九州大学学術情報リポジトリ Kyushu University Institutional Repository

Non-redundancy of Rice Mutant Library for Male Gametogenesis Confirmed by Bulked Segregants Analysis Using Illumina BeadsArray

Anh Tuan NGUYEN

Plant Breeding Laboratory, Division of Agrobiological Sciences, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

YOSHIMURA, Atsushi

Plant Breeding Laboratory, Division of Bioresource Sciences, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University

YAMAGATA, Yoshiyuki

Plant Breeding Laboratory, Division of Bioresource Sciences, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University

https://doi.org/10.5109/6796252

出版情報:九州大学大学院農学研究院紀要. 68 (2), pp.123-134, 2023-09. 九州大学大学院農学研究院 バージョン:

ハーション 権利関係:

Non-redundancy of Rice Mutant Library for Male Gametogenesis Confirmed by Bulked Segregants Analysis Using Illumina BeadsArray

Anh Tuan NGUYEN¹, Atsushi YOSHIMURA and Yoshiyuki YAMAGATA*

Plant Breeding Laboratory, Division of Bioresource Sciences, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819–0395, Japan (Received May 17, 2023 and accepted May 18, 2023)

Mutant resources play a crucial role in unraveling the genetic network controlling traits of interest. In this study, we focused on pollen-sterile mutants as important genetic resources for understanding the genetic regulation of male gametogenesis. We employed high-throughput genotyping technologies using Illumina BeadArray to map the responsible genes for male gametogenesis in rice; four SPOROPHYTIC POLLEN STERILITY (SPS2, SPS3, SPS4, SPS7) and four GAMETOPHYTIC POLLEN STERILITY (GPS1, GPS2, GPS9, GPS10). Using 287 single nucleotide polymorphism (SNP) markers, we detected polymorphisms between the japonica cultivar Taichung 65 (T65) and Hinohikari. Bulked segregant analysis (BSA) based on DNA marker analysis was performed to identify candidate markers tightly linked to the causal genes. The analysis revealed candidate markers for each mutant line, such as Mk240 for SPS2 and Mk94 and Mk126 for GPS1. Linkage mapping using the PCR-based markers confirmed the map positions of these candidate markers. Our study demonstrates the utility of high-throughput genotyping technologies combined with BSA for the genetic characterization of mutant stocks. The identified candidate markers provide valuable resources for future studies aiming to understand the molecular mechanisms underlying pollen development and male gametogenesis in rice. The systematic gathering and reduction of redundancy in pollen sterile mutants are essential for a comprehensive understanding of the molecular networks involved in post-meiotic male gametogenesis.

Key words: Rice, Mutant, Pollen sterility, Bulked segregant analysis, Illumina Beadsarray

INTRODUCTION

Mutants are important genetic resources to reveal genetic networks controlling traits of interest by cloning causative genes and their physiological and biological characterizations. To understand the functions of the genes that regulate biological processes, molecular biological and biochemical analyses using mutant resources are extensively used in plant model species. At the beginning of a post-genome era, the forward genetics approach by positional cloning and reverse genetics approaches by T-DNA or transposon tagging and targeting induced local lesions in genomes (TILLING) have dramatically promoted cloning and characterization of genes functionally unknown (Osborne et al., 1991; Hirochika et al., 2001; Tzfira et al., 2004; Comai et al., 2006). Moreover, high-throughput sequencing technologies by next-generation sequencers (NGS) would allow rapid identification of causal mutation (for review, Schneeberger, 2014). Therefore, developing a series of mutant libraries associated with specific biological phenomena of interest becomes more important to clarify molecular players on a pathway.

Pollen-sterile mutants have been considered critical genetic resources for understanding male gametogenesis's genetic regulation (Twell, 2011; McCormick, 2004). On male gametogenesis, one male meiocyte produces

four haploid cells (microspores) through the meiosis, and a microspore generates a tricellular pollen grain containing one vegetative cell and two sperm cells by two rounds of asymmetric mitosis. During the development, zygotic nursery tissues, tapetum, supply nutrition indispensable for developing male gametophytes and eventually disappears at bicellular to mature stages of male gametogenesis.

Genetic defects for gametogenesis can be classified into zygotic (sporophytic) and gametic (gametophytic) types based on their genetic basis. Typical mutants for sporophytic pollen sterility expressed aberrant zygotic phenotypes in a recessive manner in anther wall layer, tapetum formation and degradation, and lipid metabolism and transportation (Ariizumi and Toriyama, 2011; Jiang et al., 2013). In contrast, the sterility of pollen grains is controlled by the genotype of gametophytes in gametophytic pollen sterility mutants. MOR1/GEM encodes a member of the MAP215 family of microtubuleassociated proteins for the establishment of interphase arrays of cortical microtubules in plant cells, and the MOR1/GEM deficient mutant in Arabidopsis, gemini pollen1 (gem1), showed pollen semi-sterility due to defective cytokinesis of pollen containing a T-DNA insertion (Twell et al., 2002). The male gametophytic rice mutant, rice immature pollen1 (rip1), carry defect protein with conserved five WD40 repeats sequences and showed semi-sterility in pollen in heterozygous condition (Han et al., 2006). An arabinokinase-like protein defective mutant, collapsed abnormal pollen1 (cap1), showed pollen sterility in a gametophytic manner, possibly due to the lack of UDP-L-arabinose (Ueda et al., 2013). The RICE GLYCOSYLTRANSFERASE1 (OsGT1) gene is

