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Abstract 8 

Axisymmetric geometries, such as cylindrical elements, are widely used in offshore structures. 9 

However, the presence of sharp edges in these geometries introduces challenges in numerical sim-10 

ulations due to singularities. To address this issue, one possible solution is to represent the singu-11 

larities using analytic eigenfunctions. This approach can provide insights into the essence of the 12 

problem and has successfully applied to two-dimensional (2D) corner problems. However, finding 13 

appropriate eigenfunctions for the three-dimensional (3D) edges remains an open challenge. This 14 

paper proposes a semi-analytic scheme for 3D axisymmetric problems utilizing a scaled boundary 15 

finite element method (SBFEM). A dimensional reduction is introduced to the 3D Laplace equation, 16 

and a 3D edge is handled on the generatrix plane while governed by a complicated equation. The 17 

algorithm for resolving the SBFEM fundamental space is improved, and the singularities are ap-18 

proximated using a fractional-order basis. The effectiveness of the proposed method is demon-19 

strated through its application to solve the radiation problem of a heaving cylinder. The method 20 

accurately captures the singular velocity field at the edge tip, ensuring that the boundary condition 21 

on the body surface is strictly satisfied in the neighborhood of the singularity. Accuracy of the mean 22 

drift force is ensured by performing direct pressure integrations over the body surface using a near-23 
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field formulation, which becomes as accurate as the middle-field formulation. 24 

 25 

Keywords: scaled boundary finite element method; axisymmetric singularity; potential flow 26 

1 Introduction 27 

With the advancement of offshore technology, the exploitation of marine resources has been 28 

stretched out to the open sea. Under increasing water depths and hostile environmental conditions, 29 

floating infrastructures are required with higher performance and reliability. Hydrodynamic analy-30 

sis plays a crucial role in the design and construction. Axisymmetric bodies not only play an im-31 

portant role in academic scenarios but also has wide applications in practical engineering. For ex-32 

ample, cylinders are representative as central components in spars platforms and as pontoons of 33 

semi-submersible platforms; circular discs are widely used as heave plates in spars and power take-34 

off devices of wave energy convectors (WECs). Specialized methods have been proposed by, for 35 

example, Hulme (1983), Kim and Yue (1989, 1990) and Teng and Kato (1999, 2002), to tackle 36 

axisymmetric problems. The hydrodynamic characteristics of these structures possess both aca-37 

demic and practical value, leading to an increasing number of studies in recent years with an engi-38 

neering purpose. For example, Wang and Yeung (2019) developed a hybrid integral-equation 39 

method for point-absorber WECs; Chanda et al. (2022) and Sarkar and Chanda (2022) investigated 40 

the structural performance of porous cylinders on a porous seabed; Das et al. (2022, 2023) studied 41 

the behavior of discs submerged in two- and three-layer fluids; Porter (2015) proposed an efficient 42 

method for wave radiation and diffraction by circular plates, and this work has been extended to 43 

permeable plates in an array by Zheng et al. (2023) and Liang et al. (2021) and to nearly circular 44 

plates by Farina et al. (2017). 45 

The potential flow model is widely used to simulate the hydrodynamics of large-scale offshore 46 

structures. It assumes ideal fluids with no vorticity, and the fluid velocity is represented as the 47 

spatial gradient of a velocity potential. While this model facilitates numerical calculations, the ac-48 

curacy of the fluid velocity, especially at the boundaries, is lower compared to the potential. 49 
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Refinements in discretization, including diminishing the element size (viz., h-method) and improv-50 

ing the interpolation order (viz., p-method), are generally effective for higher accuracy. However, 51 

these refinements encounter challenges when dealing with structures with sharp profiles. The pres-52 

ence of sharp edges on the body surface gives rise to singularities, where the velocity becomes 53 

infinite. 54 

From a mathematical perspective, singularities are commonly encountered in elliptic equations 55 

at sharp corners and edges where the boundary conditions are discontinuous. This difficulty has 56 

nearly become a common concern and is pronounced for the extensively studied cylindrical bodies. 57 

For example, Lee (2007) demonstrated that the pressure integration for the mean drift force be-58 

comes divergent in the case of a truncated cylinder, compared with the satisfying case of a sphere. 59 

Yang et al. (2020) investigated the impact of sharp edges on cylindrical bodies, revealing that the 60 

edge effect leads to erroneous gradients, wave forces, and time derivatives.  61 

If the field quantities are not of concern, indirect methods provide alternatives for boundary 62 

integrations. These methods are developed based on two main concepts. The first concept is using 63 

integration transformations. Researchers such as Molin (1979), Lighthill (1979), and Eatock Taylor 64 

and Hung (1987) devised indirect schemes to integrate the second-order potential on the body sur-65 

face without directly solving the challenging second-order potential itself. Cong et al. (2020) fur-66 

ther reduced the quadratic product of gradients in the body surface integrations using Gauss’ theo-67 

rem. Dai et al. (2005) and Chen (2007) proposed a middle-field formulation for second-order low-68 

frequency and mean drift forces using Gauss’  and Stokes’ theorems. The second concept is follow-69 

ing momentum conservation. Zhao and Faltinesen (1989) and Lee (2007) obtained accurate mean 70 

drift force by applying this principle. Sclavounos (2012) and Gadi et al. (2018) extended the appli-71 

cation to include full wave force components. These indirect methods are proposed for particular 72 

purposes but do not fundamentally address the singularity issue. 73 

Improving the numerical solvers is recommended as a straightforward and comprehensive ap-74 

proach to handling singularities. Over the years, various solvers have been developed and proposed 75 

to address this challenge. These solvers include boundary element methods (BEMs), e.g., Yang and 76 
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Ertekin (1992), Teng and Eatock Taylor (1995), Kashiwagi et al. (1998), Newman and Lee (2002); 77 

finite element methods (FEMs), e.g., Wu and Eatock Taylor (1994), Ma et al. (2001a, b); finite 78 

difference methods (FDMs), e.g., Bingham and Zhang (2007), Engsig Karup et al. (2009); har-79 

monic polynomial cell (HPC) methods, e.g., Shao and Faltinsen (2012, 2014a, b), Hanssen and 80 

Greco (2021). For a smooth variation (i.e., when the weak derivatives are continuous), the solution 81 

space can be embedded by appropriate regular basis spaces as 𝐻𝑘∈+, for example, the polynomial 82 

basis. Therefore, from a mathematical perspective, these solvers are impeccable. For a singular 83 

variation, however, the solution lies in a fractional-order space, and the regular basis becomes in-84 

adequate. To address this issue, several numerical methods have been developed by supplementing 85 

the regular test/basis space with singular representations. One such method is the multi-term Ga-86 

lerkin method (MGM), which improves upon the traditional matched eigenfunction expansion 87 

method (MEEM) by taking a fractional-order function as the test function to match the interfaces. 88 

The drawback is that it is applied to simple geometries, e.g., barriers (Porter and Evans, 1995; 89 

Martins Rivas and Mei, 2009), cylinders (Li and Liu, 2019; Li et al., 2019), and sectors (Chang et 90 

al., 2012). A boundary integral method, utilizing orthogonal functions for boundary interpolations, 91 

can achieve similar effects. Porter (2015) researched the linear diffraction/radiation problems of 92 

submerged discs, employing Gegenbauer polynomials to represent the square root of the solutions. 93 

This concept can also be referred to in Martin and Llewellyn Smith (2011) and Zheng et al. (2023). 94 

