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Abstract: This exploratory study presents stabilization approaches of drone-based videos with 

implications in vibration-structural health monitoring applications. Unlike other standalone vision-
based systems such as cameras placed on a tripod, drone drifting may occur due to airborne missions 
especially when operated indoors or in lower altitudes. It affects the captured frames and even the 
slightest movement of the drone camera will reduce the data accuracy. Post-processing methods using 
Computer Vision (CV) and signal-processing algorithms are used in this study to explore their 
effectiveness and accuracy in measuring the dynamic vibration of a structure. The object study is an 
aluminum bar subjected to two sinusoidal vibrations then recorded using a camera embedded on a 
quadcopter. After video acquisition, the post-processing is started by image enhancement and scaling 
procedures, followed by Scale Invariant Transform (SIFT) feature detection, extraction, and matching. 
The scaling factor is used to convert the image coordinate to an object coordinate system before 
computing the displacement of the object. Data stabilization techniques are implemented in this study, 
first is the background subtraction method to eliminate signal drifting and second is cleaning the data 
from any trends. The accuracy of the proposed framework is tested by comparing the structural 
dynamic responses from drone measurement to a reference sensor. The Autoregressive (AR) model 
generated the Power Spectral Density of the signal is also compared to the measurement from a 
reference camera. The results show the high accuracy of the proposed method which is up to 97.52% 
on the dynamic response with less effect on the signal PSD. Overall, the exploratory study obtains 
satisfactory results and provides a new alternative to an intelligent system in the structural health 
monitoring field. 

 
Keywords: drone-based video, SIFT, stabilization, vibration, structural health monitoring, 

accuracy.  
 

1.  Introduction
The field implementation of vision-based sensor 

systems for Structural Health Monitoring (SHM) purposes 
has grown in interest due to their non-contact and remote 
operations, multiple location measurements, high 
accuracy, and fast deployment. Therefore, besides 
focusing on the deployment of vision-based systems in 
monitoring large-scale infrastructure systems1-18), 
Previous research has also been focusing on their 
challenges for example estimating their accuracy19,20), 
recovering, improving, and managing their data9,11), or 
testing their capability under challenging environment10). 
Structural safety assessment also becomes the major 
contribution of vision-based SHM systems since their data 
can be further processed to generate valuable information 

related to structural conditions. Their quick and simple 
operations provide an alternative option for rapid response 
and hazard mitigation in which their potentials have been 
previously studied mostly for seismic monitoring of civil 
infrastructures.  

The market growth of digital cameras supports the aims 
of vision-based systems for SHM; thus, various types of 
cameras are used with preferences on a more cost-
effective solution. Recent advances in robotics that 
integrate cameras on their platform add more advantages 
in remote and safe operation also providing multiple tasks 
to be executed by the robotic system. Unmanned Aerial 
Vehicle (UAVs) or commercially known as drone offers 
advantages in remote and airborne operations since SHM 
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can be conducted free from ground obstacles such as 
traffic for bridge dynamic SHM or ground movement for 
civil infrastructure seismic SHM. Several studies have 
opened the possibility of using drones for bridge 
monitoring21), pipeline monitoring22), or masonry 
construction monitoring23). Challenges were also 
addressed that mostly focused on drone limitations and 
automation. Limitation in battery life, for example, 
causing shorter mission time24). Field deployment for 
leaked inspection is also restricted since it requires 
additional sensors that add to drone payload capacities25). 
The GPS signal is also an issue when the monitoring is 
conducted in an indoor environment; thus, it suggests an 
autonomous drone to avoid a sudden loss of signal during 
operation26).  

In vibration-based SHM, the camera embedded in the 
drone should record steady videos to generate an accurate 
structural response. Therefore, previous works to stabilize 
the cameras have been conducted, generally with the 
support of passive or active components. Passive 
components such as isolators have been developed to 
dissipate energy27,28) and an advanced isolation system 
using viscoelastic materials has been proposed to stabilize 
drone camera29). Active components are using additional 
sensors to stabilize the drone camera30) or a piezoelectric 
actuator31,32) to dissipate drone vibration from the camera. 
Similar goals of drone stabilization for vibration-based 
SHM are also shared with this work with different 
approaches using image processing and mathematical 
model. This effort belongs to the passive approach that 
relies on the post-processing of drone videos. Without 
using any mechanical equipment, no additional payload is 
required; therefore, the proposed technique compensates 
for the issues of drone battery life and mission time.  

