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Abstract: The uncertainty parameters driven by diverse user behavior, battery types, and charger 

instruments of electric mobility (e-mobility) would pose risk challenges to existing grid assets' 
adequacy and reliability issues. Using the pseudorandom of the Monte Carlo method, this research 
constructs an estimation framework to generate power intake of public electric vehicle charging 
stations (EVCSs) for a typical 20kV|0.4kV distribution grid urban area. This study suggested that 
those multi-uncertainties potentially threaten daily operations with a significant impact in low 
voltage grids with voltage magnitude dropping to 0.884 p.u. Nevertheless, recognizing and alerting 
to the future-changing and performance-preserving electric grid infrastructure should raise 
awareness as gradual employment is outpacing the national target of the energy transition. 

 
Keywords: uncertainty parameters; estimation power intake; electric vehicle charging station; 
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1.  Introduction  
Modifying internal combustion engines (ICE), which 

release 167g of CO2 gas per kilometer, is one example of 
many initiatives to lower CO2 emissions and drastically 
reduce fuel usage, which is crucial to meeting the world's 
growing demand for energy. Although much progress has 
been made, there are still many gaps to fill in terms of 
ecological harm1,2). Shifting vehicles from ICEs to electric 
vehicles (EVs) is one option targeting net zero emissions 
(NZE) since the transportation sector's overall carbon 
footprint could potentially increase as carbon emissions 
rise concurrently. Hence, these manifold carbon footprints 
could release other gases that worsen air pollution in the 
case of refrigerated vehicles2,3). Another consideration is 
that it may increase the social environment and standard 
of living since EVs can make up to 22.7% less noise than 
standard ICE, i.e., motorcycles, which is suitable for urban 
city road4,5).  

The shifting scenario reported by Energy International 
Agency (EIA) is that there will be over 350 million EVs 
in the NZE view6). Many developed countries, including 
China, the United States (USA), and Canada, aim to end 
ICE production and sales by 2035. Even earlier, some 
European countries will not begin selling any autos except 

EVs until 20307–9). One of the critical successes of this 
acceleration in increasing the EV number and encouraging 
the owners to shift is the extensive infrastructure 
development of the so-called EVCS. As of record in the 
USA, the total EVCS reached 46,290 units with total plugs 
of 113,600 listed in early 2021, with the majority being 
allocated in public, i.e., the travel spots, conventional 
shops, restaurants, visitor points, and inter-city 
highways10). While in Europe, the number of public 
charging points reached 224,237 units in 2020, with the 
Netherlands having the most charging points, rolled out 
by 64,000 regular chargers and 2500 fast chargers. Those 
accounted for one-half of the public charging point (PCP) 
ratio employed11). These schemes are also undergoing in 
Southeast Asia, where Thailand is targeting 100% of EVs 
by 2035; the country has 664 EVCS units with a total plug 
of 2,224 units listed in June 202112). Indonesia has set an 
ambitious target through the Ministry of energy and 
mineral resources in the national grand energy strategy 
(GSEN), which currently has 219 units in 2021 (servicing 
out of 1760 four-wheeler EVs (4-Ws) existing units), 
reaching 695 units in this year's target (2022), to expected 
of 31,859 EVCS units servicing out of 2.19 million 4-Ws 
and also 13 million of two-wheelers EVs (2-Ws) by 
203013).  
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Fig 1: Sequential method of the research: (a) The proposed multi-uncertainties of the Monte-Carlo Simulation Method (MCSM), 

(b) Validation framework setup through PSA, (c) Data analysis and visualization 
 
The planning of massive deployment of EVCS 

infrastructure is one of the most challenging tasks due to 
the complexity of EV and its derivative uncertainty in 
aligning the gradual phase of EV transformative adoption, 
which the grid utility must consider. The well-planned 
allocation and the quantity number of EVCS deployments, 
projection of the future regular load and EV demand to the 
grid's existing capacity, and the availability of funds for 
physical upgrading should be optimally and efficiently 
matched. Particularly in developing countries where the 
grid infrastructure assets are likely nearing the end of life 
expectancy, spare sizing-constrained, built-in frailty 
topology, and regulated structure in the non-competitive 
scheme9,10,14). Additionally, numerous EV variables 
emerge as uncertainties that are decisive to predict due to 
the interactional characteristics of the three combined 
parameters: the EV unit, the charger equipment, and the 
EV user behavior. Hence, these continuously caused 
uncertain conditions of related parameters, such as the 
occurring timeframe of starting/stopping the charging, the 
time duration from one to another session, and the amount 
of power intake during the charging progress15).  

Another consideration that would likely happen in the 
early phase of shifting from ICE to EV is the addicted 
manner of fueling different types of vehicles, so-called 
'uncontrolled' mode charging based on user needs and 
preferences only at any time and place, which could 
happen in a residential or commercial in either urban or 
rural area. As a consequence, these may produce abrupt 
load pattern charging characteristics and impact the 
overall load profile, particularly in the feeder to which the 
EVCS is linked16,17). In most cases, it affects the voltage 
stability, stresses the thermal asset capacity, and 
jeopardizes the loading factor18). Consequently, the 
conventional grid topology is prone to those, leading to 

substantial system losses, power failure, outage, and likely 
impairment of electronic equipment19). Furthermore, if the 
grid asset's capacity does not match in a certain condition 
and repeats randomly, thus, results in economic and 
opportunity disadvantages from a broadened perspective. 

For that reason, estimating usage patterns is essential 
during the deployment planning process in projecting 
changes and recognizing the impacts of e-mobility in the 
view of grid future-changing and performance-preserving. 
Besides, forecasting the potential revenues and initiating 
new business models obtained during the EVCS 
deployment from the beginning of the planning process 
increases the chances of a smooth transition20). At once, it 
enables the rethinking idea of utilizing local reserve and 
deferring the installation of new physical capacity, thus 
reducing the need for substantial in-front capital expenses 
while still retaining overall service quality as mandatory. 