Notably, rapid numerical convergence was observed, leading to accurate computations of the body 95 

surface quantities. The extended finite element method (XFEM), also known as the generalized 96 

finite element method (GFEM), was introduced by Belytschko and Black (1999) as a means to 97 

model discontinuities. The shape functions of tip-neighboring elements are enhanced, leading to 98 

notable success in fracture mechanics and other related scopes. Following the same idea, Liang et 99 

al. (2015) incorporated the eigenfunctions of two-dimensional (2D) corner flow into the HPC 100 

model and conducted extensive studies on bodies such as boxes, flat plates, and hydrofoils. Based 101 

on their practice, Wang et al. (2021) employed an XFEM in hydrodynamics and achieved a similar 102 

effect. Additionally, a dual-function-based FEM has been developed to decouple the singular part 103 
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from the variational equation. Cai and Kim (2001) and Cai et al. (2002, 2006) have applied this 104 

method to Possion problems, while Choi and Kweon (2013, 2016) have utilized it for stationary 105 

Navier-Stokes problems. 106 

These enhanced methods are specifically designed to handle singularities. However, they typ-107 

ically rely on prior knowledge of the eigenfunctions of singularities. While within the potential 108 

flow theory framework, eigenfunctions for corners in the 2D Laplace equation have been known, 109 

they are not accessible for three-dimensional (3D) edges. As an alternative approach, we aim to 110 

analyze such problems using a semi-analytic approach. In this project, we employ the scaled bound-111 

ary finite element method (SBFEM) as the basis for our analysis. The SBFEM was initially devel-112 

oped by Wolf and Song (1996) for the dynamic soil-structure interaction and has since evolved into 113 

a versatile solver in multiple scopes, such as elasticity and fracture mechanics (e.g., Long et al., 114 

2014; Yang and Ooi, 2012; Hell and Becker, 2019), potential flow (Tao et al., 2007; Deeks and 115 

Cheng, 2003) and heat transfer (e.g., Bazyar and Talebi, 2015; Yu et al., 2021). In SBFEMs, solu-116 

tions exhibit analytic behavior in the radial direction. The radial solution is inherent and can be 117 

fractional order satisfying the boundary condition, which forms the basis for modeling singularities. 118 

There are two algorithms for solving the fundamental spaces of the SBFEM system. The first is the 119 

eigenvalue (as presented by Song and Wolf, 1997, 2000) or Schur decomposition (as presented by 120 

Song, 2004), which is the common algorithm for elasticity, elastodynamics, and Laplace problems. 121 

The second is an asymptotic expansion technique, which is employed in the elastodynamic equation 122 

in the frequency domain, as proposed by Song and Wolf (1998) and Yang et al. (2007). However, 123 

as the mathematical formulations differ, the existing algorithms are incapable of our design. And 124 

thus, we have made some improvements to address this issue. 125 

The primary focus of this study is to investigate the edge behaviors of axisymmetric bodies, 126 

serving as the initial step in the 3D analysis. This paper is structured as follows. Section 2 specifies 127 

generic basics on the edge singularities, including the dimensional reduction, the SBFEM concepts, 128 

and the derivation of the basis functions. Section 3 demonstrates the numerical formulations for 129 

problems involving edges by solving a linearized radiation problem. Two strategies are proposed 130 
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to implement the singularity simulation. Section 4 presents a case study involving a heaving trun-131 

cated cylinder. The potential and the velocity distributions on the body surface, the velocity field 132 

in the edge neighborhood, and pressure integration are presented. Finally, some conclusions are 133 

drawn. 134 

  135 
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2 Mathematical model of 3D axisymmetric singularities 136 

The fluid is assumed as incompressible and inviscid, and the flow is irrotational. The velocity 137 

of the flow is described as the gradient field of the velocity potential, governed by the Laplace 138 

equation 139 

 0 = , in 3, (2.1) 140 

where 3 is a computational fluid domain in the 3D space and (𝐱, 𝑡) the velocity potential, de-141 

pendent or independent of the time variable. But as the singularity discussed is a spatial behavior 142 

of the Laplacian, herein we omit the time variable 𝑡 in expression and denote by 𝑆(x) the local 143 

potential field containing a singular point. 144 

2.1 Dimensional reduction for 3D axisymmetric problems 145 

The disturbance by an axisymmetric body is focused. Without loss of generality, a body with 146 

an upward symmetric axis is exampled in Fig. 1. It is considered in an open area, and the body is 147 

not in contact with other bodies, such that we can always identify an axisymmetric region of the 148 

fluid, denoted by 3, surrounding the body. The solutions are determined by the conditions on the 149 

enclosed boundary, represented as 3 = b
3 ∪ ex

3
, where b

3
 corresponds to the surface of 150 

the body and ex
3

 refers to other boundaries. By exploiting the geometric symmetry, the problem 151 

is expressed in terms of cylindrical coordinates where the 𝑟-𝑧 plane coincides with the generatrix 152 

and the circumference angle  encircles the 𝑧-axis. A Fourier expansion is employed for the solu-153 

tion in the form of 154 

 ( ) ( ) ( ) ( ) ( )cos sin

0 1
, cos , sin ,l ll

r z l r z l r z 
=

  =  +  +    (2.2) 155 

where 0 𝑙
cos, 𝑙

sin are the dimensional-reduced potentials in the axial section, which are thus 156 

governed by the two-variable equations 157 

 ( )
2

0l l

l
r

r
   −  = , in 2, (2.3) 158 

where 𝑙 refers to any of them. 2, b
2
, and ex

2
 are, respectively, the dimensional-reductions 159 
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of 3, b
3
, and ex

3
, as shown in Fig. 1. The superscripts 2 and 3 indicate the spatial dimension. 160 

 

Fig. 1 Cylindrical coordinates for a 3D axisymmetric problem and 

the dimensional reduction to the generatrix plane 

 

Fig. 2 Polar coordinates at a 2D corner on 𝑟-𝑧 plane 

From a geometrical viewpoint, a 3D axisymmetric edge is the rotational path of a 2D corner 161 

in the generatrix section. With this understanding, tackling this issue becomes straightforward. If 162 

the corner behaviors in 𝑙(𝑟, 𝑧) can be described, the edge representation in  is a weighted com-163 

bination of the formers. However, the challenge lies in properly solving Eq. (2.3) while handling 164 

the singularities with care. To address it, we focus our attention on the singular local solution de-165 

noted by 𝑆𝑙(𝑟, 𝑧), defined in a neighborhood, 𝑜
2, of the corner tip (𝑟𝑜, 𝑧𝑜) with a small radius 

𝑜
, 166 

as illustrated in Fig. 2. 167 

At the tip, a local polar coordinate system 𝑜 − 𝛼 is established to describe 𝑜
2.  and 𝛼 rep-168 

resent the radial and circumferential variables, respectively, defining 𝑜
2  as {(, 𝛼) ∈ [0, 

𝑜] ×169 

[𝛼𝑜, 𝛼𝑜 + 𝛽]}. 𝛽 is the angle of the corner on the generatrix plane, and 𝛼𝑜 is the angle determining 170 

the orientation. Both angles are free variables that can vary from 0 to 2π. To simplify the notation, 171 

a radial variable  is introduced as a dimensionless radius, defined as  =  
𝑜

⁄ . The transformation 172 

between the two coordinate systems is given by 173 
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( )

( )

cos

sin

o o o

o o o

r r

z z

  

  

= − −

= − −
. (2.4) 174 

Two boundaries enclose 𝑜
2 , i.e., ∂𝑜

2 = R ∪ C . R  denotes the radial boundary as R =175 

{(, 𝛼)|0 ≤  ≤ 1, 𝛼 = 𝛼𝑜 or 𝛼𝑜 + 𝛽}, which is a subsection of ∂body
2

. The R condition is Neu-176 

mann-type, as 177 

 ( )
R

b

1 l

o

f 
  




=


, (2.5) 178 

where 𝑓b is the forcing term along the reentrant sides. C denotes the circumferential boundary as 179 

C = {(, 𝛼)| = 1, 𝛼𝑜 ≤ 𝛼 ≤ 𝛼𝑜 + 𝛽} . The C  condition will be specified later in Section 2.4. 180 

Herein, an eigenanalysis of the governing equation and the R condition is concerned. 181 