The general concept of the work is drone for civil 
infrastructure seismic safety assessment as shown in 
Figure 1. The drone system is developed purposely for 
seismic monitoring of large-scale civil infrastructure with 
high-risk categories such as bridges or buildings in risk 
category IV as depicted by ASCE 7-16. The drone system 
records the global response of the structures then the 
changes in structural dynamic characteristics are analyzed 
and reported. Structural identification investigates the 
seismic performance of the structures resulting in a 
structural safety assessment that confirms the final state of 
the structure after the major seismic events. 

 

 
Fig. 1: Drone for seismic structural health monitoring-

general concept. 
 
The drone concept for seismic SHM as given in Figure 

1 is elaborated into several tasks in which the preliminary 

task is covered in this study which is to explore the 
capability of a drone for vibration-based SHM 
highlighting the drone's nature movement and drifting. 
The objective of this study is to explore the data 
stabilization method and algorithms to eliminate drone 
movement and to implement the results into vibration-
based SHM. The methods briefly explain the drone axes 
and rotation that naturally result in drone movement and 
drift, the framework for drone vibration SHM considering 
data correction, a brief review of video and image 
processing of drone data using several computer vision 
algorithms, and structural identification method to 
estimate the dynamic characteristic of the structure. The 
framework is tested first on an aluminum bar placed on a 
simulator that generates two sinusoidal signals before 
implementation on a larger scale structure. A quadcopter 
is operated and recorded the response of the bar and the 
data are further analyzed using the methods described 
previously. The accuracy is estimated by comparing the 
result of the first test with a reference camera and the 
conclusion is summarized at the end of this paper. 

 
2. Methods 
2.1 Drone axes and rotation 

Prior studies have explored drone parameters  33-38 such 
as their integrity, identification, and performance. Similar 
to a commercial airplane, the drone also maneuvers in 
three directions as shown in Figure 2. These three axes, 
namely the lateral or transverse axis, longitudinal axis, 
and vertical axis, are each perpendicular to each other and 
intersect at the drone's center of gravity. During the flight, 
a drone is capable of using these axes and in turn controls 
its direction by powering the rotors and changing the 
drone speed.  Motion around the lateral axis, longitudinal 
axis, and vertical axis are referred to as pitch, roll, and yaw, 
respectively. Pitch motion originates at the middle of the 
center of gravity and it is parallel to the straight line drawn 
from wingtip to wingtip. A positive pitch motion lifts the 
drone's nose and drops the tail. The roll motion also begins 
at the middle of the center of gravity and it is directed 
forward, parallel to the fuselage reference line. A positive 
roll motion raises the faction and decreases the proper 
wing. The yaw axis starts at the middle of the center of 
gravity and it is pointed towards the underside of the 
aircraft. It is perpendicular to drone wings. A positive yaw 
motion turns the nose of the drone to the right.  

When a drone is on a mission, internal and external 
factors may contribute to its drift and movement. Failed 
calibration, issues on the motor, damaged propellers, or 
unequal weight distribution as the drone carries other 
sensors are several internal factors that cause the drifting. 
The environmental condition also affects drone 
stabilization, for example, extreme wind is an issue for 
small drone and electromagnetic interference disturb the 
navigation system that disrupts the communication system 
between drone and controller, causing the drone to operate 
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intensely that may cause it to crash into any obstacles. For 
small drone movement and drifting, the resulting time 
signal or series such as structural displacement may show 
a specific trend that requires processing to remove and 
stabilize the signal. These are background of this study 
that such challenges can be minimized by providing an 
effective solution to stabilize drone data without adding 
more instrumentations on the drone platform that only 
adds drone payloads. 

 

 
Fig. 2: Drones axes and rotation matrix. 

 
2.2 Framework 

The framework of the drone for vibration SHM is 
shown in Figure 1 which provides several steps from 
video to data processing with the final goal of structural 
identification. Each step is elaborated and this framework 
is tested and validated using small vibration tests using a 
simulator that is further described in the next section. 

