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Abstract: The bipedal walking robot is an advanced anthropomorphic robot that can mimic the 
human ability to walk. Controlling the bipedal walking robot is difficult due to its nonlinearity and 
complexity.  To solve this problem, recent studies have applied various machine learning algorithms 
based on reinforcement learning approaches, however most of them rely on deterministic-policy-
based strategy. This research proposes Soft Actor Critic (SAC), which has stochastic policy strategy 
for controlling the bipedal walking robot.  The option thought deterministic and stochastic policy 
affects the exploration of DRL algorithm. The SAC is a Deep Reinforcement Learning (DRL) based 
algorithm whose improvement obtained through the augmented entropy-based expected return 
allows the SAC algorithm to learn faster, gain exploration ability, and still ensure convergence. The 
SAC algorithm’s performance is validated with a bipedal robot to walk towards the straight-line 
trajectory. The number of the reward and the cumulative reward during the training is used as the 
algorithm's performance evaluation.  The SAC algorithm controls the bipedal walking robot well 
with a total reward of 384,752.8. 

 
Keywords: deep reinforcement learning, bipedal walking robot, soft actor-critic (SAC), deep 
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1.  Introduction  
Robotics and control systems have become the most 

attractive research area for the researchers for 
decades1,2,3,4),5,6). One of the challenging problems is 
controlling bipedal walking robots. The bipedal walking 
robot is an advanced anthropomorphic robot that can 
mimic the human ability to walk7). It is designed and 
modeled in human like and walking by the knowledge of 
the human gait. Controlling the bipedal walking robot is 
difficult due to its nonlinearity and complexity2,9). It refers 
to the intricate and dynamic nature of their movements, 
such as multi-body systems consisting of multiple 
interconnected links and joints and underactuated, 
meaning they have fewer actuators (motors) than degrees 
of freedom, which makes controlling them challenging. It 
makes the bipedal walking robot difficult to be modelled 
except using an advanced  mathematical theorem3,10). 
There are many control problems to be solved for the 
bipedal walking robot, the most challenging part is 
trajectory controlling. Stability control for the bipedal 
walking robot to take steps to walk following the 
trajectory is critically important. It occurs to avoid the 
bipedal robot falling when walking towards the path.  

Recent trend for robotics and control system research is 
machine learning-based algorithm11,12), particularly 
Reinforcement Learning (RL). Reinforcement Learning 
(RL) is a promising method to increase the performance 
of robots in many fields13) especially for bipedal walking 
robots. Reinforcement learning is an appropriate 
algorithm to control bipedal walking robots to imitate 
human gait, because it is a type of machine learning 
algorithm wherein the is a machine learning method that 
can often be applied to perceive a robot's position and lead 
it to the desired position14). This method enrolls the robot 
to learn as a human being through trial and 
error.15).  Moreover, the trial-error process is granted by a 
reward as the return that indicates the strategy of policy 
value of the process’s performance. These advantages 
make many researchers use DRL to control the bipedal 
walking robot. 

Previous research used many methods to control the 
bipedal walking robots, A. Mayub and Fahmizal applied 
fuzzy logic to control the bipedal walking robot8). It 
presented the Center of Point (CoP) and the Zero Moment 
Point (ZMP) model to control the bipedal walking robot 
by using Force Sensitive Resistor (FSR) on the foot, but a 
fuzzy logic system involves a considerable degree of 
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subjectivity. It leads to misinterpretation, especially for 
complex high dimensional data like bipedal walking 
robots.   T.P.A. Wiggers proposed the Hybrid Zero 
Dynamics (HZD) to control the bipedal walking robot16). 
The HZD implementation can be complex and 
challenging. HZD involves the design and control of 
hybrid systems, which combine continuous dynamics 
(e.g., walking) with discrete events (e.g., foot impacts). 
Managing the interactions between these continuous and 
discrete elements can increase the complexity of the 
control system. J.Y. Kim, I.W. Park, J.H. Oh controlled the 
bipedal humanoid robot using a combination of several 
controllers, such as the predicted motion control, the 
walking pattern control, and the real-time balance 
control17). These controllers were applied to make the 
bipedal humanoid robot walk on an uneven and inclined 
floor. Using a combination of several controllers 
(predicted motion control, walking pattern control, and 
real-time balance control), offers several advantages. 
However, it also comes with certain disadvantages that 
should be considered, such as the design of tuning efforts 
and complexity.  Kumar, et al10) and D. Rastogi20) applied 
Deep Deterministic Policy Gradient (DDPG) to control 
the bipedal walking robot. DDPG can perform better in 
high dimensional environment and can work very well in 
continuous action and state, yet it suffers with the 
hyperparameter and the overestimation bias11,22). P.B. 
Khoi et al presented Twin Delayed DDPG (TD3)1) to 
control the bipedal walking robot. TD3 can handle the 
overestimation bias on DDPG, but TD3 is still using the 
deterministic policy. T. Tiong and I. Saad proposed Twin 
Average Delayed DDPG (TAD3)21) which had the double-
actors and the double-critics. TAD3 was claimed to have 
a better performance than DDPG and TD3, but still 
suffered with the hyperparameter. 