Plant Breeding Laboratory, Division of Agrobiological Sciences, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

^{*} Corresponding author (E-mail address: yoshiyuk@agr. kyushu-u.ac.jp)

suggested to localize in a Golgi apparatus of pollen essential for intine wall formation and pollen maturation (Moon et al., 2013). Although gene cloning and characterization studies for pollen formation have been extensively conducted in the mutant approach, the isolated genes involved in diverged biological processes to each other and their spatially and temporally different expression and function let our knowledge be partially limited. Therefore, systematic gathering and reduction of redundancy in the pollen sterile mutants are necessary for a more efficient comprehensive understanding of complicated molecular networks during post–meiotic male gametogenesis.

For the genetic characterization of mutant stocks, an allelic test is a simple and powerful approach to classify mutant stocks into allelic groups. However, an allelic test among pollen-sterile mutants is generally tricky because mutant alleles do not transmit to progeny via male gamete due to sterility, especially, for the gametophytic pollen sterility. In this case, gene tagging using a DNA marker is available to investigate the allelism of mutants. Bulked segregant analysis (BSA) has been frequently used for rapid gene identification (Michelmore et al., 1991). The BSA uses two types of pooled (bulked) DNA samples from normal and mutant segregants for DNA marker analysis, and the DNA markers with a high frequency of alleles derived from the mutant stock have a high possibility to tightly link to the causal gene in the mutant bulked DNA. Today, single nucleotide polymorphisms (SNP) markers are rapidly replacing simple sequence repeats (SSR) markers because they are more abundant, stable, conveniently automated, efficient, and increasingly cost-effective (McCouch et al., 2010; Thomson et al., 2012). Furthermore, modern SNP genotyping techniques provide a high-throughput and cheaper allele calling process. It also produces accurate and stable data that can be flexible, merged across groups, and stored in databases no matter which genotyping platform is used. (Thomson et al., 2012).

So far, we have identified twelve mutants of SPOROPHYTIC POLLEN STERILITY (SPS1-SPS12) and twelve GAMETOPHYTIC POLLEN STERILITY (GPS1-GPS12) by gamma-ray mutagenesis to japonica cultivar Taichung 65 (T65) (Yamagata et al., 2007). To understand the genetic basis of pollen development, linkage mapping of these mutants has been conducted. Although SPS6, SPS9, SPS12, GPS4, GPS5, GSP6, and GPS12 have been mapped on the rice linkage map. However, the map position of the causal gene for the other mutant lines has not been revealed. Here, we conducted bulked segregants analysis assisted by Illumina Beadarray-based genotyping system in the F₂ population for four SPS mutant lines and four GPS mutant lines. Using 287 SNP markers designed for Japanese rice accessions, we detected signal peaks on candidate SNP markers involved in phenotypes. Linkage analysis was conducted by PCR-based markers which are linked to the candidate SNP markers for identification of the genes for sporophytic or gametophytic pollen sterility.

MATERIALS AND METHODS

Plant materials

Eight gamma-ray-induced mutants derived from T65 were used in this study (Table 1). For bulked segregant analysis and linkage analysis of the mutants, the F₂ population derived from a cross between the mutants and the Japonica rice cultivar Hinohikari was grown. For the recessive SPS2, SPS3, SPS4, and SPS5 mutants showing complete male and female sterility, pollen-fertile plant segregated in mutant lines were crossed by Hinohikari pollen, and the F₂ populations in which segregation of pollen sterile plants was observed were used for the gene mapping. For the GPS1, GPS3, GPS9, and GPS10 mutants for gametophytic pollen sterility, pollen semi-sterile plants were pollinated by Hinohikari pollen and the F₁ plants showing pollen semi-sterility were screened to the generation of the F₂ population used for the mapping.

Table 1. Mutant lines used in this study

Mutant line	Gene	Type of pollen sterility
PSML2	SPS2	Sporophytic
PSML3	SPS3	Sporophytic
PSML4	SPS4	Sporophytic
PSML7	SPS7	Sporophytic
PSML101	GPS1	Gametophytic
PSML103	GPS3	Gametophytic
PSML109	GPS9	Gametophytic
PSML110	GPS10	Gametophytic

Observation of pollen fertility

Panicles at the heading stage were fixed and stored in 70% ethanol. Six anthers from the spikelet just before flowering were squashed on a slide glass in $1\%~I_2$ –KI solution. After removing the anthers and debris, pollen grains were observed under a microscope (Zeiss, Jena, Germany). Pollen grains without difference from those of Taichung 65 were described as fertile. Aborted, unstained, incompletely stained, or small pollen grains were scored as sterile.