In this article, the multi-uncertainties that arose from 
the charging process, which includes each plug of two and 
four-wheelers (2|4-Ws) EVCS estimating the power 
intake fluctuation, have not yet been discussed or publicly 
available. Further, notable literature values that align with 
this research purpose are found in6,7,17,18,20). Despite those 
facts, our paper fills the critical gap in the literature by 
which considering the unknown entities (i.e., the 
timeframe of occurrence and the sense of user conducts 
and preferences) with the high possibility of diversities 
combining (i.e., technical specifications of EVs and 
supportive peripherals) but still in logically and 
reasonable sense. Also, our study investigates and tackles 
two tasks aligning the ongoing climate change mitigation 
and carbon regulations that may be strictly authorized in 
the upcoming days, as follows: 
• The creation of a projection framework enables 

validation of the adequacy and security awareness 
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of the existing distributed grid feeders (DGF) in 
terms of multi-uncertainties parameters that 
emerge from the charging process of public EVCS. 

• Fostering sustainability (to get a proper solution in 
the transformative energy sector) by developing a 
practical validation framework based on the typical 
DGF in Indonesia's urban area within a reasonable 
time-varying execution representing the virtual 
model of DGF to which the deployment of 
supporting e-mobility infrastructure is deployed 
and operated. 

 
2.  Methodology  

In general, the research methodology can be seen in 
Fig.1. It consists of three sequential execution platforms. 
The first platform (a) consists of two parts of workflows. 
Part 1 gathered information to create boundaries state by 
using all relevant data (primary or secondary), such as 
occupational behavior or working place in a particular 
area and existing public transportation, also EVs' and 
EVCSs’ related products (stock market/sales, specs, and 
pricing, as well as new products potentially to be 
launched) from available public data repositories21,22). 
Next, Part 2 is the data collection and clustering process 
aligned with research aims, objectives, and requirements. 
Henceforth, two related sub-uncertainty parameters are 
retrieved from each; namely, the user's uncertainty 
constitutes the willingness to utilize the state of charge 
(SoC) of its battery capacity (𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈 ) and the willingness 
to start or stop the charging process neglecting the SoC 
value �𝑈𝑈𝑈𝑈𝑆𝑆|𝑆𝑆

𝑈𝑈 �. Likewise, the EV's uncertainty consists of 
an acceptable charge rating (𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈 ) and the battery pack 
capacity(𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑈𝑈 ). Lastly, the charger's uncertainty appoints 
to the power charges rating (𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈 )  and chargers' 
efficiency and performance (𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈 ) . Hence, deriving the 
proposed multi-uncertainties factors to generate the power 
usage pattern of the charging process for each plug using 
the statistical randomness of the Monte-Carlo simulation 
method (MCSM) modified from23), by applying seed 
boundaries of minimum and maximum {min|max} values 
of each of those factors. 

Part 3 is the data tagging process according to the data 
result in Part 2 through the soft-coupled method in the csv, 
txt, or json file format to align the acceptable data to be 
computed in the following process. In Part 4, as part of 
platform (b), the investigation and validation process 
through power system analysis (PSA) is carried out. It is 
expected to enable grid planners, operators, stakeholders, 
or policymakers to recognize the impact of uncertainties 
related to the existing infrastructure, including apparatus 
assets, grid operational setup, as well as regular customer 
loading in a virtual model of DGF by computing in 
dynamic time series power flows execution. The last 
workflow is defined in the platform (c), consists of Part 5 
and Part 6 for data analysis and visualization, in which 
Part 5 emphasizes the process of storing result data in the 
internal data repository before being recollected and used 

to foresee the upcoming potential threads as of the topic 
discussion is done in Part 6. 

 
2.1  User uncertainties  

User uncertainties (UU) are the randomness influenced 
by EV's user behavior in the progress of the charging 
session and become one of the sturdy factors due to the 
unknown status of future-event either in active or idle 
mode. It is noticed that there are two different usage 
patterns strongly related to EV's user side. Firstly, the 
willingness of the EV's owners to begin (active mode of 
charging, 𝑇𝑇 𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢) or stop (idle mode of charging, 𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂
𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢) in 

any circumstances and time of occurrence. The UU is 
derived using the following criteria in Eq. 1 and Eq. 2. 
These conditions are influenced by the user's action, 
neglecting the range of its SoC capacity. To this end, we 
define the total hour of EVCS operation 𝐶𝐶𝐻𝐻 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is set 
for 1440 minutes, starting 𝑇𝑇𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂  from 00:00 until 
𝑇𝑇𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂𝑂𝑂 at 24:00. Hence, the maximum plug's active 
duration  𝑇𝑇 𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢 is set for 100 minutes, and the minimum 
plug's idle duration 𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢 is set for 5 minutes. 
 

𝑈𝑈𝑈𝑈𝑆𝑆|𝑆𝑆
𝑈𝑈 �2�4 𝑊𝑊𝑊𝑊�  
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��   𝑇𝑇 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆

𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂 ≤ 𝐶𝐶𝐻𝐻 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆
 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤  𝑇𝑇𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂𝑂𝑂      

  𝐶𝐶𝐻𝐻 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆
 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = � �𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢,𝑇𝑇 𝑂𝑂𝑂𝑂
𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢�

𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐸𝐸𝑆𝑆𝑆𝑆−𝑂𝑂𝑂𝑂𝑂𝑂

𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐸𝐸𝑆𝑆𝑆𝑆−𝑂𝑂𝑂𝑂

= 1440 

                   
s. t.                             

𝑤𝑤ℎ𝑎𝑎𝑒𝑒
�⎯⎯�  𝐶𝐶𝐻𝐻 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
𝐼𝐼𝐼𝐼 
��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 1  

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
�⎯�  

𝑇𝑇 𝑂𝑂𝑂𝑂
𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢 (1) ≤  𝑊𝑊𝑠𝑠𝑠𝑠 𝑇𝑇 𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢(2Ws|4Ws) 
𝑤𝑤ℎ𝑎𝑎𝑒𝑒
�⎯⎯�  𝐶𝐶𝐻𝐻 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
𝐼𝐼𝐼𝐼 
��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 0  

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
�⎯�

 𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂
𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢 (0) ≤  5 minutes          
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��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 1  

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
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 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂 (1) ≥  0.20   

 
𝑤𝑤ℎ𝑎𝑎𝑒𝑒
�⎯⎯�  𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢  
𝐼𝐼𝐼𝐼 
��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 0  

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
�⎯�

𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂𝑂𝑂  (0) ≤  0.85     

 

