CCUS-EOR Optimization to Achieve Zero Emission Program Targets in Northwest Java Basin

Tri Muji Susantoro
Research Centre for Remote Sensing, National Research and Innovation Agency, Jakarta, Indonesia

Sugihardjo
Research Centre for Process Manufacturing Industry Technology, National Research and Innovation Agency, Jakarta, Indonesia

Wikantika, Ketut
Centre for Remote Sensing, Bandung Institute of Technology, Bandung, Indonesia

Sunarjanto, Djoko
Research Centre for Process Manufacturing Industry Technology, National Research and Innovation Agency, Jakarta, Indonesia

他

https://doi.org/10.5109/7151730

出版情報：Evergreen. 10 (3), pp.1809-1818, 2023-09. 九州大学グリーンテクノロジー研究教育センター
バージョン：
権利関係：
CCUS-EOR Optimization to Achieve Zero Emission Program Targets in Northwest Java Basin

Tri Muji Susantoro1,2*, Sugihardjo3, Ketut Wikantika2,4, Djoko Sunarjanto3, Usman Pasarai3, Bambang Widarsono3, Arie Rahmadi3, Mohamad Romli3, Panca Wahyudi3, Sunting Kepies3

1Research Centre for Remote Sensing, National Research and Innovation Agency, Jakarta, Indonesia
2Centre for Remote Sensing, Bandung Institute of Technology, Bandung, Indonesia
3Research Centre for Process Manufacturing Industry Technology, National Research and Innovation Agency, Jakarta, Indonesia
4Department of Geodesy and Geomatics, Bandung Institute of Technology, Bandung, Indonesia

*Author to whom correspondence should be addressed:
E-mail: trim010@brin.go.id

(Received April 26, 2023; Revised June 20, 2023; accepted July 6, 2023).

Abstract: The presence of oil and gas production fields, oil refineries, cement plants, and coal-fired power plants situated close to each other supports the program for zero CO2 emissions through Carbon Capture, Utilization, and Storage (CCUS) for Enhanced Oil Recovery (EOR). This study aims to investigate the potential of depleted fields in the North West Java Basin as the target for CCUS-EOR in fulfilling the zero CO2 emission program and boosting oil production. The study uses oil and gas field data to evaluate the CCUS potential both qualitatively and quantitatively. The Geographic Information System was applied through a clustering method with a 50 km and 100 km buffer from CO2 emission sources. The calculation of CO2 for EOR purposes with a 50 km buffer radius is 287.504 million tons, which could result in a 575.009 million stock tank barrel (STB) increase in oil production in the case of immiscible injection and 379.506 million tons for an increase of about 1.150 billion STB of oil production in the case of miscible injection. For a 100 km buffer radius, 632.541 million tons of CO2 is required to increase 1.265 billion STB of oil production in the case of immiscible injection and 834.955 million tons of CO2 for an increase of 2.530 billion STB of oil production in the case of miscible injection. These results are expected to be implemented as part of the program to reach the goal of producing 1 million barrels of oil per day by 2030 and achieving net zero emissions by 2060.

Keywords: CCUS, EOR, carbon dioxide, oil refinery, power plant, cement industry.

1. Introduction

Carbon capture utilization and storage (CCUS) is the process to capture and purify carbon dioxide (CO2) from large-point industrial CO2 sources, such as coal power plants, gas processing plants, and other industrial plants for storage and/or industrial utilization1,2. The primary process of CCUS includes capture, transportation, storage and utilization CO23. In oil and gas industry, enhanced oil recovery (EOR) is a technique of oil production through injection of materials not normally present in petroleum reservoirs4. This EOR is often also called tertiary recovery since it is considered as the third stage of oil production. Such a term was attained after secondary recovery (such as water flooding), and primary production, the initial stage resulted from displacement energy naturally existing in a reservoir5. The application of CCUS has been carried out widely around the world. CCUS is one of the zero CO2 emissions programs to reduce greenhouse gas (GHG). An Exemplary CCUS program has been developed by The U.S. Department of Energy (DOE), Office of Fossil Energy (FE), and National Energy Technology Laboratory (NETL) since 1997 and has securely stored more than 10.5 million metric tons (MMT) of CO26.