Bulked segregants analysis

Genomic DNA was extracted from freeze–dried leaf samples of the individual plants in the F_2 population according to the minipreparation method (Dellaporta et al., 1983) with minor modifications. The DNA concentration of the individual plants was measured by a spectrophotometer. For the BSA of the sporophytic mutants, we prepared bulked DNA samples equally from eight pollen sterile plants ($S_{\rm spo}$ bulked DNA) and eight normal plants ($N_{\rm spo}$ bulked DNA). Similarly, for the BSA of the gametophytic mutants, we bulked DNA samples equally for eight pollen semi-sterile plants ($S_{\rm ga}$ bulked DNA) and eight normal plants ($N_{\rm ga}$ bulked DNA). For the detection of the genomic region for segregation distortion

observed in the F_2 population between T65 and Hinohikari, we prepared a control DNA bulked sample equally from eight fertile plants randomly selected from the F_2 population (C bulked DNA). The concentration of the bulked DNA samples was adjusted to $20 \, \text{ng/}\mu\text{l}$ after purification by spin column kit (GeneAll Expin PCR SV, Singapore). A core set of 768 SNP markers designed for diversity analysis in Japanese rice accessions (Nagasaki et al., 2010) were used for the bulked segregant analysis by Infinium assay using iScan Beadarray Reader (Illumina, San Diego, USA). The obtained data were analyzed by the Illumina Genome Studio Genotyping module.

Linkage mapping using PCR-based marker

Linkage maps of the gene for pollen sterility were constructed by PCR-based markers, cleaved amplified polymorphic sequences (CAPS) markers, derived CAPS (dCAPS) markers, sequence-tagged sites (STS) markers, and simple sequence repeats (SSR) markers (Table 2). The CAPS or dCAPS markers were converted from the Infinium SNP markers to detect the corresponding SNPs by the dCAPS Finder 2.0 program (Neff et al., The STS markers used in this study were designed from polymorphic insertion-deletion sites found in T65 resequencing data using the Roche-454 Titanium FLX system. The SSR markers were referred from McCouch et al. (2002). PCR reactions were performed in $15\,\mu\mathrm{L}$ of reaction mixture containing $50\,\mathrm{mM}$ KCl, $10 \,\mathrm{mM}$ Tris-HCl (pH 9.0), $1.5 \,\mathrm{mM}$ MgCl₂, $200 \,\mu\mathrm{M}$ each dNTP, $0.2\,\mu\mathrm{M}$ each primer, $0.75\,\mathrm{units}~\mathit{Taq}$ polymerase (Takara, Otsu, Japan), and approximately two ng of template DNA in a GeneAmp PCR system 9700 (Applied Biosystems, Foster City, CA, USA). PCR was 95°C for 5 min, followed by 35 cycles of 95°C for 30 s, 55°C for $30\,\mathrm{s}$, and $72^\circ\mathrm{C}$ for $30\,\mathrm{s}$. For genotyping, the PCR amplified products of the CAPS and dCAPS markers were digested by restriction enzyme after conventional isopropanol precipitation of DNA. The obtained DNA fragments were run in 4% agarose gels in $0.5\times\mathrm{TBE}$ buffer. The linkage map was constructed by MAPMAKER/EXP 3.0 program (Lander et~al., 1987) using Kosambi's mapping function.

RESULTS

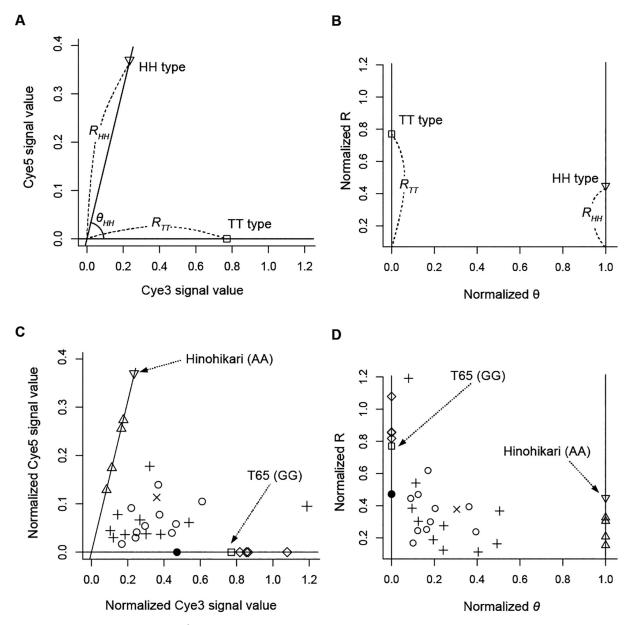
Polymorphism detection between T65 and Hinohikari