In the search for the eigenspace, 𝑆𝑙 can be divided into two components, 𝑆𝑙
h and 𝑆𝑙

p
, based on 182 

the condition given by Eq.(2.5). 𝑆𝑙
h represents the homogeneous part, while 𝑆𝑙

p
 represents the non-183 

homogeneous part. In a general sense, 𝑓b is a regular function that represents the normal projection 184 

of the body motion, and thus, the resultant 𝑆𝑙
p
 belongs to the 𝐻2 space, regardless of the singularity. 185 

The eigenspace of the singularity is manifested in the solution space of 𝑆𝑙
h, subject to the homoge-186 

neous R condition as 𝜕𝑆𝑙
h 𝜕⁄ = 0|

R
. 187 

2.2 SBFEM approximation to the eigen solutions 188 

The eigenspace for corner singularities in the 2D Laplace equation has been well-known as 189 

 ( )( ) cos j

j o


   −  , 𝑗 ∈  (2.6) 190 

where 𝜎𝑗 = 𝑗𝜋 𝛽⁄  is the 𝑗th eigenvalue, and cos (𝜎𝑗(𝛼 − 𝛼𝑜)) 𝜎𝑗 is the eigenfunction for the ho-191 

mogeneous Neumann condition on corner sides. In the case of 2D Laplace problems, any possible 192 

𝑆h can be expressed as a linear combination of these eigenfunctions. These eigenfunctions can be 193 

obtained by separating variables in the circumference and radiation. However, the same approach 194 

does not apply to Eq. (2.3). To the best of our knowledge, there is no reported analytic research 195 
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regarding the singularities of Eq. (2.3). As an alternative, we propose introducing a test function, 196 

𝑤(, 𝛼), and consider the weak form of Eq.(2.3), viz., 197 

 
C

2
h h h

,d d
o

l l l n

l
r w S wS rwv

r 
  +  =    (2.7) 198 

where the boundary condition 𝜕𝑆𝑙
h 𝜕𝑛⁄ = 𝑣𝑙,𝑛

h (𝛼)|
C

 has excluded the component due to 𝑆𝑙
p
. 𝐧 is 199 

the normal unit vector outward 𝑜. 200 

Considering that the solutions with respect to 𝛼 are smooth, a Fourier series ansatz for the 201 

circumference is reasonable, i.e., the circumferential approximation can be constructed in terms of 202 

the cosine basis, cos (𝜎𝑗(𝛼 − 𝛼𝑜)). On the other hand, the radial approximation is currently un-203 

known. Let 𝑏𝑗() denote the radial basis, such that 204 

 ( )( ) ( ) cos j o jb   −  , 𝑗 ∈  (2.8) 205 

is formally the basis space to approximate 𝑆h as 206 

 ( ) ( )( ) ( )h h

0

ˆ , cos
J

l l j j o j

j

S S c b     
→

=

 = −   (2.9) 207 

where 𝑐𝑗 is the projection, and 𝐽 is the number of the truncation. To simplify the formulation, we 208 

express Eq. (2.8) in a linear algebra form: 209 

 ( ) ( ) ( )hˆ ,lS    = F a , (2.10) 210 

where 𝐚() is an assemblage of 𝑎𝑗() = 𝑐𝑗𝑏𝑗() representing the radial variation, referred to as the 211 

“radial function.” Such a technique, which separates the circumferential and radial variables in the 212 

weak form of PDEs, is a central concept of SBFEMs. A difference from conventional SBFEMs is 213 

that the circumferential basis, 𝐅(𝛼), is a Fourier spectrum rather than the Lagrangian-interpolation-214 

based shape functions. Essential knowledge of SBFEMs for the 2D Laplace equation can be found 215 

in Deeks and Cheng (2003) and Li et al. (2005 a, b). The SBFEM formulation for Eq.(2.7) is briefly 216 

introduced as follows.  217 

Assuming the test function 𝑤 = 𝐅(𝛼) ∙  () belongs to the same space as the basis and firstly 218 

integrating with the circumference, Eq. (2.7) turns into  219 
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 ( ) ( )( )
C

1
T T 2 T

0,0 0,1 2,0 2,1
0

1
d      

 
+ + + + =  ν E E a ν E E M a ν q , (2.11) 220 

where 𝐪 represents the flux. At C, 𝐪 is defined as 221 

 ( )( ) ( )
C

cos d
o

o
o o o n or v

 


     

+


= − −q F . (2.12) 222 

Some matrices are generated as 223 

 

( )

T

0,0

T

0,1

d

cos d

o

o

o

o

o

o o

r
 



 





   

+

+

 =


 = − −






E F F

E F F

, (2.13) 224 

 

( )

T

2,0

T

2,1

d

cos d

o

o

o

o

o

o o

r
 

 


 

 




   

+

+

 =


 = − −






E F F

E F F

, (2.14) 225 

and 226 

 ( )
( )

2
2 T d

cos

o

o

o

o o o

l
r

 




 

   

+

=
− −M F F . (2.15) 227 

Based on the orthogonality of the Fourier spectrum, 𝐄0,0 and 𝐄2,0 are in diagonal forms: 228 

 

( )

( )

0,0

2 2

2,0 1 2

1
2,1,1,...

2

1
0, , ,...

2

o

o

r

r



  


=


 =


E diag

E diag

. (2.16) 229 

Taking a Taylor expansion, 𝐌() is explicitly expressed as 230 

 ( ) 2

0 1 2 ...  = + + +M M M M , (2.17) 231 

where the expansion constants read 232 

 ( )
2

2 T

1
cos d

o

o

k
ko

k ok

o

l
r

 




  

+
+

+
= −M F F . (2.18) 233 

Performing integrating 𝛚  by parts and subsequently eliminating 𝛚  due to its arbitrariness, Eq. 234 

(2.11) is reformed into a matrix ordinary differential equation (ODE), alias the SBFEM equation, 235 

as 236 

 ( ) ( ) ( )( )2 2

0,0 0,1 0,0 0,1 2,0 2,12 0       + + + − + + =E E a E E a E E M a . (2.19) 237 
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The flux is represented as a derivative of 𝐚 238 

 ( )0,0 0,1  = +q E E a , (2.20) 239 

such that 𝐪( = 1) = 𝐪|C
 should be satisfied. 240 

Eq. (2.19) is solved in the phase space as 241 

 ( ) ( ) ( )'   = χ H χ , (2.21) 242 

where () = (𝐚(), 𝐪())
T

 and the state-transition matrix is 243 

 ( )
( )

1

0,0 0,11

2

2,0 2,1


 

 

−

−
 +
 =
 + + 

E E
Η

E E M
. (2.22) 244 

𝐇() is expanded as a Laurent series with a simple pole at  = 0: 245 

 ( ) 1

0

i

i

i

  −

=

= H H , (2.23) 246 

where the residue 𝐇0 is Hamiltonian as 247 

 

1

0,0

0

2,0

− 
=  

 

E
Η

E
. (2.24) 248 

In this first-order linear system with a dimension of 2𝐽 + 2, the vector function () can be 249 

any linear combination of the linearly-independent basis functions, 𝛚𝑗() . The indexed matrix 250 

𝐖() = [𝛚1(), ⋯ , 𝛚2𝐽+2()] is, namely, a fundamental space for SBFEM equations. In typical 251 

applications of SBFEMs, such as the Laplace problem and the steady/transient elastic problems, 252 

𝐇() = −1𝐇0, resulting in a straightforward form for 𝐖() as 𝐇0. However, in this case, the 253 

state-transition matrix is complicated that poses a significant challenge. This issue will be further 254 

specified in Section 2.3. 255 

2.3 Fundamental space of the SBFEM for the singularity at an edge 256 

Based on linear algebra, half of the eigenvalues of 𝐇0 are in line with the corner eigenvalues, 257 

