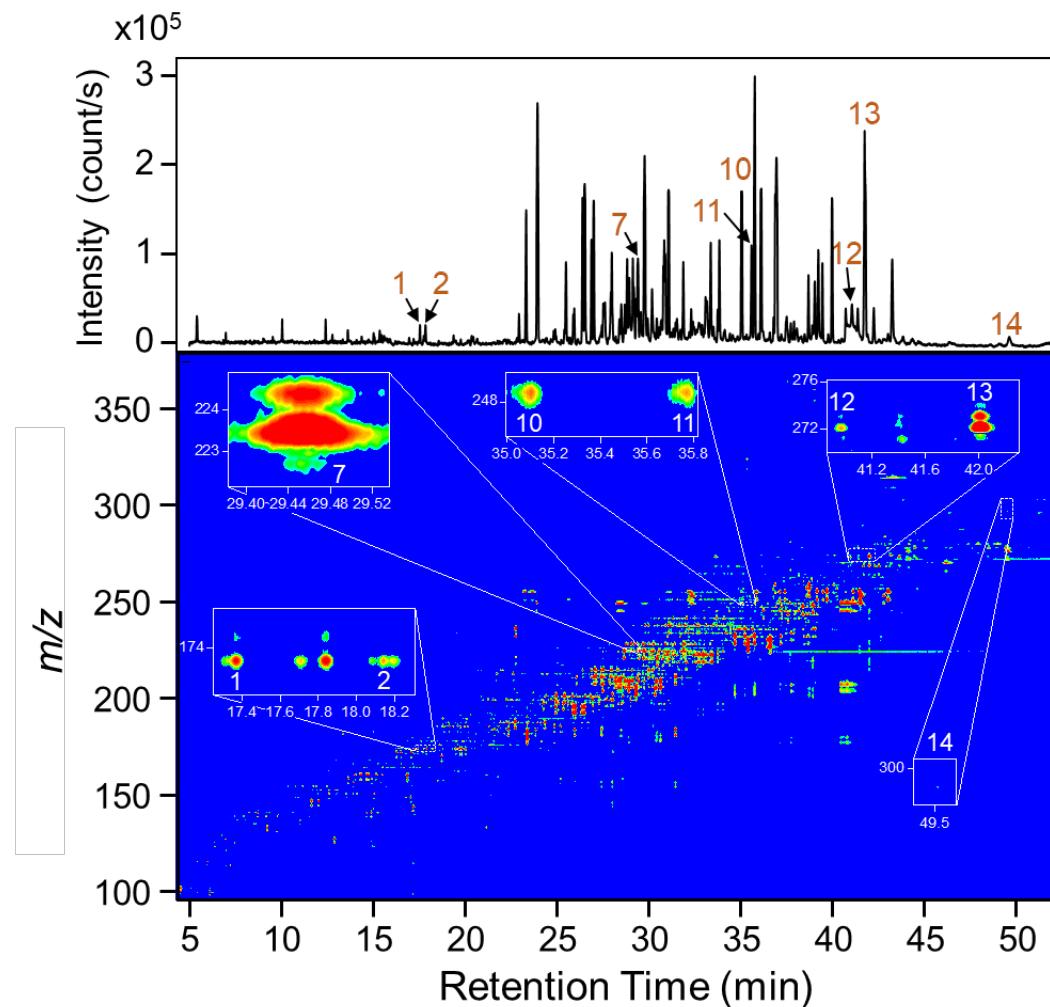
4     The dependence of the signal intensity on the laser power was measured by continuously  
5     introducing acetonitrile into the MS (see Experimental Procedures in the Supplementary  
6     Material). The slope in the log-log plot was 1.8 (see the observed data shown in Fig. S5),  
7     suggesting nonresonant two-photon ionization under present conditions. MS can then be  
8     used as a two-photon detector in a cross correlator to evaluate the laser pulse width [43].  
9     A cross correlation trace was measured using the third (343 nm) and fourth (257 nm)  
10    harmonic emissions, and the optical pulse width was determined to be 150 fs from the  
11    full width at half maximum of the observed data (the relationship between the signal  
12    intensity and the delay time is shown in Fig. S6).