Using the core set of 768 SNP markers designed for diversity analysis in Japanese rice accessions at the National Institute of Agrobiological Sciences (NIAS) (Nagasaki et al., 2010), we surveyed bulked DNA from normal and sterile plants by the Illumina BeadArray. The scatter plot of the Cye3 and Cye5 signal intensities on each SNP marker were obtained and converted to standardized polar coordinates using R and θ by Illumina Genome Studio Genotyping module (Fig. 1A, B). For example, adenine (A) and guanine (G) nucleotides at the SNP marker locus NIAS_Os_ ab05000327 (Mk139) were labeled with Cye3 and Cye5 dyes, respectively (Fig. 1C, D). Hinohikari (Fig. 1C, D; white inverted triangle) and T65 (Fig. 1C, D; white box) have been found to possess homozygous genotypes for A and G nucleotides (AA and GG), respectively. The five cultivars carrying AA genotypes and Hinohikari and the other five carrying GG genotypes and T65 formed each of two separable linear plots on the Cye3-Cye5 scatter plot and the standardized polar coordinates plot (Fig. 1C, D). Whereas plots of the bulked DNA were distributed between the two scatter lines of cultivars (plus symbol and white circles,

Table 2. PCR-based markers used in this study

Gene	Marker	Marker type	Forward primer ¹	Reverse primer ¹	Restriction enzyme	Chr.	Start ²	End ²	Product size
SPS2	QSTS237	STS	GACCAGAGACTGCCCCATC	TCACTTCAAGTCTGTGGTTTCAG		10	2,522,458	2,522,561	104
SPS2	RM5304	SSR	CATCTTGAATCCTCCTTCGACTCC	GGCAGCGATAGCAGGAAGAGG		10	16,874,853	16,875,188	336
SPS3	Mk137dCAPS	dCAPS	${\tt CCCTTATAATGAGAAATTGGAAGAG}$	GCAGCACCTCATTTTGTAGATT	SacI	5	26,896,716	26,897,014	299
SPS3	Mk138CAPS	CAPS	CCATTTCTGCAAACTGGAAG	GAGCCAAAATTTGCAAAGCA	MboI	5	28,986,332	28,986,590	259
SPS3	QSTS154	STS	GAAGCCAGGTCCCAAGATG	GTAGCTAGGGCCCACTCTGG		5	29,659,648	29,659,789	142
SPS4	Mk97dCAPS	dCAPS	${\tt GTTATTAACTCGTCCGTTTCATATT}$	${\tt TGCAAATAGCTTAAAATAAGTGGTC}$		3	26,482,714	26,483,013	300
SPS4	RM1350	SSR	${\bf AGGAACACCCAAGAGAGTCATGC}$	GCAAGAAAGCTCTGCTCCATGC		3	29,443,733	29,443,940	208
SPS7	Mk97dCAPS	dCAPS	${\tt GTTATTAACTCGTCCGTTTCATATT}$	${\tt TGCAAATAGCTTAAAATAAGTGGTC}$	TaqI	3	26,482,714	26,483,013	300
SPS7	RM1350	SSR	${\bf AGGAACACCCAAGAGAGTCATGC}$	GCAAGAAAGCTCTGCTCCATGC		3	29,443,733	29,443,940	208
GPS1	Mk97dCAPS	dCAPS	${\tt GTTATTAACTCGTCCGTTTCATATT}$	${\tt TGCAAATAGCTTAAAATAAGTGGTC}$		3	26,482,714	26,483,013	300
GPS1	RM1350	SSR	${\bf AGGAACACCCAAGAGAGTCATGC}$	GCAAGAAAGCTCTGCTCCATGC		3	29,443,733	29,443,940	208
GPS3	Mk82dCAPS	dCAPS	${\tt TGCATTGATCGATAGAGTCGATCCG}$	GAATGGTATTTCGGCATGTTCT	BsrBI	3	6,769,688	6,769,916	229
GPS3	Mk83dCAPS	dCAPS	${\bf AAGAGAATCTTTTCACTGTAGCATA}$	${\tt ATTCCGTATGGGTATTAAGGTG}$	NdeI	3	7,846,383	7,846,674	292
GPS9	QSTS134	STS	CTTGTATTGCGTGCAGGATG	TTGGCTTCAATGCATACACC		4	13,161,035	13,161,154	120
GPS10	RM5847	SSR	${\tt CTTTAGGTAGCGTCATCTTCC}$	TGGAAATACAGAAGGAGTCG		7	24,309,502	24,309,991	490
GPS10	RM1364	SSR	AAGAAATTCAAAACACATGA	AAAACATCTACTTTGATCCA		7	27,435,157	27,435,314	158

²Genomic positions in the reference genome Nipponbare IRGSP-1.0.