 
2.2.1 Video and image processing 

The drone mission in this study records a video for each 
test with a low sample rate of 30 Hz (which means the 
drone records 30 frames per second). The selection of the 
frame rates is based on the previous works3,9-11) that 
successfully capture the natural frequency of the tested 
large-scale structures using only a 30 Hz sampling rate. 
The video is then transformed into images and these 
images are further processed using image processing 
algorithms to obtain clear images without motion blur and 
low brightness. Most computer vision algorithms work 
only when the object is illuminated adequately since their 
basic is the pixel intensity map that relies dependently on 
light distribution. The classical histogram equalization 
(HE) that is used in other disciplines39-41) also is adopted 
in this study to process low-contrast images recorded by 
drone as shown in equation (1) in which 𝐼𝐼  and 𝑂𝑂are the 
input and output images. The transform function ℱ  in 
equation is based on the cumulative density function 
(CDF) that maps the input image 𝐼𝐼(𝑥𝑥,𝑦𝑦)  into the entire 
dynamic range �𝐼𝐼0,𝐼𝐼𝑁𝑁�. To accelerate the image processing 
process, an image compression algorithm is also adopted 
in this study in which the compression ratio of two is used. 
A brief overview of the image compression algorithm is 
expressed in equation (2) with an explanation as follows. 
Considering a pixel 𝑖𝑖 (𝑥𝑥,𝑦𝑦) presenting a horizontal and 
vertical direction, respectively, is located on an 
image 𝐼𝐼 with a size of (𝑋𝑋 × 𝑌𝑌). As resampling factors of 
𝑟𝑟𝑥𝑥 , 𝑟𝑟𝑦𝑦  �𝑟𝑟𝑥𝑥 =  𝑟𝑟𝑦𝑦�  are applied on image 𝐼𝐼,  image I is 
repositioned by rotating it by angle 𝜃𝜃. Consequently, the 

new coordinate of pixel 𝑖𝑖 (𝑥𝑥, 𝑦𝑦)  is now 𝑗𝑗(𝑥𝑥′,𝑦𝑦′)   that is 
computed by adding a translation vector 𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦  in each 
direction of the image. 

 
𝑂𝑂(𝑥𝑥, 𝑦𝑦) = {ℱ(𝐼𝐼(𝑥𝑥, 𝑦𝑦))|∀𝐼𝐼(𝑥𝑥, 𝑦𝑦) ∈ 𝐼𝐼} (1) 

�𝑥𝑥
′

𝑦𝑦′� = �
𝑥𝑥
𝑦𝑦� �

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 −𝑐𝑐𝑖𝑖𝑠𝑠𝜃𝜃
𝑐𝑐𝑖𝑖𝑠𝑠𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 � �

𝑟𝑟𝑥𝑥 0
0 𝑟𝑟𝑦𝑦

� + �
𝑡𝑡𝑥𝑥
𝑡𝑡𝑦𝑦� 

(2) 

 
2.2.2 Feature detection, extraction, and matching 

Several object recognition algorithms have been 
proposed to provide fast and accurate feature detection, 
extraction, and matching. This study adopts the Scale 
Invariant Transform (SIFT) algorithm that has been 
extensively used for image classification tasks. The SIFT 
procedures include the Difference of Gaussians (DoG) 
Space Generation, Key points Detection, and Feature 
Description. The DoG process is generally divided into 
smoothing the initial image using Gaussian kernels and 
down sampling the processed image using Gaussian Scale 
Space. In the detection of the Key point, the point that is 
defined as a key point needs to be compared with its 
neighborhood (usually eight neighborhoods) at their 
similar layers and nine neighbors for the upper and lower 
layers. Then, SIFT feature is described as the gradient 
magnitude and gradient direction around the key points. 
More details about SIFT features can be found in42). 
Illustration of how SIFT feature work between two images 
is shown in Figure 3. After the detection and extraction of 
SIFT features in both images, they are then matched and 
the unmatched features should be eliminated using several 
threshold values. Figure 3 shows an excellent matching 
feature between the images, there is no miss-match found 
between image 1 and image 2.  
 

 
Fig. 3: Illustration of SIFT feature detection, extraction, and 

matching between images. 
 

2.2.3 Data correction 
After SIFT feature detection, extraction, and matching, 

the location of each feature is tracked among the 
consecutive images resulting in pixel coordinates in 
horizontal and vertical directions since the proposed 
framework is specifically tested for two-dimensional 
directions. A scale factor is used to transform into 
displacement time-series data in the unit of mm. When the 
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drone experiences movement or drift, its motion can be 
modeled as shown in Figure 4 which demonstrates vertical 
and horizontal motions versus the movement of the drone 
camera. The model is based on the SIFT feature traced 
from the artificial targets attached to the drone body and 
camera.  It will impact the measurement data that will be 
explained further in this next section.  