𝜎𝑗, and the other half corresponds to −𝜎𝑗. For ease of later construction, we denote by  𝑗 the ei-258 

genvalues of 𝐇0, and sort them with descending real parts. The mapping between the sets {} and 259 
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{𝜎}  is presented in Table 1, and for convenient reference, we note by 𝑗∗  the indicators such 260 

that 𝑗∗ = 𝜎𝑗. Each indexed eigenvector is composed of two non-zero elements as  261 

  
T

,1, , ,jj
 =t  (2.25) 262 

where 1 and 𝜎𝑗 are at the (𝑗 + 1)th and (𝐽 + 𝑗 + 2)th positions. 263 

Table 1 Map between the SBFEM eigenvalues and the corner eigenvalues 264 

 1  2 ⋯  𝐽+1  𝐽+2 ⋯  2𝐽+1  2𝐽+2 

 𝜎𝐽 𝜎𝐽−1 ⋯   𝜎0 −𝜎0 ⋯ −𝜎𝐽−1  −𝜎𝐽 

The case of 𝐇() = −1(𝐇0 + 2𝐇2) has been specified by Song (1998). The theoretical ba-265 

sics are detailed in Gantmacher (Section 10, Chapter 14, 1959) for a general purpose. In summary, 266 

the fundamental space is formed in 267 

 ( ) ( )   = Λ L
W U T  (2.26) 268 

where 𝐓 = [𝐭1, ⋯ , 𝐭2𝐽+2] are the indexed eigenvectors of 𝐇0 and  = diag[1, ⋯ , 2𝐽+2] the ei-269 

genvalues. 𝐔() and 𝐋 are to be determined. 270 

𝐔() is constructed as a regular identity at  = 0 such that 271 

 ( ) 2

1 2  = + + +U I U U . (2.27) 272 

𝐋 is an upper matrix with zero values on the diagonal. The term of 𝐋 = e𝐋ln = ∑ 𝐋𝑖ln𝑖 𝑖!⁄𝑖=0  273 

leads to the logarithmic polynomials in SBFEM fundamentals. The determination of 𝐔𝑖 and 𝐋 can 274 

be cumbersome but is accessible by following the matrix ODE theory as detailed in Gantmacher 275 

(1959). 276 

We categorize the construction of 𝐔() and 𝐋 in three cases. With increasing complexity, the 277 

algorithms are specified as follows: 278 

Case 1: if 𝐇() = −1𝐇0 , 𝐋  is the standard Jordan form of 𝐇0  excluding the diagonal ele-279 

ments, viz., 𝐋 = 𝐉 − , where 𝐿𝑖,𝑗 = 0 except for 𝐿𝐽+1,𝐽+2 = 1. Furthermore, 𝐔() is the identity 280 

constant; 281 

Case 2: if 𝐇() is multiple, but no eigenvalue differs by an integer, 𝐋 equals 𝐉 −  as in the 282 

former case. 𝐔𝑖 ∙ 𝐓=[𝒖̅1
𝑖 , 𝒖̅2

𝑖 , ⋯ , 𝒖̅2𝐽+2
𝑖 ] where 𝒖̅𝑗

𝑖 is a vector subject to the recurrences: 283 
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 ( )0

1

0 , 0

, 1

i
ij j i k

k jk

i
i

i


−

=

 =
+ − = 


H u

A u
, for 𝑗 ≠ 𝐽 + 2, (2.28) 284 

and 285 

 ( )0

1

, 0

, 1

i

Ji

ij j i k i

k j Jk

i
i

i


−

=

 − =
+ − = 

−

u
H u

H u u
, for 𝑗 = 𝐽 + 2. (2.29) 286 

Case 3: if 𝐇() is multiple and some eigenvalues have integer differences, 𝐋 is not priorly 287 

known, and the recurrence for 𝐔𝑖 can be singular. To handle such a situation, we propose an adjust-288 

able recurrence as follows: 289 

 ( )
1

,1

0 1

,1 1

,

, 1j

j i

k j k jki

j j j i m ji k i
j

k j k j kk k

L i m
i m

i mL


−

=

− −−

= =

 − =
+ − − = 

 +−



 

u
A u

H u u
, (2.30) 290 

where −𝑚𝑗 ≥ 0  is the maximum integer difference between 𝑗  and the previous eigenvalues. 291 

When 𝑗 + 𝑖 − 𝑚𝑗 coincides with another 𝑗′, the left-hand side of Eq. (2.30) remains singular, but 292 

the equation is solvable by assigning proper values to 𝐿𝑖,𝑗. By recurrence, all the elements of 𝐿𝑖,𝑗 293 

and 𝒖̅𝑗
𝑖 can be determined, and 𝐔𝑖 ∙ 𝐓=[𝒖̅1

𝑖+𝑚1 , 𝒖̅2
𝑖+𝑚2 , ⋯ , 𝒖̅2𝐽+2

𝑖+𝑚2𝐽+2]. 294 

At this point, the SBFEM fundamental space is explicitly defined and will be applied to con-295 

struct the approximation basis for the corner analysis. The phase-field solution can be chosen from 296 

any element in the fundamental space as 297 

 ( ) ( )   = Λ L
χ U T C , (2.31) 298 

where 𝐂 can be an arbitrary constant vector. Blocking the matrices and vectors in half yields 299 

 
( )

( )
( )

( ) ( )

( )
11 12 1

2
22

   


  

+ +

−

    
 =   
      

Λ ΛL L

Λ L

a c
U T

q c
, (2.32) 300 

where (∙)11, (∙)12, (∙)21, and (∙)22 denotes, respectively, the upper-left, upper-right, lower-left, and 301 

lower-right blocks of a matrix. Particularly, + and − are, respectively, the non-negative and non-302 

positive blocks of the diagonal . 303 

𝐜2 must be zero to vanish the negative exponents − at  = 0. The radial function is finally 304 
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formed in 305 

 ( ) ( )( ) ( ) ( )1 11 111 11
    += = 

Λ L
a U T c W c , (2.33) 306 

and the flux  307 

 ( ) ( )( ) ( ) ( )1 21 121 11
    += = 

Λ L
q U T c W c . (2.34) 308 

So we have found a complete picture of the local velocity potential 𝑆𝑙
h under the SBFEM rep-309 

resentation. Plugging Eq.(2.33) into Eq.(2.10), and discarding the logarithms, Eq. (2.35) offers a 310 

glimpse into the edge singularity: 311 

 
( ) ( )( ) ( )( ) ( )( )

( )( ) ( )

* *

1
* *

h

00
1

1

10 1

ˆ , 1 cos 1

cos

j

j

J

l j o jj
j

o

S c P c P

c c O





         

     

=

+

= + + − +

= + − + +


, (2.35) 312 

where 𝑃𝑗() is a regular polynomial as the arrangement of the 𝑗∗th column of 𝐔(), and 𝑐𝑗∗  the 313 

element in 𝐜1. 314 

Eq. (2.35) indicates that the basis of a 3D edge can be constructed by the 2D corner basis 315 

multiplying polynomials. The herein obtained basis can be viewed as a set of approximated eigen-316 

functions in the application. It is straightforward to comprehend that for some common structures, 317 

such as cylinders and discs, their singular natures are ξ2/3 and ξ1/2, respectively. 318 

2.4 Determination of the local solutions 319 

Extended from Section 2.1, our focus is to refine the local BVP for 𝑆𝑙. We have already ful-320 

filled the requirements of the R condition through the particular solution 𝑆𝑙
p
. Now we proceed to 321 

define and address the general conditions on C. To distinguish quantities at  = 1, a tilde ‘~’ is 322 

introduced to them. 323 

Dirichlet condition, namely, 𝑆̃𝑙 = (𝛼), 𝛼 ∈ [𝛼𝑜, 𝛼𝑜 + 𝛽]. The first step is to calculate the 324 

expansion coefficients on C, viz., 𝐚̃, as 325 

 ( )( ) ( ) ( )( )2 p

1

1, 01
cos d

2, 1

o

o
j j o l

j
a S

j

 

 
     



