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TOPOLOGICAL COMPLEXITY OF 53/Qq
AS
FIBREWISE L-S CATEGORY

Norio IWASE — Yuvya MIYATA

ABSTRACT. In 2010, M. Sakai and the first author showed that the topo-
logical complexity of a space X coincides with the fibrewise unpointed L-S
category of a pointed fibrewise space pr; : X XX — X with the diagonal
map A : X - X XX as its section. In this paper, we describe our algorithm
how to determine the fibrewise L-S category or the Topological Complexity
of a topological spherical space form. Especially, for S3/Qg where Qg is
the quaternion group, we write a python code to realise the algorithm to
determine its Topological Complexity.

1. Introduction

Topological complexity was introduced in [3] by Michael Farber as a numer-
ical homotopy invariant. It attracts many authors including people working on
similar homotopy invariant of Lusternik-Schnirelmann category, L-S category,
for short. Recently, many authors started to use a ‘normalized’ or a ‘reduced’
version of it including Farber himself. In this paper, we use the symbol ‘tc’ for
the reduced version of it to distinguish from the original denoted by TC.
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The reduced version of topological complexity is defined as follows: let X
be a path-connected space, P(X) = Map([0,1],X) and w : P(X) > M X M the
projection given by w(u) = (u(0),u(1)). Using a projection p;, : P(X) » X
defined by p,(u) = u(t), t € {0,1}, we may write @ = py X p;. Topological
complexity of X, denoted by tc(X), is the least integer n such that there is an
open covering Uy, ..., U, of M X M on each of which @ admits a section. We
remark that, if a subset A C X is contractible in X, there is a section of @ on
A. The definition reminds us a well-known homotopy invariant: L-S category of
a space X, denoted by cat(X), is the least integer n such that there is an open
covering U, ..., U, of X each of which is contractible in X.

We can verify the following relation among these invariants (see Farber [3]).

cat(X) < tc(X) < cat(X xX) < 2cat(X).

More practically for an abelian group R, Farber introduced the zero-divisors ideal
I,(X;R) = kerA* : H*(X X X;R) » H*(X;R) and the zero-divisors cup-length
cup_ (X;R) for a space X [3], and then the TC-weight wgt_(z; R) for z € I;(X;R)
with Mark Grant [4]:

cup (X;R) < Max{wgt_(z;R) | z € I;(X;R) ~ {0}} < tc(X).

In this paper, we adopt fibrewise method and skip the precise definition of the
above notions.

Since the theory of topological complexity is growing and spreading rapidly,
there are many open problems. Among such problems, we are especially inter-
ested in the topological complexity of spherical space forms, and in particular,
real projective spaces, aiming to give a natural and computational way to deter-
mine topological complexity, since Farber showed that the topological complexity
of a real projective space coincides with its immersion dimension.

In this paper, we focus on the work of Kenso Fujii on the K-theory of a
spherical space forms obtained as the orbit space of the unit sphere of Hf, where
t is a non-negative integer and H is the set of all quaternionic numbers, by the
diagonal action of the subgroup Qg of Sp(1), represented as Qg = (a,b | a*= b*=
abab = 1, b?= a?), where g stands for g~! for any element g€ Q.

Our results are stated in §2 and the proofs are in §3-4, but the actual cal-
culation is done with computer. Because of the size of the computer resources
required, we gave up to use the usual method for topological complexity but the
fibrewise L-S method by Iwase-Sakai [6] and Iwase-Sakai-Tsutaya [7]. It results
that we don’t need to calculate the bar resolution of G X G but G fibrewise. This
significantly reduces the computer resources required, while the explicit answer
to our equation is still too long to print out. So we include the algorithm and
python code in Appendix, instead. We hope our method can be applied to more
general cases.
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We work in the convenient category NG, introduced by Shimakawa-Yoshida-
Haraguchi [10], and every chain groups are assumed to be F,-modules in this
paper, unless otherwise stated.

2. Results

In this section, R is assumed to be an F,-module. Let us recall the James
fibrewise theory.

DEFINITION 2.1 [8]. Fibrewise spaces and maps are defined as follows.

(1) A fibrewise space is a tuple (E, p,X) consisting of spaces E and X with
amap p : E - X called a projection. A fibrewise map from a fibrewise
space (F,q,Y) to a fibrewise space (E, p,X) is a pair (¢, f) of maps ¢ :
F - E and f : Y — X satisfying pop = foq as (¢,f) : (F,q,Y) —»
(E, p,X). (E,p,X) is often denoted simply by E, and (¢, f) by ¢.

(2) A fibrewise pointed space is a pair (E, s) of a fibrewise space E = (E, p,X)
and a section s : X — E of p, i.e, pos = idy. A fibrewise pointed map
from a fibrewise pointed space (F,r) to a fibrewise pointed space (E, s)
is a fibrewise map (¢, f) : (F,r) — (E,s) satisfying ¢or = sof. (E,s) is
often denoted simply by E, and (¢, ) by ¢.

For instance, we have a Borel construction EG Xg X over EG/G as a fibrewise
space for a topological group G and a G-space X, where we denote by EG some
contractible free G-space. Further, for an adjoint action of G on itself, we obtain
the Borel construction denoted by EG X,q4 G as a fibrewise pointed space over
EG/G, which is, in fact, a fibrewise group.

James has also introduced a fibrewise version of an ordinary cohomology as
a direct summand of the oridinary cohomology of the total space. From now
on, we use a subscript B to indicate that the notion is ‘fibrewise notion’ over
some base space, even if the base space is not the same as B. Similarly, we use
a superscript B to indicate that the notion is ‘fibrewise pointed’.

For a fibrewise pointed space (E, p,X, s), the base space X is a retract of E,
and hence H*(E,s(X);R) = ker s* : H*(E;R) — H*(X;R) can be regarded as a
direct summad of H*(E;R).

DEFINITION 2.2 [8]. For a fibrewise pointed space E = (E, p, X, s), H(E;R) =
H*(E,s(X);R) is called its fibrewise pointed cohomology. Then a fibrewise map
¢ : (F,q,Y) — (E, p,X) induces a homomorphism ¢* : Hy(E;R) C H*(E;R) —
H*(F;R), while a fibrewise pointed map ¢ : (F,q,Y,r) = (E, p,X,s) induces a
homomorphism ¢* : H;(E;R) - Hyz(F;R) C H*(F;R).

For any map f : Y — X, we have a fibrewise pointed space Ey = (Y X
X,pry,Y,(idy Xf)eA), where pr, : X; XX, — X, denotes the canonical projection
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to the t-th factor, t=1, 2, and A : X —» X X X denotes the diagonal. Based on
the ideas introduced by James [8], Iwase-Sakai [6] introduced a fibrewise version
of (unpointed) L-S category as follows.

DEFINITION 2.3 [6], DEFINITION 1.6. Let E = (E, p,X,s) be a fibrewise
pointed space and ¢ = (¢, f) : F = (F,q,Y) —» E = (E, p,X) be a fibrewise map.
Then the fibrewise (unpointed) L-S category of ¢, denoted by caty(¢), is the least
integer k > 0 such that there is a cover of F by (k+1) open subsets {U;} on each
of which ¢|Uj is fibrewise homotopic to so foq|y,. Then we define a fibrewise
(unpointed) L-S category of E by caty(E) = caty (idg).

REMARK 2.4. If we stay in the fibrewise pointed category, we obtain James
original fibrewise L-S category catg(E) of a fiberwise well-pointed space E, using
fibrewise pointed spaces and maps.

Firstly, for an extensive use of homotopy theory, we alter the definition of
L-S category, following George W. Whitehead by replacing an open cover {U;} of

a space X with a closed cofibration F; & X covering X. Then we say cat(X) <t
t+1 t+1
if the t+1-fold diagonal A‘*! : X — IIX is compressible into the fat wedge T X,
t+1 11
where T X is defined by induction on k>1 by (ILX, TX) = (X, %) and

k+1 k41 k k k

(I X, TX)=(IX xX, TX X X UTIXX ).
Secondly, we also alter the definition of fibrewise L-S category by replacing an
open cover {U;} of E with a closed cofibration F; & E covering E for a fibrewise
pointed space E = (E, p,X,s). Then we say caty(E) <t if the t+1-fold fibrewise

t+1 t+1
diagonal A?l : E - TIgE is compressible into the fibrewise fat wedge TRE,
t+1 1 1
where TgE is defined by induction on k>1 by (IIgE, TzE) = (E, s(X)) and
k+1  k+1 k k k

(HBE, TBE) = (HBEXBE, TBEXBE U HBEXBS(X)).

REMARK 2.5. If we consider a monoidal motion planning, we must choose

a fibrewise homotopy h; to keep the diagonal part fixed and thus, we obtain a
t+1 41
fibrewise pointed map from E to TgE C IIxE as a fibrewise pointed compression
t+1
of the fibrewise diagonal AEH . E > IIzE.

DEFINITION 2.6 [6], DEFINITION 6.3. For a fibrewise pointed space (E, p, X, s),
we have the fibrewise pointed loop space Qg(E) = (Qp(E), p, X, s) as follows:

Qp(E) ={(b, )X X P(E) | pot =c(b), £(0)=¢(1)=s(b)},

p =pr, | Qu(E) : Q(E) C X x P(E) = X,
s(b) = (b,cos(b)), c(b) = (the constant path at b),
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together with an A -structure for Qg(E) defined in ' 9§ as follows:

t+1 t+1
(1) E?l(QB(E)) is the fibrewise homotopy pull-back of X & IIzE « TRE.