Deep reinforcement learning methods is used to apply 
the deterministic policy and stochastic policy13,24). Many 
studies operate robots using deterministic policy, under 
full observable condition. However, the deterministic 
policy has only limited action choice and it mostly need 
the noise injection into action to gain the exploration 
ability14,25).  In fact, many real robotic and control 
problems must encounter randomness and explore better 
to obtain the best action. In this case, it might be chosen 
to learn using stochastic behaviors that have more 
exploration ability24). This research performs Soft Actor 
Critic (SAC) that is one of continuous DRL algorithms, 
which uses the stochastic policy in the learning process. 
This stochastic policy can improve the adaptation ability 
of the bipedal walking robot to head on many 
situations12,23). The stochastic policy has also a powerful 
performance during the exploration process26). This 
research selects the off-policy DRL approaches such as 
DDPG, TD3 and SAC.  The selection of off-policy DRL 
over on-policy methods offers several advantages that 
contribute to more efficient and stable learning. The 
utilization of a separate behavior policy, experience replay 

mechanisms, and improved data efficiency are pivotal in 
enabling the agent to explore and exploit the environment 
effectively. Off-policy algorithms like DDPG, TD3 and 
SAC have shown remarkable success in addressing 
challenging tasks with high-dimensional action spaces, 
making them valuable tools for researchers and 
practitioners seeking to develop robust and adaptive 
agents. 

The purpose of this research is to control the bipedal 
humanoid robot to walk as a human gait in the straight-
line trajectory by using SAC Algorithm. The 
implementation of the SAC algorithm will be evaluated 
with another DRL algorithm whose deterministic policy 
based method. This research concerns this issue because 
comparing deterministic and stochastic policy Deep 
Reinforcement Learning (DRL) methods is essential 
because each approach offers distinct advantages and 
trade-offs, and the choice of policy representation can 
significantly impact the performance and behavior of the 
learning agent. Understanding the differences between 
deterministic and stochastic policies allows researchers 
and practitioners to make informed decisions based on the 
specific requirements and characteristics of the problem at 
hand.  

Based on the introduction, the contributions of this 
work are explained as follows: 1) This research applies 
SAC deep reinforcement learning for the bipedal walking 
robot. 2) This research applies SAC which uses the 
stochastic policy and the entropy for training strategy, 
despite DDPG and TD3 that used the deterministic policy. 
This research presents the comparison of these continuous 
deep reinforcement learning approaches to find the best 
algorithm for the bipedal walking robot. The Evaluation 
of the results is based on the reward and the cumulative 
reward that is part of the reinforcement learning goal18,29). 
The study is started by Section II that explains the RL, 
SAC. In Section III the Methodology explains about the 
bipedal walking robot parameter, the configuration, the 
interface to the algorithm and the controller architecture 
that can be implemented for the bipedal walking robot. 
Section IV provides the numbers of the simulation results 
which show the behaviors and the performance 
comparison of continuous DRL such as SAC, DDPG and 
TD3 for the bipedal walking robot. Section V presents the 
conclusions of this research that is the comparison result 
of the continuous DRL approaches.  

 
2.  Reinforcement Learning 

Reinforcement Learning is formulated using Markov 
Decision Process (MDP)8,30). MDP consists of a few tuples 
such as (𝐴𝐴, 𝑆𝑆, 𝑝𝑝𝑠𝑠, 𝑟𝑟). The action, 𝐴𝐴, and the state, 𝑆𝑆, are 
the continuous domain, the transition probability state, 
𝑝𝑝𝑠𝑠 :  𝑆𝑆 ×  𝑆𝑆 × 𝐴𝐴 → [0,∞)  that represents the probability 
density of the next state of the environment, 𝒔𝒔𝑡𝑡+1 ∈ 𝑆𝑆 
given the present state 𝒔𝒔𝑡𝑡 ∈ 𝑆𝑆  and action 𝒂𝒂𝑡𝑡 ∈ 𝐴𝐴 . The 
environment gives reward to the agent on each transition 
as 𝑟𝑟 ∶ 𝑆𝑆 × 𝐴𝐴 → [𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚]. The action for this research 
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conducts  two policy terms, such as deterministic policy 
𝜇𝜇(𝒔𝒔𝑡𝑡) and stochastic policy π(𝒂𝒂𝑡𝑡|𝒔𝒔𝑡𝑡). The term 𝜌𝜌𝜋𝜋(𝒔𝒔𝑡𝑡) 
is denoted as the state and 𝜌𝜌𝜋𝜋(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡) as the state-action 
marginals of the trajectory distribution of the policy. 

Fig. 1 shows the diagram of reinforcement learning. 

 
Fig. 1: Diagram of Reinforcement Learning. 

 
Based on Fig. 1, the diagram of reinforcement learning 

shows the agent gives the action to the environment. After 
receiving the action from the agent, the environment gives 
the observation and the reward to the agent30). Basic RL 
has goal to maximize the expected reward, 𝑅𝑅 , that is 
defined as follows, 

 
𝑅𝑅 = ∑ 𝐸𝐸(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡)~𝜌𝜌𝜋𝜋[𝑟𝑟(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡)]𝑡𝑡 . (1) 

 
2.1  Deep Deterministic Policy Gradient (DDPG) 

Deep deterministic policy gradient (DDPG) is the 
extended algorithm of Deterministic Policy Gradient 
(DPG)23). Moreover, the DDPG algorithm also adopted 
the replay buffer, 𝑅𝑅𝑏𝑏 , concept from Deep Q-Network 
(DQN)31). This feature tends to conquer the experience of 
managing unnecessary computatios. Reply buffer works 
with minibatch take the essential old and new experiences. 
This concept significantly increases stability. Reply buffer 
is used with minibatch for efficiency of sampling 
learning32). DDPG used the actor and critic networks. The 
actor network consists of the actor 𝜇𝜇(𝒔𝒔𝑡𝑡) with parameter 
𝜃𝜃𝜇𝜇 ; target network 𝜇𝜇′�𝒔𝒔𝑡𝑡�𝜃𝜃𝜇𝜇