 

 
 
 
 
 
 
 
 
 
(2) 

Secondly, the willingness of the EV user to utilize the 
battery based on its SoC value as their reference to start 
(𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂) or stop the charging session �𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂𝑂𝑂� of 
which this condition is the opposite of the Eq. 1. Here in 
Eq. 2, 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂  is set at a minimum of 20% and 
𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂𝑂𝑂 at 85% of the SoC rating 𝑆𝑆𝑆𝑆𝐶𝐶 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆

 𝐴𝐴𝑎𝑎𝑎𝑎  at 100%. 
The reference setting for this SoC value is based on Tesla 
user feedback about the ideal minimum and maximum 
SOC value concerning battery degradation of lithium 
batteries over the years of usage24). 
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2.2  EV uncertainties  

EV uncertainties (EVU) are a level of uncertainty 
defined by the acceptable charge rating 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈   and battery 
capacity. The acceptable charge rating defines the current 
charging that the EV battery and its internal supporting 
devices safely operate. Here, the uncertainty 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈  is set 
to have a maximum of 50% and a minimum of 99% of its 
power charges rating (𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈  ). While the battery rating 
capacity 𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑈𝑈  is the maximum battery capacity of the EV 
unit that can be utilized in total25). The EVU is derived 
using the following criteria in Eq. 3 and Eq. 4. 

In most cases, battery makers determine 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈   to 
ensure a long battery lifespan. The new battery has an 
acceptable charge of 100% of its rating, whereas utilized 
batteries have never reached their initial rating over the 
years due to the charge cycle operation and aging. This 
capacity loss is called battery degradation and is scaled as 
depth of discharge (DoD). The average guarantee of DoD 
by automakers is found to be 80% after five to eight years 
of usage26). Here, the uncertainty of DoD (𝐷𝐷𝑆𝑆𝐷𝐷𝑈𝑈)  is set 
maximum of 80% and minimum 99%. 

 
Table 1. The typical battery capacity of EV’s brand in Indonesia. 

EV 4-Ws 
Battery 
capacity 
(kWh) 

EV 2-Ws 
Battery 
capacity 
(kWh) 

Mitsubishi-
Miev 

16 Gesit 1.44 

BMW 21.6 Volta 1.5 

BYD 71.6 Winfly 1.44 

Tesla 75 Viar 2 

Nissan 40 United motor 1.6 

Hyundai 40 Gesit 1.44 
 

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴
𝑈𝑈 �2�4 𝑊𝑊𝑊𝑊�  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑠𝑠𝑎𝑎𝑎𝑎 (2|4 Ws)
�⎯⎯⎯⎯⎯⎯⎯�   0.5 ∗ 𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈  ≤  𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈  

        ≤  0.99 ∗ 𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈     
                  

s. t.                              
𝑤𝑤ℎ𝑎𝑎𝑒𝑒
�⎯⎯�  𝑇𝑇 𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢  
𝐼𝐼𝐼𝐼 
��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 1  

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
�⎯�

 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈  (1) =  �→ 𝑊𝑊𝑠𝑠𝑠𝑠 (2|4 Ws)�
𝑤𝑤ℎ𝑎𝑎𝑒𝑒
�⎯⎯�  𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢  
𝐼𝐼𝐼𝐼 
��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 0  

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
�⎯�

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈  (0) =  0.00             

  

 
 
 
 
 
 
 
 
(3) 

𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆
𝑈𝑈 �2�4 𝑊𝑊𝑊𝑊�  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑠𝑠𝑎𝑎𝑎𝑎 (2 Ws)
�⎯⎯⎯⎯⎯�  1.0 kWh ≤ 𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑈𝑈 3.4 kWh     
𝑠𝑠𝑎𝑎𝑎𝑎 (4 Ws)
�⎯⎯⎯⎯⎯�  16 kWh ≤ 𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑈𝑈 ≤ 75 kWh   

s. t.                            
𝑤𝑤ℎ𝑎𝑎𝑒𝑒
�⎯⎯�  𝑇𝑇 𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢  
𝐼𝐼𝐼𝐼 
��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 1  

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
�⎯�          

𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑈𝑈  (1) = (→ 𝑊𝑊𝑠𝑠𝑠𝑠 (2|4 Ws) ∗ 𝐷𝐷𝑆𝑆𝐷𝐷𝑈𝑈)
𝑤𝑤ℎ𝑎𝑎𝑒𝑒
�⎯⎯�  𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢  
𝐼𝐼𝐼𝐼 
��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 0  

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
�⎯�           

𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑈𝑈  (0) =  0.00                  

 

 
 
 
 
 
 
(4) 

 
The battery capacity of large EVs varies by the 

automaker. The following information in Table 1 pertains 
to EV battery capacities in typical EVs in Indonesia. 
Hence, the following setting for 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈  in Eq. 3 and 𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑈𝑈  

in Eq. 4 is based on our data observation of the Indonesia 
EV market share, which includes customization and 
justification made for research intention and the context 
of an economic and environmental urban area in Jakarta 
and its neighboring cities. 

 
2.3  Charger uncertainties  

Charger uncertainties (CU) consider charging devices 
such as the power charge rating 𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈  and its efficiency 
and performance  𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈  . Similar to the EV uncertainty, 
𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈   is taken from the charger perspective. In this 
research study, it is assumed that each plug rating of 
EVCS represents linearly. The lists of several EVCS in 
Indonesia and their specification in Table 2 are good 
references to justify setting values for charger 
uncertainties. The CU is derived using the following 
criteria in Eq. 5 and Eq. 6. 

 
Table 2. Charger types and their charge rating (2020-2021) 
EV 
type 

Charger 
type 

Power charge rating 
(kWAC|3ɸ) 

Quantity 

4-Ws 

AC type-2 22 40 

AC type-2 43 3 

AC type-2 33 2 

AC type-2 65 1 

AC type-2 20 22 

AC type-2 32 13 

AC type-1 10 11 

CCS-2 20 10 

AC 22 24 

2-Ws 
AC 1.44 2 

AC < 5 7000 

𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴
𝑈𝑈 �2�4 𝑊𝑊𝑊𝑊�  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑠𝑠𝑎𝑎𝑎𝑎 (2 Ws)
�⎯⎯⎯⎯⎯�2.2 kW ≤ 𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈 ≤  5.5 kW
𝑠𝑠𝑎𝑎𝑎𝑎 (4 Ws)
�⎯⎯⎯⎯⎯� 12 kW ≤ 𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈 ≤ 43 kW

                                
s. t.     