(2) Plé(QB(E)) = (Pé(QB(E)), Di+15 X, St41) is the fibrewise homotopy pull-back

Agfl t+1 t+1
of E—— IzE « TRE, where p; !, (b) = P' Q(p~'(b)),b € X.
t+1 t+1
(3) ef : Pé(QB(E)) — E is induced from the inclusion TRE < TIgE by the

t+1
fibrewise diagonal A?l : E — IIzE, as an extension of ¢, : PPQF — F,

where F is the fibre of p.
(4) p® B (Qp(E)) — PL(QR(E)) is induced from s : X — E.
t+1 s AL 41
We remark that the section of ITzE is given by Abflos : X - E —— IIzE.
When the base point or a section for a fibrewise space is a closed cofibration,
Iwase and Sakai showed that a fibrewise L-S category can be characterized in
terms of fibrewise A -structure.
. . E
Fact 2.7. [6, Theorem 7.2] For a fibrewise pointed space E, we denote by e,

E
the composition Pé(QB(E)) < PP (Qg(E)) ACN E for t>0. Then we have

caty(E) <t < ef has a right homotopy inverse.
It enables us to define a stronger homotopy invariant, module weight.

DEFINITION 2.8 IWASE-SAKAI [6], DEFINITION 8.3. For u € H(E;R) C
H*(E;R), we define

cupg(E;R) = Max{t>0 | 3{uy, ..., u; EHR(E;R)} uy- -+ -u; #0},
wgtp(u;R) = Max{t>0|V¢ : F>E caty(¢)<t = ¢*(u)=0},
wgt,(E;R) = Min{tZO ‘ (etE)* is monic},

Im(ef)* is a direct summand of

Mwgt.(E;T) = Min{t>0
wgtp(E;T) mz H*(Py(Qg(E)); ) as a T-module

where I' is an F,-subalgebra of A, the modulo 2 Steenrod algebra.

Now, let us clarify the relationship between the above invariants and fibrewise
L-S category. In [6], wgt,(u; R) is defined with Wgtg(u;R) which is introduced to
give a lower bound for Catg(E) the original James fibrewise L-S category. Since
we do not know the equality of caty(E) and Catg(E) as well as the equality of
tcM(X) and tc(X) until now, let us state the following.

PROPOSITION 2.9. For a fibrewise pointed space (E, p,X,s), we obtain the
following.
(1) wgtg(u-v;R) > wgty(u; R) + wgty(v; R) for u,v€H*(E, X;R) {0},



6 IWASE — MIYATA

(2) wgty(u; R) = Max{t>0 ‘ (ef_1 *(u)=0} for ue H*(E,X;R) ~ {0},
(3) wgtg(E;R) = Max{wgty(u) | u€ H;(E; R) ~ {03},

PROOF. (1) Let us assume that wgty(u;R) = m and wgty(v;R) = n, and
that ¢ : (F,q,Y) — (E,p,X) be a fibrewise map with catg(¢) < m+n. Then
there is a cover of F by m+n open subsets {U;}, at most, each on which ¢|U; is
fibrewise homotopic to so foq|U;. Let U = U U---UU,, and V = U411 --UUp4p
to satisfy caty(¢|U) < m and caty(¢|V) < n. Hence ¢*(w)|y = (¢|U)*(w) = 0 in
Hy(U;R) and ¢*(v)|y = (¢|V)*(v) = 0 in H(V;R). Then we obtain ¢*(u-v) =
¢*(u)-¢*(v) = 0 by the definition of cup-products, which implies wgt,(u-v;R) >
m+n.

(2) Let wgty(u; R) = m. We can easily see that the filtration X = Pg(QB(E)) C
Pé(QB(E)) C - C Pé(QB(E)) gives a fibrewise version of a cone decomposition
of a fibrewise space P]§(Q]3(E))7 t > 1. It implies that CatE(Pé(QB(E))) <t and
Catg(etE) < t, and hence we obtain (eﬁ_l)*(u) =0 and Max{t >0 ‘ (ef_l)*(u) =
0} > m = wgty(u; R). Conversely assume that Max{t >0 ‘ (ef_l)*(u) =0}=m. If
(¢, f) : (F,q,Y) — (E, p,X) satisfies catj(¢) < m, then there exits an open cover
of F by at most m open subsets U; on each of which ¢|U; is fibrewise homo-
topic to so foq|y,. By standard arguments of homotopy theory, we may assume
that there exits at most m closed cofibrations F; < F. Then by extending the

m m+1
homotopy onto F to obtain a fibrewise map r : F — TgE C Iz E a fibrewise com-
m—1
pression of the fibrewise diagonal AF' : E — Iz E, which gives a fibrewise map

% : F - P (Qg(E)) which is a lift of ¢ : F > Eon el | : P (Qp(E)) - E.
Since (efn_l)*(u) = 0, we have ¢*(u) = 0, and it implies (2).

(3) wgty(E) = >0 if and only if (ef)* is monic and (ef |)* has non-trivial
kernel, which is equivalent to that, for any u#0 in Hz(E; R), (ef )*(u)#0 but there
is an element v € Hy(E;R) such that (ef_l)*(v) =0, in other words, wgty(u) <t
for all u€ Hz(E; R) but wgty(v) = t.

PROPOSITION 2.10. We have caty(E) > wgty(E; R) > cupg(E;R).

PROOF. Let CatE(E) = t. Then there isa map s : E — PE(QB(E)) such that
efos = idg, which implies that s*o(ef)* = (idg)*. Thus, (ef)* : Hy(E;R) —
H(P5(Qgp(E));R) is monic, and hence cat}(E) > wgty(E;R). The latter part is

obtained from wgt,(u; R)>1 by Proposition 2.9 (1).

REMARK 2.11. Though it is not necessary in our arguments, [6, Theorem 1.7
& 1.10] says the following equalities for the fibrewise well-pointed space d(X) =
Eiq, , while we skip the details.

(1) to(X) = caty (d(X)),  (2) cup,(X; R) = cupy(d(X); R).
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Also the proof of [6, Theorem 1.11] claiming wgt_(u;R) = Wgtg(u;R) for
u€ Hy(d(X); R) works fine to obtain wgt_ (u; R) = wgtg(u; R) for u€ H;(d(X); R),
while we skip the details, too.

Using the above observations, we obtain the following.

Theorem 2.1. Let m > 2. Assume that a group G acts on S™ freely,
satisfying cat(X) = wgt(X;F,) = m where X = S™/G, and thus the weight of
the generator z € H™(X;F,) = F, is equal to m, where F, denotes the prime
field of characteristic 2. Let Z = z @ z be the generator of legm(d(X);[Fz) =
H>™(X x X,A(X);F,) @ F,. Then we have the following.

(1) The three statements (i), (i) and (iii) below are equivalent.

(2) The statements (i), (ii) or (iii) implies caty(d(X)) = tc(X) = 2m.

(i) Mwgt,(d(X);Fp)>2m, (i) wgty(d(X);Fp)>2m, (i) wgty(2;F,)>2m.

PROOF. Since we know that wgt,(z ® z) < wgty(X;F,) < Mwgt,(X;F,) <
caty (X) < cat(X xX) < dim(X xXX) = 2m, it is straitforward to obtain (iii) = (ii)
= (i) = cat; (X) = tc(X) = 2m. So we are left to show (i) = (iii): let wgt;(z®z) <
2m and (efm_l)*(Z(X)Z);éO. Let W = XxX and W, = W-D?" the once punctured
submanifold. Then we have W ~ W, Uy D™ where f is an attaching map, and
hence we obtain H*(E;F,) = H*(Ey;[F,) @ H*(D*™,S*""1;F,), where the latter
direct summand is isomorphic to [, generated by z® z. Since caty(E,) < 2m—1,
the inclusion E; < E has a lift to efm_l : P;m_l(QB(E)) — E. Thus the direct
summand H*(Ey; F,) mapped to a direct summand of H*(Pém_l(QB(E)); F,) by
(efm_l)*. By the hypothesis, the entire module H*(E;[F,) mapped to a direct

summand of Pgm_l(QB(E)) by (efm_l)*, and hence we obtain Mwgt,(d(X)) < 2m.

We remark that wgt,(z®z) < 2m may not imply tc(X) < 2m. We must know
about a higher Hopf invariant to show a result similar to that for L-S category.

From now on, G, M and p stands for Qg, S>/Qg and the canonical projection
of the principal Qg-bundle S3 » M, respectively. We show the following in §3.

Theorem 2.2. The generator z € H>(M;F,) = [, satisfies wgt(z) = cup(z) =
3 which implies
cup(M) = wgt(M) = cat(M) = dim(M) = 3.

PROPOSITION 2.12. 5 < cupg(d(M)) < caty(d(M)) < 2cat(M) = 6.
The following statement is our main result.
Theorem 2.3. tc(M) = caty(d(M)) = 6.

In view of Theorem 2.1 and Proposition 2.9, it is sufficient to show the
following lemma.

Lemma 2.4. (e2™)*(z ® 2)=0 in H*(P3(Qp(d(M))); F).
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3. Proof of Theorem 2.2 and Proposition 2.12

First, we introduce a modified Bar construction of a group G as the realization
of a nerve of the category of one object with morphism set G, where we only use
face relations for the realization so as to obtain C*(G;[F,) = C*(P®G;F,). Then
by Segal [9, Appendix A], it follows that P®G ~ K(G,1). The cell-structure of
the modified Bar construction is as follows:

PG =|JPG, PG= U {ailgllgh
£>0 (81,--81)€G!
where {g;| ---|g;} is a t-simplex, (g;,...,&;) € G', G = G~ {e} if t > 1, the unique
0-simplex denoted by {} if t =0. The boundary of {g;| --- |g;}, t>1 is given by the
following formulas:

{g2||gl}9 l:O’
el 18i-118i8i4118i42] -+ &), 0<i <, gigin1 # e,

9i{gil -+~ 181} = 3 .
{81l 18i-118iv2l -+ 18}, 0<i<t, gg41=¢

g1l 18k i=t.

The following is well-known (see [1, (IV.2.10)]) for H*(G;F,) = H*(P*G;F,).