′�with 𝜃𝜃𝜇𝜇′. Where, 𝜃𝜃𝜇𝜇′ ←
𝜃𝜃𝜇𝜇 it is updated by the sample policy gradient,  

 
∇𝜃𝜃𝜇𝜇𝐽𝐽 ≈ 

1
𝑀𝑀
∑ ∇𝑎𝑎𝑄𝑄(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡|𝜃𝜃𝑄𝑄)� ∇𝜃𝜃𝜇𝜇𝜇𝜇(𝒔𝒔𝑡𝑡|𝜃𝜃𝜇𝜇)�𝑠𝑠𝑖𝑖.𝑠𝑠=𝑠𝑠𝑖𝑖.𝑎𝑎=𝜇𝜇(𝑠𝑠𝑖𝑖)𝑖𝑖 . (2) 

  
DDPG uses Ornstein-Uhlenbeck noise (OU Noise), 𝑁𝑁 

in the action, thus it can be defined as 𝒂𝒂𝑡𝑡 =  𝜇𝜇(𝒔𝒔𝑡𝑡) + 𝑁𝑁33). 
The OU Noise, 𝑁𝑁 , is associated with exploration noise 
that gains exploration performance of the deterministic 
policy. The critic parameter consists of 𝑄𝑄(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡)  with 
parameter 𝜃𝜃𝑄𝑄, target network 𝑄𝑄′�𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡�𝜃𝜃𝑄𝑄

′� with 𝜃𝜃𝑄𝑄′, 
where 𝜃𝜃𝑄𝑄′ ← 𝜃𝜃𝑄𝑄.  This critic network updates,  

 
𝑦𝑦𝑖𝑖 = 𝑟𝑟𝑖𝑖 + 𝛾𝛾𝑄𝑄′(𝒔𝒔𝑖𝑖+1,𝜇𝜇′�𝒔𝒔𝑖𝑖+1�𝜃𝜃𝜇𝜇

′��𝜃𝜃𝑄𝑄′). (3) 
 
DDPG applied a soft updating rule in network target, 

which means that only the essential one can be used in the 
learning process for the main weight.  

 
2.2  Twin Delayed Deep Deterministic Policy 

Gradient (TD3) 
Fujimoto et al improved the DDPG by using two Q-

value functions mention as a clipped variant of double Q-
learning34). It is designed to solve the overestimation bias 
in the actor-critic network. The actor is adopted from 
DDPG, which applied the exploration noise. The critic 
network consists two Q-values that define as 𝑄𝑄𝑖𝑖(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡) 
with parameter 𝜃𝜃𝑄𝑄𝑖𝑖  , target network 𝑄𝑄′𝑖𝑖�𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡�𝜃𝜃

𝑄𝑄′� 
with 𝜃𝜃𝑄𝑄′𝑖𝑖 , where 𝜃𝜃𝑄𝑄′ ← 𝜃𝜃𝑄𝑄𝑖𝑖 , where 𝑖𝑖 = 1,2 . Applying 
these Q-values, Fujimoto et al defined the soft target 
network as clipped double Q-learning as follows, 

 
𝑦𝑦1 = 𝑟𝑟 + 𝛾𝛾min

𝑖𝑖
𝑄𝑄′𝑖𝑖(𝒔𝒔𝑡𝑡+1, 𝜇𝜇(𝒔𝒔𝑡𝑡+1)). (4) 

 
The improvement is also conducted in the policy by 

delaying policy updates. The policy is updated at a lower 
frequency than the value estimation to minimize the error 
and divergent behavior. TD3 used the soft target 
smoothing that makes the strategy to exploit the action 
with high Q-value. 
 
2.3  Soft Actor-Critic (SAC) 

The soft actor-critic (SAC) algorithm is the deep 
reinforcement learning that was developed by T. Haarnoja 
et al25) in 2018.  The application of the algorithm for this 
research is based on35). First main difference of SAC 
compared to other algorithm is augmenting to maximize 
the entropy36). Conventional RL has the goal to maximize 
the expected reward as denoted at (1).  The SAC 
algorithm defines a stochastic policy term by appending 
the conventional RL objective function (1) with the 
expected entropy-based for the policy over 𝜌𝜌𝜋𝜋(𝒔𝒔𝑡𝑡), 

 
𝐽𝐽(𝜋𝜋) = ∑ 𝐸𝐸(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡)~𝜌𝜌𝜋𝜋[𝑟𝑟(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡) + 𝛼𝛼𝛼𝛼(𝜋𝜋(. |𝒔𝒔𝑡𝑡))]𝑇𝑇

𝑡𝑡=0 .   (5) 