The CCUS-EOR is capture CO2 for reducing CO2 and then storing CO2 in oil reservoirs to enhance oil production in the tertiary stage6. Utilization of CO2 for enhanced oil recovery (CO2 EOR) is one technology being considered to provide a positive business for CCS owing to its economic profitability from incremental oil production offsetting the cost of carbon capture storage (CCS). CO2 EOR has been proven effective for increasing
oil production substantially while a consistent amount of CO₂ injected is stored permanently at the same time. Approximately 40% of the injected CO₂ remains trapped in the reservoirs during the CO₂ EOR operations. Additional recovery can amount to 5% - 20% of the original oil in place (OOIP) depending on the characteristics of the hydrocarbon and the reservoir confinement. Application of CO₂ EOR becomes a key drive for CCS in many parts of the world, particularly in the US and Canada. The CCUS-EOR program has been carried out in Mexico by implementing a CO₂-EOR pilot project at the Cinco Presidentes oilfield. The project confirms that CCUS technology is secure and can be applied in oil and gas fields safely.

Indonesia has committed to achieving net zero emissions by 2060. To support this project, a pilot project for CO₂-EOR will be carried out at the Sukowati oil and gas field, East Java, in which a detailed study of the field conditions has been carried out. The CO₂ emission sources may come from nearby chemical plants and natural gas processing, paper mills, power plants, refineries, cement plants, and iron and steel plants. Additional CO₂ emission source could also originate from gas fields, which act as impurities. To reduce CO₂ emissions into the atmosphere, it is therefore necessary to capture CO₂ to be stored in the earth and or used for other purposes such as fuels, chemicals, building materials from minerals, building materials from waste, and CO₂ use to enhance the yields of biological processes. It is estimated that the market needs for these five categories may reach 10 MTCO₂ per year. These needs are almost the same as the need for CO₂ for food and beverage purposes. The need for CO₂ is nevertheless small compared to its emissions that reached 34,344,006 MTCO₂ worldwide and around 619,840 MTCO₂ for Indonesia in 2019.

Various efforts should be conducted to prevent and control CO₂ emissions. It is conceptually straightforward, but such an implementation requires a detailed study. These are due to oil and gas industry activities, steel industry, cement, LNG, and the transportation sectors are fundamentally needed, but yet still producing CO₂ emissions. Since 1980 several countries, such as the United States, Britain, France, and Norway, have begun to conduct studies on combating CO₂ emissions. An important stage of controlling CO₂ emissions is through the CCS program. The detailed stages of the CCS program include: (1) CO₂ is captured directly from the sources (industry, refineries, cement, LNG, and others). The CO₂ can be captured by using absorption, adsorption, membrane separation, cryogenic separation process and also directly capture CO₂ from flue gases. The capture of CO₂ from flue gases is based on the use of CaO particles as sorbent in circulating fluidized-bed (CFB) reactors. (2) Transport of CO₂ by compressing it into the liquid so that it will be economically transported to the appropriate storage areas. The transportation process can be through pipelines, ships, or a combination of both. (3) CO₂ storage can be injected into depleted/mature oil or gas reservoirs. The proven model has been built for CCUS-EOR from the CO₂ sources to EOR fields within the cluster model within radial distances of 100 km, 200 km, and/or the maximum straight distance of 300 km. The cluster model can promote greater efficiencies in the planning and construction of capital-intensive transport and storage infrastructure.

Despite reasonable efforts have been performed in those studies, limited amount of research dedicated specifically to evaluate potential deployment sites for CCUS projects and application of CCUS technologies in Indonesia has been found. Such adequate research and development efforts are crucial to understanding the Indonesian specific challenges, opportunities, and potential deployment sites for CCUS projects.