FacT 3.1. H*(P®G;F,) = A* @ Fy[w], A* = F,o[x,y]/(x3, 3, x2+y>+x-y),
w € H*(P®G;F,) and x, y € H'(P®G;F,), where x=[a] and y=[B] are given
by afa™b"} = m and B{a™b"} = n on C1{(P®G), respectively. In particular,
H3(P®G;F,) = F, with a generator z = x*-y = x-y?.

Second, we construct a cell complex BG ~ K(G,1) as a minimal complex
realising the group cohomology H*(G;F,) defined by K. Fujii [5], which is ac-
tually much smaller than P®G: taking quotient from S**3 = {(xo,..,x;) €
HAY | |xo|24 -++ +]x;|? =1} by the following action of G € Sp(1), Fujii defined a
series of manifolds N*(2) = S¥*3/G, t>0:

8(xq, s X;) = (8Xq, - » 8X;)
for g € G ¢ Sp(1) and (xy, ..., x;) € S¥+3 c H+L

Since UZO §4+3 i5 contractible, the canonical projection py, : S® = U:io SH+3
Uzo N!(2) =: BG is a universal principal G-bundle. This tells us that a canon-
ical inclusion i : M = N°2) < BG gives a classifying map of the principal
G-bundle q : S3 » M, since q = go|s3-

We know the following finite cell decomposition of N*(2), t > 0.

Fact 3.2 Fusn [5, Page 253-254]. S¥*3 js a G-cell complex with the cell
decomposition

{ge4k, geéltk+1, gegk+1’ geéltk+2, gegk+2’ ge™+3 | 0<k<t, g€ G}
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whose boundary formulas in the cellular chain complex with coefficients in F, is
given as follows:

9e® = 0, fetk+4 — z ge4k+3 (k > 1),
geG
aeéltk+1 — (a—l)e‘”‘, aegk+1 — (b—1)64k,
cie‘l‘kJr2 = (a+1)e‘1”‘+1 - (b+1)e‘2‘k+1, 6e‘2”‘+2 = (ab+1)e‘1”‘+1 + (a—l)e‘z‘k“,
de*+3 = (a—-1)ef**+? — (ab—1)ej* .

The above cell decomposition of S**3 induces a cell decompostion of N*(2),
t>0 as follows.

Fact 3.3 Fuin [5, Lemma 2.1]. The manifold N*(2) can be decomposed as
the finite cell complex whose cells are given by

{e‘”‘, e‘l‘k“, egkﬂ’ ezltk+2’ ezztk+2’ etk+3 | ngSt}

with the following boundary formulas in the cellular chain complex with coeffi-
cients in F, associated with the cell decomposition of N*(2), t>0, above:
3e® =0, de* =23 (k>1),

ae?k+1 — O, aegk+1 — 0,

aezltk+2 _ 2e411k+1 _ 2e‘2‘k+1, aegk+2 _ Zefk“,

ae4k+3 =0.

We remark that the naturality of the above decomposition implies that N*(2)
is a sub-complex of N*(2) if 0 < k < t, and hence M is a sub-complex of BG.
Then, we describe the cohomology groups of N*(2) with coefficients in [F,.

Fact 3.4. The cohomology groups of BG = UZO NU(2) are given as follows:

F,®&F, k=1,2 mod 4,

H*(BG;F,) =
F, k=3,0 mod 4.

Since BG ~ P®G, we obtain its multiplicative structure as H*(BG; Z/(8)) =
A* @ Frlw].

PROPOSITION 3.5. H*(M;F,) & A*. Further, we have H3(M;F,) = F, with
z=x%y=xy%.

Proor. The additive structures are obvious, and so we show the multiplica-
tive structure for F,-coefficient. Since (M) = G, there is a classifying map
i © M < BG inducing the following fibration with fibre S3, where the map
S3 » M is the universal covering of M:

i
S3 » M < BG.
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Since the action of G preserves the orientation, the fibration is simple, and hence
the E,-term of the Serre spectral sequence with coefficients in F, for the above
fibration is described as follows:

EY? = HP(BG;F,) @ HI(S;F,) = A* ® F[w] ® A(s3),

where s is the generator of H3(S3;F,) = F,. Then E;"*, r >2 has no non-trivial
differential other than dj in the following diagram, where HP = HP(BG;[F,).

3| Fyss

0| F1 g H2 H? Ruw

o 1 2 3 4

Since w € Eg’l can not survive in E -term, we have w € Imd,, and hence
dy(s3) = w. Thus H*(M; [F,) is isomorphic to E;‘* = A" and we have done.

NOTATION 3.6. We denote by ¢ and 1 the cochains dual to e*> € C3(M) and
e € Cy(M), respectively, in Hom(C*(M);F,). Since S* = | J{go | g € G} where
o runs over all cells of M, p*¢{(go) = 1 if and only if o = €3 for any g € G and
p*1(go) =1 if and only if o =« for any g € G.

Theorem 2.2. Since z = x%-y # 0 in H*(M;F,), we have wgt(z) = cup(z) =
3, and hence we obtain the following.
cup(M) = wgt(M) = cat(M) = dim(M) = 3.

Let usdenote X =x®1+1®@xand Y =y ® 1+ 1Q® y, respectively, which
are in the zero-divisors-ideal ker A* = Hz(d(M);F,). Thus, we have X3.Y2#0
and hence we obtain the following proposition.

Proposition 2.12. 5 < cupy(d(M)) < catz(d(M)) = tc(M) < 2cat(M) = 6.

4. Proof of Lemma 2.4

In general, Pé Qg(d(M)), t>0, the fibrewise projective t-space of the fiberwise
loop space of d(M) has a misterious structure, while the following lemma is known
(cf. [7, Proposition 2.1]).

Lemma 4.1. There is a fibrewise homotopy equivalence fo : Qp(d(BG)) —
S® Xaq G, such that

(1) fo : Q(d(BG)) — S® X,q G is a fibrewise Ag-map.
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(2) fo induces a fibrewise homotopy equivalence f : P Qp(d(BG)) = 8% Xaq
PG, where P]; Qg(d(BG)) is the fibrewise projective t-space and P'G is
the t-skeleton of P®G with adjoint action of G on P®G given by

higilg| - |8} = {hg1hlhg,yh| --- |hg.h},

where h€G and {g1|82| --- 18} s a t-cell in P®G indexed by (g1, ...,8;) €
G, t>0.

PROOF. We know, by a result of Benson [2, Proposition 2.12.1], there is a
fibrewise pointed homotopy equivalence f; : Qg(d(BG)) = S® X,q G over BG.

(1) Since fy satisfies that fo(a-B) = fo(a)-fo(B) on each fibre and each fibre of
EG X,q G is a discrete set, we obtain that f; is a fibrewise Ag-map.

(2) Thus f, induces a fibrewise maps f : Pj Qp(d(BG)) — S X,q P'G and
fe @ EfQp(d(BG)) — 5% Xuq E'G for all t > 0 and the following commutative
diagram of fibrewise spaces.

Eg* Qp(d(BG)) —— P; Qp(d(BG)) ——— d(BG)

S§® x,q E""'1G —— S® X, P'G ——— > d(BG)
By employing a similar arguments as in [7, Proposition 2.1].
i
By restricting the fibrewise structure to a subspace M < BG, we obtain

a fibrewise pointed space E; = d(BG)|y = (M X BG, pry, M, (id Xi)oA) and the
following.

Theorem 4.2. There is a fibrewise Ay-map fy : Qp(E;) — S3 X,q G over
M = S3/G, i.e,

(i) fo : Qg(E;) — S3 X.q G is a fibrewise homotopy equivalence.
(ii) fo induces a fibrewise homotopy equivalence f : Pé Qp(E;) = S3 x,q P'G,
t>0.

M<— S3x,4 P'G ~ Py Qp(E))

| ]

BG <—— S® Xx,4 P'G S Py, Qg(d(BG))

Diac. 1
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Proor. We know that Plg Qp(E;) = i*(Pltg Qg(d(BG))) is a fibrewise space over

1
M given by the pull-back of M & BG « Pé Qg(d(BG)), and there is a fibrewise
homotopy equivalence f : P Qp(E;) = S° X,q P'G since S X,q P'G is the pull-
i -
back of M & BG « S®X,qP'G and f : Py Qp(d(BG)) = S®X,q P'G is a fibrewise
homotopy equivalence by Lemma 4.1.

Next, we give the boundary formulas for S3 X,q P'G, t>0. The cell structure
of $3 X,q P'G can be described by product cells of S3 and P!G as follows.

S3 X,q P'G = U ox{w}/ ~,

o€{G-cells of S3}, weG!

where ‘~’ is given by gox{gwG} ~ ox{w}, g€ G. Let us denote by [c|{w}] the
equivalence class of ox{w}. By Proposition 3.2, we obtain modulo 2 boundary
formulas for S3 x,q P'G.

PROPOSITION 4.1. The boundaries of product cells
[e* [{eo}], ey [{eo}], [e54 Heod], [ef 2 el], [e3° 2 {}], [e* 3 ]{w}], k=0,
are described as a chain in the chain complex with coefficients in F, as follows.
d[e®[{ew}] = [e°[{0e}],

dle*|{w}] = ) [e* | {gwgl] + [¢*[{ow}] (k= 1),
geiG

dlef ! {w}] = [e* |{e}] + [e*[{awal] + [¢]*|{da},
dley ! [{w}] = [e* |{e}] + [e*[{bwb}] + [e5** {0},
dlef 2 {w}] =[] [{w}] + [ |{eo}]

+ [l {awal] + [e3* [{Bwb}] + [} |{dw},
e 2 {w}] = [e¥*{w}] + [+ {w}]

+ [} [{abwab}] + [e3*! [{awa}] + [€3* 2| {da},
dle*+31{w}] = [¢]* 2 {w}] + [+ {w}]

+ [+ |{abwab}] + ] [{awa}] + [¢*+3|{dw}],

t

where we abbreviate [o|{0w}] = > (=D)i[o|{0;w}] for o a G-cell of S* and
o<i<t
dim(@,-clu)=t—1
weG'.

