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Abstract: In a microgrid with small-scale renewable sources, the unpredictable and highly 
variable nature of wind necessitates the adoption of reliable wind forecasting technologies. This 
study employs artificial neural networks (ANNs), specifically the Long Short-Term Memory 
(LSTM) and Multi-Layer Perceptron (MLP), which are classified as Deep Learning (DL) networks. 
These models integrate diverse weather data, such as wind speed, temperature, humidity, and 
atmospheric pressure, derived from actual measurements collected in Baron Techno Park, an 
isolated microgrid situated in the coastal region of Yogyakarta, Indonesia. For various scenarios, 
the root-mean-square error (RMSE) and mean absolute error (MAE) performances of the proposed 
ANN-based multivariable model are given and contrasted. Furthermore, it examines the impact of 
incorporating multiple local variables in contrast to solely relying on wind power, comparing 
against the persistence method. The findings reveal that the model incorporating a comprehensive 
set of weather data as inputs attains the lowest RMSE and MAE values. It is also can be concluded 
that additional weather data, even though they show almost no correlation to wind power in Baron 
Techno Park can improve short-term wind power prediction, with an improvement of 2.3% for 
every addition of weather parameter. 

Keywords: wind forecasting, coastal area, weather data, deep learning, ANN, microgrid, remote 
area 

1. Introduction
According to the National Electricity General Plan or

RUKN, Indonesia has established goals for its energy 
mix, including a proportion of Renewable Energy 
Technologies (RET) of 23% by 2025 and 31% by 2050, a 
reduction of greenhouse gas emissions of 29-41% by 
2030, and a goal of net-zero emissions by 2060. 
Following those, numerous research on estimating 
national potential renewable energy have been conducted, 
such as hydro potential energy1), wind potential energy2), 
solar radiation3), Geothermal4), and a web-based tool for 
estimating a rooftop solar PV system's capacity to 
produce energy5).  

Wind power is growing very rapidly all over the world 
and promising potential renewable energy to achieve 
Indonesia’s target.  The Ministry of Mineral and Energy 
Resources (MMER) of Indonesia states that wind power 
can deliver up to 154.88 GW once fully developed in line 
with its potential, consisting of an onshore potential of 
60.65 GW and offshore potential of 94.2 GW. According 
to 6), onshore locations along the south coasts of Java, 

South Sulawesi, Maluku, and NTT have high wind 
energy potential, with wind speeds of 6 to 8 m/s, power 
densities of 400 to 500 W/m2, and Annual Energy 
Production (AEP) of 4-5 GWh/year. 

In addition to site selection7,8) and appropriate wind 
turbine design9–11), wind speed forecasting has a 
substantial impact on energy development and attaining 
the best results. On the other hand, wind energy's 
intermittent nature is one of the biggest drawbacks, 
which may lead to power instability and large 
fluctuations12,13). Network operators must overcome the 
difficulties posed by fluctuating wind conditions to 
schedule spare capacity, stability, planning, and the 
dependability of the power system14). Accurate wind 
forecasting is an effective technique for preserving the 
security of the electricity grid15).  

Recent studies have created several techniques and 
models to increase the precision of wind speed 
forecastings, such as statistical models and Artificial 
Intelligence (AI) models. Statistical models are data-
driven models that produce forecasts using past wind 
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speed data. Among the many methods that have been 
researched and assessed, grey models16), Markov 
Chain17), exponential smoothing18), ARMA19), and 
ARIMA20) models appear to be the most effective. 
Models for machine learning and artificial intelligence 
(AI/ML) are also data-driven models. In contrast to 
statistical models, AI approaches are better equipped to 
handle the nonlinearity of wind speed.. Some of the 
methods investigated within machine learning models 
include Support Vector Machine (SVM)21), Decision 
Trees (DT)22), Gaussian Process Regression (GPR)23), 
and Extreme Learning Machine (ELM)24), and Artificial 
Neural Networks (ANN)25) 

ANN has strong fault tolerance, real-time operation, 
self-learning, flexibility, and implementation ease. These 
structures, based on biological neurons, effectively 
address issues that cannot be defined analytically. One 
key advantage of ANN is its ability to generalize, 
accurately predicting data from unseen fractions of a 
dataset, even with noisy information26). Numerous 
studies propose ANN-based wind speed prediction 
models, highlighting their accuracy in complex 
topography27). ANNs have proven effective in situations 
involving complicated or poorly understood 
processes28)29). 