An analysis of depleted fields was therefore carried out to assess the potential CCUS-EOR from CO₂ sources in the North West Java Basin, Java Island, Indonesia within the radius of 50 km and 100 km. The area covers several industrial activities with high emissions, such as Indramayu power plant, Cirebon power plant, Balongan oil refinery, and Indo-cement factory. This study aims to examine the potential of depleted fields in the North West Java basin as the target for CCUS-EOR in achieving the zero CO₂ emission program and increasing oil production in the North West Java Basin. The advantage of implementing CCUS in the oil and gas fields is that subsurface conditions have been identified clearly on well log data and their volumes can be calculated from the oil and gas that have been produced. The increase in oil production at the tertiary stage needs a fluid injection, one of which is by CO₂ injection with high pressure. It is expected that by having CO₂ injection into oil fields through the CCUS-EOR program, a nearly close CO₂ cycle of those factories, refineries, coal-fired power plants and other industrial activities could be realized. Such a need for EOR technology implementation is necessary as most oil fields in Indonesia are already in depleted stage. This case is particularly appropriate as the North West Java Basin has about 153 oil and gas fields from two working areas and has larges potential for CCUS-EOR.

2. Materials and Methods

2.1 Study area

The research location is in the North West Java basin located to the north or back of the Java Volcano Arc, so it is currently known as the back-arc basin. The basin is bordered by the Thousand Platforms in the west, the Sunda Basin in the northwest, and the Vera Basin in the north (Fig. 1). While the northeastern part is bordered with the Vera Basin and Karimunjawa Arc, the North West Java basin shares a border to the east with the North Central Java Basin, and to the south with the Bogor Basin bounded by the Baribis Fault. The North West Java Basin has an area of 23,340 km², and its sediment thickness is between...
2,000–4,500 m, with deposits thickening to the south of
the basin\(^{29}\). The North West Java basin confirmed to be an
oil and gas producing basin with about 65 fields situated
on the land and 88 fields at sea\(^{29}\).

The main source rocks in this basin are deltaic
carbonaceous shales and coals in the upper Talangakar
formation deposited in a late syn-rift–post-rift tectonic
setting occurred in the late Oligocene stage\(^{30}\). Oil and gas
exploration activities in this basin have discovered a large
deposit of oil and gas, especially in the anticline structures.
The main oil and gas producing layers are sandstone from
the Talangakar and Cibulakan Formations and limestone
from the Baturaja and Parigi Formations. In this basin, oil
has also been produced from volcanic tuff rock and
breccia from the Jatibarang formation\(^{31}\). Drilling of oil
and gas wells are mostly carried out in the structures near
the faults areas where the main line of hydrocarbon
migration took place\(^{32}\).

2.2 CO\(_2\) emission sources

2.2.1 Oil refinery

The existing oil refinery in this basin area is Balongan
oil refinery, which was built through the export-oriented
refinery I (EXOR-I) project that began in 1990\(^{33}\). The
Balongan oil refinery, which operated in 1994, is the 6\(^{\text{th}}\)
of seven refineries built by Pertamina to process crude oil
into fuel, non-fuel, and petrochemical products. The
products of the refinery include various gasoline products
(premium RON 88, pertamax RON 92, pertamax plus),
various automotive diesel oil (diesel oil CN 48, pertamina
dex-diesel oil CN51), kerosene, LPG, and propylene. The
raw materials of this refinery are crude oils from Duri and
Minas fields\(^{39}\). In addition to those crude oils, this
refinery also receives the crudes Jatibarang, Cinta, Banyu
urip, and surrounding oil fields\(^{39}\). Oil refineries generally
produce waste and pollutants that have adverse impact to
the environment, such as carbon monoxide (CO) gas, CO\(_2\)
gas, sulfur oxide gas (SO\(_2\)), ammonia (NH\(_3\)) and water
vapor\(^{36}\). CO\(_2\) emissions produced at the Balongan refinery
originate from various process units such as boilers,
heaters, flares, and others\(^{37}\). However, through the
production process of residue catalytic cracking (RCC) it
was able to reduce emissions of 84,900 CO\(_2\) eq per year\(^{38}\).
The total CO\(_2\)-equivalent (CO\(_2\)-e) emissions produced at
the Balongan refinery in 2013 were around 1,753,255.01
tons and went down in 2017 to 732,139.20 tons\(^{37}\).