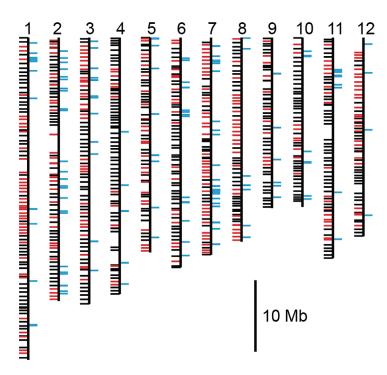

Fig. 1. Definition of normalized θ and R values converted from the Cye3 and Cye5 signals by Illumina Genome Studio software. (A) White inverted triangles and rectangles represent Hinohikari and T65, respectively. The Cye3 and Cye5 signals of the parents, T65 and Hinohikari, are plot on the polar coordinate plane of θ and R. (B) The angle Hinohikari from the one of T65 ($\theta_{\it HH}$) were normalized to one. (C-D) The bulked DNA samples of fertile and sterile segregants in F_2 populations were shown in white circles and daggers, respectively. The black circle and cross represent the signals from the sterile and fertile bulks for SPS3 mapping in the nearest SNP marker Mk139 (see result). These samples were plotted on the original Cye3 and Cye5 coordinate plane (C) and normalized θ and R coordinate plane (D).

Fig. B, D). This indicates that the Mk139 marker is bimorphic between T65 and Hinohikari, whereas bulked DNA samples from normal or pollen sterile plants in the $\rm F_2$ population would have variation in T65 DNA and Hinohikari DNA ratio. Consequently, we found 287 bimorphic markers between T65 and Hinohikari distributed on a whole genomic region on the rice chromosome (Fig. 2; Table 3). We found a large gap region where a bimorphic marker was not discovered in more than 9 Mb on chromosomes 4, 10, and 11 probably due to the identity–by–descent in the ancestral pedigree.

Bulked segregants analysis by BeadArray

The bulked DNA of the normal plants (N_{spo}) bulk) and

sterile plants (S_{spo} bulk) in the F_2 population for the sporophytic pollen sterile mutants and the bulked DNA of the normal (N_{ga} bulk) and semi–sterile (S_{ga} bulk) plants in the F_2 population for the gametophytic pollen sterile mutants were examined by the Illumina BeadArray. Theoretically, allele frequencies of T65 and Hinohikari in bulks are estimated by a function of recombination fraction r between causal genes and given markers (Table 4). To estimate r between marker and gene, deviation of T65 allele frequency from 1 in the N_{spo} and S_{spo} bulks (Δf_{Nspo} and Δf_{Sspo}) (Fig. 3A, B) and Hinohikari allele frequency from 1 in the N_{ga} and S_{ga} bulks (Δf_{Nsgo} and Δf_{Ssgo}) were calculated (Fig. 3C, D). At the SNP marker completely linking to the gene (r=0) in the bulked seg-

Fig. 2. Whole genome coverage of the polymorphic markers used in this study. Twelve vertical lines represent the rice chromosomes (n=12). Horizontal bars on the left side of the vertical lines show the core set of 768 SNP markers designed for diversity analysis in Japanese rice accessions (Nagasaki *et al.* 2010). The SNP markers harboring polymorphism between T65 and Hinohikari are shown in red. Horizontal bars on the right side of the vertical lines show the polymorphic PCR–based markers.

 $\textbf{Table 3.} \ \ \text{SNP markers showing clear polymorphism between Taichung } 65 \ \text{and Hinohikari}$