𝑤𝑤ℎ𝑎𝑎𝑒𝑒
�⎯⎯�  𝑇𝑇 𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢  
𝐼𝐼𝐼𝐼 
��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 1

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
�⎯�

𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈  (1) = (→ 𝑊𝑊𝑠𝑠𝑠𝑠 (2|4 Ws) ∗ 𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈 ) 
𝑤𝑤ℎ𝑎𝑎𝑒𝑒
�⎯⎯�  𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢  
𝐼𝐼𝐼𝐼 
��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 0

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
�⎯� 

 𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈  (0) =  0.00

 

 
 
 
 
 
 
 
 
(5) 

𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃
𝑈𝑈 �2�4 𝑊𝑊𝑊𝑊�  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑠𝑠𝑎𝑎𝑎𝑎 (2 Ws)
�⎯⎯⎯⎯⎯�   0.85 ≤  𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈  ≤  0.92 
𝑠𝑠𝑎𝑎𝑎𝑎 (4 Ws)
�⎯⎯⎯⎯⎯�   0.90 ≤  𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈  ≤  0.93

      
s. t.     

 
𝑤𝑤ℎ𝑎𝑎𝑒𝑒
�⎯⎯�  𝑇𝑇 𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢  
𝐼𝐼𝐼𝐼 
��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 1  

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
�⎯�

𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈  (1) =  �→ 𝑊𝑊𝑠𝑠𝑠𝑠 (2|4 Ws)�
𝑤𝑤ℎ𝑎𝑎𝑒𝑒
�⎯⎯�  𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢  
𝐼𝐼𝐼𝐼 
��  𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑇𝑇) = 0  

𝑎𝑎ℎ𝑎𝑎𝑒𝑒
�⎯�

𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈  (0) =  0.00    

 

 
 
 
 
 
 
 
(6) 

Further, charger performance and efficiency are the scales 
of how efficiently the charger works, affecting how much 
current flows to the battery supplied from the AC grid. 
Notably, Tesla's charger is more efficient at 90% when 
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using a fast charger and 99% by using a supercharger27). 
Moreover, the initial battery of its SoC also affects the 
charger efficiency due to the constant current (CC) session 
would take longer; by other means that a battery with a 
low SoC (by the time of initiating the charging session) 
has a higher value of efficiency than the one with a high 
SoC. Also, the environment's temperature affects how 
efficiently a charger operates. Additionally, it is found that 
the ideal temperature for charging/discharging is around 
+10°C (degree Celsius) to +30°C28). Notably, the fast 
charger's power conversion efficiency is 39% at -25°C and 
93% at +25°C. Another acknowledged reference is that 
the most power conversion could only be reached 92% to 
93% at maximum28). 

 
2.4  Estimated charging duration, power intake, and 

electrical energy 
This part explains the predicted outputs derived from 

the abovementioned multi-uncertainties into three outputs 
parameters that can be used to justify their impact from 
the perspective of grid adequacy and security beforehand. 
The first parameter is estimated charging duration (ECD), 
as seen in Eq. 7, which calculates the time duration of 
charging adopted from29). Secondly, the estimated power 
intake (EPI) in Eq. 8 which calculates the summation of 
the delivered power in each plug's output. The third is the 
estimated energy usage (EEU) in Eq. 9 which calculates 
the accumulative energy absorbed from each EVCS. The 
overall estimated parameters are in an ideal condition 
ignoring the uncertainty assertion as seen in the following 
Eq. 7-9. 

𝐸𝐸𝐶𝐶𝐷𝐷 =
𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸
𝑅𝑅𝐸𝐸𝑆𝑆 ×�1−𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸

𝑅𝑅𝐸𝐸𝑆𝑆 �×𝐷𝐷𝑆𝑆𝐷𝐷
𝜂𝜂𝑐𝑐ℎ𝐸𝐸𝐸𝐸𝑎𝑎𝑆𝑆𝐸𝐸×𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆        (7) 

𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆,𝑒𝑒
𝑃𝑃𝐴𝐴𝑎𝑎𝑎𝑎𝑒𝑒

𝑘𝑘=1  (8) 
 

𝐸𝐸𝐸𝐸𝑈𝑈 = 𝐸𝐸𝐶𝐶𝐷𝐷 × 𝐸𝐸𝐸𝐸𝐸𝐸 (9) 
 

Where 𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐴𝐴𝑎𝑎𝑎𝑎   is EV’s battery capacity (kWh), 
𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑎𝑎𝑎𝑎  is the power rating of EVCS (kW), 𝑅𝑅 is the number 
of plugs in one charging station, and 𝐸𝐸𝑝𝑝𝑃𝑃𝑢𝑢𝑢𝑢3,𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆

𝑃𝑃𝐴𝐴𝑎𝑎𝑎𝑎   is the 
power rating delivered by each plug (kW). The EPI per 
plug is√3 x V L−LRat  x  I ChRat x PF, with the line-to-line voltage 
rating of the existing grid �V L−LRat �,  the current charging 
rating of EVCS �I ChRat� and power factor (PF).  

In contrast, those estimated parameters have been 
modified to include uncertainty factors determining the 
same parameters (ECD, EPI, and EEU), reflecting the 
multi-uncertainties randomness of the research objectives. 
Since the uncertainty parameters have different 
characteristics, as seen in Eq. 1-6, then the formula in Eq. 
10-12 distinguishes different from the ideal conditions in 
Eq. 7-9 for the following. 