2.2.2 Coal-fired power plant

Two coal-fired power plants, the Indramayu power
plant and the Cirebon power plant, have been developed
in the North West Java basin. The Indramayu power plant
began its construction in 2013 and is commercially
operated in August 2018\(^{39}\). The plant’s rated capacity is
990 MWe with an operating hour of about 1,008 hours. Its
CO\(_2\) emissions with bituminous coal fuel is thus estimated
at 6,953.1 Ktons\(^{40}\). Cirebon coal fired power plant
meanwhile, comprises of two units, the Cirebon 1 with a
capacity of 660 MW that has been operating since 2012
and the Cirebon 2 with a capacity of 1000 MW, which is
planned to operate in 2022. The two units of power plant
in Cirebon employ ultra-super-critical (USC) technology,
which is considered as a clean coal technology (CCT)
technology. Such a technology may reduce CO\(_2\) emissions
and could achieve coal consumption efficiency by around
36%-42%\(^{41}\). Wahid et al calculated that the USC coal
fired power plant generated net power of 22 MW with the
amount of raw materials 20 ton/h coal feed\(^{42}\). The Cirebon
coal-fired power plant thus produces CO\(_2\) emissions of
less than 1.00 kg of CO\(_2\)eq/KWh\(^{43}\). The CO\(_2\) emission of
Indramayu and Cirebon power plants are correspondingly
lower than the average CO\(_2\) emission of power plants in
Indonesia, which was at 1.140 kg/kWh in 2019\(^{44}\).

2.2.3 Oil and Gas Fields

Sources of CO\(_2\) in the subsurface may come from
mantle degassing, reactions (metamorphic and diagenetic)
carbonates, and coal catagenesis. Geological factors
influence the evaporation, concentration and presence of
CO\(_2\) below the earth's surface\(^{45}\). In the North West Java
basin, especially in the Tugu Barat-C field, CO\(_2\) is
estimated to be generated from the decarboxylation of
cauld upper Oligocene-early Miocene Talangakar
Formation. CO\(_2\) is also derived from the dissolution of
carbonate reservoirs of Baturaja by formation water\(^{46}\).
Results of the analysis indicated that the total feeds
entering from oil and gas wells contains CO\(_2\) around
7.32%\(^{47}\). Furthermore, some oil and gas field structures in
the Northwest Java Basin are sources of CO\(_2\) that should
be included in the zero emission programs (Table 1).

2.2.4 Cement Industry

The existing cement industry is part of the Indo-cement
Tunggal Prakasa company located in Palimanan. This
company is a cement industry holding consisting of eight
factories established in 1985, two of which are situated in the North West Java basin, in Palimanan Cirebon district, West Java. Cement industries during its production process is estimated to emit a total of CO₂ emissions of around 5–7% and considerable energy consumption up to 15% of the Indonesia total industry CO₂ emission and energy consumption. Another source of CO₂ emissions from cement plants is cement bag waste⁴⁸. This is still recurring in spite of the considerable effort has been put in place in the carbon management improvement on its supply chains process to improvement⁴⁹. In addition to the CO₂ emission from the use of coal and carbonaceous fuel as its energy source, the cement industry also emits CO₂ from its various process stages of calcination of raw materials. CO₂ from electricity consumption, transportation, and lighting. CO₂ emissions due to the cement and ceramics industry in 2007 were estimated at 12.16 million tons. Indo-cement is currently implementing a clean development mechanism (CDM) project to reduce CO₂ emissions afterward⁵⁰.

2.3 Analysis of CO₂ sources and depleted oil & gas fields

This research is the initial stage of the CCUS-EOR study, which focuses on identifying and calculating the oil and gas field capacities in the North West Basin that potentially serve as storage for EOR. The sources of CO₂ studied are coal-fired power plants, cement and oil refineries industries, and oil and gas fields that produce CO₂ by-products as impurities. In the next stage, clustering was carried out to map the closest oil and gas fields to CO₂ sources, namely power plants, Balongan refinery and cement industry. Clustering is carried out based on distances (50 km and 100 km) with the CO₂ sources as the central points. Simulation for clustering utilized geographical information system software. The clustering method is carried out in a narrow geographical location to make infrastructure planning cheaper and easier. The other consideration is that cluster development can be linked to high concentrations of CO₂-producing industries and the closest capacity to store CO₂ in the depleted oil fields¹¹. The original oil in place (OOIP) of fields in the Northwest Java Basin is obtained from the Ministry of Energy and Mineral Resources (MEMR) of the Republic of Indonesia and The Special Task Force for Upstream Oil and Gas Business Activities (SKK Migas) through Research Centre for Oil and Gas Technology “LEMIGAS”.