From Theorem 4.2, there is a fibrewise homotopy equivariance f : Pg Qp(E;) 5
S3 X,q P°G. On the other hand, we have a fibrewise map 1 = Pg Qp(idy, xi)
Pg Qp(d(M)) - Pg Qg(E;) over M in Diag. 2, which is commutative and Pg Qg(E)

L
is the pull-back of M & BG « Pg Qg(d(BG)).
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M < B3 Qy(d(M))

’

M <—— P> Qp(E)
Diac. 2

Now, let us denote by C,.(X) the celluar chain complex with coefficients in
F, and by C*(X,R) = Hom(C,(X),R) the cellular cochain complex with coef-
ficients in F,-module R. We define three cochains ¢ € C5(S® X,q P°G;F,) =
CO(S3 Xaq P®G;F,), ¢! € C(S3 Xuq P°G;F,) = C3(S? X,q P®G;F,) and v €
CL(S? Xaq P'G;F,) = CH(S3 Xoq P®G;F,) by the following equations on a gen-
erator [a|{hy| -~ |}], t > 0 in C.(S® Xaq PXG):
clol{hy] -+ |h}] = p*¢(0)-a®Bihy | -+ |he},
lol{h] - b} = p*¢(o)-a*{hy| - |,
vlol{h| - |h 3] = p*1(0)-Bihy| -~ |}
Then we show that ¢, ¢/ and v are well-defined: since a™b"akb! = gm+(-D"kpn+l
for any g = a™b" and h = a¥b!, we obtain
ghg = am+(—1)"k+(—1)’mbl,
and hence a(ghg) = k = a(h) and f(ghg) =1 = B(h) in F,. Hence they satisfy
clgolgih| -+ |h}] = p*¢(go)-a*Bighigl - Igh:g}
= p*{(0)-a?Bihy| -+ |h} = clol{hy| - |k},
c{golgih| -+ |h}} = p*¢(go)-a*{ghi gl --- I1ghg}
= p*{(@)-a*{hy| -~ |} = '[o]{hy] - |},
vigolgih| -+ |h 3] = p*1(go)-Bigh gl -~ Igh.g}
= p*1(0)-Bihy| -+ A} = v[ol{hy] -~ [Ae}].
Thus ¢, ¢’ and v are well-defined. Since z, a and B are cocycles, we have the
following.
PROPOSITION 4.2. ¢, ¢’ and v are cocycles satisfying ¢ = v—c’ in C*(S3 Xuq
PROPOSITION 4.3. (el)*(z ® z) = [c] in HO(S? X,q P®G;F,).
PROOF. Firstly, since the fibre bundle p : S® X,q P°G — M is fibrewise

homotopy equivalent to the product bundle pr; : M X P®G — M, their Serre
spectral sequences are naturally isomorphic. Secondly, (eZ)*(z ® z) is non-zero
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and in the image of j* : HO(S? Xaq P®G, p~{(M®P);F,) — HO(S? x,q P¥G;F,),
since it is trivial in H(p~1(M @); F,). Thirdly, we have
HO(S® Xaq PXG, p7H(MP); Fy) = B (8% Xoq P¥G)
> B3 (M x P¥G) = Hom(C3(M), H*(P*G; ) = F,¢,

where the generator ¢ is the homomorphism taking ¢(e®) to the non-trivial el-
ement in H3(P®G;F,) & F,z, z = [a?]. Finally, ¢ is the corresponding homo-
morphism to [¢] € H®(S3 X,q P®G;F,) (cf, [11, XII1.4]) by definition. Thus, we
obtain () (z ® z) = j*¢ = [c].

We consider the linear equation on u € C>(S3 X,q P°G;F,) = C(S? Xuq
P*G;F,) as follows.

(Eq. 1) Ssu=c in C8(S3x,q P°G;F,).

d(M)
€5

/ﬂw\
P Qp(d(M))—— P> Qp(d(M)) —— d(M)

A i A ‘/idM xi

q |

§3 X4 PPGC—s 83 X,y PG ——— E;
"

o

Diac. 3

Since (Eq. 1) exceeds the acceptable size for our manipulation, we are forced
to consider a similar but smaller linear equation on u’ € C*(S3 x,q P*G;F,) =
C*(S? Xoq P®G; ) as follows.

(Eq. 2) Su' =c in C(S? xuq P*G;[Fy).

Here, we may consider the equation (Eq. 2) in C>(S3X,qP°G;F,) as du’ = ¢/ with
indeterminacy on generators [#|{hy|h,|hs|hs|hs}] in Cs(S3 Xuq P°G) = C5(S3 Xaq
P*®@). The following describes the relationship between (Eq. 1) and (Eq. 2).

PROPOSITION 4.4. If u' is a solution for (Eq. 2), then u = v—u' gives a
solution for (Eq. 1).

PROOF. Let u’ € C*(S3 X,q P*G;F,) = C*(S> X,q P¥G;F,) be a solution
of (Eq. 2). Then, v—&u’ coincides with v—c’ in CO(S3 x,q P°G;[F,): for any
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generator [o|{hy] -+ |h}] in Cg(S3 X,q P°G),
(v—ouNlol{hy| - [}l = vl*|{h}] - Su'[o|{hy| -+ |y}
= v[*[{h}] - [ol{hy] - 1] = (V= cDlol{h] - ]
without indeterminacy, since 3 < k < 5. Then it implies v—d6u’ = v—c’ in

CO(S3 X,q P°G;F,), and we obtain du = S(v—u') = v-6u’ = v-c =cin
CS(S? X,q P°G; F5), since 6v = 0.

To show the existence of the solution u’ of (Eq. 2), we use the matrix rep-
resentations of homomorphisms x*c’, u’ and § which are respectively denoted
by a 1 X ds matrix Ty, a 1 X dy matrix T,y and a ds X dy matrix Ts, where we
denote d; = dim[pz(Ci(S3 Xaa P*G;F,)), namely, d, = 3192 and ds = 5537, while
dimg, (C3(S3 Xaq P3G; F,)) = 22344. Then (Eq. 2) is realized using matrices above
as the following linear equation on x = 'T,,:

(Eq M) tT5x = tTCI.

We remark that the existence of the solution for (Eq. M) implies that for (Eq.
2), and hence that for (Eq. 1) by Proposition 4.4.
Now let us recall the following statements from the theory of linear algebra.

Theorem 4.3. There is a solution of (Eq. M), provided that the following
equation holds:

(Eq. R) rank 'Ts = rank ['Ts|'Ty],
where [tT5|tTc/] is the augmented coefficients matriz of the equation (Eq. M).

The size of the augmented coefficients matrix of (Eq. M) exceeds the size
for manipulation, we are forced to use a computer program to show (Eq. R).
Fortunately, our python program stops saying that (Eq. R) is correct. Thus
there is a solution u’ of (Eq. 2), and we obtain éu’ = x*¢’. Then by Proposition
4.4, u = v—u' gives a solution of (Eq. 1), and we obtain [x*c] = [u] = 0.

Lemma 2.4. (£")*(z ® 2)=0 in H*(P(Qg(d(M))); F,).
PrOOF. Since i* : H*(BG;[F,) —» H*(M;[F,) is surjective by the proof of

Proposition 3.5, we know that z ® z = (i X id)*(z ® z). Then using a solution u
of (Eq. 1), we obtain

My (z @ z) = (2™)*(idy xi)*(z ® 2)
= (foA)*1*(elL)"(z ® 2) = (fod)*x*[c] = 0,

where x : S® X,q P°G & S3 X,q P®G denotes the canonical inclusion.
It implies (eg(M))*(z ® z)=0 in H*(P;(QB(d(M))); ), and we are done.
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Appendix A

The following is the source code written in Python 3 to compute the rank of
the differential § : C*(S® X,q P*G;F,) = C>(S3 X,q P*G; F5).

import numpy as np

from itertools import count, product

# z in H {Element}(P"{Head}\Omega{M})

Manifold = 3 # = dim{M}
Element = 2 # = deg{z} =< dim{M}
Head = 4 # >= dim{M}

# Special Cocycles
def u(a) : # x
return a % 2
def v(a): # y
return a // 4
def z(i): # x~2
return u(il[0]) * u(il1])

# Cell decomposition of M

SpaceForm = [e0,ell,el12,e21,e22,e3] = ["eO","ell","el2","e21","e22","e3
n
]

# Group Structure

Group = [e,x,xx,xxx,y,xy,xxy,xxxy] = [0,1,2,3,4,5,6,7]

Mul = [
[0,1,2,3,4,5,6,7],
[1,2,3,0,5,6,7,4],
[2,3,0,1,6,7,4,5],
[3,0,1,2,7,4,5,6],
[4,7,6,5,2,1,0,3],
[5,4,7,6,3,2,1,01,
[6,5,4,7,0,3,2,1],
[7,6,5,4,1,0,3,2]]

Inv = [e,XXX,XX,X,XXy,XXXy,¥,Xy]

# Adjoint Action
def adj(a,b):

return Mul[Inv[al]l[Mul[b]l[al]
def adl(a,lst):

return [adj(a,i) for i in 1lst]

# Boundaries of the fibre - the resolution of the group
def difi(i,lst):
n = len(1lst)

if i ==
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return 1lst[1:]
elif i == n:
return 1lst[:n-1]
else:
1 = 1st[:]
1[i-1:i+1] = [Mul[lst[i-1]1]1[1st[i]]]
return 1
def partial(s,lst):
ansl = [(s,difi(i,1lst)) for i in range(len(lst)+1)]
ans2 = []
for i in amslil:
if i in ans2:
ans2.remove (i)
else:
ans2.append (i)

return ans2

# Boundaries of the Fibrewise resolution
def boundary(s,w):
if s == e3:
return [(e21,w),(e21,adl(x,w)),(e22,w),(e22,adl (Mull[x][y]l,w))] +

partial(s,w)

elif s == e21:
return [(ell,w),(ell,adl(x,w)),(el2,w),(el2,adl(y,w))] + partial

(s,w)

elif s == e22:

return [(ell,w),(ell,adl(Mul([x][y],w)),(el2,w),(el12,adl(x,w))] +

partial(s,w)

elif s == ell:

return [(e0,w),(e0,adl(x,w))] + partial(s,w)
elif s == el2:

return [(e0,w),(e0,adl(y,w))] + partial(s,w)
elif s == e0:

return partial(s,w)
else:

return 'miss!'’