𝐸𝐸𝐶𝐶𝐷𝐷 𝐸𝐸𝐸𝐸𝑈𝑈  

=
𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑈𝑈  x ( 1−  𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈  ) x (𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑈𝑈  x 𝐷𝐷𝑆𝑆𝐷𝐷𝑈𝑈) 

𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃(%)
𝑈𝑈   x [𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈  x  𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈 ]  

 
 

(10) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈 = ���𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴,𝑒𝑒
𝑈𝑈 × 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈 �

𝑒𝑒

𝑘𝑘=1

+ �𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴,𝑒𝑒
𝑈𝑈 × (1 − 𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈 )�� 

 
 
 
 

(11) 
𝐸𝐸𝐸𝐸𝑈𝑈 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈  = 𝐸𝐸𝐶𝐶𝐷𝐷 𝐸𝐸𝐸𝐸𝑈𝑈   x 𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈   

(12) 
  
2.5  Power system analysis (PSA) through load flow 

calculation  
Power systems are constructed as a network of buses 

(nodes) and branches (lines). A network bus represents 
system parts, such as generators, loads, and substations. 
There are three different kinds of network buses. 
Depending on the type of buses, two of four quantities are 
primarily specified as a basis. The first is the slack or 
swing bus, where the known parameters are the voltage 
magnitude |𝐸𝐸 𝑎𝑎|  and the voltage phase angle (𝛿𝛿 𝑖𝑖) .  
Secondly, the generator bus or PV bus, where the known 
parameters are the active power �𝐸𝐸 𝑎𝑎

 � and |𝐸𝐸 𝑎𝑎|. Lastly, the 
load bus or PQ bus, where the known parameters are 
�𝐸𝐸 𝑎𝑎

 �  and the reactive power �𝑄𝑄 𝑎𝑎
 �.  The power flow 

problem or the load flow problem is the problem of 
figuring out the voltage magnitude |𝐸𝐸 𝑎𝑎| and angle (𝛿𝛿 𝑎𝑎) 
in each power system bus where the power generation and 
consumption are declared. By using Kirchhoff's Current 
Law (KCL) to describe the relationship between injected 
current  (𝑰𝑰) , and bus voltage (𝑽𝑽) , in the form of the 
admittance matrix (𝒀𝒀), whether the given system may be 
in single-phase, two-phase, or three-phase.  

Aligning to the current discussion topic, let us assume 
the system is designed in three-phase R, S, and T; then the 
relationship can be described in the form of 𝒀𝒀 as follows 
as referenced from30)-31):  

 

𝐸𝐸= 𝒀𝒀𝐸𝐸↔ �
𝐸𝐸1𝐴𝐴𝑆𝑆𝑇𝑇
⋮

𝐸𝐸𝑂𝑂𝐴𝐴𝑆𝑆𝑇𝑇
� = �

𝑌𝑌11𝐴𝐴𝑆𝑆𝑇𝑇  …   𝑌𝑌1𝑂𝑂𝐴𝐴𝑆𝑆𝑇𝑇
⋮ ⋱ ⋮

𝑌𝑌11𝐴𝐴𝑆𝑆𝑇𝑇  …   𝑌𝑌𝑂𝑂𝑂𝑂𝐴𝐴𝑆𝑆𝑇𝑇
� �
𝐸𝐸1𝐴𝐴𝑆𝑆𝑇𝑇
⋮

𝐸𝐸𝑂𝑂𝐴𝐴𝑆𝑆𝑇𝑇
� 

 
 
(13) 

                                                 

To decompose each parameter in Eq. 13, then the given 
parameters of 𝐸𝐸𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 ,𝐸𝐸𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 and 𝑌𝑌𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 are comprised as Eq. 
14 below: 

𝐸𝐸 
𝑎𝑎
𝐴𝐴𝑆𝑆𝑇𝑇

 =  �
𝐸𝐸𝑎𝑎𝐴𝐴

𝐸𝐸𝑎𝑎𝑆𝑆

𝐸𝐸𝑎𝑎𝑇𝑇
� ,   𝐸𝐸  

𝑎𝑎
𝐴𝐴𝑆𝑆𝑇𝑇 =  �

𝐸𝐸𝑎𝑎𝐴𝐴

𝐸𝐸𝑎𝑎𝑆𝑆

𝐸𝐸𝑎𝑎𝑇𝑇
� , 

𝑌𝑌 
𝑎𝑎𝑖𝑖
𝐴𝐴𝑆𝑆𝑇𝑇

 =  �
𝑌𝑌𝑎𝑎𝑖𝑖𝐴𝐴𝐴𝐴  𝑌𝑌𝑎𝑎𝑖𝑖𝐴𝐴𝑆𝑆 𝑌𝑌𝑎𝑎𝑖𝑖𝐴𝐴𝑇𝑇  

𝑌𝑌𝑎𝑎𝑖𝑖𝑆𝑆𝐴𝐴 𝑌𝑌𝑎𝑎𝑖𝑖𝑆𝑆𝑆𝑆 𝑌𝑌𝑎𝑎𝑖𝑖𝑆𝑆𝑇𝑇

𝑌𝑌𝑎𝑎𝑖𝑖𝑇𝑇𝐴𝐴 𝑌𝑌𝑎𝑎𝑖𝑖𝑇𝑇𝑆𝑆 𝑌𝑌𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇
�           (14)
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Fig. 2: Single line diagram (SLD) of typical distribution system feeder with the EVCS placement installation 

 
where 𝐸𝐸𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇  is the injected complex current, 𝐸𝐸𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇  is the 
complex voltage at bus i (and in any total number of bus 
𝑁𝑁), for a given phase-RST and 𝑌𝑌𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇  is the element of the 
admittance matrix. Then, also the injected current from 
the same equation can be computed at any given phase-
RST as follows:  

𝐸𝐸𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 = � .� 𝑌𝑌𝑎𝑎𝑘𝑘
𝐴𝐴𝑆𝑆𝑇𝑇|𝑞𝑞 .𝐸𝐸𝑘𝑘

𝑞𝑞

𝑞𝑞=𝐴𝐴|𝑆𝑆|𝑇𝑇

𝑂𝑂

𝑘𝑘=1
 

 
 

(15) 
The power flow problem of three-phase is given in the 

following mathematical Eq. 16: 
 𝑆𝑆𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 = 𝐸𝐸𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 . �𝐸𝐸𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇�

∗ = 

𝐸𝐸𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 .� .� �𝑌𝑌𝑎𝑎𝑘𝑘
𝐴𝐴𝑆𝑆𝑇𝑇|𝑞𝑞�

∗
. �𝐸𝐸𝑘𝑘

𝑞𝑞�∗
𝑞𝑞=𝐴𝐴|𝑆𝑆|𝑇𝑇

𝑂𝑂

𝑘𝑘=1
 

 
 