This study was carried out to calculate the ability of oil fields that may not only be used for storage CO₂ (CCS), but also suitable for CCUS-EOR implementation. The calculations of the oil field capabilities make use of oil-in-place data in each cluster at a buffer of 50 km and 100 km from the CO₂ sources. Within 50 km buffer, there are about 147 oil fields, and within 100 km buffer, there are 339 oil fields that have the potential for CCUS-CO₂ injection. The method for CO₂-EOR for predicting CO₂ requirement and incremental oil recovery is presented in Table 2. There are two cases of CO₂-EOR injection, namely miscible and immiscible. In the case of miscible injection, it can increase the recovery factor of oil by up to 12% with a CO₂ requirement of around 0.33 tons per incremental STB. Meanwhile, in the case of immiscible injection, it can increase the recovery factor of oil by 5% with CO₂ required of around 0.5 tons per incremental stock tank barrel (STB).

Table 1. Oil fields in the North West Java basin that has the potential to be a source of CO₂⁵¹.

<table>
<thead>
<tr>
<th>No.</th>
<th>Fields</th>
<th>CO₂ Average-(\text{CO}_2) Prod.</th>
<th>Potency of CO₂</th>
<th>Prod. Cum. of CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% (\text{Mol})</td>
<td>MMSCF/D</td>
<td>BSCF</td>
</tr>
<tr>
<td>1</td>
<td>Subang</td>
<td>22.43</td>
<td>32.7</td>
<td>132.4</td>
</tr>
<tr>
<td>2</td>
<td>Melandong</td>
<td>61.66</td>
<td>5.42</td>
<td>15.03</td>
</tr>
<tr>
<td>3</td>
<td>Karangenggul</td>
<td>94.13</td>
<td>5.35</td>
<td>29.74</td>
</tr>
<tr>
<td>4</td>
<td>Jadibarang</td>
<td>27.39</td>
<td>2.91</td>
<td>10.43</td>
</tr>
<tr>
<td>5</td>
<td>Karang Baru</td>
<td>39.50</td>
<td>2.2</td>
<td>4.66</td>
</tr>
<tr>
<td>6</td>
<td>Randegan</td>
<td>69.54</td>
<td>1.96</td>
<td>7.57</td>
</tr>
<tr>
<td>7</td>
<td>Cilamaya Utara</td>
<td>36.95</td>
<td>1.78</td>
<td>11.11</td>
</tr>
<tr>
<td>8</td>
<td>Cemara</td>
<td>18.84</td>
<td>1.63</td>
<td>17.79</td>
</tr>
<tr>
<td>9</td>
<td>Tambun</td>
<td>7.07</td>
<td>1.4</td>
<td>0.03</td>
</tr>
<tr>
<td>10</td>
<td>Pegaden</td>
<td>13.56</td>
<td>0.45</td>
<td>5.9</td>
</tr>
<tr>
<td>11</td>
<td>Gantar</td>
<td>44.15</td>
<td>0.43</td>
<td>21.28</td>
</tr>
<tr>
<td>12</td>
<td>Pondok Tengah</td>
<td>26.98</td>
<td>0.39</td>
<td>0.45</td>
</tr>
<tr>
<td>13</td>
<td>L-Parigi</td>
<td>0.18</td>
<td>0.1</td>
<td>0.17</td>
</tr>
<tr>
<td>14</td>
<td>Bojongroang</td>
<td>4.22</td>
<td>0.08</td>
<td>0.28</td>
</tr>
<tr>
<td>15</td>
<td>X-Ray</td>
<td>3.02</td>
<td>0.07</td>
<td>0.11</td>
</tr>
<tr>
<td>16</td>
<td>Cilamaya Timur</td>
<td>12.58</td>
<td>0.05</td>
<td>0.57</td>
</tr>
<tr>
<td>17</td>
<td>Sindang</td>
<td>4.56</td>
<td>0.04</td>
<td>1.48</td>
</tr>
<tr>
<td>18</td>
<td>Sindang Tunan</td>
<td>4.56</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>19</td>
<td>Karangbaru Barat</td>
<td>31.28</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>20</td>
<td>Karang Tungal</td>
<td>27.72</td>
<td>2.59</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Jatikeling</td>
<td>13.64</td>
<td>0.45</td>
<td>0.13</td>
</tr>
<tr>
<td>22</td>
<td>Pasir Catang</td>
<td>30.41</td>
<td>2.35</td>
<td>0.08</td>
</tr>
<tr>
<td>23</td>
<td>Haurgeulis</td>
<td>73.00</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Tunggulmaun</td>
<td>6.60</td>
<td>7.22</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The Assumption of CO₂ consumption and recovery factor of oil.