 
The entropy objective, 𝐻𝐻 , is defined based on 

Ziebart37). The temperature parameter, 𝛼𝛼, is the parameter 
that chooses the importance of relativity between the 
entropy and reward. This augmentation based on entropy 
energy makes the policy have stochastic behaviour. SAC 
algorithm applied stochastic policy  𝜋𝜋(𝒂𝒂𝑡𝑡|𝒔𝒔𝑡𝑡) , while 
DDPG and TD3 applied deterministic policy 𝜇𝜇(𝒔𝒔𝑡𝑡). Thus, 
the action is defined as, 𝒂𝒂𝑡𝑡~ π(𝒂𝒂𝑡𝑡|𝒔𝒔𝑡𝑡) . The policy 
𝜋𝜋(𝒂𝒂𝑡𝑡|𝒔𝒔𝑡𝑡)  with parameter 𝜃𝜃𝜋𝜋 , computes using the soft 
policy iteration that can guarantee to converge at optimal 
policy during training. The actor network consists of the 
policy that is associated to a Gaussian distribution ℵ =
(𝛿𝛿𝑡𝑡,𝜎𝜎𝑡𝑡)  with mean, 𝛿𝛿𝑡𝑡 , and covariance, 𝜎𝜎𝑡𝑡 , given by 
neural networks35). Thus, the action can be written as 
follows, 𝒂𝒂𝑡𝑡 =  𝑓𝑓(ℵ, 𝒔𝒔𝑡𝑡)  where ℵ = (𝛿𝛿𝑡𝑡 ,𝜎𝜎𝑡𝑡)  that is the 
input noise vector from the environment that follows the 
Gaussian26). Based on the modified reward function (5), 
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Haarnoja et al the derived the soft value function and the 
soft Q-value function as follows, 

 
𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡) = 𝐸𝐸𝒂𝒂𝑡𝑡~𝜋𝜋[𝑄𝑄(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡) − logπ(𝒂𝒂𝑡𝑡|𝒔𝒔𝑡𝑡),  (6) 

and 
 

𝑄𝑄𝜋𝜋(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡) = 𝑟𝑟(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡) + 𝛾𝛾𝐸𝐸𝒔𝒔𝑡𝑡+1~𝑝𝑝[𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡+1)]. (7) 

The soft value function or the soft state value and the 
soft Q-value or soft state-action value indicate the reward 
in the future26). The reward also consist of the expected 
sum of the reward and the entropy38). Soft Q-value, 
𝑄𝑄𝜋𝜋(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡)  with target parameter 𝜃𝜃𝑄𝑄𝜋𝜋 , is updated and 
applied to train the policy. The soft state value 𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡) 
with target parameter 𝜃𝜃𝑉𝑉𝜋𝜋  is updated and required to 
estimate the soft Q-value. The SAC algorithm also worked 
with the double Q-value function which can stabilize the 
learning process and performance14,36). 
 
3.  Methodology 

The research is performed by designing the 
environment of bipedal walking robots and the agent of 
deep reinforcement learning. The interface between the 
environment and the agent is shown in Fig. 2. Based on 
Fig 2, the research method or the agent of the system is 
designed based on the reinforcement learning formula. 
This research applied continuous Deep Reinforcement 
Learning algorithms such as soft actor-critic (SAC) based 
on the research of T. Haarnoja et al25). 
 

 
Fig. 2: The Interface of Bipedal Walking Robot with DRL. 

 

The flowchart of the system can be viewed in Fig 3. Fig 
3 views the flowchart of the system that illustrates the 
system’s mechanisms especially the training process 
using SAC algorithm. 

 

 
Fig. 3: The System Flowchart. 

 
The SAC method is applied in order to compare with 

deep deterministic policy gradient (DDPG) from research 
of Lillicrap et al39)  and twin delayed deep deterministic 
policy gradient (TD3) on the research of Fujimoto et al34) 
which employed deterministic-based policy. Castro has 
been applied DDPG and TD3 for controlling bipedal 
walking robot29). The comparison diagram of each 
algorithm can be viewed at Fig 4. 
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Fig 4: The comparison Diagram of DDPG, TD3, and SAC. 

 
3.1  Bipedal Walking Robot Environment  

 
Regarding the Castro’s model15,26). The bipedal walking 

robot is standing up right, in the neutral position at 0 rad. 
The goal of the bipedal walking robot is walking like a 
human gait at the straight-line trajectory. The trajectory is 
shown in Fig 5. 

 

 
Fig. 5: Trajectory of Bipedal walking Robot. 

 
This trajectory represents a spline curve in 2-D or 3-D, 

passing through specified interpolation points. The curve 
is set open continuously based on cubic interpolation 
between adjacent points. The configuration of the bipedal 
walking robot based on J. Englsberger et al40). has six 
joints, three joints are in the right foot and three joints are 
in the left. The joint is in each hip, knee and ankle. It is 
built in 3D with the torso’s height is 0.35, the torso’s 
length is 0.2 and the torso’s width is 0.24. The frontal joint 
of the bipedal walking robot has as 𝜃𝜃𝐿𝐿1 𝜃𝜃𝐿𝐿2 𝜃𝜃𝐿𝐿3  as the 
left roll joint for the hip, the knee and the ankle and 
𝜃𝜃𝑅𝑅1 ,𝜃𝜃𝑅𝑅2 ,𝜃𝜃𝑅𝑅3  as the right roll joint for the hip, the knee and 
the ankle. The bipedal walking robot is standing up right, 
in the neutral position at 0 rad. The action is defined as  
𝒂𝒂𝑡𝑡 = [𝜃𝜃𝐹𝐹1 , 𝜃𝜃𝐹𝐹2 ,   𝜃𝜃𝐹𝐹3  ],  where 𝐹𝐹 is denoted the right leg 
or the left leg force. The range of the torque (τ) input is 
-3N.m to 3N.m, but the actual inputs of each joint are 
normalized at range -1 and 1.  