Deep Learning (DL), based on ANN techniques, has 
gained popularity for time series forecasting30), 
especially in wind speed prediction. DL models, 
particularly deep neural networks, outperform other 
models in feature extraction, enhancing prediction 
accuracy. Various studies demonstrate the superiority of 
DL methods, including machine learning and deep 
learning, in predicting wind power and forecasting 
accuracy31,32). Novel approaches utilizing hybrid 
structures and advanced techniques like feature 
decomposition, self-attention, and optimization show 
improved results33) 34) 35). 

Although multiple approaches to wind speed 
prediction exist36), achieving generalized and high-
precision forecasts remains a challenge. Some models 
only improve results for specific forecast horizons and 
lack generalization. This paper proposes an accurate 
wind speed and wind power prediction model based on 
DL, utilizing multiple local meteorological 
measurements in Baron Technopark, Daerah Istimewa 
Yogyakarta Province. The primary objective is to 
enhance prediction accuracy while assessing the impact 
of using additional local variables compared to the 
persistence method. 

Wind power estimation can be an essential tool for 
determining wind potential in a site, particularly if the 
location is planned to be utilized for constructing wind 
plants, especially one with a small capacity. Furthermore, 
this study is able to be applied to assess the performance 
of renewable energy plants37) in order to identify 
improvements and plans for site expansion. 

The rest of this paper is organized as follows. Section 

2 describes the data and study area. Section 3 provides 
the methodology used in this paper, consisting of the 
network structure, dataset structure, and evaluation 
method. Section 4 provides results followed by a 
discussion about model performance. Section 5 
concludes with a summary of the findings. 
 
2.  Dataset and Study Area 

The study area is the Baron Technopark, which is in 
Planjan Village, Saptosari District, Gunung Kidul 
Regency, and Daerah Istimewa Yogyakarta Province. 
The Baron Technopark was founded in 2009 with a grant 
from NORAD-Norway, in the Parang Racuk Beach area, 
or west of Baron Beach. This location was built to 
support the National Energy Policy which targets the 
utilization of 23% NRE for electricity by 2025. The map 
presentation of the study area is shown in Fig. 1. Fig. 1 
(a) shows the Baron Technopark location, and (b) shows 
the exact location of the weather sensor (blue) and the 
wind turbine (yellow). The distance between them is 100 
m. 

 
Fig. 1: (a) Baron Technopark Location, and (b) Exact 

location of weather sensor (blue) and a 5 kW wind turbine 
(yellow) 

 
The electricity system in Baron Technopark consists of 

an off-grid microgrid supplied by a 36 kW capacity solar 
PV system, a 5 kW wind power generation, a hybrid 
inverter with a capacity of 25 kW, and a battery with a 
total capacity of 20 kWh. The wind turbine used in the 
Baron Techno Park Microgrid area is Fortis Wind 5 kW 
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with DC power output. The control system is housed in 
the main control room and connected to a 25 kW hybrid 
inverter.  

 However, the wind turbine stopped operating in 2019 
due to turbine malfunctions. This study serves as the 
preliminary study of future short-term wind forecasting 
for the microgrid’s operational planning, as the wind 
turbine is planned to be re-installed in the near future. 
The weather data used in the study are from the year 
2018, with h ground altitude of 20 m above sea level. 
The weather sensor is placed on a mast with a height of 
30 m above ground.  The weather data consist of wind 
speed, ambient temperature, ambient humidity, and 
atmospheric pressure. The DC power output of the wind 
turbine is also from the year 2018 with the same interval 
of 15 minutes. These data are then fed to the artificial 
neural network (ANN) learning process. Fig. 2 shows the 
scatter matrix of the data, showing the integrity and 
validity of the data. We can clearly see the positive 
correlation between wind speed and wind power. A 
negative correlation is also shown between ambient 
temperature and ambient humidity.  