 

 
Fig. 4: Drone motion as measured at left (L), middle (M), 

right (R), and camera (C) artificial targets in two-directional 
axes. 

 
To eliminate drone movement and drift and to stabilize 

the measurement data, two simple techniques are 
implemented in this work. The first technique is to extract 
the steady feature such as a background feature, i.e. SIFT 
feature detected from the object background. When the 
drone is assumed to experience drift, the object data 
recorded by the drone are the combination between the 
real vibration plus the drone movement. However, as for 
steady background feature data recorded by drone, the 
data only show the drone movement itself as the feature 
does not move during the test. Therefore, it is easier to 
obtain the real object data, 𝑅𝑅𝑂𝑂′,  by extracting the raw 
object data, 𝑅𝑅𝑂𝑂,  and the background feature data, 𝐵𝐵𝐵𝐵 . 
After background subtraction, the data are examined if a 
specific trend exists such as a linear or quadratic trend. 
Data are cleaned by removing these trends as the second 
technique implemented in this study. Finally, the accuracy 
of the proposed method is evaluated by measuring the 
Root Mean Square Error (RMSE) between the drone's 
final data and a reference sensor. 

 
2.2.4 Structural identification 

After data correction and accuracy measurement of 
drone final data to a reference sensor, the final step is to 
characterize the dynamic properties of the tested object 
using a structural identification method. One of the most 
common methods besides decomposition techniques 43) or 
neural networks to extract the fundamental frequency of a 
signal using spectrum estimation is a Fast Fourier 
Transform (FFT) 44-47. However, extracting fundamental 
frequency using the FFT method required long-duration 
data records to generate a correct frequency resolution. 
Therefore, this work adopts the Auto-Regressive (AR) 
model for spectral estimation that offers an alternative to 
the FFT method48). It is a parametric model that provides 
a greater spectral resolution as compared to its other 
parametric model counterparts and also yields reasonable 
spectral estimates for short data records49). The AR 

coefficients in this study are computed using the 
Covariance method48). The AR covariance process of 
order 𝑝𝑝 is expressed in equation (3) in which a white noise 
with variance 𝑒𝑒  is filtered and resulted in a stationary 
random process 𝑦𝑦(𝑠𝑠). The power spectral density of  𝑦𝑦(𝑠𝑠) 
is defined as 𝑃𝑃𝑦𝑦(𝑒𝑒𝑖𝑖𝑖𝑖)  that strongly depends on the 
selection of order 𝑝𝑝. 

 
𝑃𝑃𝑦𝑦�𝑒𝑒𝑖𝑖𝑖𝑖� =

𝑒𝑒

�1 +  ∑ 𝑎𝑎(𝑗𝑗)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝
𝑖𝑖=1 �

2 (3) 

 
3. Experimental Validation 
3.1 Testing setup 

The proposed framework was experimentally evaluated 
through two-sine wave tests. A small simulator was used 
to generate sinusoidal loading for a rigid test model at the 
Earthquake Engineering Laboratory at the University of 
Nevada, Reno. The model was an aluminum block with 
the dimensions 100 mm × 10 mm × 900 mm as shown in 
Figure 4b. The monitoring is conducted by a drone-
quadcopter-type shown in Figure 4a recording the 
movement of the three artificial targets, numbered T1, T2, 
and T3, placed on the specimen shown in Figure 4b. The 
background target (BG) shown in Figure 4b is used to 
eliminate the drone drifting through a background 
subtraction technique explained in the previous section. 
Those targets were printed on adhesive stickers and 
permanently attached to the specimen. The radius of the 
white circular targets was 6.5 mm.  