The bipedal walking robot receives the action of the 
torque from the agent and gives several data of the 
observation 𝒐𝒐𝑡𝑡𝑇𝑇  and the reward 𝒓𝒓𝑡𝑡  to the agent. The 
observation has 29 data as follows,  

 

𝒐𝒐𝑡𝑡 = [𝒑𝒑  𝒑̇𝒑  𝝋𝝋  𝝎𝝎  𝜽𝜽𝐿𝐿 𝜽̇𝜽𝐿𝐿 𝜽𝜽𝑅𝑅  𝜽̇𝜽𝑅𝑅  𝒂𝒂𝑡𝑡−1 𝑭𝑭]. (8) 
 
Where 𝒑𝒑 = [𝑝𝑝𝑦𝑦  𝑝𝑝𝑧𝑧]  consists of positions in y and z 

axes, 𝒑̇𝒑 = [𝑝̇𝑝𝑥𝑥 𝑝̇𝑝𝑦𝑦 𝑝̇𝑝𝑧𝑧] denoted as linear velocities at x-y-
z axes, 𝝋𝝋 = [𝜑𝜑𝑟𝑟  𝜑𝜑𝑝𝑝 𝜑𝜑𝑦𝑦] denoted as roll, pitch and yaw, 
𝝎𝝎 = [𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑦𝑦 ,𝜔𝜔𝑧𝑧] conducts of angular velocities at x-y-z 
axes. It also observes the angle and speed of both leg, thus 
it has 𝜽𝜽𝐿𝐿 = [𝜃𝜃𝐿𝐿1 𝜃𝜃𝐿𝐿2 𝜃𝜃𝐿𝐿3] consists of the left foot angles 
of hip, knee and ankle, 𝜽𝜽𝑅𝑅 = [𝜃𝜃𝑅𝑅1 𝜃𝜃𝑅𝑅2 𝜃𝜃𝑅𝑅3] consists of 
the right foot angles of hip, knee and ankle, 𝜽̇𝜽𝐿𝐿 =
[𝜃̇𝜃𝐿𝐿1 𝜃̇𝜃𝐿𝐿2 𝜃̇𝜃𝐿𝐿3] consists of the left foot speed of hip, knee 
and ankle, 𝜽̇𝜽𝑅𝑅 = [𝜃̇𝜃𝑅𝑅1 𝜃̇𝜃𝑅𝑅2 𝜃̇𝜃𝑅𝑅3] consists of the right foot 
speed of hip, knee and ankle, and 𝑭𝑭 = [𝐹𝐹𝐿𝐿 𝐹𝐹𝑅𝑅] is denoted 
as forces of both of right and left legs. It also includes 
𝒂𝒂𝑡𝑡−1 the action from the previous experience of the leg 
torques. This environment is Fully observable MDP, thus 
𝒐𝒐𝑡𝑡 = 𝒔𝒔𝑡𝑡. 

The reward 𝑟𝑟𝑡𝑡is defined in accordance of the study of 
N. Heess, et al13), as follows, 

 
𝐫𝐫t = 𝑝̇𝑝𝑥𝑥 − 3𝑝𝑝𝑦𝑦2 − 50𝑝𝑝𝑧𝑧2 + 25 𝐓𝐓𝐓𝐓

𝐓𝐓𝐓𝐓
− 0.02 ∑ 𝛕𝛕𝐭𝐭−𝟏𝟏𝐢𝐢 2

𝐢𝐢 .  (9) 
 
Where, rt is reward, 𝑝̇𝑝𝑥𝑥 is the velocity of the bipedal 

robot or the movement through the X-axis translation. 𝑝𝑝𝑦𝑦 
a is the displacement of the bipedal walking robot towards 
the line trajectory. 𝑝𝑝𝑧𝑧  is the vertical translation 
displacement which is normalized with respect to the 
robot center of mass. 𝛕𝛕𝐭𝐭−𝟏𝟏𝐢𝐢  is the torque of joint i from 
previous time. Ts is the environment of time during 
training. Tf is the final time of the training. The training 
can be terminated at these following conditions, first when 
𝑝𝑝𝑧𝑧 ≤ 0,1 or the robot is falling down which is the COM of 
the torso value is less than 0.1m at Z-axis, second, 𝑝𝑝𝑦𝑦 >
1, or the bipedal walking robot move away at Y-axis more 
than 1 m, third, when the value for the roll, 𝜑𝜑𝑟𝑟 >
0.7854 rad , the pitch, 𝜑𝜑𝑝𝑝 > 0.7854 rad , or the yaw, 
𝜑𝜑𝑦𝑦 > 0.7854 rad.  

 
3.2  Network Architecture 

The network architecture is designed based on S. 
Castro’s model18,29), that is referred to the research of 

- 1542 -



EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 10, Issue 03, pp1538-1548, September 2023 

 
Lillicrap et al30) for DDPG network and Fujimoto et al34) 
for TD3. This research designs the agent’s architecture 
based on Haarnoja et al35). The SAC hyperparameter is 
shown in Table 1. 

 
Table 1. The SAC Hyperparameter. 