+

=

=
= − − 


 . (2.36) 326 
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By inverting Eq.(2.33), the local problem is solved as 327 

 ( ) ( ) ( ) ( ) ( )( )h 1

11 11,lS       −=  =  F a F W W a . (2.37) 328 

Neumann condition, namely, 𝜕𝑆̃𝑙 𝜕𝑛⁄ = (𝛼), 𝛼 ∈ [𝛼𝑜, 𝛼𝑜 + 𝛽] . By eliminating 𝐜1  in Eq. 329 

(2.33) and Eq. (2.34), the relation between 𝐚̃ and 𝐪̃ is 330 

  =K a q , (2.38) 331 

where 332 

 
1

21 11

−=K W W  (2.39) 333 

is understood as the stiffness of the SBFEM. Substituting 𝐪̃ with  334 

 ( ) ( ) ( )
p

T d
o

o

l
o

S
r

n

 


    

+  
= − 

 
q F  (2.40) 335 

produces 𝐚̃, and again, Eq. (2.37) is usable. In this case, the stiffness is deficient in rank by 1, lead-336 

ing the calculated velocity potential to differ by an arbitrary constant. 337 

Robin condition, namely,  𝜕𝑆̃𝑙 𝜕𝑛⁄ = (𝛼)𝑆𝑙 +(𝛼), 𝛼 ∈ [𝛼𝑜, 𝛼𝑜 + 𝛽] . By substituting 𝐪̃ 338 

with 339 

 
( ) ( ) ( ) ( )( ) ( )

p
T p d

o

o

l
l o

S
r S

n

 


      

+   
= +  + −     

=  +

q F F a

K a f

, (2.41) 340 

𝐚̃ is determined based on 341 

 ( )−  =K K a f . (2.42) 342 

  343 
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3 Application to linearized radiation problem in the frequency domain 344 

Section 2 has established the foundation for modeling axisymmetric edge singularities. In this 345 

section, we demonstrate the practical application by solving a linear radiation problem. As an illus-346 

trative example, we primarily consider a floating cylinder, where the edge is parametrized by 𝛽 =347 

3/2π and 𝛼𝑜 = 0. The cylinder is assumed to undergo oscillation in the heave direction, in which 348 

the vertical mean drift force is recognized as sensitive to the singular effect, as highlighted by, e.g., 349 

Zhao and Faltinsen (1989) and Newman and Lee (2002). Therefore, the mean drift force and the 350 

velocity field will serve as criteria to examine the accuracy of our approach.  351 

The proposed singular representation Eq. (2.10) is not capable of obtaining global solutions. 352 

Hence, a reliable global solver is required. Among the various options, the FEM is excluded due to 353 

the so-called “coordinate singularity” issue at 𝑟 = 0, which leads to a deficient rank in the final 354 

linear algebra, as discussed in Qiu et al. (2012). The BEM is applicable but a bit heavy to implement. 355 

The technique can be found in, for instance, Hulme (1983). Instead, we employ the SEM for its 356 

accuracy and easy implementation. Two strategies are devised to tackle the global-local problem. 357 

The first strategy involves local refinement. We initially utilize the SEM for obtaining global solu-358 

tions of the potential, irrespective of singularities. Subsequently, we use the SBFEM as a post-359 

procedure to refine the edge neighborhood. The second strategy is an SEM-SBFEM coupled 360 

scheme, which simultaneously solves the local problem and the global problem. 361 

3.1 BVP for the linearized radiation problem and pressure integration for the mean drift force 362 

In a linearized model, the computational domain 3 remains fixed regardless of the time var-363 

iation. As sketched in Fig. 3, 3 is bounded by four surfaces: 𝜕3 = 𝜕f
3 ∪ 𝜕b

3 ∪ 𝜕d
3 ∪ 𝜕r

3
. 364 

The first two are, respectively, the free surface and the body surface at their equilibriums; the latter 365 

two are, respectively, the seabed and the radiational boundary in the far field. 366 

Consider a 3D body undergoing a forced oscillation with an amplitude 
𝑗
, where the subscript 367 

𝑗 = 1~6, respectively, denoting the surge, sway, heave, pitch, yaw, and roll. In this context, we 368 
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focus on 𝑗 = 3, which corresponds to the heave motion, is considered. When reaching a steady 369 

state, the linear heaving potential is represented by (x, 𝑡) = Re[3
(x)e−i𝜔𝑡], where (x) is the 370 

potential in the frequency domain due to an oscillation with unit amplitude, and 𝜔 represents the 371 

angular frequency. (x) is governed by the 3D Laplace equation and determined by the following 372 

boundary conditions: 373 

 3in f   = − , on 𝜕b
3
, (3.1) 374 

 0n v   − = , on 𝜕f
3
, (3.2) 375 

 0n  = , on 𝜕d
3
, (3.3) 376 

and 377 

 ( )lim i 0
r

r n k 
→

  − = , on 𝜕r
3
, (3.4) 378 

where k is the wavenumber of linear waves; 𝑣 = 𝜔2 𝑔⁄  is the wave number in deep water; 𝑔 is the 379 

gravity acceleration; 𝑓3 = 𝑛𝑧 is the forcing term due to the heaving motion.  380 

Following the concept introduced in Section 2.1, problems of an axisymmetric body are stud-381 

ied in cylindrical coordinates. The origin of the system is at the center of the waterplane, and the 382 

𝑧-axis is aligned with the central axis of the floating body, pointing vertically upward, as depicted 383 

in Fig. 3. Utilizing the dimensional reduction and considering the symmetry of the problem, the 384 

heaving radiational potential is 𝜃-independent and expressed as 385 

 ( ) ( )0, , ,r z r z  = . (3.5) 386 


0
 is the reduced potential on the generatrix plane. It is subject to the reduced Laplace equation Eq. 387 

(2.3), and the boundary conditions hold the same form as in Eq. (3.1), (3.2), (3.3), and (3.4), re-388 

spectively, on 𝜕b
2
, 𝜕f

2
, 𝜕d

2
, and 𝜕r

2
, as illustrated in Fig. 4. 389 

 390 
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Fig. 3 Sketch of the 3D computational domain Fig. 4 Dimensional-reduction of the computa-

tional domain 

The mean drift force, represented as 𝐟m, is calculated via a pressure integration on the body 391 

surface using the formulation: 392 

 

m
*

3 32
wpb b

3

1 1
d Re[i ] d Re[( 2i )] 'd

4 2 4
z

C
S S v


     

 

 

 
= −   − + +   

f
n n n

, (3.6) 393 

where  is the fluid density; 𝐶wp = 𝜕f
3 ∩ 𝜕b

3
 is the waterline; 𝐧′ is the normal unit vector of 394 

𝐶wp on the horizontal plane; ∗ is the conjugate operator. The first term in Eq.(3.6) arises from the 395 

square product of gradients in Bernoulli’s equation; the second term accounts for the body motion; 396 

the third term is a correction to the wave elevation, equaling zero for a cylinder or a submerged 397 

body. The first term for body surfaces containing edges is strongly singular; the second is weakly 398 

singular. Both terms are integrable for 𝛽 < 2π. In the extreme cases where 𝛽 = 2π, corresponding 399 

to a thin circular plate, the quadratic product of velocity introduces a 𝜉−1 kernel to the pressure 400 

distribution. The issue on whether this term is integrable requires a rigorous investigation, which is 401 

beyond the scope of the current content. 402 

The essential geometry parameters of the presented cylinder are specified here. The water 403 

depth is 𝐻 = 1.0m. Of the cylinder, both the radius 𝑟𝑜 and the draught 𝐷, i.e., |𝑧𝑜|, equal 0.3𝐻. 404 

3.2 SEM solver and the refinement strategy 405 

For sufficient accuracy, the 6th-order Legendre interpolation is employed within each element. 406 