# Cells of the Reduced Projective Space up to dimension 'degree'
NonDegenerates = [7, 3, 6, 2, 5, 1, 4] # 823

1st = [[011,00,01,00,00,00,01,101,1011]

for a in range(Head):

for i,j in product(NonDegenerates,blst[a]):

if j == [1:

w = [i]
else:

w = [i] + j

1st[a+1].append(w)
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# Counting Cells of each dimension.

Degree = Element + Manifold # upper degree
degree = Degree - 1 # lower degree
#

LowerCells = [] # degree cells

for i in lst[degreel:
LowerCells.append(str((e0,i)))

for i in 1st[degree-1]:
LowerCells.append(str((ell1,i)))
LowerCells.append(str((e12,1i)))

for i in lst[degree-2]:
LowerCells.append(str((e21,i)))
LowerCells.append(str((e22,1i)))

for i in lst[degree-3]:
LowerCells.append(str((e3,i)))

#

UpperCells = [] # Degree cells

for i in lst[Degreel:
UpperCells.append(str((e0,i)))

for i in 1lst[Degree-1]:
UpperCells.append(str((ell1,i)))
UpperCells.append(str((el12,1i)))

for i in 1st[Degree-2]:
UpperCells.append(str((e21,1i)))
UpperCells.append(str((e22,i)))

for i in 1st[Degree-3]:
UpperCells.append(str((e3,i)))

TheNumberofLowerCells = len(LowerCells)
TheNumberofUpperCells = len(UpperCells)

LabeltoNum = {LowerCells[i]:i for i in range(TheNumberofLowerCells)}

print ('The Number of ' + str(degree) + '-cells is ' + str(
TheNumberofLowerCells) + '.')
print ('The Number of ' + str(Degree) + '-cells is ' + str(

TheNumberofUpperCells) + '.')

# Initializing Augmented Coefficients Matrix
TheNumberofLowerCellsPlusAns = TheNumberoflLowerCells + 1
TheNumberofUpperCellsPlusAns = TheNumberofUpperCells + 1

print ("The size of the coefficients matrix delta is {0}x{1}.".format (
TheNumberofUpperCells , TheNumberofLowerCells))

# Constructing Delta the set of coodinates whose entries are 1.
num = 0

Delta = [] # the set of coordinates whose entries are 1.
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i in 1lst[Degreel: # (e0,i) in UpperCells
c = 1[I
J = boundary(e0,1i)
for k in boundary(e0,i):
if k in c:
c.remove (k)
else:
c.append (k)
for j in c:
j = str(j)
if j in LowerCells:
Delta.append ((num,LabeltoNum[j]))
num += 1
i in 1lst[Degree-1]: # (el1l,i) and (el12,i) in UpperCells
c = 1[I
for k in boundary(ell,i):
if k in c:
c.remove (k)
else:
c.append (k)
for j in c:
j = str(j)
if j in LowerCells:
Delta.append ((num,LabeltoNum[j]))
num += 1
c =[]
for k in boundary(el2,i):
if k in c:
c.remove (k)
else:
c.append (k)
for j in c:
j = str(j)
if j in LowerCells:
Delta.append ((num,LabeltoNum[j]))
num += 1
i in lst[Degree-2]: # (e21,i) and (e22,i) in UpperCells
c =1
for k in boundary(e21,i):
if k in c:
c.remove (k)
else:
c.append (k)
for j in c:
j = str(j)
if j in LowerCells:
Delta.append((num,LabeltoNum[j]))

num += 1

19
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c = 1[I
for k in boundary(e22,i):
if k in c:
c.remove (k)
else:
c.append (k)
for j in c:
j = str(j)
if j in LowerCells:
Delta.append ((num,LabeltoNum[j]))
num += 1
for i in lst[Degree-3]: # (e3,i) in UpperCells
ans = z(i)
if ans == 1:
Delta.append ((num, TheNumberofLowerCells))
c =[]
for k in boundary(e3,i):
if k in c:
c.remove (k)
else:
c.append (k)
for j in c:
j = str(j)
if j in LowerCells:
Delta.append ((num,LabeltoNum[j]))
num += 1

AugCMat = np.zeros ((TheNumberofUpperCells, TheNumberofLowerCellsPlusAns),
dtype = bool) # Augmented Coefficients Matrix

for i in Delta:
AugCMat [i[0]]1[i[1]] = 1

CMat = np.delete (AugCMat,TheNumberofLowerCells,1)

print ("The size of the augmented coefficients matrix Delta is {0}x{1}.".
format (TheNumberofUpperCells,TheNumberofLowerCellsPlusAns))

# Transform AugCMat into the reduced row echelon form.
EAugCMat = AugCMat # row echelon form of AugCMat
count = TheNumberofUpperCells
for j in range(0,TheNumberofLowerCells):

num = -1

for i in range(0,TheNumberofUpperCells):

if num == -1: # no i st M[i][j] = 1
if i < count:
if EAugCMat[i]l[j] == 1:
num = i
else:

break
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else: # For i > num, add EAugCMat [num] to EAugCMat[i]
if EAugCMat[i][j] == 1:
EAugCMat [i] = EAugCMat[i] ~ EAugCMat [num]
if num > -1: # move num culumn to the bottom
EAugCMat = np.append(EAugCMat, [EAugCMat [num]],axis = 0)
EAugCMat = np.delete(EAugCMat ,num,0)
count -= 1 # one more principal line
RankCMat = TheNumberofUpperCells - count
# row echelon form of CMat
ECMat = np.delete(EAugCMat , TheNumberofLowerCells,1)
for i in range(0,count):
ECMat = np.delete(ECMat, 0, 0)
print ("The rank of the matrix delta is {0}.".format (RankCMat))
num = -1
for i in range (0, TheNumberofUpperCells):

if num == -1: # no i st M[i] [TheNumberofLowerCells] = 1
if i < count:
if EAugCMat [i] [TheNumberofLowerCells] == 1:
num = i
else:
break
else: # For i > num, add EAugCMat [num] to EAugCMat [i]
if EAugCMat[i] [TheNumberofLowerCells] == 1:

EAugCMat [i] = EAugCMat[i] ~ EAugCMat [num]
if num > -1: # move num culumn to the bottom
EAugCMat = np.append (EAugCMat , [EAugCMat [num]],axis = 0)
EAugCMat = np.delete (EAugCMat ,num,0)
count -= 1 # one more principal line
RankAugCMat = TheNumberofUpperCells - count
# row echelon form of AugCMat
for i in range(0,count):
EAugCMat = np.delete (EAugCMat, 0, 0)
print ("The rank of the matrix Delta is {0}.".format (RankAugCMat))

# Display a special solution
if RankCMat == RankAugCMat:
Sol=[]
for i in range(RankCMat):
b = EAugCMat [i] [TheNumberofLowerCells]

if b == 1:
for j in range (0,TheNumberofLowerCells):
if ECMat[i][j] == 1:

Sol.append(j)
break
LengthofSolution = len(Sol)
if LengthofSolution > 0:
print ("The length of one particular solution is {0}.".format(
LengthofSolution))
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print ("The particular solution is {0}".format(LowerCells[Sol
[0]11), end="")
for i in range(1,len(Sol)):
print (" + {0}".format(LowerCells[Sol[il]l), end='")
print (".")
# Verify the solution
for i in range(TheNumberofUpperCells):
num = AugCMat[i] [TheNumberofLowerCells]
for j in Sol:
num = num -~ CMat[i][j]
if num !'= O:
print ('NG!")
break
if i == TheNumberofUpperCells-1:
print ('0K!")

The above python program produces the following outputs:

The Number of 4-cells is 3192.

The Number of 5-cells is 5537.

The size of the coefficients matrix delta is 5537x3192.

The size of the augmented coefficients matrix Delta is 5537x3193.
The rank of the matrix delta is 2214.

The rank of the matrix Delta is 2214.

The length of one particular solution is 823.