 
3. Methodology  
3.1 Deep Learning (DL) Network Structure 

Deep Learning (DL) techniques are based on Artificial 
Neural Networks (ANN) techniques.  While the ANN 
networks are made up of three interconnected layers: 
input, hidden, and output layers, with only one hidden 
layer, DL networks incorporate more hidden layers, 

which determine the depth of the network. The following 
are 3 types of DL networks that are most relevant to time 
series forecasting30): 
1. Fully connected neural networks, the Multi-Layer 

Perceptron (MLP).  
The neurons in this feed-forward ANN are entirely 
linked, making it the simplest form.. Recurrent 
neural networks (RNN). 

2. Recurrent neural networks (RNN) were developed 
to handle time-dependent data. While RNNs have 
natural support for sequence data, MLPs ignore the 
temporal associations in the input data since each 
time step in an RNN is connected to the one before 
it, simulating the data's temporal dependency 37,38).  

3. Convolutional networks (CNN) 
CNNs are DL networks that were originally used 
for computer vision. Several classification tasks, 
including object identification, speech recognition, 
and pattern recognition, are regarded as state-of-
the-art. 

Lopez42) suggests LSTM's reliability in generating 
wind power forecasts using historical and NWP data. Shi 
et al43). find that recursive and direct variational model 
decomposition LSTM networks outperform traditional 
neural networks for wind power prediction. Vinothkumar 
et al44). discover that the recurrent LSTM model 
performs better than other models. 

For short-term predictions, MLP integrated into hybrid 
models provides steady and consistent wind forecasts45,46. 
Iqdour et al.47) demonstrate the successful use of MLP 
neural networks for wind speed prediction. MLP also 
accurately predicts wind speed at various heights in 

Fig. 2: The scatter matrix of wind turbine dc power output, wind speed, temperature, humidity, and atmospheric pressure in Baron 
Technopark 
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Uruguay48) and Zaragoza49). 

All of the preceding research shows that DL 
algorithms, particularly LSTM and MLP, can predict 
wind energy projections reliably and precisely. However, 
making an exact prediction remains challenging, and a 
universal model is not possible. As a result, each 
situation necessitates a local dataset of wind speed, 
weather data, and location. Each model must be specific, 
developed, and trained. 

We incorporate 3 types of DL networks; namely 
LSTM, MLP, and a hybrid of LSTM and MLP. Given the 
stochastic nature of the evaluation procedure and the 
differences in numerical precision, comparing 3 different 
types of DL networks would give a certain confidence 
level about the impact of the weather parameters to the 
forecasting result. We also run the each of training 
process 5 times and average the results. 

 

 
(a) 
 

 
(b) 

 

 
(c) 

Fig. 3: DL Network Structure used in this paper,  
(a) LSTM, (b) MLP, (c) Hybrid of LSTM and MLP 

 
Structure (a) consist of one input layer, one output 

layer, and 1 hidden layer of LSTM with 10 nodes. 
Structure (b) consist of the same input and output layer 

but with 4 hidden layers of MLP, with the following 
number of nodes: 20,20,40,and 40. Structure (c) has the 
same input and output layer but with 1 hidden layer of 
LSTM consists of 20 nodes and 3 hidden layers of 
MLP.consist of 20,40,and 40 nodes. The programming is 
done using python. 