Rectangular spectral elements are used. To circumvent the “coordinate singularity” at 𝑟 = 0 , 407 
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different node arrangements are applied, as depicted in Fig. 5. For elements not connected to the 408 

axis, the Legendre-Gauss-Lobatto (LGL) nodes are placed in both directions; for elements con-409 

nected to the axis on one side, parallel to the axis, the Legendre-Gauss-Radau (LGR) nodes are 410 

applied instead of the LGL nodes. This arrangement ensures that no nodes are positioned on the 411 

axis. 412 

 413 

The SEM formulation is 414 

 ( )2 2 2
f r

bi lv k
  

− −  =K K K f , (3.7) 415 

where 
𝑙
 is the nodal value vector for 

𝑙
. The coefficients are as follows 416 

 2 2

2
T T d

l
r

r 
=   +  K N N N N , (3.8) 417 

 2 2
f f

T dr
 

=  K N N , (3.9) 418 

 2 2
r r

T dr
 

=  K N N , (3.10) 419 

and 420 

 

Fig. 5 Node arrangements in spectral elements 

 

Fig. 6 Mesh-1 for the SEM in the view of near-field; the sector 

field in pink is refined by the SBFEM 
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2
b

T

b 3dr f


= f N , (3.11) 421 

where 𝐍 is the Legendre-polynomial shape function in the global form. 422 

Structured grids are applied. The basis grid is plotted in Fig. 6, labeled Mesh-1. The elements 423 

on the body surface are uniform in size, and the length is notated by ℎ = 𝑟𝑜 4⁄ . Refinements are 424 

made based on the initial Mesh-1 by diminishing the element length to ℎ 2⁄  and ℎ 4⁄ , yielding, 425 

namely, Mesh-2 and Mesh-4, respectively. The radius of the corner tip neighborhood remains no-426 

tated by 
𝑜
. 427 

In the refinement strategy design, the global potential 
𝑙
 is solved by the SEM. Because the 428 

element has small support, the potential outside the edge-neighboring area 𝑜
2  can be accurate. 429 

Therefore, we construct a Dirichlet condition on C and solve the local singular filed 𝑆𝑙 based on 430 

Section 2.4. The particular solution for the present heaving motion is 𝑆𝑙
p

= i𝜔𝑧. 431 

3.3 Coupling strategy based on the SEM and the SBFEM 432 

The computational domain 2 is divided into 𝑜
2 and 2\𝑜

2. The former region will be mod-433 

eled using the SBFEM and the latter using the SEM. C is a circular arc with a radius 
𝑜
, serving 434 

as the interface to couple the two methods, as illustrated in Fig. 7.  435 

 

Fig. 7 Mesh for the coupling method in the view of near-field; 

two methods couple at the interface C; the exemplified radius 

of C is 
𝑜

𝑟𝑜⁄ = 1 4⁄  

The nodal homogenous velocity potentials of the SEM nodes (the nodal number is denoted by 436 

𝑀) on C are determined by 437 



22 

 

     ( )h

1lS =  = F a ψ c , (3.12) 438 

where 439 

   11= ψ F W . (3.13) 440 

Here, the brace {∙}  notates the nodal vectors for the interface nodes. {𝐅} = [𝐅(𝛼1), ⋯ , 𝐅(𝛼𝑀)]T 441 

where 𝛼𝑚=1,…,𝑀 is the angular coordinate of the 𝑚th node.  442 

By taking a generalized inverse of Eq.(3.12), 𝐜1 is estimated by 443 

 ( )  
1

T T h

1 lS
−

=c ψ ψ ψ . (3.14) 444 

The normal derivative of 𝑆𝑙
h on C toward the corner tip is 445 

 ( )
h

h

, 11, 1

1l
l n

o

S
v

n





= = − 


F W c  (3.15) 446 

Substituting Eq.(3.14) into Eq.(3.15) we have 447 

 ( )  h h

,l n lv S= F  (3.16) 448 

where  449 

 ( )
1

T T

11,

1

o




−

 = − W ψ ψ ψ . (3.17) 450 

Finally, we construct the interface relation as 451 

  lS =K f  (3.18) 452 

where  453 

 
C

T dr


=  K N F , (3.19) 454 

and 455 

  
C

T p p

, dl n lr S S


=  − f N K . (3.20) 456 

Plugging Eq.(3.20) into Eq.(3.7), the problem is solved. 457 

  458 
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4 Results and discussion 459 

4.1 Potentials and velocities on the body surface 460 

To provide a preview of the singularity, the heaving problem of the cylinder is initially solved 461 

using a conventional MEEM. Detailed concepts and mathematical formulations can be referred to 462 

in Garrett (1971) and Yeung (1981). The distributions of the potential and the weighted tangential 463 

derivative, namely, 𝑆 and 1/3𝑆, are presented in Fig. 8. In the upper two sub-figures, the variation 464 

of 𝑆 exhibits a noticeable bending at  = 0, where is the corner tip. With an increasing number of 465 

expansion terms, 𝑆 can be considered convergent from a numerical standpoint. However, 1/3𝑆 is 466 

divergent. At the vertical matching interface between the inner and outer subdomains, a Gibbs phe-467 

nomenon is observed in 1/3𝑆𝑧, which is an indicator of discontinuity, viz., a singularity. 468 

 

Fig. 8 Potentials and the tangential velocities on the surface of a heaving cylinder by the MEEM; 𝜔 =

8.0 rad/s; 𝑚 is truncation number of the MEEM; 𝑆 refers to 𝑆𝑟 and 𝑆𝑧 on the bottom and sidewall, re-

spectively; the uppers are the potentials; the lowers are the derivatives 

The Gibbs phenomenon, as well as the narrow application, is a major drawback of MEEM. An 469 

SEM has no such concern. Hence, we only present the distribution on the bottom, as it is more 470 
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characteristic in a heaving problem. As seen in Fig. 9, the SEM exhibits a close agreement with the 471 

MEEM in 𝑆, and demonstrates rapid convergence as the grid is refined. While investigating 1/3𝑆, 472 

a numerical oscillation is noted in the spectral elements neighboring the corner tip. With finer 473 

meshes applied, the oscillation is restrained with smaller magnitudes and bounded in smaller ranges, 474 

but the divergence is still as concerning. 475 

 

Fig. 9 Potentials and the tangential velocities along the bottom of a heaving cylinder by the SEM; 𝜔 =

8.0 rad/s; the scatters denote the nodes; the MEEM is truncated at 𝑚 = 320 

In Section 3.2, we conceived a refinement and a coupling strategy. In the refinement strategy, 476 

the potentials obtained by the SEM are enforced as the Dirichlet circumferential condition of the 477 

refined area 𝑜
2. Subsequently, the SBFEM is applied for singular representation. The radius of the 478 

refined area is 
𝑜

𝑟𝑜⁄ = 0.5, and 10 Fourier spectra are applied for circumferential approximation; 479 

20 terms are kept in the SBFEM fundamentals for radial approximation. The results are depicted 480 

in Fig. 10. The potential 𝑆 obtained in the refined area 𝑜
2 shows excellent agreement with the pre-481 

vious MEEM results. This agreement validates the concept that a local singular field could be re-482 

constructed as a post-processing step based on the accurate and reliable boundary quantities away 483 

from the singularity. Moreover, when comparing the results of 𝑆 obtained using the MEEM and the 484 

SEM with the more advanced SBFEM, we observe close correspondence. Hence, we can conclude 485 

that, even without specific treatment for the singularity, the linear velocity potential can still be 486 

easily determined with regular basis functions. However, SBFEMs are particularly distinguished 487 
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by their exceptional capability in gradient calculations. The weighted derivative 1/3𝑆  is now 488 

smooth without oscillations, and exhibits notable convergence. The coarse Mesh-1 is considered 489 

adequate for accurate gradient estimation. A significant difference can be observed at  = 0. Theo-490 

retically, at the edge tip, the nature of the gradient is −1/3. Hence the weighted gradient 1/3𝑆 491 

must exhibit a finite value, namely, the stress-intensity factor in fractural mechanics, which typi-492 

cally takes on a non-zero value. The present SBFEM result aligns with this deduction, as the sin-493 

gular nature has been accounted for in Eq. (2.35). However, due to the lack of the SEM and MEEM 494 

in the singular basis, finite values can be obtained for 𝑆, and thus 1/3𝑆 jumps to zero at the edge 495 

tip.  496 

 