Parameter Value 
Optimizer Adam 42) 

Mini-batch size 256.00 
Discount factor (𝛾𝛾) 0.99 
Experience Buffer 1.106 
Target Smoothing 5.10−3 

 
Some parameters are set arbitrarily to fit the network 

architecture. The network consists of the actor network 

and critic network which is used deep neural network. The 
actor network of SAC algorithm applies the Gaussian 
distribution which need the input of observation or state, 
gives as the mean value and a standard deviation value for 
each action, ℵ = (𝛿𝛿𝑡𝑡 ,𝜎𝜎𝑡𝑡). The standard deviations are set 
as nonnegative and mean values are set within the range 
of the action, 𝛿𝛿𝑡𝑡 = [𝒂𝒂𝑡𝑡−𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒂𝒂𝑡𝑡−𝑚𝑚𝑚𝑚𝑚𝑚] . Hence, the output 
layer that turn over the standard deviations is required the 
ReLU layer, to enforce nonnegativity, while the output 
layer that turn over the mean values is required a scaling 
layer, to keep the mean values inside the scale of the 
output range. The details architecture SAC algorithm 
through the trajectory control of Bipedal Walking robot is 
shown at Fig 6. 

 
 

 
Fig. 6: SAC Architecture of Trajectory Based of Bipedal Walking Robot. 

 
Based on Fig 8, three separate networks are used in the 

SAC algorithm to optimize learning process, these are soft 
state value (𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡)) parameterized by 𝜃𝜃𝑉𝑉𝜋𝜋, double Soft 
Q-value, 𝑄𝑄𝜋𝜋(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡)  parameterized 𝜃𝜃𝑄𝑄𝜋𝜋 , and Policy 
Function (π) parameterized by 𝜃𝜃𝜋𝜋 . The soft state value 
( 𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡)) is responsible for estimating the expected 
cumulative reward starting from a given state under the 
current policy π. The double soft Q-value, 𝑄𝑄𝜋𝜋(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡), 
estimates the expected cumulative reward when taking a 
particular action in a given state under the current policy 
π. It predicts the expected Q-value, which indicates the 
expected cumulative reward from the current state and 
action onwards. The parameter θ represents the learnable 
weights of the soft Q-function. Policy (π) is responsible 
for selecting actions given a state. It decides which actions 
to take based on the state and the current policy. The soft 
state value network is trained to minimize the mean-
squared Bellman error. This error measures the difference 
between the predicted state value and the target value, 
which is the sum of the immediate reward and the 

estimated value of the next state. The double soft Q-value 
is trained using the soft Bellman backup that be defined 
by haarnoja33). The policy network is trained to maximize 
the expected reward, which includes the Q-values and an 
entropy term.  

 
3.3  Evaluation 

These DRL algorithms in this study will be evaluated 
based on the reward generated from each algorithm’s 
training. This study also calculates the success rate, 
training success of each algorithm and the success rate of 
the bipedal robot in completing the trajectory in 2000 
episodes. It is defined as follows: 

𝑆𝑆𝑆𝑆 = (𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇)⁄ 100.  (10) 
Where, 
SR = Success Rate (%) 
SE = Number of Successful Episode 
TE = Total Number of Episode. 
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4.  Result and Discussion 
4.1 Discussion 

The first reinforcement learning algorithm is based on 
the MDP formulation introduced by Bellman40). This 
evaluation is to understand how the DRL algorithm works 
with prior off-policy such as DDPG, TD3 and SAC to 
control bipedal walking robot. Silver et al21) improved the 
exploration ability for the deterministic policy by 
designing an off-policy learning technique using a 
differentiable function approximator and adding a small 
amount of random noise to the action. These techniques 
are implemented inside the action of DDPG and TD3 
algorithm. 

SAC algorithm employed stochastic policy that has 
gained exploration ability. In SAC algorithm stochastic 
characteristic is obtained by adding the expected entropy 
of policy over 𝜌𝜌𝜋𝜋(𝒔𝒔𝑡𝑡), to the RL’s objective. According 
to Haarnoja et al this improvement considers enhancing 
learning performance over the RL objective 34). This 
entropy-based stochasticity tends to lead with an infinite 
horizon that can interfere if the method becomes non-
convergent. In contrast to conventional reinforcement 
learning algorithms that optimize for the maximum 
expected reward alone, the Soft Actor-Critic algorithm 
optimizes for both the expected cumulative reward and the 
policy's entropy. This entropy-based stochastic policy is 
related to the soft Q-function network which estimates the 
value of the next state, and the entropy bonus. The entropy 
bonus is the term that encourages exploration by 
maximizing the policy entropy. Moreover, in policy or 
actor network consist of this entropy. The entropy term is 
used to encourage exploration by maximizing the entropy 
of the policy. This combination of optimization processes 
in SAC algorithm aims to find a policy that balances 
exploration and exploitation. Furthermore, the stochastic 
policy can be represented as a probability distribution over 
actions given a state. In this SAC algorithm stochastic 
policy uses a Gaussian distribution. By using a Gaussian 
distribution, the policy can produce continuous actions in 
the continuous action space. Action selection in the 
stochastic policy is done by sampling from this probability 
distribution. The sampling process introduces randomness 
or uncertainty, allowing the policy to explore different 
actions at each state. This stochasticity enables the agent 
to explore the action space effectively and helps in 
developing a more flexible and adaptive policy. The 
stochastic policy is one of the key features of the SAC 
algorithm, making it highly effective in dealing with 
environments with continuous and complex action spaces 
like bipedal walking robot. By performing more efficient 
exploration, the algorithm can address the exploration 
challenge commonly encountered in continuous 
reinforcement learning tasks. Whereas DDPG and TD3 
applied deterministic policy which can lead to suboptimal 
learning if the agent gets stuck in a local optimum. To 
address this, DDPG incorporates noise into the action 
selection process. 