<table>
<thead>
<tr>
<th>CO₂-EOR Recovery Factor, %(\text{OOIP})</th>
<th>CO₂ Requirement Ton/STB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscible</td>
<td>Immiscible</td>
</tr>
<tr>
<td>12%</td>
<td>6%</td>
</tr>
<tr>
<td>0.33</td>
<td>0.5</td>
</tr>
</tbody>
</table>
This clustering system is carried out to facilitate subsequent studies in the analysis of transporting CO₂ using pipeline from sources to the depleted oil and gas fields to achieve a zero CO₂ emission scenario. However, this study is only limited to clustering from CO₂ sources to oil and gas fields as preliminary comprehensive information.

3. Results and Discussion

CO₂ sources in the North West Java basin have been linked to develop a clustering model for the application of CCUS-EOR in oil fields. The purpose of this clustering is to achieve cost efficiency by using CO₂ waste from the Indramayu power plant, Cirebon power plant, Balongan oil refinery, and cement industry and injecting it into nearby oil fields. To optimize the CO₂ separation process, it can be carried out in the flue gas, where CO₂ is captured using an adsorbent, and subsequently distributed directly to the oil and gas fields for CCUS. The clustering results of these four CO₂ sources for CCUS are presented in Fig. 2.

![Fig. 2: Clustering sources CO₂ against oil and gas fields. a) Indramayu power plant as CO₂ sources, b) Cirebon power plant as CO₂ sources, c) Balongan Refinery as CO₂ sources, and d) Cement industry as CO₂ sources.](image-url)

Indramayu power plant is situated in the middle of the Northwest Java basin so that the clustering system at the source of CO₂ emissions is ideal and relatively easy. This is because the power plant is surrounded by depleted oil and gas fields (Fig. 2a). The results of the buffer analysis with 50 km radius found 74 oil and gas fields, while in the 100 km buffer, 122 oil and gas fields were obtained. Clustering analysis for Cirebon power plant as CO₂ sources with a buffer of 50 km extension, discovers 9 oil and gas fields. Increasing the cluster buffer zone up to 100

- 1813 -
km discovers 44 oil and gas fields. The Cirebon power plant is located on the edge of the eastern Northwest Java basin (Fig. 2b). Balongan oil refinery is in the south of Indramayu City and is on the shoreline of the Java Sea facing to the east. Surrounding this refinery are several oil and gas fields, such as the Jatibarang, Sindang, and Waled. The results of the 50 km buffer analysis identified 41 oil and gas fields, while the 100 km buffer found 98 oil and gas fields (Fig. 2c). Cement industry is located on the edge of the southern Northwest Java Basin. Clustering analysis from this industry with a buffer of 50 km resulted in a total of 23 oil and gas fields, while clustering within 100 km buffer reveals 75 oil and gas fields (Fig. 2d). Detailed results on the calculation of oil improvement by injecting CO2 EOR and CO2 requirement for each cluster are depicted in Table 3. Calculated CO2 requirement and improvement in oil recovery follow two scenarios, miscible and immiscible cases at 50 km and 100 km radius buffer.