Fig. 10 Potentials and the tangential velocities on the bottom of a heaving cylinder by the refinement 

strategy; 𝜔 = 8.0 rad/s; the MEEM is truncated at 𝑚 = 320 

Results obtained using the coupling strategy are presented in Fig. 11. Three unstructured 497 

meshes are utilized, with the radii of the coupling interface set to 
𝑜

𝑟𝑜⁄ = 1 2⁄ , 1 3⁄ , and 1 4⁄ . The 498 

average length of the body-surface elements is ℎ 𝑟𝑜⁄ = 1 8⁄ , while the element size slightly de-499 

creases towards the edge tip to improve the coupling, as exampled in Fig. 7. The potential and 500 

velocity variations align with those in Fig. 10, indicating accuracy. Nevertheless, in the vicinity of 501 

the coupling interface, the derivatives may exhibit some lack of smoothness. This drawback is ad-502 

dressed by the 𝐶0 continuity of the present scheme. Improving the continuity is possible and under 503 

way, but as the discontinuities in velocities do not significantly impact the overall accuracy, this 504 
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issue is not urgent in this paper. 505 

 506 

 

Fig. 11 Potentials and the tangential velocities on the bottom of a heaving cylinder by the coupling 

strategy; 𝜔 = 8.0 rad/s; the scatters denote the nodes; the legends indicate the radii of the coupling 

interfaces; the MEEM is truncated at 𝑚 = 320. 

4.2 Velocity field in the edge neighborhood 507 

The singularity is illustrated in two antitheses groups. Firstly, a singular velocity field will be 508 

contrasted with a regular one; secondly, a roughly approximated singular field (by the SEM) will 509 

be contrasted with a refined one (by the SBFEM). 510 

Fig. 12 plots the velocity fields of heaving cylinders with rounded and sharp edges. The cham-511 

fer radius for the rounded case is 1 6⁄  of the cylinder radius. The arrows in the figure represent the 512 

velocity of the fluid particles; the length and color of the arrows indicate the magnitude. When the 513 

cylinder sinks, the water below it is pushed and spreads outwards from the central axis. From Fig. 514 

12(a), it is observed that when the water flow approaches and passes the rounded edge, the down-515 

ward flow gradually changes direction and eventually flows upward along the sidewall. During this 516 

process, there is no significant growth in speed. Whereas the situation is different for a sharp edge, 517 

as shown in Fig. 12(b). When tracing a spatial point along the body surface towards the edge tip, 518 

as (𝑟𝑜 − , 𝑧𝑜) → (𝑟𝑜, 𝑧𝑜) → (𝑟𝑜, 𝑧𝑜 + ), the velocity undergoes a significant change. As the flow 519 
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bypasses the sharp edge beneath the bottom, the velocity abruptly turns upward with a steep in-520 

crease in speed; past the edge tip, the velocity is not vertically upward on the sidewall. In this region, 521 

the body surface condition is violated. Moreover, due to the numerical dissipation of spectral ele-522 

ments, the velocity jump at the edge tip is smeared into divergence. 523 

Fig. 13 illustrates the refined velocity field of the sharp edge case using the SBEFM. The 524 

SBFEM allows for high-resolution velocity calculations in the immediate vicinity of the edge tip. 525 

Fig. 14 depicts the velocity variations along the circumferences at minimal radii for different values 526 

of  𝑟𝑜⁄ = 1 20⁄ , 1 80⁄ , 1 160⁄  and 1 10000⁄ . Unlike the SEM, the SBFEM strictly adheres to the 527 

body condition. As the space point approaches the edge tip beneath the cylinder, i.e., (𝑟𝑜 − , 𝑧𝑜) →528 

(𝑟𝑜, 𝑧𝑜), the orientational angle with respect to the horizontal vanishes, and the velocity tend to 529 

parallel to the bottom face, but the vertical projection of the velocity holds due to the body motion. 530 

Consequently, the magnitude becomes infinite. The velocity jump at the tip is captured, as it is 531 

horizontal before reaching the tip, vertical after passing the tip, and void at the tip itself. 532 

  

Fig. 12 Velocity field near heaving cylinders with rounded and sharp edges, obtained by the SEM 

 533 
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Fig. 13 Velocity field near a heaving cylinder with a sharp edge, obtained by the SBFEM 

 534 

    

  

Fig. 14 Velocity variation along circumferences with different radii; a sharp edge case in a heave motion;  

𝑣⃗𝛼=0 is the velocity on the bottom, and 𝑣⃗𝛼=𝛽 on the sidewall 

As a reference, following the discussion on the heave motion, here we also present the corre-535 

sponding results under a surge motion, as shown in Fig. 15 and Fig. 16. By comparing Fig. 12 with 536 

Fig. 15, it is observed that for a rounded-edge case in the heave motion, the high-velocity point is 537 

located at the intersection of the bottom face and the chamfer, while in the surge case, it moves to 538 
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the intersection on the sidewall. For the sharp-edge case, the edge tip consistently remains the high-539 

velocity point. But there are still some differences in the cases of the two motions. Referring to Fig. 540 

13 and Fig. 14, it can be seen that in the heave case, the velocity beneath the bottom exhibits a 541 

higher magnitude; referring to Fig. 15 and Fig. 16 in the surge case, the situation is reversed. Based 542 

on these observations, it can be considered that for a moving body, areas on the body surface that 543 

undergo a sudden change in curvature tend to exhibit high-velocity. Among these regions, those 544 

that encounter a higher normal flux due to the body motion are likely to have higher fluid velocity 545 

in the tangent. 546 

  

Fig. 15 Velocity field near surging cylinders with rounded and sharp edges, obtained by the SEM and the 

SBFEM, respectively 

 547 
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Fig. 16 Velocity variation along circumferences with different radii; a sharp edge case in a surge motion; 

𝑣⃗𝛼=0 is the velocity on the bottom, and 𝑣⃗𝛼=𝛽 on the sidewall 

4.3 Mean drift force under edge effect 548 

Fig. 17 and Fig. 18 show the normalized vertical mean drift force, i.e., 𝑓𝑧
m/(ρ𝑔r𝑜|ζ3|2) due to 549 

the heave motion with respect to the dimensionless wave number 𝑣𝑟𝑜. The results are obtained 550 

using the direct pressure integration (Eq. (3.6)). Fig. 17 shows the results by the SEM, while Fig. 551 

18 shows the results by the refinement strategy with a supporting radius of 
𝑜

𝑟𝑜⁄ = 0.5 . The 552 

SBFEM enables elaborated pressure integration near the edge tip. Both the truncation numbers in 553 

the SBFEM fundamentals and the circumferential Fourier basis are set to 10. The middle-field re-554 

sult is included for reference.  555 

From Fig. 17, it can be seen that none of the meshes obtains the correct result. At low frequen-556 

cies as ω → 0, results obtained through the direct pressure integration tend to converge to zero; 557 

however, as the frequency increases, the divergence becomes more pronounced. This behavior can 558 

be explained by referring to Eq. (3.6). In the vicinity of zero frequency, the solutions of the linear 559 

velocity potential exhibit a linear dependency on 𝜔. Consequently, the contributions of the three 560 

components of the mean drift force become second- and higher-order terms with respect to 𝜔. Er-561 

rors originating from singularities remain hidden at low frequencies, but become apparent at normal 562 

frequencies. From a physical viewpoint, when a floating body moves at an extremely slow speed, 563 

a minimal disturbance is induced to the fluid bulk, and the wave elevation is imperceptible. The 564 

effect of hydrodynamic pressure has not yet become apparent; hence, the wave forces are 565 
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insignificant. 566 