Overestimation bias is a common issue that arises in 
deep reinforcement learning algorithms when they use 
function approximators, such as neural networks, to 
estimate action values. In DDPG, during training, the 
critic network is updated using a temporal difference (TD) 
target that is calculated based on the Bellman equation. 
However, the use of function approximation and 
bootstrapping in DDPG can lead to overestimation of Q-
values in certain situations, which can be detrimental to 
learning. Overestimation bias in DDPG occurs due to the 
maximization step during the TD target calculation. The 
TD target is computed using the maximum Q-value 
among all possible actions in the next state, even if the 
actor network may not accurately approximate the true Q-
values. As a result, the maximization step can lead to 
optimistic Q-value estimates, especially when the actor's 
policy has not fully converged or when there is high 
variance in the action-value estimates. In TD3, introduces 
three key such as target policy smoothing, clipped double 
Q-Learning, and delayed policy updates modifications to 
DDPG to mitigate overestimation bias. In SAC algorithm, 
takes a different approach to address overestimation bias 
and is based on entropy regularization. It directly 
maximizes the expected reward along with the entropy of 
the policy. The entropy term encourages exploration and 
prevents premature convergence to suboptimal policies. 
By maximizing the expected reward and entropy jointly, 
SAC finds a balance between exploration and exploitation, 
leading to more stable and robust learning in continuous 
action spaces. 

 
4.2 Result 

The evaluation of the training result is based on the 
episode accumulated reward and the average reward. 
These measurements represent the reward maximization 
during training as the basic purpose of each algorithm. It 
can be used to analyze these algorithms’ performance if 
the algorithms used the same reward function. The result 
of simulations is obtained from the bipedal walking robot 
simulation to perform the human gait at the straight-line 
trajectory. The performance of the SAC algorithm is 
evaluated and compared to DDPG and TD3. The bipedal 
walking robot is set to do the training at 2,000 episodes. 
Fig. 7 shows the episode reward comparison of each 
continuous DRL algorithm. 
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Fig. 7: The Episode Reward Comparison. 

 
Fig 7 shows that SAC has the higher episode reward 

compared to DDPG and TD3. The curve of the episode 
reward of the SAC algorithm increases significantly at 
300 episodes, while the DDPG’s curve increases at 700 
episodes, and TD3’s curve increases at 1,600 episodes. 
This result indicates stochastic policy has a better 
exploration ability than the deterministic policy. This is 
represented by the simulation result of a bipedal walking 
robot, where stochastic policy obtains higher rewards 
during training. Fig 8 shows the details of the average 
reward of each continuous DRL approach. In view of  
Fig 8, it is known that the SAC algorithm can adapt faster 
at range 200 and 400 episodes and swiftly fix the step to 
maintain the failure at the first step. The learning speed 
also increases significantly. It occurs due to SAC 
algorithm ability to use the selected entropy policy and the 
optimal policy to gain the robustness during exploration.  

 
Fig.8: The Episode Reward Comparison. 

 
Regarding Fig 7 and Fig 8, the reward begins to 

increase at 1,500 episodes as if the average step increases. 
In view of  Fig 7 and Fig 8 can be described that the SAC 
algorithm works better than DDPG and TD3. It has better 
episode reward and average reward. Thus, it can be 
concluded that the SAC takes faster episodes to train, 

however TD3 remains to have more episodes during 
training than DDPG and SAC. The further analysis in this 
research compares the total reward of each continuous 
algorithm which can represent the implicit value of each 
algorithm’s performance that cannot be presented by the 
comparison curve of the episode reward and the average 
reward. The comparison of the total reward is presented in 
Table 2. 

 
Table 2. Total Reward Comparison. 

DRL Continuous 
Algorithm 

Total Reward 

SAC 384,752.98 
TD3 174,803.00 

DDPG 378,711.00 
 
This result occurs because the exploration ability 

increases with the stochastic policy instead of the 
deterministic policy. It occurs due to the stochastic domain 
that applied in the SAC algorithm guarantees that all states 
are estimated. The SAC method can suggest another 
mechanism to collect the experience from the 
environment with the current policy and to update the 
function approximators using the stochastic gradients 
from batches sampled from a replay pool. Further analysis 
that is the maximum entropy inside SAC can mitigate the 
main problem on the other DRL algorithm that is the 
overestimation bias. This algorithm is robust to avoid the 
noise at the training process. The analysis involves more 
parameter analysis related to the success rate of training 
that indicates the success rate of the robot to reach the goal. 
It is shown in Table 3. 

 
Table 3. Success rate of DRL Algorithm 

DRL Algorithm Training 

Complete 

(%) 

Succes Rate of 

Training (%) 

SAC 100 90 

TD3 100 20 

DDPG 100 45 
 
From Table 3 it represents that SAC algorithm has the 

higher success rate of training at 90%. Fig 9 shows the 
display of walking movement of bipedal robot. Fig 13 (a) 
shows the start walking of bipedal walking robot through 
the straight-line trajectory, and Fig 9 (b) shows the next 
step of the bipedal walking robot movement. 
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Fig. 9: The Movement of Bipedal Walking robot through the 

Trajectory: (a) Start of The Walking Movement, (b) Next Step 
Walking as The Human Gait. 

 
In view of Fig 9, the bipedal walking robot can learn to 

walk through the straight-line trajectory and achieve the 
best total reward. It indicates SAC algorithm that using the 
stochastic policy has the robust training process and gain 
the exploration ability to get the best reward. 