(16) 

where 𝑆𝑆𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 is the injected complex power at bus i and 
(𝐸𝐸𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇)∗ is the complex conjugate form of the injected 
current. Generally, to mathematically solve the power 
flow problem is finding a solution to a nonlinear system 
of equations in which all variables are expressed as 
complex numbers. The 𝑆𝑆𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 is generally available in the 
form of three-phase unbalanced loads, to were distributed 
in all available buses of DGF in the form of 𝑆𝑆𝑆𝑆𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 =
 𝐸𝐸𝑆𝑆𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 + 𝑗𝑗𝑄𝑄𝑆𝑆𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 . Hence, the 𝐸𝐸𝑆𝑆𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇of each bus is derived 
from regular customer load and multi-uncertainty 
problems, as discussed. Afterwards, the PSA based on 
Newton-Raphson (NR) method34) is used for load flow 
calculation to assess the behavior of the power system 
under different scenarios, which is to be validated using 
the typical DGF. 
 
3.  Case study 

PSA is used to determine and analyze the behavior of 
existing power systems used as a validation framework, in 

which the power intake from 2|4-Ws EVCSs are tied in a 
typical 20 kV|0.4 kV DGF. The proposed DGF, as 
depicted in Fig. 2, is adopted from34) and has been 
modified to reflect typical Indonesian DGF. Further, the 
allocated four units of 2|4-Ws EVCS are connected 
through a lateral line of medium voltage (MV) via a two-
winding transformer of 250 kVA. The overall grid assets 
are referenced in the Indonesian standardized35). The line 
conductors for medium voltage (MV) are used as follows 
NFA2XSY-T 3x300+50, NFA2XSY-T 3x240+50, 
NFA2XSY-T 3x195+50, NFA2XSY-T 3x150+50, and 
NFA2XSY-T 3x120+50. Similarly, low voltage (LV) is 
used as follows NFA2X-T 3x150rm+95, NFA2X-T 
3x120rm+95, NFA2X-T 3x95rm+95, and NFA2X-T 
3x70rm+70. The regular load (non-EV demand) is 
measured from the actual distribution feeder in the east 
region of Jakarta within 24 hours in minutes of time-series 
data and be used as a base scenario loading profile for the 
research, as referenced in36,37). In order to maintain the 
research objectives, each distribution transformer is set to 
have a minimum loading of 33%–35% and a maximum 
loading of 65%–68%, which then arbitrarily determines 
each feeder's loading. 

Meanwhile, the EVCS specification used in this 
research study consists of three plugs in each EVCS unit 
within different power ratings in the alternating current 
(AC) charging mode, as listed in Table 3. Continuously, 
the MCSM derives the input of each plug as the main 
research objective. At the same time, chargers' conversion 
efficiency and power factors are also included creating 
diversity with others. To further validate the research 
hypothesis, the PSA is then carried out through time-
varying load flow calculation under quasi-dynamic 
simulation modeling (QDSM) adopted in32,33), and utilized 
under balanced conditions to stay within the topic. It is 
done after the overall model, as shown in Fig.1, has been 
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virtually built on the computer-aided engineering (CAE) 
program of DIgSILENT PowerFactory, which then be 
used to assess and validate the incoming related issues for 
future planning and operations of EVCS in the electrical 
power systems perspective. 
 
Table 3. Two and four wheelers (2|4-Ws) charger specifications 

Charger specs 2-Ws 4-Ws 

P[Plug-1] Rating (kWAC | 3ɸ) ≤ 2.0 ≤ 12 

P[Plug-2] Rating (kWAC | 3ɸ) ≤ 3.9 ≤ 22 

P[Plug-3] Rating (kWAC | 3ɸ) ≤ 5.3 ≤ 43 

Efficiency(Min-Max) 0.85-0.92 0.90-0.93 

Power factor (PF) 0.95 0.95 

 
4.  Results and discussion 

This section discusses the MCSM results deriving the 
multi-uncertainties of charging behavior. Fig. 3 and 4 
show the power derived from three plugs 𝐸𝐸[𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢] of each 
four of 2|4Ws EVCS. Two parameters that influenced the 

power drawn from each plug are the acceptable charge 
rating 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈   of EV unit and the charger   efficiency and 
performance 𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈  , which are arbitrarily generated, as 
referred to in Eq. 5 and Eq. 6 to the power plug charge 
rating 𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈   as a base reference. These sets of multi-
uncertainties give an idea that the acceptable EV internal 
power conversion, its derivative parameter, and the 
charging efficiency value impact the power incurred per 
actuation.  

Accordingly, the highest power incurred by the 4-Ws 
plug from slow, medium, and fast modes are plug-2 of the 
second unit, plug-2 of the fourth unit, and plug-3 of the 
third unit, of 13.506 kW, 23.945 kW, and 46.481 kW, 
respectively as shown in Fig.3 (a-d). The same result is 
that for the 2-Ws, it is found that the plug-1 of the first 
unit, plug-2 of the first unit, and plug-3 of the second unit, 
of 2.133 kW, 3.752 kW, and 5.792 kW, respectively, as 
shown in Fig.4 (a-d). While battery parameters (𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈 ,
𝐷𝐷𝑆𝑆𝐷𝐷𝑈𝑈 , 𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑈𝑈 ,  𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂𝑂𝑂 ) and power parameters (𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈 , 
𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈 , 𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈 ) are also impacted in various charging 
durations of 4-Ws (as seen in Fig.3). Similarly, it 

 

 

Fig. 3: Power incurred from each plug of unit A (a), unit B (b), unit C (c), and unit D (d) of 4-Ws EVCS after MCSM execution 
 

 

 
Fig. 4: Power incurred from each plug of unit A (a), unit B (b), unit C (c), and unit D (d) of 2-Ws EVCS after MCSM execution 
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happened as well for 2-Ws (as seen in Fig.4), which is 
further detailed in Table 4. 

Admittedly, these high values of 𝐸𝐸[𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢]  can be 
inferred that the EV unit could have the 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈   almost 
equal to the range of 𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈   but then have low 𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈  
which caused more power loss converted into thermal 
dissipation in reaching the rated value27). In contrast, the 
brand-new EV unit could have a range close to of 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈  
(or even higher) that might have the power drawn almost 
equal to the plug charger rating 𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈  within maximum 
𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈  (≈100%) during charging operation. 