Before the test, the gimbal and cameras were first 
calibrated and the camera setting was adjusted to record 
the best video quality. For both tests, monitoring was set 
at 30 frame-per-second (fps), i.e. 30 Hz sampling rate, and 
utilized the full resolution ROI of the drone cameras, i.e. 
3840 × 2160 pixels. A partial specification of the drone is 
given in Table 1. After calibration, the drone was placed 
on the helipad shown in Figure 4a preparing to take off. 
Using the controller, the drone was navigated to position 
in front of the specimen with the sample view of the drone 
recording videos during the tests shown in Figure 4c. Then, 
the test was started by running the simulator driven by the 
controller shown in Figure 4b that applied a prescribed 
sinusoidal pattern to the specimen. After the first test, the 
drone was navigated back to the helipad and prepared for 
the second test. This step concluded the drone data 
collection and was continued by the data processing 
following the framework in Figure 2. After video-to-
image conversion, the images were compressed with the 
compression ratio of two giving the resolution of the 
processed image as 1920 × 1080 pixels to accelerate the 
process. For validation purposes, a smartphone camera 
placed on a fixed tripod was used to monitor the first, and 
the results between the two systems were compared. The 
displacement measurements from both tests are reported 
and the frequency content is computed as discussed in 
detail in the next section. 
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Table 1. Drone specifications 

Aperture  f/2.8 - f/11 
Battery Life 30 Minutes, 5870 mAh 
Flight Range 7 km 

Gimbal stabilization 3 axes 
ISO 100 - 6400 (Video) 

100- 12800 (Photo) 
Shutter Speed 8 - 1/2000 s (Mechanical) | 8 - 

1/8000 s (Electric) 
Satellite Positioning 

Systems  
GPS 

Video Transmission 720p 
Weight 1288g 

Size 350mm 
 

 
Fig. 5: Monitoring setup a) quadcopter-type drone used in 

monitoring, b) specimen and monitored targets as shown in 
drone video with setup on a simulator, and c) drone elevation 

view. 
 

3.2 Displacement response 
This section presents the comparison and error analysis 

of drone displacement measurements with validation from 
Test 1 which is compared to a reference sensor, i.e. a 
smartphone. The direction of the applied load to the drone 
camera orientation was in the horizontal, i.e. in-plane 
direction, or is defined in this work as 𝑥𝑥 −direction. The 
displacement of the specimen is calculated by subtracting 
the displacement of the attached targets, i.e. T1, T2, and 
T3 to BG, all measured from drone videos.  

The accuracy of displacement measurement results and 
errors is estimated for Test 1 from three artificial targets, 
i.e. T1, T2, and T3. Figures 5 shows the displacement 
comparison measured from Test 1. The first observation is 
that a linear trend is present in displacement data. To 
further analyze these observations, the mean displacement 
values 𝜇𝜇𝑇𝑇1,  𝜇𝜇𝑇𝑇2,and  𝜇𝜇𝑇𝑇3,are removed from the test data. 
The corrected data are then plotted together with the 
displacement measured from the reference sensor.  

The comparison of the maximum error, emax, and 
average error, eavg, for each of the three targets are 
summarized and presented in Table 2 for Test 1. Since this 
study emphasizes quantifying the accuracy of drone 
measurement after the stabilization or correction process, 
the errors presented here are both in engineering units, i.e. 
mm, and normalized percentage. The table shows the 
maximum error between the corrected drone displacement 
is within the range of 6.4-6.5 mm that is associated with 

the percentage of 2.4-2.5%. The peak is estimated from T2 
data as 6.54 mm or 2.48%. This result implies the drone 
measurement accuracy of 97.52%. with respect to the 
measurement from reference sensor. Another accuracy 
measurement is obtained from the RMSE value, that 
relatively shows small difference among the three targets 
with the largest value computed as 3.35 mm.  

 

 
Fig. 6: Displacement histories of Test 1 recorded from 

original, corrected, and reference data plotted together with the 
linear trend and mean. 

 
Table 2. Displacement measurement error from corrected data 

to reference sensor. 

Error Test #1 
T1 T2 T3 

emax mm 6.52 6.54 6.47 
% 2.45 2.48 2.43 

eavg mm 3.07 3.04 3.06 
% 1.14 1.13 1.15 

RMSE  mm 3.31 3.35 3.24 
 
Another variation of drone data is presented in Figure 7 

from Test 2. If linear trend is observed from Test 1 data, a 
quadratic trend is shown based on the plot from Test 2. 
The original data measured from the three targets as 
shown in Figure 7, indicate a trend in a certain polynomial 
degree 𝑠𝑠. Using a quadratic 𝑠𝑠 = 2, the trend is removed 
and the corrected data are plotted together in Figure 7.  