13

14     3.4.3. *Lifetime measurement*

15

16     Figures 4 (C) and (D) show the dependences of the  $[M]^+/[F]^+$  ratio obtained by  
17     changing the delay time between the optical pulses at 257 and 343 nm (the pulse at 257  
18     nm appears earlier than the pulse at 343 nm at  $t_{DT} < 0$ ). The maximum value was obtained  
19     at  $t_{DT} = 0$ , since these molecules can reach the *IE* with nearly zero excess energy (see  
20     Table S1) and are efficiently ionized before vibrational relaxation. A very short decay of  
21     less than 150 fs (or no decay) was observed for 1-nitronaphthalene at  $t_{DT} > 0$ , due to the  
22     NR3PI process. In contrast, a double exponential decay was observed at  $t_{DT} < 0$ , due to  
23     RE3PI as shown in Fig. 4 (C) (a), and the lifetime of the longer decay was calculated to  
24     be 360 fs from the slope of the semi-log plot shown in Fig. S7 (the data for the semi-log


1 plot of the signal intensity vs. the delay time). A decay was more clearly observed for 3-  
2 nitrofluoranthene, as shown in Fig. 4 (D) (b) and (c), and the lifetimes were calculated to  
3 be 220 and 510 fs from the data shown at  $t_{DT} < 0$  and  $t_{DT} > 0$ , respectively (see the  
4 observed data shown in Fig. S7). The longer lifetime observed by exciting at 343 nm can  
5 be explained by less efficient vibrational relaxation from the lower excited state with a  
6 lower density of vibrational levels. These femtosecond lifetimes are in reasonably good  
7 agreement with lifetimes of 70 fs for 1-nitronaphthalene and 50 fs and 1.3 ps (double  
8 exponential decay) for 3-nitrofluoranthene in methanol measured by femtosecond  
9 fluorescence up-conversion at an exciting wavelength of 385 nm [44]. It should be noted  
10 that the lifetime of 1-nitropyrene is reported to be 200-820 fs and 2.9-9.0 ps (double  
11 exponential decay), depending on the fluorescence wavelength being used and also on  
12 the dielectric constant of the solvent being used, which affects the rate of intersystem  
13 crossing [45]. As demonstrated, a pump-and-probe technique provides information  
14 concerning the excited-state lifetimes of a molecule and then for characterization of the  
15 analyte and additional selectivity in spectrometric analysis. This technique can be applied  
16 for a variety of organic compounds such as PAHs, although the probe pulse should be  
17 delayed more than 3 m for a PAH molecule with a lifetime of 10 ns ( $0.3 \text{ m/ns} \times 10 \text{ ns} =$   
18 3 m). In this study, the decay curve was prepared by injecting the sample into the GC ca.  
19 10 times at different delay times, due to strong carcinogenicity and mutagenicity of nitro-  
20 PAHs (see the precaution in the *Reagents and chemicals*), preventing accurate  
21 measurements of the decay curve. It would be possible to more accurately measure a  
22 decay curve “on the fly” for isolated (gaseous) nitro-PAHs eluting from the GC, since a  
23 mass spectrum can be measured every 0.1 s in the present analytical system and the time  
24 delay can readily be scanned repetitively using a computer-controlled delay stage.

1

2 *3.5. Application to a real sample*

3

4 Figure 5 shows the two-dimensional display of GC-MS obtained by using a two-color  
 5 ionization scheme for a real sample (SRM1975). Numerous signals arising from PAHs  
 6 and nitro-PAHs were observed (the concentrations of nitro-PAHs calculated from the  
 7 observed data and the non-certified values reported by NIST are summarized in Table



**Fig. 5.** Two-dimensional display of GC-MS measured for a real sample (SRM1975) ionized at  $257 + 343$  nm. The delay time was adjusted to  $t_{DL} = 0$ . A total ion chromatogram is shown at the top of the figure. The areas of the signals arising from the molecular ions are expanded and are shown in the enclosed squares of the figure. The signal peaks assigned to nitro-PAHs are numbered in the figure (see the chemical structures shown in Fig. 1).