The program outputs a list of cells in the form of ('e0', [7, 7, 7, 61). In
fact, [0,1,2,3,4,5,6,7] = [e,a,a?,a’,b,ab,a’b,a’b] in our program. To com-
press the list, we transform them into the form of [e0]|7|7|7|6] which means
the cell [e°|{a®b|a®b|a’b|a®b}]. Then one particular solution is given by u, =
[€0]7]|7]7]6]+[e0]7|7|6|6]+[e0|7|7|6]2]+[e0]|7]|7]2|5]+[e0]|7|7|2|1] +[e0]7|7]|5]3] +
[e0]7]7]5]6]+[e0]|7|7|5]5]+[e0|7]|7|5|1]+[e0]|7|7|1|3]+[e0|7|7|1|2]+[e0]|7|3|6|5]+
[e0]7]|3]6]1]+[e0]7|3|5|3]+[e0|7|3|1]|5]+[e0]|7]|6]7|5]+[e0]|7|6]7|1]+[e0]7|6]|3]|3]+
[€0]7]6|3|2]+[e0]|7]|6|3|5]+[e0]|7|6]|3|1]+[e0]|7]6|6]|2]+[e0]|7|6|6|1]+[e0]7|6]2]|7] +
[e0]7]6]2]3]+[e0]7]6]2|6]+[e0]|7|6|2]2]+[e0]|7]|6]|2|1]+[e0]|7|6|2|4] +[e0]7|6]|5]|3] +
[€0]7]6]5]|4]+[e0]7]6]1|7]+[e0]|7|6|1]|3]+[e0]|7]|6]1|2]+][e0]|7|6|1|4]+[e0]7|2]|7]6]+
[€0]7]2]3|7]+[e0]7]2|3|2]+[e0]|7]2|3|4]+[e0]|7|2]|6|6]+[e0|7|2|6|2]+[e0]|7|2|2|6]+
[e0]7]2]2|2]+[e0]7]2]2|5]+[e0]|7]2]|2|4]+[e0]|7]2]|5]2]+[e0|7]2|5|5]+[e0]|7|2|5|1]+
[€0]|7]2|1|7]+[e0]7]|2]1]|3]+[e0]|7|2]|1|6] +[e0]|7]2|1]|4]+[e0]7]|2]|4|2] +[e0]7|5]|7|6] +
[€0]7]5]|3]7]+[e0]7|5|3|2] +[e0|7|5|3]|4]+[e0]|7]|5]6|3]+[e0]|7|5|6|6]+[e0]|7|5]|6]2] +
[€0]7]5]6]5]+[e0]7|5]2|2] +[e0|7|5|2]4]+[e0]|7]|5]5|3]+[e0]|7|5|5|6]+[e0]|7|5]|5]2]+
[e0]7]5]5]1]+[e0]7]5]1|3]+[e0]|7]|5]|1]|4]+[e0]|7|5]|4|2]+[e0|7|1|7|3]+[e0]|7|1]|7|2]+
[e0]|7]1]|7|5]+[e0]7]|1|3]|3]+[e0|7|1]|3|5]+[e0]|7]|1|6|3]+[e0]|7|1]2|3]+[e0]7|1]|2]6]+
[€0]7|1]2]2]+[e0]7|1|2|4]+[e0|7|1]|5]2]+[e0]|7|1]|5|5]+[e0]|7|1|5|4]+[e0]|7|1]|1]|3]+
[€0]7|1]1]4]+[e0]7|1|4|3]+[e0|7|1|4]|2]+[e0]|7]|1]|4|5]+][e0]|7|4|7|1]+[e0]7|4]|3]|7]+
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€0|7|4|3|6]+[e0|7|4|6|7]+[€0|7|4|6]|3
€0|7|4/5|2]+[€0|7|4|5|4]+[e0]|7|4|1]|2
€0|3|7|7|5]+[e0|3|7|7|1]+[e0|3|7|3|7
€0|3|713|4]+[e0]3|7|6/5]+[e0]|3|7|6]1
€0|3]7|5|2]+[e0|3|7|5|5] +[e0]3|7|1|6
€0|33/6/7]+[€0]3]|3|2[1]+[e0|3|3|5|7
€0|3|3|1|1]+[e0|3]6|7|3]+[e0|3|6]|7|6
€0|36/3|3]+[e0]3|6/3|6]+[e0]|3|6|3|5
€0|316/6/1]+[e0|3|6]6|4]+[€0|3|6|2|7
€0|36/5|3]+[e0]3|6/5|5]+[e0]|3|6/5|1
€0|3|6/1|4]+[e0]3|6|4|7]+[e0|3|6/4|5
€0|3|2/6/6]+[e0]3|2|6]2]+[e0]|3|2|6|5
€0|3[2[2[1]+[€0]3|2]2[4]+[€0]3]2]5|7
€0|312(5|5]+[e0|3|2|5|1]+[e0|3]|2|1]2
€0|3|5|7|6]+[e0]3]5|7|1]+[e0|3|5|3|3
€0|3|5/6/6]+[e0]3|5|6/5]+[e0]|3|5|6/1
€0|3|5|2|4]+[e0]3]5|5|5]+[e0|3|5]|5|4
€0|35/4|1]+[e0|3|1|7|1]+[e0|3]|1]3]|7
€0|3[1/6/6]+[e0|3|1]6/5]+[e0|3|1|2|6

[ [ ] 1+[e0|7|4|6]6]+[e0]|7|4|2|2] +[e0]|7|4|2|4
[ [ | |
[ [ ] |
[ [ ] ]
[ [ ] |
[ [ | |
[ [ | |
[ [ | ]
[ [ | ]
[ [ | |
[ [ | |
[ [ | |
[ [ | |
[ [ ] ]
[ [ | |
[ [ | |
[ [ | |
[ [ ] ]
[ [ ] |
[€0|3]1]5]|6]+[0|3|1|5|4]+[e0|3|1|1]2]
[ [ | |
[ [ | |
[ [ 1+ |
[ [ ] |
[ [ | |
[ [ | |
[ [ ] |
[ [ ] |
[ [ | |
[ [ | |
[ [ | |
[ [ ] |
[ [ | |
[ [ | |
[ [ | |
[ [ | |
[ [ | |
[ [ | |
[ [ | |
[ [ | |

[ [ ] ]
[e0]7]|4]4]2]+[e0]3|7|7|3]+[e0]3|7]7]2]
[€0]3]7]3|3]+[e0]|3|7|3|6]+[e0]3]|7]3]5]
[€0]3]7]2|3]+[e0]3]7]2]|5]+[e0]3]7]5]|7]
[€0|3]|7]1]4]+[e0|3|7|4|5]+[e0]3|7]|4|1]
[€0]3]3]5]3]+[e0]3|3|5|5]+[e0]3|3]|1]6]
[e0]3]6]7]2]+[e0]|3|6]7|5]+[e0]3]|6]3]|7]
[e0]3]6]3|4]+[e0]3|6]6]3]+[e0]|3]6]6]|6]
[e0]3]6]2|3]+[e0]3]6]2|5]+[e0]3]6]2|1]
[e0|3]6]1]|7]+[e0]|3|6]1|2] +[e0]3|6]1]5]
[€0]3]2]7]1]+[e0]3|2|3|7]+[e0]3]|2]|3]6]
[e0]3]2]6]4]+[e0]3]2]2|2] +[e0]3]|2]2]5]
[€0]3]2|5|3]+[e0]|3]2|5]|6]+][e0]3]|2|5|2]
[e0]3]2]1|1]+[e0]3]2]4|2]+[e0]|3]5]7|7]
[e0]|3]5]3]6]+[e0]|3|5|3|5]+[e0]3|5]|3]4]
[€0]3]5]2]7]+[e0]3]|5]2|2] +[e0]3]|5]2]5]
[e0]3]5]1|5]+[e0]|3]|5]4|2]+[e0]|3]|5]4|5]
[€0]3]1]|3|6]+[e0|3]1|3]|5]+][e0|3|1]6|3]
[e0|3]|1]2]2]+[e0]|3|1|2|4]+[e0]3|1]5]7]
[e0|3]|1]4|2]+[e0]|3|4|6]|5]+[e0]3|4]|6]1]
e0|3|4|5|3]+[e0|3]4|1|5]+[e0]6]7|7]|3]+[ [ ] ]
€0|6]7|5|3]+[e0|6|7|5|2] +[e0|6]7|5]|4]+ [ ] ]
€016|3]7|2]+[e0]6]3]7|5]+[e0]6|3|7]|1]+[ [ 1+ ]
€0/6|3]6|3]+[e0]6|3|6|5]+[e0|6|3|6]1]+[ [ ] ]
€0/6|3]2|1]+[e0]6]3|5|7]+[e0]6]|3|5]|6]+[ [ ] ]
€0|6|3]|1]|4]+[e0]6]3]4|7]+[e0]6|3|4]|3]+[ [ ] ]
€0/6|6]7|5]+[e0]6]6|3|7]+[e0]6]6]|3]|4]+[ [ ] ]
e0]6]6|5|6]+[e0]6]6|5]|1]+[e0]6]6]1|3]+[ [ | ]
€0/6|2|7|2]+[e0]6]2]6|7]+[e0|6]2|6]1]+[ [ ] ]
€0/6|2|5|7]+[e0]6]2]5|6]+[e0]6]2|5]2]+[ [ ] ]
e0|6|2|1|2]+[e0]6]2]1|5]+[e0|6]2|1]|1]+[ [ ] ]
e0/6|2|4|4]+[e0]6]5]7|3]+[e0]6]5|7]2]+[ [ ] ]
e0|6|5|3|6]+[e0]6]5|3|2]+[e0|6]5|3]|5]+[ [ ] ]
€0|6|5]|6|5]+[e0]|6]|5|6|4]+[e0]6]5|2]6]+[ [ ] ]
€0/6|5|5|3]+[e0]6]5]5|6]+[e0]6]5|5]2]+[ [ ] ]
e0|6|5|1|1]+[e0|6|5]|1|4]+[e0|6]|5|4]|6]+[ [ ] ]
e0]6]1|7|2]+[e0]6]1|3|6]+[e0]6]1|3|5]+[ [ ] ]
e0/6|1]|6|1]+[e0|6]1]2|7]+[e0|6]1]|2]2]+[ [ ] ]
€0|6|1]5|2]+[e0]6]1]5|5]+[e0|6]1|5]4]+[ [ ] ]
€0|6]4|7|2]+[e0|6|4|7|5] +[e0]|6]4|3|3]+] [ ] ]