By refining the meshes, the results approach the middle-field results, but significant deviations 567 

still persist. Even with extremely dense meshes, the results do not converge. To understand the 568 

source of divergence, it is necessary to examine the individual components of Eq.(3.6) in a term-569 

by-term manner. While the third component is zero, the first and second components are presented 570 

in Table 2. Both components exhibit similar magnitudes but in opposite directions. Consequently, 571 

the drift force becomes sensitive to these delicate differences. From Table 2, it is observed that the 572 

second component converges relatively easily because the weak singular kernel is not pronounced; 573 

whereas the first component presents challenges. 574 

In contrast, Fig. 18 demonstrates that with the singularity represented, the near-field result 575 

obtained by the refinement strategy exhibits accuracy comparable to the middle-field method. The 576 

coupling SEM-SBFEM also achieves equivalent accuracy, as shown in Fig. 19. The selection of 577 

the coupling interface has minimal impact on the accuracy. 578 

 

Fig. 17 Vertical mean drift force by the SEM 

 

Table 2 Components of the normalized vertical drift force 579 

a. first component 

𝜔 

(rad/s) 

SEM refined by SBFEM 
Mesh-1 Mesh-2 Mesh-4 Mesh-1 Mesh-2 Mesh-4 

2.0 -0.1759 -0.1789 -0.1811 -0.1896 -0.1896 -0.1897 
4.0 -0.7154 -0.7277 -0.7372 -0.7723 -0.7725 -0.7726 

6.0 -1.6854 -1.7161 -1.7399 -1.8277 -1.8283 -1.8285 
8.0 -3.0006 -3.0556 -2.9082 -3.2555 -3.2564 -3.2568 

 580 

b. second component 

𝜔 
(rad/s) 

SEM refined by SBFEM 
Mesh-1 Mesh-2 Mesh-4 Mesh-1 Mesh-2 Mesh-4 
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2.0 0.1922 0.1922 0.1922 0.1922 0.1922 0.1922 
4.0 0.7688 0.7688 0.7688 0.7688 0.7688 0.7688 
6.0 1.7298 1.7298 1.7299 1.7298 1.7298 1.7298 

8.0 3.0753 3.0753 3.0753 3.0753 3.0753 3.0753 

 581 

c. comparison with the middle-field method 

𝜔 

(rad/s) 

SEM refined by SBFEM middle-

field Mesh-1 Mesh-2 Mesh-4 Mesh-1 Mesh-2 Mesh-4 

2.0 0.0163 0.0134 0.0111 0.0026 0.0026 0.0026 0.0026 
4.0 0.0534 0.0411 0.0316 -0.0034 -0.0037 -0.0038 -0.0037 

6.0 0.0445 0.0138 -0.0100 -0.0979 -0.0984 -0.0986 -0.0988 
8.0 0.0747 0.0197 -0.0229 -0.1802 -0.1811 -0.1815 -0.1818 

 582 

 583 

 584 

 

Fig. 19 Vertical mean drift force by the coupling strategy; the legends 

indicate the radii of the coupling interfaces 

Furthermore, the influence of singularity on the mean drift force is evaluated by comparing 585 

sharp-edge cylinders with rounded-edge cylinders, as shown in Fig. 20. For the rounded-edge cases, 586 

very coarse grids (ℎ 𝑟𝑜⁄ ≈ 1 6⁄ ) are applied to implement the direct pressure integration, resulting 587 

in high agreement with the middle-field method. It is observed that the sharp-edge and rounded-588 

 

Fig. 18 Vertical mean drift force by the refinement strategy 
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edge cases closely coincide at low frequencies, indicating that although the sharp edge poses com-589 

putational challenges, the overall hydrodynamic effect on bodies does not significantly differ from 590 

the rounded cases. Since the singular effect is confined to a small range, the inclusion of a singular 591 

kernel in the pressure integration leads to a bounded component in the wave forces, assuming ac-592 

curate calculations are made. This conclusion can be further explained from a physical standpoint: 593 

when the body moves slowly, the flow separation manifests as a local phenomenon, causing minor 594 

disturbances to the surrounding fluid. Consequently, the overall momentum of the fluid field re-595 

mains largely unaffected when observed on a macroscopic scale. As a result, the wave forces acting 596 

on the structures can be considered approximately equivalent. 597 

 

Fig. 20 Effect of chamfer radius of smoothed edge on vertical mean drift force; 𝑠 is the ratio of the ra-

dius of the chamfer to the cylinder; 𝑠 → 0 represents the sharp edge case; scatters stand for the near-

field results and lines stand for the middle-field results 

  598 
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5 Conclusion 599 

This work aims at modeling the singularities present at 3D edges of axisymmetric structures. 600 

The 3D problem is dimensionally reduced to the generatrix plane via a circumferential Fourier 601 

expansion. However, the reduced governing equation becomes complex and the eigenfunctions of 602 

singularities cannot be obtained through conventional methods. To address this, we adopt the 603 

SBFEM approach and analyze the weak form instead of the original equation. For the smooth cir-604 

cumferential variation, we employ a cosine spectrum; regarding the singular radial variation, we 605 

preserve its singular nature by constructing a matrix ODE and further analytically solving it. The 606 

SBFEM fundamentals are of fractional order and serve as the approximation basis for these singu-607 

larities. We present approaches to address local BVPs with Dirichlet, Neumann, and Robin condi-608 

tions. A refinement strategy and a coupling strategy are proposed to model both the local singular 609 

field and the global field using the SEM and SBFEM solvers. With the numerical method estab-610 

lished, we investigate a heaving cylinder as an example and summarize the main findings as follows. 611 

(i) The singular nature at an axisymmetric edge aligns with that at a corner on the generatrix 612 

plane, but the eigenfunctions exhibit greater complexity as perturbation expansions based on the 613 

2D corner solutions. In certain cases, some logarithms may arise. In the case of the cylinder exam-614 

ple, the edge tip is characterized as producing a −1/3 singularity in the velocity components, which 615 

coincides with a rectangular corner. 616 

(ii) The present semi-analytic analysis allows for the precise determination of velocity in the 617 

vicinity of the edge tips. When approaching the edge tip beneath a heaving cylinder, as 618 

(𝑟𝑜 − , 𝑧𝑜) → (𝑟𝑜, 𝑧𝑜), the orientational angle of the fluid velocity with respect to the horizontal 619 

plane vanishes, while the vertical projection maintains accordance with the body motion. Conse-620 

quently, the velocity magnitude becomes infinite at the tip. Moving upwards along the sidewall, as 621 

(𝑟𝑜, 𝑧𝑜) → (𝑟𝑜, 𝑧𝑜 + ) , the velocity becomes purely vertical, satisfying the nonhomogeneous 622 

boundary condition. The velocity exhibits a jump at the edge tip, as the present method captures. 623 

In contrast, the SEM smears the jump and distorts the representation of the velocity field. Within 624 
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the potential flow framework, in a more general scenario involving a moving body, areas on the 625 

body surface that undergo a rapid change in curvature tend to exhibit high velocity. And among 626 

these regions, those that experience higher normal flux from the body motion are likely to have 627 

higher fluid velocity in the tangent. 628 

(iii) The distorted fluid velocity by the SEM results in significant errors in pressure integrations. 629 

Specifically, when considering the vertical mean drift force, the integrations of the square product 630 

of Bernoulli’s equation and the body motion terms have similar magnitudes but opposite directions. 631 

When combing them, the mean drift force becomes a delicate quantity that is unlikely to converge 632 

using regular approximations. The present method takes exceptional care of the singularities and 633 

achieves a level of accuracy and efficiency in direct pressure integration comparable to the middle-634 

field method. To further validate the approach, forces on sharp-edge and rounded-edge cylinders 635 

are compared. It is observed that the presence of singularities does not significantly affect the mean 636 

drift force when employing the present method. 637 
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