1 S2). All eight compounds shown in the SRM1975 NIST datasheet were identified in this  
2 study. However, the concentrations of nitro-PAHs determined were not necessarily in  
3 good agreement with the NIST data. It should be noted that the signal arising from a  
4 molecular ion was clearly observed and the purity of the signal peak can be evaluated  
5 from the distribution of the intensity of the isotopomer peaks in this study (e.g., see the  
6 signals observed for 4-nitroanthracene in Fig. 5). Accordingly, the effect of interferences  
7 in the sample matrix were minimal in this study. However, the sample was prepared a  
8 long time ago (before 1997) and nitro-PAHs could have partly decomposed or reacted  
9 during this period of sample storage.

10

11 **4. Conclusion**

12 In this study, 14 nitro-PAHs were measured by fsLIMS using a femtosecond Yb laser as  
13 the ionization source, based on single-color ionization at 343, 257, 206 nm and two-color  
14 ionization at 257 and 343 nm. This analytical system was more useful than EIMS in terms  
15 of observing a molecular ion, since the excess energy remaining in the ionic state can be  
16 reduced by optimizing the laser wavelength. This advantage was successfully used for a  
17 more reliable identification of analytes in a complex sample mixture. A pump-and-probe  
18 technique was examined in an attempt to obtain information concerning the lifetime of  
19 the excited state, thus providing a useful means for characterization of the analyte. The  
20 present technique was several times more sensitive than a large fsLIMS using a  
21 complicated Ti:sapphire laser system. Thus, a compact fsLIMS system such as that  
22 employed here would have the potential for use in the practical trace analysis of nitro-  
23 PAHs in environmental samples.

1

2 **Credit author statement**

3 Lu Wen: Performed the experimental work and prepared the original draft. Katsunori  
4 Yoshinaga: Supervised and assisted in the experimental work. Totaro Imasaka:  
5 Supervision of the research and revision of the draft. Tomoko Imasaka: Funding  
6 acquisition, supervision, and computational calculations.

7

8 **Declaration of competing interest**

9 The authors declare that they have no known competing financial interests or personal  
10 relationships that could have appeared to influence the work reported in this paper.

11

12 **Acknowledgements**

13 This research was supported by a Grant-in-Aid for Scientific Research from the Japan  
14 Society for the Promotion of Science [JSPS KAKENHI Grant Numbers 20H02399] and  
15 by the AMADA Foundation and the Murata Science Foundation. Quantum chemical  
16 calculations were mainly carried out using the computer facilities at the Research Institute  
17 for Information Technology, Kyushu University. L. W. wishes to acknowledge a  
18 scholarship from JST SPRING, Grant Number JPMJSP2136 for financial support to study  
19 at Kyushu University.

20

21 **Appendix A. Supplementary data**

22 Supplementary data to this article can be found online at <https://.....>

23

## 1 References

2 [1] J.N. Pitts, K.A. Van Cauwenberghe, D. Grosjean, J.P. Schmidt, D.R. Fitz, W.L. Belser  
3 Jr., G.P. Knudson, P.M. Hynds, Atmospheric reaction of polycyclic aromatic  
4 hydrocarbons: Facile formation of mutagenic nitro derivatives, *Science* 202 (1978)  
5 515-519. <https://doi.org/10.1126/science.705341>.

6 [2] I.T. Salmeen, A.M. Pero, R. Zator, D. Schuetzle, T.L. Riley, Ames assay  
7 chromatograms and the identification of mutagens in diesel particle extracts, *Environ.*  
8 *Sci. Techno.* 18 (1984) 375-382. <https://doi.org/10.1021/es00123a017>.

9 [3] L. He, Y. Lin, D. Day, Y. Teng, X. Wang, X.L. Liu, E. Yan, J. Gong, J. Qin, X. Wang,  
10 J. Xiang, J. Mo, Y. Zhang, J.J. Zhang, Nitrated polycyclic aromatic hydrocarbons  
11 and arachidonic acid metabolisms relevant to cardiovascular pathophysiology:  
12 Findings from a panel study in healthy adults, *Environ. Sci. & Technol.* 55 (2021)  
13 3867-3875. <https://doi.org/10.1021/acs.est.0c08150>.