The rest of the results in Table 4 are intended to interpret 
how the multi-uncertainties randomness imposes the grid 
load profile related to high power intake, power charging 
duration per session, and the utilization of each plug 
(notably in Eq. 7-12), which then be relevant finding on 
how optioning the smooth transition in the pace of 
transformative urban transport sector and realignment 
mechanism to upscaling the supporting infrastructure in 
term of alerting the availability of financial support and 
finding effective strategies in tackling upcoming changes 
in the early stage adoption, especially for developing 
countries where private sector involvement has not exist 
yet due to economic low utilization6,14). 

 
Table 4. Power incurred, time duration, and utilization 

of four units 2|4Ws EVCS 
Characteristic 2-Ws plugs 4-Ws plugs 

Power drawn 

Max. Pplug1 (kWAC) 2.133 13.506 
Min. Pplug1 (kWAC) 1.244 7.253 
Max. Pplug2 (kWAC) 3.752 23.945 
Min. Pplug2 (kWAC) 2.040 13.203 
Max. Pplug3 (kWAC) 5.792 46.481 
Min. Pplug3 (kWAC) 3.159 26.064 
Duration 
ECD longest-active (minutes) 80 100 
ECD shortest-active (minutes) 29 43 
ECD longest-idle (minutes) 164 167 
ECD shortest-idle (minutes) 9 5 
Utilization 

Max. Pplug-active (times) 13 10 
Min. Pplug-active (times) 10 9 
Max. Pplug-idle (times) 13 11 
Min. Pplug-idle (times) 11 10 
Max. Pplug-utilized (%) 62.68 64.49 
Min. Pplug-utilized (%) 50.80 54.48 
Max. Pplug-not utilized (%) 49.17 45.56 
Min. Pplug-not utilized (%) 37.36 35.56 

 

Finally, the validation through load flow computation 
from the affected multi-uncertainties factors that emerged 
from the charging process of public EVCS is discussed. 

The issues related to voltage stability are foremost 
assessed since it is one of the statutory parameters of the 
distribution grid's day-to-day operation, as depicted in Fig. 
5 (a) and (b).  

By viewing the DGF topology (see Fig. 2), the actuation 
of EVCS slightly influenced voltage magnitudes at X1 
and X2 nodes of upstream MV nodes, which flow through 
the downstream X3 node and supply the EVCS demand 
via point of connection (PoC). The slight deviation of 
0.001 p.u. in minimum voltage deviation (VMin-Dev) 
starting from node X3 to node X1 (before and after EVCS 
actuation) is shown in Fig. 5(a). These changes may be 
subtle but can lead to important changes if more EVCS 
units are, i.e., featured with direct current (DC) charger 
units. Meanwhile, the most stranded VMag of 0.022 p.u. 
(VMin-Dev ≈ -2.2%) is encountered in the incoming LV node 
of its PoC. Furthermore, the stranded dip of 0.884 p.u. 
occurred due to plugging activation concurrently with the 
peak hour of regular non-EV load, as shown in Fig. 5(b), 
which put VMin-Dev at -11.59% out of -9.41% before 
integration. Hence, this finding suggests that more EVCS 
integration should be thoroughly assessed since it passed 
the voltage regulation of -10% under-voltage (UV) setup, 
which led to significant voltage stability issues along the 
feeder. Further, it indicates that the higher sensitivities in 
voltage magnitudes are due to the higher utilization factor 
of the transformer capacity in the LV grid than in MV38). 

Other aspects of our research findings related to power 
intake, accumulative energy, and the grid loss (before-
after) of the integration are depicted in Table 5, which can 
be used to foresee future challenges of e-mobility-
supportive infrastructure and the rethinking strategy. 

   
Table 5. Power and energy supplied and grid adequacy before 

and after integration of four units EVCS 

Characteristic 
Before 

integration 
After 

integration 
Power & energy supplied 
Max. Power P-incurred (kWAC) n.a. 173.38 
Min. Power P-incurred (kWAC) n.a 95.53 
Power Loss Upstream (kWAC) 31.97 32.10 
Power Loss Downstream (kWAC) 25.19 25.82 
Total Energy Operation 
(MWh) per-24h operation 

n.a 2.292 

Grid adequacy 
Max. V-deviation at PoC (%)  -6.07 -6.32 
Min. V-deviation at PoC (%) -9.41 -11.59 
Max. Trafoloading per-24h (%)  0.21 78.2 
Min. Trafoloading per-24h (%) 0.20 0.69 
Max. Lineloading upstream (%)  39.37 41.04 
Min. Lineloading upstream (%) 27.28 27.67 
Max. Lineloading downstream 
(%) 

36.50 37.75 

Min. Lineloading downstream 
(%) 

24.88 25.32 
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Fig. 5: Impact of multi-uncertainties against voltage magnitude at MV node PoC (a) and LV node PoC (b) before and 

after integration of four units 2|4-Ws EVCS 
 
As can be seen in Table 5, these parameters are 

concerned with the grid's adequacy and capacity for future 
assessment and evaluation as intended by the current 
proposed framework. Other than that, since the existing 
DGF infrastructure and its asset's ability is mostly default 
given; therefore, seeking in-service grid capability and 
capacity (so-called hosting capacity, HC) is a tremendous 
challenge due to the inherent diversity and complexity of 
DGF. Therefore, the current result data (of time-varying 
execution framework model) provide preliminary power 
demand fluctuation, which could address and discover the 
behavior trends needed in conducting HC. Nevertheless, 
the simultaneous process (derived by incidental 
concurrences of plug actuation) operation reached power 
drawn at the highest of 173.38 kW, acquiring the 
transformer loading of 78.2%. In comparison, the 
transformer loading average is 43.1%, which leads to the 
loading factor being around 0.551. In contrast, low power 
utilization of 0.69% is due to the other internal apparatus 
supporting the operation, such as the lighting equipment 
and others, while the plugs are majority not in-used or 
idled. 