 
3.2  Dataset Structure 

The forecast objective is to perform a D-1 24-hour 
prediction using data from the last 6 days. In this 
supervised training approach, all of the DL architectures 
require training inputs and outputs. We employed the 
most relevant meteorological parameters as wind power 
forecast input data in accordance with Nikolaidis's  
research50). The power output of a wind turbine is 
determined by factors such as wind speed, the size of the 
rotor blades, and air density. Air density, which 
represents the mass per unit volume of the Earth's 
atmosphere, is particularly important in estimating wind 
power for aggregated generation plants at a specific 
height. Similar to atmospheric pressure, air density 
decreases as altitude increases. It can also vary due to 
fluctuations in temperature or relative humidity. Unlike 
wind speed or air density, wind direction does not 
directly impact the power output of a turbine. 

The dataset structure used for training inputs and 
outputs is as follows. Let X be the dataset input and y be 
the dataset output. X is organized as a two-dimensional 
array consisting of each weather data according to the 
combination used, removing the last day of data (to be 
predicted). There are 5 dataset combinations; 
combination 1 only uses wind power as input, 
combination 2 uses wind power and wind speed, 
combination 3 uses wind power, wind speed, ambient 
humidity, and so on. The input data structure is shown in 
Fig. 4. 

The output structure y consists of the Wind Power ( ) 
after six days following the input. Fig. 5 shows the input-
output pair. The input and output are then split into 
training and testing datasets, with the ratio of samples of 
80:20. 

 
Fig. 4: Input data structure 
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Fig. 5: Input-output pair 

 
 

3.3  Evaluation Method 

This paper applies statistical metrics as a method in 
the outcome between the result prediction and the actual 
value. The methods are RMSE and MAE. The Root 
Mean Square Error (RMSE) is a method of evaluating 
metrics that uses a standard deviation from a prediction 
of errors or residuals51). Residual is the difference 
between the predicted value and the actual value. The 
formula for RMSE is shown in equation (1).  

 

 (1) 
    : actual value   : number of observations 
    : predicted value   : increment 

 
The second metric is the Mean Absolute Error (MAE). 

The MAE calculates the average magnitude of the errors 
between the predicted and the actual value without 
considering their direction. The formula for MAE is 
shown in equation (2). 

𝑀𝑀𝑀𝑀𝐸𝐸 =  
1
𝑁𝑁
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖 |
𝑛𝑛

𝑖𝑖=1

 
  (2) 

    : actual value   : number of observations 
    : predicted value   : increment 

 
4.  Result and Discussion 

Due to data integration and availability, the wind 
power data are only available for 6 months from July 
2018 to December 2018. Hence, we pre-processed the 
other weather data to fit the same DateTime range.  

The evaluation of wind power forecast using different 
dataset combinations is as follows. The training iteration 
for each combination is 35 iterations. The learning rate is 
0.001. Combination 1's input is only wind power (x1), 
Combination 2's input is wind power and wind speed (x1 
and x2), Combination 3's input is wind power, wind 

speed, and humidity (x1, x2, and x3), Combination 4's 
input is wind power, wind speed, humidity, and 
temperature (x1, x2, x3, and x4), and Combination 5's 
input is wind power, wind speed, humidity, temperature, 
and atmospheric pressure (x1, x2, x3, x4 and x5).  

The evaluation of these combinations using LSTM, 
MLP, and LSTM-MLP are shown in Table 1. Color 
gradients are used to highlight the decrease in error 
between combinations and DL type used, with darker 
color showing lower error. Gradient of greens for RMSE, 
and gradient of browns for MAE.  

The results show that both the RMSE and MAE are 
reduced further with additional weather data as inputs. 
This is also seen in each type of DL used. Combination 5 
has the lowest MAE and RMSE, indicating that it has the 
highest accuracy and stability among these combinations. 