14 [4] K. Wheelock, J.J. Zhang, R. McConnell, D. Tang, H.E. Volk, Y. Wang, J.B.  
15 Herbstman, S. Wang, D.H. Phillips, D. Camann, J. Gong, F. Perera, A novel method  
16 for source-specific hemoglobin adducts of nitro-polycyclic aromatic hydrocarbons,  
17 *Environ. Sci.: Processes & Impacts* 20 (2018) 780-789.  
18 <https://doi.org/10.1016/j.egypro.2017.03.240>.

19 [5] T. Ramdahl, B. Zielinska, J. Arey, R. Atkinson, A.M. Winer, J.N. Pitts Jr., Ubiquitous  
20 occurrence of 2-nitrofluoranthene and 2-nitropyrene in air, *Nature* 321 (1986) 425-  
21 427. <https://doi.org/10.1038/321425a0>.

22 [6] A. Feilberg, M.W.B. Poulsen, T. Nielsen, H. Skov, Occurrence and sources of  
23 particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark,

1       Atmos. Environ. 35 (2001) 353-366. [https://doi.org/10.1016/S1352-2310\(00\)00142-4](https://doi.org/10.1016/S1352-2310(00)00142-4).

2

3       [7] J.L. Durant, W.F. Busby, A.L. Lafleur, B.W. Penman, C.L. Crespi, Human cell  
4       mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic  
5       hydrocarbons associated with urban aerosols, Mutat. Res. Genet. Toxicol. 371  
6       (1996) 123-157. [https://doi.org/10.1016/S0165-1218\(96\)90103-2](https://doi.org/10.1016/S0165-1218(96)90103-2).

7       [8] B. Zielinska, S. Samy, Analysis of nitrated polycyclic aromatic hydrocarbons, Anal.  
8       Bioanal. Chem. 386 (2006) 883-890. <https://doi.org/10.1007/s00216-006-0521-3>.

9       [9] W.A. MacCrehan, W.E. May, S.D. Yang, B.A. Benner Jr., Determination of nitro  
10       polynuclear aromatic hydrocarbons in air and diesel particulate matter using liquid  
11       chromatography with electrochemical and fluorescence detection, Anal. Chem. 60  
12       (1988) 194-199. <https://doi.org/10.1021/ac00154a001>.

13       [10] K. Hayakawa, T. Murahashi, M. Butoh, M. Miyazaki, Determination of 1,3-, 1,6-,  
14       and 1,8-dinitropyrenes and 1-nitropyrene in urban air by high-performance liquid  
15       chromatography using chemiluminescence detection, Environ. Sci. Technol. 29  
16       (1995) 928-932. <https://doi.org/10.1021/es00004a012>.

17       [11] C. Schauer, R. Niessner, U. Pöschl, Analysis of nitrated polycyclic aromatic  
18       hydrocarbons by liquid chromatography with fluorescence and mass spectrometry  
19       detection: Air particulate matter, soot, and reaction product studies, Anal. Bioanal.  
20       Chem. 378 (2004) 725-736. <https://doi.org/10.1007/s00216-003-2449-1>.

21       [12] J. Cvačka, J. Barek, A.G. Fogg, J.C. Moreira, J. Zima, High-performance liquid  
22       chromatography of nitrated polycyclic aromatic hydrocarbons, Analyst 123 (1998)  
23       9R-18R. <https://doi.org/10.1039/A705097F>.

1 [13] T. Paschke, S.B. Hawthorne, D.J. Miller, B. Wenclawiak, Supercritical fluid  
2 extraction of nitrated polycyclic aromatic hydrocarbons and polycyclic aromatic  
3 hydrocarbons from diesel exhaust particulate matter, *J. Chromatogr. A* 609 (1992)  
4 333-340. [https://doi.org/10.1016/0021-9673\(92\)80177-V](https://doi.org/10.1016/0021-9673(92)80177-V).