Table 3. The Incremental oil recovery and CO2 requirement. The figures are estimated CO2-EOR oil incremental gains in thousand stock tank barrel (MSTB) as the results of injected CO2 following ton/STB ratios under immiscible and miscible schemes.

<table>
<thead>
<tr>
<th>CO2Sources</th>
<th>CCUS Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 km Radius Buffer</td>
</tr>
<tr>
<td></td>
<td>Immiscible Case</td>
</tr>
<tr>
<td>Indramayu Power Plant</td>
<td>74</td>
</tr>
<tr>
<td>Balongan Refinery</td>
<td>41</td>
</tr>
<tr>
<td>Cirebon Power Plant</td>
<td>9</td>
</tr>
<tr>
<td>Cement Industry</td>
<td>23</td>
</tr>
</tbody>
</table>

Note: OOIP, EOR in thousand STB; while CO2 in thousand tons

It has been shown in Table 3 that the Indramayu power plant cluster has the potential to increase oil production by approximately 549,144 million standard barrels and would require around 181.217 million tons of CO2 at a 50 km buffer. At a 100 km buffer, it could increase oil production by approximately 997,942 million standard barrels, but it would require CO2 injection of around 329.321 million tons.

The Cirebon power plant cluster could potentially increase oil production by approximately 117.872 million standard barrels and would require around 274,999 million standard barrels with CO2 injection of around 90.750 million tons.

On the other hand, the Balongan refinery cluster has a prospective increase in oil production of around 305.772 million standard barrels and would require 100.888 million tons of CO2 at a 50 km buffer. At a 100 km buffer, it could increase oil production by approximately 679,975 million standard barrels, but it would need CO2 injection of around 224.392 million tons.

Meanwhile, the cement industry cluster in the southern part of this region is expected to increase oil production by 177,280 million standard barrels and would require around 58,502 million tons of CO2 at a 50 km buffer. At a 100 km buffer, it could increase oil production by approximately 577,249 million standard barrels, but it would require more CO2 injection of around 190.492 million tons. These efforts are expected to be implemented as part of the program to reach the goal of producing 1 million barrels of oil per day by 2030 and achieving net zero emissions by 2060.

Hence, the CCUS-EOR in general offers efficient storage potential and as a means for increasing oil production. This condition is also considered more profitable in terms of financing than having CCS only. Presence of the CCUS-EOR may, in the future allow for CO2 buying and selling transactions that have been captured to be utilized in EOR53). This is evident as 38 large-scale CCS and CCUS projects in 2016 are in the process of being implemented44). CO2 storage in the depleted field is generally considered as a cost-efficient measure and can serve for EOR activities. However, the amount of oil and gas field capacity is relatively limited, which suggests other options are needed to store CO2. Therefore, if the depleted field in the Northwest Java basin are no longer able to accommodate CO2, it can be stored in saline aquifers55) or in coal seams56). Research R&D Center for Oil and Gas Technology "LEMIGAS" - The World Bank shows that the potential for saline aquifers in the Northwest Java basin is around 4,937 million tons CO257). This potential makes it serve as considerable buffer to the need for CO2 storage in the North West Java basin. This role will even be more critical with the development of the Kertajati industrial area, the Java 1
CCUS (Carbon Capture Utilization and Storage) is a proven technology that can greatly reduce CO2 emissions. It involves capturing CO2 emissions from large sources such as power plants and industrial facilities, and then transporting and storing the CO2 underground. CCUS is a key component of a portfolio of technologies that can help meet the goal of reducing global greenhouse gas emissions. However, the success of CCUS projects depends on many factors, including the availability of CO2 sources, the costs and availability of storage capacity, and the regulatory environment. This paper presents the results of an assessment of the CO2 storage potential in the Northwest Java Basin, Indonesia. The study identified several potential CO2 sources in the area, and estimated the CO2 storage capacity of depleted oil fields in the region. The results indicate that the Northwest Java Basin has significant potential for CCUS, and that this technology could play a key role in achieving a low-carbon future. The authors recommend further research to refine the estimates, and to explore the potential for co-development of CCUS projects with other carbon capture and storage technologies.