 
5.  Conclusion 

This study presents the implementation and comparison 
of stochastic-based continuous deep reinforcement 
learning algorithm that known as SAC with the 
deterministic-based algorithms. The implementation 
employed several algorithms of continuous deep 
reinforcement learning approaches that are SAC that has 
stochastic behaviour, and deterministic-based policy 
algorithm such as DDPG and TD3 for controlling the 
trajectory of the bipedal walking robot. The performance 
comparison performance of the stochastic-based DRL 
over the deterministic-based DRL is shown based on the 
results through the bipedal walking robot system. Based 
on the simulation results, the comparison presents that 
SAC has the better episode reward of 384,752.98 than 
DDPG of 378,711.00 and TD3 174,803.00. It is also 
shown based on the average reward of SAC that has the 
better result than DDPG and TD3. Based on the average 
SAC obtains higher average reward than DDPG and TD3. 
The stochastic-based, SAC, also makes the learning 
process increase significantly at 300 episodes, while the 
DDPG’s curve increases at 700 episodes, and TD3’s curve 
increases at 1,600 episodes. The SAC algorithm has the 
higher success rate of training at 90%. 

From this research, promising direction of future work 
is applying in real robot because the algorithm is good for 
continuous action space. The researcher also can add the 
obstacle through the trajectory to add the complexity of 
system. 

 

Nomenclature 

CoP Center of Point  
𝐴𝐴 Action  
𝑆𝑆 State  
𝑝𝑝𝑠𝑠 Transition Probability State 
𝑟𝑟 Reward  
𝑅𝑅 Expected Reward  
𝒂𝒂𝑡𝑡 Action over time step 
𝒔𝒔𝑡𝑡 State over time step 
𝒔𝒔𝑡𝑡+1 Next State 
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 Reward Minimum 
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 Reward Maximum 
𝑅𝑅𝑏𝑏 Reply Buffer 
𝑁𝑁 OU Noise 
∇𝜃𝜃𝜇𝜇𝐽𝐽 Policy Gradient 

𝑄𝑄(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡) State Value 
𝑄𝑄′(𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡) Critic Update 

𝐻𝐻 Entropy 
ℵ Gaussian Distribution 
𝑉𝑉𝜋𝜋 Soft Value Function 
𝑄𝑄𝜋𝜋 Soft Q-value function 
Rr
w Transformation from the world reference 

to the body robot 
Rf
r Transformation from the robot reference 

to the foot reference 
ZMP The Zero Moment Point 

𝒑𝒑 Matrix position in y and z axes 
𝒑̇𝒑 Matrix of Linear velocities at x-y-z axes 
𝑭𝑭 Forces of both of right and left legs 

𝒂𝒂𝑡𝑡−1 Previous Action 
𝑝̇𝑝𝑥𝑥 Velocity of the bipedal robot or the 

movement through the x-axis  
𝑝𝑝𝑦𝑦 The displacement of the bipedal walking 

robot.  
𝑝𝑝𝑧𝑧 Vertical translation displacement  

Ts The environment of time during training 
Tf final time of the training 

 
Greek symbols 

𝜇𝜇(𝒔𝒔𝑡𝑡) Deterministic Policy 
π(𝒂𝒂𝑡𝑡|𝒔𝒔𝑡𝑡). Stochastic Policy 

𝜌𝜌𝜋𝜋 Trajectory distribution of Policy 
𝜇𝜇′�𝒔𝒔𝑡𝑡�𝜃𝜃𝜇𝜇

′� Update Actor with Update Parameter 
𝜃𝜃𝜇𝜇′  

𝜃𝜃𝜇𝜇 Actor Target Parameter 
𝜃𝜃𝜇𝜇′ Actor Update Target Parameter  
𝜃𝜃𝑄𝑄 Critic Target Parameter 
𝜃𝜃𝑄𝑄′ Critic Update Target Parameter 

(a) 

(b) 
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𝛿𝛿𝑡𝑡 Mean 
𝜎𝜎𝑡𝑡 Covariance 
𝜃𝜃𝑄𝑄𝜋𝜋 Target Parameter Soft Q-Value 
𝜃𝜃𝑉𝑉𝜋𝜋 Target Parameter Soft Value 
τ Torque 
𝜃𝜃𝐿𝐿1 The left roll joint for the hip 
𝜃𝜃𝐿𝐿2 The left roll joint for the knee 
𝜃𝜃𝐿𝐿3 The left roll joint for the ankle 
𝜃𝜃𝑅𝑅1 The right roll joint for the hip 
𝜃𝜃𝑅𝑅2 The right roll joint for the knee 
𝜃𝜃𝑅𝑅 The right roll joint for the ankle 
𝜃𝜃𝐹𝐹1 Action of right/left hip 
𝜃𝜃𝐹𝐹2 Action of right/left knee 
𝜃𝜃𝐹𝐹3 Action of right/left ankle 
𝝋𝝋 Matrix of roll, pitch and yaw 
𝜑𝜑𝑟𝑟 Roll 
𝜑𝜑𝑝𝑝 Pitch 
𝜑𝜑𝑦𝑦 Yaw 
𝜽̇𝜽𝐿𝐿 Matrix of left foot speed of hip, knee 

and ankle 
𝜽̇𝜽𝑅𝑅 Matrix of right foot speed of hip, knee 

and ankle 
𝛾𝛾 Discount factor 
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