€0|67|3|3]+[e0]67|3|6]+[e0|6]|7|3]|2
€06/7|1|5]+[e0|6|7|4|3]+[e0|6]|7|4|5
€0]6/3|3|2]+[e0]6/3|3|5]+[e0]|6|3|3|1
€0]63|6/4]+[€0]63|2|3]+[€0]6]3|2|2
€0]6/3|5|2]+[e0|6|3|1|2]+[e0|6]3]|1]5
€0]6/3|4|2]+[e0]6|3|4|1]+[e0|6|3|4|4
€06/6/2|5]+[e0]6|6|2|4]+[e0]6]6]5]3
€0/6/6|4]|1]+[e0|6|6]4|4] +[e0]6]2|7|7
€0]6/2|2|7]+[€0]6|2|2|2] +[e0]|6|2|2|4
€0]6/2(1|7]+[e0]6/2|1|3]+[e0|6]|2|1]6
€0(6]2|4]7]+[€0]6|2|4|2] +[€0]6|2|4|1
€0]6/5|7|5]+[e0]6/5|7|1]+[e0|6]5|3|3
€0]6/5|3|1]+[e0]6]5|6|7]+[€0|6]5|6]6
€0|6/5/2|2]+[e0]6]5|2|5]+[e0]6]5]|5|7
€0]6]55/5]+[e0]6]5|5|4]+[e0|6]5|1|2
€0]6]5/4|2]+[e0]6]5|4|5]+[e0|6|1]|7|3
€0|6/1|6/3]+[e0|6/1|6|6]+[e0]|6|1|6]2
€06/1|2|5]+[e0]|6]1|2|1]+[e0|6]1]5|7
€0|6/1|4|6]+[e0|6]1|4|5]+[e0|6]4|7|7
€0|6/4|3|2]+[e0|6|4|6|7]+[e0|6]4|6]|3

+++++++++++++++++++++++FFF+F+F++++++++++++++
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€0]6/4/6|1]+[e0]6|4|2|7]+[e0|6]4|2|3
€06/4[1|7]+[e0|6|4|1|6]+[e0|6|4|1|2
€0|6]4|4|2]+[e0]|6|4|4|5] +[€0]|2|7|7|5
€02|7|6|7]+[e0]2|7|6|6]+[€0]2]|7|6|2
€02|7|2|2]+[€0]2|7|2|5] +[€0]|2|7|2|4
€02|7|5|1]+[e0]2|7|1|5] +[e0]|2|7|1|4
€0213|7|7]+[e0]2|3|7|3] +[e0]2|3|7|1
€0]213|6/3]+[e0]2|3|6|6]+[€0]2|3]6]|2
€02[3|2|5]+[€0]2|3|2|1] +[€0]|2|3|2|4
€02[3|5|1]+[€0]2|3|1|6]+[€0]|2]|3|1]|2
€0]216/7|2]+[€0]26|7|5]+[€0]2|6]|3|7
€0]216/6/5]+[e0]2|6|6|1]+[e0]|2|6|6|4
€02(6/2|1]+[€0]2]6|2|4]+[€0]2]6]5]3
€02(6/1|7]+[€0]2]6]1|3]+[€0]2]6]1]|2
€0]212|7|3]+[€0]2|2|7|6]+[€0]2]2|7]2
€02|2|3|6]+[e0]2|2|3|2] +[e0|2|2|3]|5
€02[2(6/4]+ [€0]2]2]2]7]+[€0]2]2]2]3
€02|2|4|7]+[e0]2]5|7|3]+[€0]2|5|7|6
€0]25/6/7]+[€0]25|6|3]+[€0]2]5]6]2

[ [ ] 1+[e0]6]4]2]2] +[e0]|6|4|5|6] +[e0|6]4|5|1
[ [ | |
[ [ ] |
[ [ | ]
[ [ ] |
[ [ | |
[ [ | |
[ [ | |
[ [ ] |
[ [ | |
[ [ | |
[ [ | |
[ [ | ]
[ [ ] ]
[ [ | |
[ [ | |
[ [ | |
[ [ ] ]
[ [ | |
[€0]2]5]5]|6]+[e0]2]1]7]|3]+[e0]2]1]7]6]
[ [ | |
[ [ ] |
[ [ 1+ |
[ [ | |
[ [ | |
[ [ | |
[ [ ] ]
[ [ | ]
[ [ | |
[ [ | |
[ [ | |
[ [ ] |
[ [ | |
[ [ | |
[ [ | |
[ [ ] |
[ [ ] |
[ [ | |
[ [ | |
[ [ | |

[ [ | |
[e0]6|4|1]5]+[e0]6|4|1|1]+[e0]6]4]4|7]
[€0]2]|7]3]7]+[e0]2|7]3]|2]+[e0]2]7|3|4]
[€0]2]7]|6]4]+[e0]|2]7|2]3]+[e0]2|7]2]|6]
[€0]2]7]|5|3]+[e0]|2]7|5]|6]+[e0]2|7|5|2]
[e0]2|7]4]2]+[e0]2|7|4]|5]+[e0]2]7]4|1]
[€0]2|3]3]7]+[e0]2]|3]3]|6]+[e0]2]3]3|1]
[e0]2]3]|6]4]+[e0]|2]3|2]6]+[e0]2]|3]2|2]
[€0]2|3]5]3]+[e0]2]|3]5]|6]+[e0]2]3]5]|2]
[e0]2|3]4]2]+[e0]2|6]7]|7]+[e0]2]6]7|3]
[e0]2]6]3]5]+[e0]2|6]3]|4]+[e0]2]6]6]|7]
[e0]2]6]2]7]+[e0]2]|6]2]2]+[e0]2]6]2|5]
[e0]2]6]5]2]+[e0]2|6]5]1]+[e0]2]6]5]|4]
[€0]2]6]|1|5]+[e0]|2]6]4]|7]+[e0]2|6]4|2]
[e0]2]|2]7]5]+[e0]2|2]|7|1]+[e0]2]2]|7|4]
[e0]2]2]3]1]+[e0]2]|2]6]|3]+[e0]2]2]6|2]
[e0]2]2]2]6]+[e0]2]|2]5]|3]+[e0]2]2]5]6]
[e0]2]5]3]5]+[e0]2]|5]3]|1]+[e0]2]5]3]4]
[e0]2]|5]6]1]+[e0]2|5|6]|4]+[e0]2]5]2|6]
[e0]2|1]7]4]+[e0]2|1]3]|7]+[e0]2]1]3]6]
€0]2|1]6|3]+[e0]|2]1]|6|2] +[e0]|2]|1]|6]5] +] [ ] ]
€0|2[1]1|7]+[e0]2]4]|7|3]+[e0]|2]4|7]2] +] [ ] ]
e0|2]4|3]|6]+[e0|2|4|3|4] +[e0]|2]4|2]|7]+[ [ 1+ ]
€0|5|7|3|1]+[e0|5|7|3|4] +[e0]|5]7|6]3] +| [ ] ]
e0|5|3]7|2]+[e0]5|3]|7|5] +[e0]|5|3|7|1] +[ [ ] ]
€0|5|3|3|1]+[e0]5|3]6|6]+[e0]|5]3]|6]5] +] [ ] ]
e0|5]3|4]|3]+[e0|5|3]4|1]+[e0]5]6]|7|7]+ [ ] ]
e0|5|6|7|4]+[e0|5|6]3|6]+[e0]|5]6]|3]2] + [ ] ]
€0|5|6]6|2]+[e0]|5|6]2|7] +[e0]|5]6]|2]3] +| [ ] ]
€0|5|6]2|4]+[e0]5|6]5|2] +[e0]|5]6]|5]|1] +] [ ] ]
€0|5]6]1]|5]+[e0|5|6|1|4]+[e0]|5]6]|4|7]+ [ ] ]
e0]5[2|3|6]+[e0]5]2]|3|5] +[e0]|5]2|3]1] +] [ ] ]
€0|5|2]6|2]+[e0|5|2]|2|3] +[e0]|5]2|2]6] +] [ ] ]
€0|5|5|3|7]+[e0]5|5]3|3] +[e0]5]5]|3]2] +[ [ ] ]
€0|5|5]6|5]+[e0]5|5]|6|1]+[e0]|5|5]|5]6] +] [ ] ]
€0|1|7|3|7]+[e0|1|7]6|7]+[e0|1]|7|6]3] +] [ ] ]
e0|1|7|2|5]+[e0|1|7]|5|5] +[e0|1|7|1]7] +] [ ] ]
e0|1|7|1|1]+[e0|1|7]|4|7]+[e0|1|7|4|3]+] [ ] ]
€0|1|3]7|1]+[e0]|1]3]3|7]+[e0]|1]3]|6]3]+[ [ ] ]
e0]1]6]7|3]+[e0]|1]6]7|5]+[e0]1]6]|3]6]+] [ ] ]

€0|2|1|6]1]+[e0|2|1|6]4] +[e0]2]|1|2|6
0|2|4|7|5]+[€0]2]4|7|1] +[e0]2]4|3|7
e0]5|7|7|3]+[e0]5|7|7|6] +[e0]5]|7|3|7
e0|5]7|6]2]+[e0|5|7|6|5]+[e0]|5]7|5|3
€0|5|3|3|7]+[e0|5|3|3]6] +[e0]5]3|3]2
€0/5|3|2|7]+[e0|5|3]2|6]+[e0|5|3|1]|4
€0|5]6|7]|2]+[e0|5|6]7|5]+[e0]5]6]7|1
€0|5]6|3|5]+[e0|5|6|3|1]+[e0]|5]6]|6|7
€0|5]6|2]|6]+[e0|5|6|2|2] +[e0]|5]6]|2|5
€0|5/6/1|3]+[e0|5|6]1]6]+[e0]5|6]1|2
€0|5/6|4|3]+[€0]5]2|7|3] +[e0|5]2|3|3
€0|5]2|3]|4]+[e0|5|2|6|7]+[e0]|5]2]|6|3
€0|5]2|5]|3]+[e0|5|5|7|3]+[e0]|5]5]|7|6
€0|5|5|3|1]+[e0|5|5|6|6] +[e0]5]5|6|2
€0(1]7|7]7]+[e0|1|7|7|2] +[e0]|1|7|7|4
€0|1|7|6|5]+[e0[1]7|6|1] +[e0|1]7|2|7
e0|1|7|1]6]+[e0|1]|7|1|2]+[e0]1]7|1]5
€0|1]3|7]|6]+[e0|1|3|7|2] +[e0]|1]3]|7|5
€0|1/3]6|5]+[e0|1|3]2|6]+[e0]1]|3|1|7
€0[1]6]3]2]+[e0|1]6]3|5]+[e0]|1|6]6|3