Marker	Original marker ID	Chr	Position ¹	Marker	Original marker ID	Chr	Position ¹
Mk1	NIAS_Os_aa01000201	1	1,268,484	Mk73	NIAS_Os_aa03000455	3	2,174,753
Mk2	NIAS_Os_aa01000889	1	1,841,582	Mk74	NIAS_Os_aa03000464	3	2,722,161
Mk3	NIAS_Os_aa01003605	1	3,027,485	Mk75	NIAS_Os_aa03000481	3	3,223,584
Mk4	NIAS_Os_ac01000670	1	8,035,380	Mk76	NIAS_Os_aa03000493	3	3,884,127
Mk5	NIAS_Os_aa01005640	1	11,019,483	Mk77	NIAS_Os_aa03000513	3	4,446,439
Mk6	NIAS_Os_aa01005935	1	11,424,453	Mk78	NIAS_Os_ab03000076	3	5,625,905
Mk7	NIAS_Os_aa01006068	1	12,018,297	Mk79	NIAS_Os_ab03000079	3	5,966,048
Mk8	NIAS_Os_aa01006075	1	12,480,565	Mk80	NIAS_Os_ac03000074	3	6,176,568
Mk9	NIAS_Os_aa01006089	1	13,142,274	Mk81	NIAS_Os_ac03000079	3	6,738,586
Mk10	NIAS_Os_aa01006150	1	15,463,045	Mk82	NIAS_Os_ab03000088	3	6,769,713
Mk11	NIAS_Os_aa01006249	1	16,958,784	Mk83	NIAS_Os_ac03000086	3	7,846,649
Mk12	NIAS_Os_aa01006278	1	18,853,746	Mk84	NIAS_Os_ab03000111	3	8,251,245
Mk13	NIAS_Os_aa01006340	1	19,767,057	Mk85	NIAS_Os_ac03000229	3	9,345,120
Mk14	NIAS_Os_aa01006478	1	20,246,725	Mk86	NIAS_Os_aa03000528	3	10,014,890
Mk15	NIAS_Os_aa01006756	1	20,670,591	Mk87	NIAS_Os_aa03000595	3	10,734,126
Mk16	NIAS_Os_aa01006765	1	21,077,064	Mk88	NIAS_Os_aa03000667	3	11,264,731
Mk17	NIAS_Os_aa01006770	1	21,547,487	Mk89	NIAS_Os_aa03001638	3	17,043,482
Mk18	NIAS_Os_aa01006817	1	22,533,243	Mk90	NIAS_Os_ac03000493	3	17,995,961
Mk19	NIAS_Os_aa01006855	1	23,033,795	Mk91	NIAS_Os_aa03002083	3	18,373,459
Mk20	NIAS_Os_aa01006881	1	23,530,660	Mk92	NIAS_Os_aa03002095	3	18,720,599
Mk21	NIAS_Os_aa01006903	1	23,769,255	Mk93	NIAS_Os_aa03002290	3	23,208,308
Mk22	NIAS_Os_aa01006939	1	24,017,033	Mk94	NIAS_Os_ac03000587	3	24,512,928
Mk23	NIAS_Os_aa01006944	1	24,535,890	Mk95	NIAS_Os_ab03000476	3	25,569,893
Mk24	NIAS_Os_aa01006950	1	24,940,615	Mk96	NIAS_Os_ac03000619	3	26,104,995
Mk25	NIAS_Os_aa01008076	1	25,274,929	Mk97	NIAS_Os_ac03000633	3	26,482,739
Mk26	NIAS_Os_aa01008849	1	26,063,580	Mk98	NIAS_Os_aa03002367	3	27,619,018
Mk27	NIAS_Os_aa01008907	1	26,509,357	Mk99	NIAS_Os_aa03002478	3	30,362,290
Mk28	NIAS_Os_aa01009141	1	26,909,316	Mk100	NIAS_Os_aa03002548	3	32,048,002

 Table 3. (continued)