5 [14] M.C. Paputa-Peck, R.S. Marano, D. Schuetzle, T.L. Riley, C.V. Hampton, T.J. Prater,  
6 L.M. Skewes, T.E. Jensen, P.H. Ruehle, L.C. Bosch, W.P. Duncan, Determination  
7 of nitrated polynuclear aromatic hydrocarbons in particulate extracts by capillary  
8 column gas chromatography with nitrogen selective detection, *Anal. Chim. 55*  
9 (1983) 1946-1954. <https://doi.org/10.1021/ac00262a027>.

10 [15] X. Jinhui, F.S.C. Lee, Quantification of nitrated polynuclear aromatic hydrocarbons  
11 in atmospheric particulate matter, *Anal. Chim. Acta* 416 (2000) 111-115.  
12 [https://doi.org/10.1016/S0003-2670\(00\)00745-5](https://doi.org/10.1016/S0003-2670(00)00745-5).

13 [16] D.L. LaCourse, T.E. Jensen, Determination of 1-nitropyrene in extracts of vehicle  
14 particulate emissions, *Anal. Chem.* 58 (1986) 1894-1895.  
15 <https://doi.org/10.1021/ac00121a065>.

16 [17] D. Schuetzle, T.L. Riley, T.J. Prater, T.M. Harvey, D.F. Hunt, Analysis of nitrated  
17 polycyclic aromatic hydrocarbons in diesel particulates, *Anal. Chim. 54* (1982) 265-  
18 271. <https://doi.org/10.1021/ac00239a028>.

19 [18] R.M. Kamens, F. Zhi-Hua, Y. Yao, D. Chen, S. Chen, M. Vartiainen, A methodology  
20 for modeling the formation and decay of nitro-PAH in the atmosphere, *Chemosphere*  
21 28 (1994) 1623-1632. [https://doi.org/10.1016/0045-6535\(94\)90421-9](https://doi.org/10.1016/0045-6535(94)90421-9).

22 [19] K. Oukebdane, F. Portet-Koltalo, N. Machour, F. Dionnet, P.L. Desbène,  
23 Comparison of hot Soxhlet and accelerated solvent extractions with microwave and  
24 supercritical fluid extractions for the determination of polycyclic aromatic

1 hydrocarbons and nitrated derivatives strongly adsorbed on soot collected inside a  
2 diesel particulate filter, Talanta 82 (2010) 227-236.  
3 <https://doi.org/10.1016/j.talanta.2010.04.027>.

4 [20] A.G. Santos, A.C.D. Regis, G.O. da Rocha, M.D.A. Bezerra, R.M. de Jesus, J.B. de  
5 Andrade, A simple, comprehensive, and miniaturized solvent extraction method for  
6 determination of particulate-phase polycyclic aromatic compounds in the air, J.  
7 Chromatogr. A 1435 (2016) 6-17. <https://doi.org/10.1016/j.chroma.2016.01.018>.

8 [21] A. Fushimi, S. Hashimoto, T. Ieda, N. Ochiai, Y. Takazawa, Y. Fujitani, K. Tanabe,  
9 Thermal desorption-comprehensive two-dimensional gas chromatography coupled  
10 with tandem mass spectrometry for determination of trace polycyclic aromatic  
11 hydrocarbons and their derivatives, J. Chromatogr. A 1252 (2012) 164-170.  
12 <https://doi.org/10.1016/j.chroma.2012.06.068>.

13 [22] B. Dušek, J. Hajšlová, V. Kocourek, Determination of nitrated polycyclic aromatic  
14 hydrocarbons and their precursors in biotic matrices, J. Chromatogr. A 982 (2002)  
15 127-143. [https://doi.org/10.1016/s0021-9673\(02\)01340-7](https://doi.org/10.1016/s0021-9673(02)01340-7).

16 [23] D.Z. Bezabeh, H.A. Bamford, M.M. Schantz, S.A. Wise, Determination of nitrated  
17 polycyclic aromatic hydrocarbons in diesel particulate-related standard reference  
18 materials by using gas chromatography/mass spectrometry with negative ion chemical  
19 ionization, Anal. Bioanal. Chem. 375 (2003) 381-388. <https://doi.org/10.1007/s00216-002-1698-8>.