+++++++++++++++++++++++FFF+F+F++++++++++++++
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€0|1/6/6/5]+[e0]|1|6|6]4]+[e0]|1]|6|2|3
€0|1/6/1|2]+[e0|1|6/1|5]+[e0|1|6]1|4
€0|1|2|7|3]+[e0]1|2|7|6]+[e0|1|2|7|5
€0[1]2|6]2]+[e0]|1|2|6|4] +[e0|1|1|7|5
€0|1[1|2|7]+[e0]4|7|2|3]+[e0|4|7[1|5

[ ] 1+1[e0[1]6|2|2] +[e0]1]6]2|5] +[e0]1]6]2|4]
[ ] 1+ [ ] ]
[ ] 1+ [ ] ]
[ | 1+ [ ] ]
[ ] 1+ [ ] ]
€0]4|3]7|5]+[€0]4]3|3| 7]+ [€0]4|3]|3]2] +[e0|4]3|3|4] +[e0]4|3]6|7] + [e0]|4]3] 6]6]
[ ] 1+1 [ ] ]
[ ] 1+ [ ] ]
[ ] 1+ [ | ]
[ ] 1+ [ ] ]
[ 1+1 [ ] ]
]

€0|1|6/4|3]+[e0|1|6]4|2]+[e0|1]|6|4|5
€0[1]2|7]1]+[e0|1|2|7|4] + [e0] 12|63
€0[1[1|3|7]+[e0|1|1|3|6]+[e0|1|1|6]1
€0]4|7|1|1]+[e0]|4|7|4|5]+[e0]4]3]|7|6

€0|4|3|6/5]+[e0]4|3|6|1]+[e0|4|3|2|2]+[e0|4|3|2|5]+ [€0|4|3|2|4] +[€0]4]3|5]|3
€0]4|3|5|2]+[e0]4|3]1|5]+[e0]|4|3|4|2]+[€0]4]6]|7|3]+[€0]4]6]|7|1] + [e0|4]6] 7|4

€04(6/3|7]+[€0]4|6|3|3]+[€0]4]6]3]|2

+
+
+
+
+
+
+
+
€0]416|3|5]+[0]4|6|3|4]+[0|4|6]6|7] +
+

€04(6/2|7]+[€0]4|6|4|3]+[€0]4|2|7|2] + [0|4|2|7|5]+ [€0]4|2|7|1] + [€0]4]23|7

[

[

[

[

[

[

[

[

[

[

[e0]4]2|3]3]+[e0]4|2]3]|6]+[e0]4|2|3]|4]+[e0]4|2|6] 7]+ [e0]|4|2]|6|3] +[e0|4]2]2|3] +
[e0]4]|4|3]|3] + [e0]4]|4|6]7] + [e0]4]4|6|3] + [e12]7]7|2] + [e11]|7|7|5] + [e12]7]7|1] +
[e12]7|3]7] + [e11]|7|3]|3] + [e11]7]|3|4] + [e11]|7|6|7] + [e12]7]6]|7] + [e12]7]6]|3
[e12]7]|6]6] + [e11]|7]6]2] + [e12]7]6]|5] + [e12]|7|6|1] + [e11]|7|6|4] + [e11]7]|2]3
[e11|7]2]6] + [e11]7]2]2] + [e12]7]2|2] + [e11]|7|2|5] + [e11]|7]2|1] + [e12]7|2]4
[e11]7]5]3] + [e12]|7]5]|3] + [e12]7]|5]6] + [e11]|7|5]2] + [e11]|7]|1|7] + [e12]7|1]2
[e12]7|1]5] + [e12|7]1]4] + [e11]7]4|3] + [e11]|7|4|2] + [e12|7|4]|2] + [e11]7]|4|1
[e11]7|4]4] + [e11|3|7]|7] + [e11]|3]7|3] + [e11]3]|7|6] + [e11]|3]7|2] + [e12]3]|7|2
[e12]3]|7]1] + [e11]|3|7]|4] + [e12|3]|7|4] + [e11]3|3]7] + [e12]3]3]|7] + [e11]3|3]2
[e12]3]3]2] + [e11]|3]|3]1] + [e12]3]6]|7] + [e12]|3]|6|3] + [e12]|3]6]|6] + [e12]3]6]5
[e12]3]6]1] + [e11]|3]2]|7] + [e11]3]2|6] + [e12]|3]|2]2] + [e11]|3]2]|5] + [e11]3]2]|1
[e11]3]2]4] + [e12]3|2]4] + [e11]|3]5]7] + [e12]|3]5]3] + [e11]|3]5|1] + [e11]3]|1]7
[e11]|3]1]|6] + [e12]|3|1]6] + [e11]|3]|1]2] +

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[e11|3|1]5] + [e12|3]1]5] + [e11]3]4|7

e11|3]4|3] + [e11]3]4]6] + [e11]3]4]2] + [e12]3]|4|2] + [e11]|3]4[1] + [e12|6|7|7

e11]6]2|7] + [€12]6]2|7] + [e11]6]2]3] + [e11]6]2]2] + [e11]6]2|5] + [e12]6]2]1
e1116/5|7] + [€12]6]5|7] + [e12]6]5]3] + [e11]6]5|2] + [e12|6|5|2] + [e11]6]5|5
e12]6/5|1] + [e11]6]1|7] + [e12]6]1]|7] + [e12]6]1]6] + [e11]6]1]2] + [e11]6]1]5
€12|6]1|5] + [e11]6]1|1] + [e12|6]1]1] + [e11]6]1|4] + [e12|6]1|4] + [e12|6]4|7
12|6]4|3] + [e11]6]4|5] + [e11]6]4[1] + [e12]2|7|7] + [e11]2]7|3] + [e11]2]7]1
e12|2|7|1] + [e11]2]7]4] + [e12]2]3]7] + [e11]2]3|3] + [e12|2|3|3] + [e11|2|3]6
e11|2|3]5] + [e11]2]6]7] + [e11]2]6]3] + [e11]2]66] + [€12]2]65] + [e11]2]6]1
12|216]1] + [e11]2]2]7] + [e12]2]2]7] + [e12]2]2]3] + [e11|2]2|6] + [e11|2|5|7
e11|2|1|3] + [e11]5]7|7] + [e11]5]7]3] + [e11]5|3|7] + [e11]5|3|2] + [e11]5|3]4
e11]5]6|7] + [e11]5]6]3] + [e11]5]6]2] + [e11]5|2]7] + [e11]5|2|3] + [e11]5|2|6
e11]5|5|3] + [e11]1]7|7] + [e11]1]7]6] + [e11|1|7|2] + [e11|1|3|7] + [e11]1]3]3
e11|1]6]2] + [e11]1]2|7] + [e11|1]2|3] + [e11|1]|2]6] + [e11]|1|1|7] + [e12]4|7|1] +
12|413|7]+[e12|4|6|7]+[e12|4|6|3]+[e21]|7]|7] +[e21|7|6] + [e21]7]2] + [€21|7|1]+
€22|7|1] + [e22]7]4] + [e22]3]3] + [€21]3]6] + [e22]3]2] + [e21]3]5] + [e22]3]5] +

[ | [ 1+
] [ ] [ ] I+
| [ ] [ ] 1+
] [ ] [ ] 1+
] [ ] [ ] 1+
| [ ] [ ] 1+
] [ ] [ ] 1+
| [ ] [ ] 1+
] [ ] [ ] 1+
] [ ] [ ] 1+
1+ [ 1+ [ 1+ I+
] [ ] [ ] I+

e11]6]7|3] + [e12]6|7|2] + [12]6]7|5] + [e11]6|3|7] + [e12]6]3|6] + [e11]6|3|5] +

e11]6]3]4] + [e12]6|3|4] + [12]6]6]7] + [e12]6|6|3] + [e11]6]6]2] + [e11]6|6]5] +
] [ ] [ ] 1+
| [ ] [ ] I+
| [ ] [ ] 1+
] [ ] [ ] 1+
] [ ] [ ] 1+
| [ ] [ ] 1+
] [ ] [ ] I+
] [ ] [ ] 1+
] [ ] [ ] 1+
] [ ] [ ] 1+
] [ | [ ] 1+
]
1+
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[e22|3|4] + [€22]6]7] + [e21]63] + [€22]6]3] + [e21]65] + [€21|2]7] + [e22]2]3] +
[e21]2]2] 4+ [€22]2]2] +[e3]7]+[e3|3], where u, denotes the dual of u’ in C4(S>X,q
P4G;F,).
Thus (Eq. 1) has one solution, and it completes the proof of Lemma 2.4.
REMARK 4.5. If we consider (Eq. 2) in C>(S3X,qP>G; F,) = C>(S3X,qP®G; F,)

instead of C°(S3x,qP*G; F,), we have no solution as the python program produces
the following outputs.

The Number of 4-cells is 3192.

The Number of 5-cells is 22344.

The size of the coefficients matrix delta is 22344 * 3192.

The size of the augmented coefficients matrix Delta is 22344 x 3193.
The rank of the matrix delta is 2789.

The rank of the matrix Delta is 2790.

It should imply that z ® x? is non-zero in H*(S> X,q P°G;F,) and wgt(z ®
x%;F,) = 5.
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