Marker	Original marker ID	Chr	Position ¹	Marker	Original marker ID	Chr	Position ¹
Mk29	NIAS_Os_aa01009804	1	27,303,987	Mk101	NIAS_Os_aa03002554	3	32,280,379
Mk30	NIAS_Os_aa01009851	1	28,636,306	Mk102	NIAS_Os_ab03000579	3	33,828,281
Mk31	NIAS_Os_aa01010071	1	30,801,732	Mk103	NIAS_Os_aa04002698	4	4,433,214
Mk32	NIAS_Os_aa01010140	1	33,078,597	Mk104	NIAS_Os_aa04002724	4	4,765,053
Mk33	NIAS_Os_aa01010145	1	33,552,000	Mk105	NIAS_Os_aa04002941	4	5,369,672
Mk34	NIAS_Os_aa01010816	1	39,263,468	Mk106	NIAS_Os_aa04003046	4	6,475,663
Mk35	NIAS_Os_aa01010935	1	41,221,259	Mk107	NIAS_Os_aa04003107	4	6,892,422
Mk36	NIAS_Os_aa01010937	1	41,804,180	Mk108	NIAS_Os_aa04003679	4	7,786,585
Mk37	NIAS_Os_aa01010967	1	43,717,183	Mk109	NIAS_Os_aa04003724	4	8,263,746
Mk38	NIAS_Os_ab01001286	1	44,114,080	Mk110	NIAS_Os_ac04001045	4	21,548,924
Mk39	NIAS_Os_aa02000006	2	390,336	Mk111	NIAS_Os_ab04001157	4	23,524,912
Mk40	NIAS_Os_aa02000031	2	891,366	Mk112	NIAS_Os_ac04001067	4	26,235,224
Mk41	NIAS_Os_aa02000032	2	1,464,369	Mk113	NIAS_Os_ac04001069	4	26,626,506
Mk42	NIAS_Os_aa02000034	2	2,153,815	Mk114	NIAS_Os_ab04001335	4	31,918,946
Mk43	NIAS_Os_aa02000675	2	5,100,626	Mk115	NIAS_Os_ac04001259	4	34,104,276
Mk44	NIAS_Os_aa02000707	2	5,602,214	Mk116	NIAS_Os_aa04009710	4	34,544,780
Mk45	NIAS_Os_ab02000190	2	6,550,893	Mk117	NIAS_Os_aa05000026	5	142,341
Mk46	NIAS_Os_ac02000121	2	6,614,944	Mk118	NIAS_Os_ac05000011	5	441,754
Mk47	NIAS_Os_aa02000729	2	8,785,514	Mk119	NIAS_Os_aa05000045	5	2,338,894
Mk48	NIAS_Os_aa02000735	2	9,135,316	Mk120	NIAS_Os_ac05000021	5	2,816,864
Mk49	NIAS_Os_aa02000798	2	10,149,289	Mk121	NIAS_Os_aa05000263	5	3,868,405
Mk50	NIAS_Os_ac02000136	2	13,550,474	Mk121	NIAS_Os_aa05000340	5	5,320,109
Mk51	NIAS_Os_ab02000310	2	13,558,615	Mk123	NIAS_Os_ac05000101	5	7,492,024
Mk52	NIAS_Os_ac02000216	2	16,109,468	Mk124	NIAS_Os_ab05000101	5	9,327,890
Mk53	NIAS_Os_ab02000319	2	16,818,748	Mk125	NIAS_Os_ab05000119 NIAS_Os_ab05000124	5	11,349,470
Mk54	NIAS_Os_ab02000313 NIAS_Os_ab02000327	2	17,534,032	Mk126	NIAS_Os_ab05000124 NIAS_Os_ab05000128	5	12,410,382
Mk55	NIAS_Os_ab02000327 NIAS_Os_ab02000329	2	17,603,774	Mk127	NIAS_Os_ab05000128 NIAS_Os_ab05000132	5 5	12,998,736
Mk56	NIAS_Os_ac02000323	2	19,126,740	Mk128	NIAS_Os_ac05000152	5	14,518,855
Mk57	NIAS_Os_ab02000255 NIAS_Os_ab02000375	2	19,545,260	Mk129	NIAS_Os_ac05000151 NIAS_Os_ac05000153	5	14,752,316
Mk58	NIAS_Os_ab02000373 NIAS_Os_ab02000380	2	20,038,083	Mk130	NIAS_Os_ab05000169	5	
Mk59	NIAS_Os_aa02001232	2	21,193,559	Mk131	NIAS_Os_ac05000227	5	16,556,457 18,203,829
Mk60	NIAS_Os_aa02001252 NIAS_Os_aa02001425	2	23,000,346	Mk131	NIAS_Os_ac05000227 NIAS_Os_ac05000233	5	18,857,649
Mk61	NIAS_Os_aa02001425 NIAS_Os_aa02001836	2	25,147,471	Mk133	NIAS_Os_aa05000235	5	20,189,252
Mk62	NIAS_Os_aa02001630 NIAS_Os_aa02002928	2	26,478,941	Mk134	NIAS_Os_aa05000842	5	
Mk63	NIAS_Os_aa02002928 NIAS_Os_aa02003208	2	28,746,716	Mk135	NIAS_Os_ab05000842 NIAS_Os_ab05000280	5	21,650,823
Mk64	NIAS_Os_aa02003253	2	29,068,140	Mk136	NIAS_Os_ac05000298	5	22,851,067 23,262,105
Mk65	NIAS_Os_aa02003269	2	29,406,298	Mk137	NIAS_Os_ac05000298 NIAS_Os_aa05000868	5 5	26,896,741
Mk66	NIAS_Os_aa02003203 NIAS_Os_aa02003371	2		Mk138			
Mk67	NIAS_Os_aa02003947		30,963,801 35,131,698		NIAS_Os_aa05001022 NIAS_Os_ab05000327	5	28,986,433 29,388,932
Mk68	NIAS_Os_aa02003947 NIAS_Os_aa02003989	2 2	35,683,641	Mk139 Mk140	NIAS_Os_ac05000360	5 5	29,809,566
Mk69	NIAS_Os_aa02003989 NIAS_Os_aa02004105	2	36,143,511	Mk140	NIAS_Os_aa06000004	6	396,429
Mk70	NIAS_Os_aa02004103 NIAS_Os_aa02004112	2	36,572,369	Mk141	NIAS_Os_aa0600004 NIAS_Os_aa06000024	6	775,093
	NIAS_Os_aa03000026	3		Mk142 Mk143			
Mk71			1,192,473		NIAS_Os_ac06000061	6	3,252,868 4,439,073
Mk72	NIAS_Os_aa03000452 NIAS_Os_ab06000075	3	1,741,544 5,343,225	Mk144	NIAS_Os_ac06000078 NIAS_Os_ab08000952	6	
Mk145 Mk146		6	* *	Mk217		8	26,181,049
	NIAS_Os_aa06000302	6	5,532,677	Mk218	NIAS_Os_ac08000961	8	26,216,441
Mk147	NIAS_Os_ac06000121	6	7,237,880	Mk219	NIAS_Os_ac08000965	8	26,823,571
Mk148	NIAS_Os_ac06000385	6	8,658,335	Mk220	NIAS_Os_aa08006353	8	27,309,655
Mk149	NIAS_Os_ac06000397	6	9,137,292	Mk221	NIAS_Os_aa08006402	8	27,816,975
Mk150	NIAS_Os_ab06000799	6	10,381,181	Mk222	NIAS_Os_ac08000993	8	28,304,764
Mk151	NIAS_Os_ac06000592	6	11,912,372	Mk223	NIAS_Os_ac09000003	9	495,078
Mk152	NIAS_Os_ab06001118	6	18,117,938	Mk224	NIAS_Os_ac09000009	9	2,558,972
Mk153	NIAS_Os_ac06000665	6	19,763,293	Mk225	NIAS_Os_ac09000010	9	3,510,493
Mk154	NIAS_Os_ac06000790	6	24,118,399	Mk226	NIAS_Os_ab09000234	9	5,359,013
Mk155	NIAS_Os_aa06000879	6	24,704,577	Mk227	NIAS_Os_ac09000150	9	5,978,368
Mk156	NIAS_Os_aa06000895	6	25,874,054	Mk228	NIAS_Os_ac09000154	9	7,581,539
Mk157	NIAS_Os_aa06001139	6	28,752,213	Mk229	NIAS_Os_aa09000044	9	10,008,700
Mk158	NIAS_Os_aa06001150	6	29,230,199	Mk230	NIAS_Os_ac09000231	9	11,696,860
Mk159	NIAS_Os_aa06001164	6	31,279,600	Mk231	NIAS_Os_ac09000238	9	13,333,020
Mk160	NIAS_Os_aa07000004	7	1,016,334	Mk232	NIAS_Os_ac09000278	9	16,768,906