 

 
Fig. 7: Displacement histories recorded from Test 2. 

 
3.3 Frequency response 

Since no reference sensor is deployed for the second 
test, further verification is conducted in the frequency 
domain assuming that, since the applied load and response 
both show sinusoidal waveforms, then the computed 
frequency contents between both tests should be closer or 
nearly identical. In this section, the expected frequency 
content of the specimen is presented using the AR-
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covariance algorithm for three targets attached on the 
specimen as previously shown in Figure 5. The frequency 
response of the specimen presented here is in a healthy 
state (no damage) due to the applied sinusoidal waveforms. 
These waveforms are important in studying seismic 
response since most structures that produce resonance will 
generate a sinusoidal motion. Also, these input waves 
have low amplitudes so they cause no harm to the 
specimen; thus, it is ideal for identification in a damaged 
state. The input waves applied to the specimen were a 30-
sec duration. For this analysis, the AR-covariance 
algorithm was used to extract the specimen's natural 
frequency. A spectral estimation using AR method has 
advantages over Fourier transform as instead of estimating 
the power over a fixed-range, the method can work over a 
continuous range of frequencies. Also, less variance is 
observed on the power spectral estimation when AR 
method is selected. 

For the verification purpose, the acceleration data from 
Test 1 was processed and resulted in a PSD spectrum as 
shown in Figure 8, similar to the verification conducted 
for the displacement data. As for the identification from 
the second test, the accelerations from similar targets were 
analyzed using a similar AR-covariance algorithm. 
Results of the natural frequency of the specimen are 
represented below and compared with each other.  

Figure 8 shows the longitudinal response of the 
specimen recorded at three targets using the acceleration 
record from Test 1. Similar to displacement response, the 
spectrum is plotted for the original, corrected, and 
reference data. The total length of the record is 29 sec with 
872 data points and a sampling rate of 30 Hz. It shows the 
results of the spectral estimation with the obtained 
eigenfrequencies indicated at the peak amplitude.  

 

 
Fig. 8: Natural frequency measured from Test 1. 

 
The AR spectra of three different targets analyzed from 

Test 1 is shown in Figure 8. Though in displacement-time 
domain a slightly small difference is observed among 
targets, in the frequency domain, similar peaks at 5.27 Hz, 
5.20 Hz, and 5.23 Hz for their original, corrected, and 
reference data are computed. Meanwhile, Test 2 produces 
a slightly higher amplitude of PSD as shown in Figure 9. 
The peaks are shown at 5.27 Hz, 5.51 Hz, and 5.37 Hz for 
targets 1,2, and 3, respectively. These results differ by 
approximately 4.25% for the maximum frequency and by 
1.35% when measured by the minimum values from Test 
1 and Test 2. 

 

 
Fig. 9: Natural frequency measured from Test 2. 

 
4. Conclusion 

This paper presents an exploratory study of drone data 
stabilization with the implementation of vibration 
structural health monitoring. The proposed framework is 
tested on an aluminum bar vibrated using sinusoidal 
waveforms.  SIFT feature detection, extraction, and 
matching are first applied to identify three artificial targets 
attached to the specimen. Two drone data stabilization are 
proposed, first a stationary background extraction is 
suggested to eliminate drone drift. Second, a simple 
mathematical model is suggested to remove trends present 
in the original data. Verification is conducted to analyze 
the error between the corrected data to a reference sensor. 
The following are concluding remarks from this study:  
• A comparable result is obtained from drone-

corrected data to reference sensors that provide 
confidence to further use the proposed framework for 
drone data stabilization specifically in the structural health 
monitoring field. The maximum error in the displacement 
domain is estimated as 2.48% associated with the 
displacement accuracy of 97.52%. 
• Less variation in the frequency domain is 

observed among targets. The AR-covariance method 
results in the estimated natural frequency within the range 
of 5.2% from Test 1 and it returns very comparable values 
between the corrected and reference data. Overall, the 
proposed framework for drone data stabilization can be 
successfully used for vibration structural health 
monitoring as demonstrated from the two tests conducted 
in this study. Future work may consider the use of 
commercial lower-end, DSLR, or surveillance cameras to 
further validate the techniques for vibration-based 
structural health monitoring using drones, especially 
when drone stabilization becomes a concern in field 
deployment. 
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