21 [24] A. Albinet, E. Leoz-Garziandia, H. Budzinski, E. Villenave, Simultaneous analysis  
22 of oxygenated and nitrated polycyclic aromatic hydrocarbons on standard reference  
23 material 1649a (urban dust) and on natural ambient air samples by gas

1 chromatography-mass spectrometry with negative ion chemical ionization, J.  
2 Chromatogr. A 1121 (2006) 106-113. <https://doi.org/10.1016/j.chroma.2006.04.043>.

3 [25] B.S. Crimmins, J.E. Baker, Improved GC/MS methods for measuring hourly PAH  
4 and nitro-PAH concentrations in urban particulate matter, Atoms. Environ. 40 (2006)  
5 6764-6779. <https://doi.org/10.1016/j.atmosenv.2006.05.078>.

6 [26] H.A. Bamford, D.Z. Bezabeh, M.M. Schantz, S.A. Wise, J.E. Baker, Determination  
7 and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and  
8 diesel particulate reference materials, Chemosphere 50 (2003) 575-587.  
9 [https://doi.org/10.1016/S0045-6535\(02\)00667-7](https://doi.org/10.1016/S0045-6535(02)00667-7).

10 [27] R. Zimmermann, W. Welthagen, T. Gröger, Photo-ionisation mass spectrometry as  
11 detection method for gas chromatography: Optical selectivity and multidimensional  
12 comprehensive separations, J. Chromatogr. A 1184 (2008) 296-308.  
13 <https://doi.org/10.1016/j.chroma.2007.08.081>.

14 [28] N. Tsuji, Y. Matsuzaki, S. Hayashi, Real-time detection of 1-nitronaphthalene in  
15 atmosphere by single-photon ionization mass spectrometry, Bunseki Kagaku 61  
16 (2012) 359-365. <https://doi.org/10.2116/bunsekikagaku.61.359>.

17 [29] R.N. Dotter, C.H. Smith, M.K. Young, P.B. Kelly, A. Daniel Jones, E.M. McCauley,  
18 D.P.Y. Chang, Laser desorption/ionization time-of-flight mass spectrometry of  
19 nitrated polycyclic aromatic hydrocarbons, Anal. Chem. 68 (1996) 2319-2324.  
20 <https://doi.org/10.1021/ac951132r>.

21 [30] D.Z. Bezabeh, T.M. Allen, E.M. McCauley, P.B. Kelly, A.D. Jones, Negative ion  
22 laser desorption ionization time-of-flight mass spectrometry of nitrated polycyclic  
23 aromatic hydrocarbons, J. Am. Soc. Mass Spectrom. 8 (1997) 630-636.  
24 [https://doi.org/10.1016/S1044-0305\(97\)00078-0](https://doi.org/10.1016/S1044-0305(97)00078-0).

1 [31] A.D. Tasker, L. Robson, K.W.D. Ledingham, T. McCanny, P. McKenna, C.  
2 Kosmidis, D.A. Jaroszynski, Femtosecond ionization and dissociation of laser  
3 desorbed nitro-PAHs, Int. J. Mass Spectrom. 225 (2003) 53-70.  
4 [https://doi.org/10.1016/s1387-3806\(02\)01045-x](https://doi.org/10.1016/s1387-3806(02)01045-x).

5 [32] T. Imasaka, T. Imasaka, Femtosecond ionization mass spectrometry for  
6 chromatographic detection, J. Chromatogr. A 1642 (2021) 462023.  
7 <https://doi.org/10.1016/j.chroma.2021.462023>.

8 [33] Y. Tang, T. Imasaka, S. Yamamoto, T. Imasaka, Multiphoton ionization mass  
9 spectrometry of nitrated polycyclic aromatic hydrocarbons, Talanta 140 (2015) 109-  
10 114. <https://doi.org/10.1016/j.talanta.2015.03.027>.

11 [34] Y. Tang, T. Imasaka, S. Yamamoto, T. Imasaka, Determination of polycyclic  
12 aromatic hydrocarbons and their nitro-, amino-derivatives adsorbed on particulate  
13 matter 2.5 by multiphoton ionization mass spectrometry using far-, deep-, and near-  
14 ultraviolet femtosecond lasers, Chemosphere 152 (2016) 252-258.  
15 <https://doi.org/10.1016/j.chemosphere.2016.02.114>.