 
5.  Conclusions 

The relevant findings contribute to developing a 
practical validation framework that should lead 
reasonably to the utility and grid operator for future 

planning and operation linked to grid infrastructure 
adequacy awareness and early-stage preparation in 
supporting the national commitment to energy transition 
through the future electrification transport (EE) program. 
Our current findings also estimate the plug's power usage 
of EVCS 2|4Ws with multi-uncertainties in urban-area, 
which have been elaborated in this research, consisting of 
user behavior, EV unit, and charger uncertainties. Our 
simulation results show that the maximum power drawn, 
duration, and charger utilization for 4-Ws plug are 
46.48 kW, 100 minutes, and ten times daily. The voltage 
magnitude dropped 0.022 p.u. occurs in the MV node 
during the peak load, while it could reach 0.884 p.u in the 
LV node and, thus, violate under-voltage regulation, 
despite the transformer loading at 78.2%, and minimum 
loading is only 0.69%. In that scene, integrating EVCS has 
a more significant impact on the LV grid, with the voltage 
stability becoming more sensitive to the presence of 
EVCS. 

The findings show that the framework model 
projection enables the stakeholders or operators to foresee, 
validate and justify their existing grid conditions' of its 
adequacy and security awareness, especially with the 
potential abrupt power incurred that could threaten the 
daily grid operational ability and alert them of what should 
be prioritized toward the gradual EE’s planning program. 

Finally, this study indicates that special attention should 
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be given and a better understanding of how the multi-
uncertainties randomness undoubtedly imposes on the 
grid conditions. Hence, future planning and reconfiguring 
to where the EVCS be placed and its coverage sizing and 
in-service quantity and capacity versus the influenced 
diversity factors (i.e., EV unit market shared, the 
occupational workplace and locations, and demographic 
coverage area in achieving better services and prevent 
future operational obstacles in the DGF infrastructure) is 
highly urged in the pace of e-mobility. Therefore, future 
research considering the practicable diversities mentioned 
above on how the EVCS placement is optimally supplied 
from different existing feeders, including combined AC 
and DC plugs and feeder HC optimization, while still 
using the substantial current findings method to derive the 
multi-uncertainties for specific regions, i.e., city or 
province scope remains unaddressed and still relevant to 
insight the stakeholders. Above all, addressing (by 
minimizing or avoiding) future operational congestion 
within fairly grid upgrading cost (if necessary) align with 
gradual planning of ICE to EV substitution is still open, 
fulfilling the national energy transition agenda. 
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Nomenclature 

Upstream 
 
 
Downstream 
 
 
DGF 
DoD 
ECD 
EEU 
EV 
EPI 
EVCS 
ICE 
MCSM 
PSA 
SoC 
VMag 

The interconnection between the main 
MV line through the first MV (node 
X1) of the sub-lateral line 
The interconnection between the sub-
lateral line until the MV nodes where 
EVCS tied in (node X3) 
distribution grid feeder 
depth of discharge 
estimated charging duration (hour) 
estimated energy usage (kWh) 
electric vehicle 
estimated power intake (kW) 
electric vehicle charging station 
internal combustion engine 
monte-carlo simulation method 
power system analysis 
state of charge (%) 
voltage magnitude (p.u.) 

VMin-Dev 

𝐶𝐶𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸 
𝜒𝜒𝑈𝑈 
UU    

voltage minimum deviation (%) 
battery capacity (kWh) 
uncertainty of any entities 
user behavior uncertainty on 
willingness to utilize the SoC of 
battery capacity 

𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈
 user behavior uncertainty on 

willingness to utilize the SoC of 
battery capacity 

𝑈𝑈𝑈𝑈𝑆𝑆|𝑆𝑆
𝑈𝑈  user behavior uncertainty on 

willingness to start or stop the 
charging process ignoring the SoC 
battery state 

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑈𝑈  electric vehicle uncertainty on 
acceptable charge rating (kW) 

𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑈𝑈  
 
𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝑈𝑈  
 
𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝑈𝑈  
 
𝑇𝑇 𝑂𝑂𝑒𝑒|𝑂𝑂𝐼𝐼𝐼𝐼
𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢  

 
𝐶𝐶𝐻𝐻 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
 
 𝑇𝑇 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆

𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂|𝑂𝑂𝑂𝑂𝑂𝑂   
 
𝑆𝑆𝑆𝑆𝐶𝐶 𝐸𝐸𝐸𝐸

𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂 , 
𝑆𝑆𝑆𝑆𝐶𝐶 𝐸𝐸𝐸𝐸

𝑆𝑆𝑎𝑎𝑎𝑎−𝑂𝑂𝑂𝑂𝑂𝑂  
 
𝑆𝑆𝑆𝑆𝐶𝐶 𝐸𝐸𝐸𝐸

 𝐴𝐴𝑎𝑎𝑎𝑎 
 
Plug EVCSPRat  
𝐸𝐸𝑝𝑝𝑃𝑃𝑢𝑢𝑢𝑢  EVCSRat  
 
𝑆𝑆𝑆𝑆𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇  
 
𝐸𝐸𝑆𝑆𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇  
 
𝑗𝑗𝑄𝑄𝑆𝑆𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇  
 
𝐸𝐸𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇 
 
𝐸𝐸𝑎𝑎𝐴𝐴𝑆𝑆𝑇𝑇  
 

electric vehicle uncertainty on battery 
capacity (kWh) 
charger uncertainty on charger’s 
efficiency and performance (%) 
charger uncertainty on power charge 
rating (kW) 
the time of active plug and the idle 
time of charging 
total hour of EVCS operation 
(minutes|hours) 
time set (On) or set (Off) of EVCS 
operation (hh:mm) 
limitation percentage of SoC at the 
beginning of charging (on) and the 
stoppage SoC limit (off) (%) 
the SoC rating of EV unit taken 
factory per as-built 
power plug rating of EVCS (kW) 
power plug incurred during EVCS 
operation (kW) 
apparent power load at three-phase of 
R|S|T in bus i (VA) 
active power load at three-phase of 
R|S|T in bus i (W) 
reactive power load at three-phase of 
R|S|T in bus i in imaginary form (VAR) 
voltage at a given of three-phase of 
R|S|T at bus i (volt) 
the injected current at a given of three-
phase of R|S|T at bus i ( A) 
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