 
Table 1. The evaluation of wind power forecast using different 

dataset combination and different DL architectures 
 Com. 1 Com. 2 Com. 3 Com. 4 Com. 5 
Data 
used as 
inputs 

x1 x1, x2 x1, x2, 
x3 

x1, x2, 
x3, x4 

x1, x2, 
x3, x4, 

x5 
LSTM 

RMSE 0.8286 0.8076 0.7842 0.7725 0.7662 

MAE 0.6517 0.6413 0.6162 0.606 0.6043 

MLP 

RMSE 0.9498 0.9100 0.8919 0.8859 0.8796 

MAE 0.786 0.7385 0.7219 0.7223 0.7031 

LSTM-MLP 

RMSE 0.656 0.6472 0.6213 0.61345 0.6043 

MAE 0.4594 0.4502 0.4427 0.4281 0.3875 
 

Moreover, eventhough these results show that the 
LSTM-MLP yield the lowest errors, the hyper-
parameters used are different so it cannot be concluded 
that this DL type is better. However, LSTM is clearly 
superior than MLP because with less number of hyper 
parameters (nodes and layers), it consistently yield better 
results than MLP. 

The wind power forecast results visualization of 
different DL type, comparing Combination 1 and 
Combination 5 are presented in Fig. 6. Combination 1, 
used in both (a), (c), and (e), shows the training 
prediction (green) fail to predict the higher values of the 
actual wind power (blue). Combination 5, used in (b), (d), 
and (f), shows closer predictions with actual value 
specifically on higher values of actual wind power data. 
Meanwhile, in the testing phase (red line), Combination 
1 in all DL type has comparable flow and form to the 
actual, but the value gap is greater than Combination 5. It 
is also apparent that LSTM-MLP successfully predicts 
lower values, as opposes to MLP and LSTM. 
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Fig. 6: Wind power forecast result of MLP, LSTM and LSTM-MLP architectures, comparing Model 1 and Model 5. (a) MLP with 

Model 1, (b) MLP with Model 5 (c) LSTM with Model 1, (d) LSTM with Model 5, (e) LSTM-MLP with Model 1, and (f) LSTM-
MLP with Model 5 
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The RMSE value as an evaluation of accuracy and error 
depends on the distribution of input values. As seen in 
Fig. 6, the value 0 has occurred in some data, giving rise 
to outlier values. Outlier values can affect the accuracy 
of the results and increase the RMSE value. Meanwhile, 
the MAE values based on Table 1 are generally smaller 
than the RMSE values because the outlier distribution has 
little effect on the accuracy and error values based on MAE51). 

The wind power prediction with LSTM method shows 
1.9% accuracy improvement in average with one 
additional weather data. MLP method yields 2.2%, and 
LSTM-MLP yields 2.9% accuracy improvement. In 
average, one additional weather data could improve wind 
power prediction at 2.3% more accurate.  

From the results of wind power and wind speed 
estimates for the five combinations, the RMSE value is 
better than Samadianfard52), even though the dataset is 
larger, namely 3,611 meteorological data. But on the 
other hand, the error value based on RMSE can also be 
increased by making adjustments to the hyper-parameters 
so that it can produce better accuracy as done by Nkeng 
Matip53), by determining the learning step or learning 
rate so that the RMSE value is below 0.1. 

 
5.  Conclusion 

In this study, artificial neural networks (ANNs) 
specifically Long Short-Term Memory (LSTM) and 
Multi-Layer Perceptron (MLP) of Deep Learning are 
used to examine the effects of various meteorological 
data on wind speed prediction. The combination with 
most of the weather data considered as inputs yields the 
lowest RMSE and MAE values, per the results. It is also 
can be concluded that additional weather data, even 
though they show almost no correlation to wind power in 
Baron Techno Park as shown in FIGURE 2, can improve 
short-term wind power prediction. The wind power 
prediction using additional weather data is showing 2.3% 
improvement, with every addition of weather parameter. 

Short-term wind prediction is essential for microgrid 
scheduling and improving decisions in microgrid power 
control. Future works may include increasing the number 
of datasets, tuning the hyper-parameter of the Deep 
Learning architecture, and normalization data. These 
actions will enhance the accuracy of wind forecasting so 
it could also be expected to be able to predict weather 
extremes such as wind storms, which may have caused 
the wind turbine malfunction in 2019.   
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