16 [35] N. Itouyama, T. Matsui, S. Yamamoto, T. Imasaka, T. Imasaka, Analysis of  
17 parent/nitrated polycyclic aromatic hydrocarbons in particulate matter 2.5 based on  
18 femtosecond ionization mass spectrometry, J. Am. Soc. Mass Spectrom. 27 (2016)  
19 293-300. <https://doi.org/10.1007/s13361-015-1276-x>.

20 [36] A. Li, T. Imasaka, T. Imasaka, Optimal laser wavelength for femtosecond ionization  
21 of polycyclic aromatic hydrocarbons and their nitrated compounds in mass  
22 spectrometry, Anal. Chem. 90 (2018) 2963-2969.  
23 <https://doi.org/10.1021/acs.analchem.8b00125>.

1 [37] T. Fujii, T. Imasaka, T. Imasaka, Use of chemical conversion for determination of  
2 nitrated aromatic hydrocarbons using femtosecond ionization mass spectrometry,  
3 Anal. Chim. Acta 996 (2017) 48-53. <https://doi.org/10.1016/j.aca.2017.09.049>.

4 [38] Y. Tang, S. Yamamoto, T. Imasaka, Determination of nitrated polycyclic aromatic  
5 hydrocarbons in particulate matter 2.5 by laser ionization mass spectrometry using  
6 an on-line chemical-reduction system, Analyst 144 (2019) 2909-2913.  
7 <https://doi.org/10.1039/C9AN00308H>.

8 [39] K. Yoshinaga, N.V. Hao, T. Imasaka, T. Imasaka, Miniature time-of-flight mass  
9 analyzer for use in combination with a compact highly-repetitive femtosecond laser  
10 ionization source, Anal. Chim. Acta 1203 (2022) 339673.  
11 <https://doi.org/10.1016/j.aca.2022.339673>.

12 [40] C. Kosmidis, K.W.D. Ledingham, H.S. Kilic, T. McCanny, R.P. Singhal, A.J.  
13 Langley, W. Shaikh, On the fragmentation of nitrobenzene and nitrotoluenes induced  
14 by a femtosecond laser at 375 nm, J. Phys. Chem. A 101 (1997) 2264-2270.  
15 <https://doi.org/10.1021/jp963187i>.

16 [41] V. Schäfer, K-M. Weitzel, Qualitative and quantitative distinction of ortho-, meta-,  
17 and para-fluorotoluene by means of chirped femtosecond laser ionization, Anal.  
18 Chem. 92 (2020) 5492-5499. <https://doi.org/10.1021/acs.analchem.0c00234>.

19 [42] J. A. Noble, C. Aupetit, D. Descamps, S. Petit, A. Simon, J. Mascetti, N. B. Amor,  
20 V. Blanchet, Ultrafast electronic relaxations from the S<sub>3</sub> state of pyrene, Phys. Chem.  
21 Chem. Phys. 21 (2019) 14111-14125. DOI: 10.1039/c8cp06895j.

22 [43] T. Imasaka, T. Okuno, T. Imasaka, The search for a molecule to measure an  
23 autocorrelation trace of the second/third harmonic emission of a Ti:sapphire laser  
24 based on two-photon resonant excitation and subsequent one photon ionization, Appl.

1 Phys. B, Lasers and Optics 113 (2013) 543-549. <https://doi.org/10.1007/s00340-013-5505-3>.

3 [44] R. Morales-Cueto, M. Esquivelzeta-Rabell, J. Saucedo-Zugazagoitia, J. Peon, Single  
4 excited-state dynamics of nitropolycyclic aromatic hydrocarbons: Direct  
5 measurements by femtosecond fluorescence up-conversion, J. Phys. Chem. A 111  
6 (2007) 552-557. <https://doi.org/10.1021/jp065364d>.

7 [45] S. Murudkar, A.K. Mora, P.K. Singh, S. Nath, Origin of ultrafast excited state  
8 dynamics of 1-nitropyrene, J. Phys. Chem. A 115 (2011) 10762-10766.  
9 <https://doi.org/10.1021/jp205946c>.

10