 Table 3. (continued)

Marker	Original marker ID	Chr	Position ¹	Marker	Original marker ID	Chr	Position ¹
Mk161	NIAS_Os_aa07000201	7	1,597,698	Mk233	NIAS_Os_ab09001035	9	17,235,555
Mk162	NIAS_Os_aa07000566	7	2,104,295	Mk234	NIAS_Os_ac09000281	9	17,755,974
Mk163	NIAS_Os_aa07000615	7	2,683,214	Mk235	NIAS_Os_aa10000007	10	952,586
Mk164	NIAS_Os_aa07000697	7	3,168,158	Mk236	NIAS_Os_aa10000749	10	2,129,081
Mk165	NIAS_Os_aa07001067	7	3,686,778	Mk237	NIAS_Os_aa10002652	10	12,225,180
Mk166	NIAS_Os_aa07001130	7	4,276,229	Mk238	NIAS_Os_aa10002752	10	12,804,781
Mk167	NIAS_Os_aa07001807	7	4,800,059	Mk239	NIAS_Os_aa10002866	10	14,081,991
Mk168	NIAS_Os_aa07001816	7	5,238,134	Mk240	NIAS_Os_aa10002874	10	14,370,080
Mk169	NIAS_Os_aa07001842	7	7,213,462	Mk241	NIAS_Os_ac10000399	10	15,585,702
Mk170	NIAS_Os_ab07000442	7	8,456,603	Mk242	NIAS_Os_aa10002908	10	16,771,274
Mk171	NIAS_Os_ab07000446	7	8,915,167	Mk243	NIAS_Os_ac10000429	10	19,009,956
Mk172	NIAS_Os_ab07000462	7	10,583,608	Mk244	NIAS_Os_aa11000032	11	994,653
Mk173	NIAS_Os_ab07000482	7	11,092,773	Mk245	NIAS_Os_aa11000115	11	3,266,163
Mk174	NIAS_Os_ab07000535	7	11,987,250	Mk246	NIAS_Os_aa11000146	11	3,902,699
Mk175	NIAS_Os_ab07000574	7	12,456,450	Mk247	NIAS_Os_aa11000283	11	4,387,906
Mk176	NIAS_Os_ab07000628	7	13,520,623	Mk248	NIAS_Os_ab11000174	11	5,001,838
Mk177	NIAS_Os_ac07000428	7	16,305,134	Mk249	NIAS_Os_aa11000573	11	6,868,556
Mk178	NIAS_Os_ac07000431	7	17,282,400	Mk250	NIAS_Os_aa11002695	11	7,733,203
Mk179	NIAS_Os_ac07000440	7	17,631,034	Mk251	NIAS_Os_aa11002722	11	9,097,827
Mk180	NIAS_Os_aa07001862	7	18,079,458	Mk252	NIAS_Os_ac11000385	11	18,200,567
Mk181	NIAS_Os_ac07000529	7	18,544,719	Mk253	NIAS_Os_aa11004155	11	22,189,282
Mk182	NIAS_Os_aa07001872	7	18,897,313	Mk254	NIAS_Os_aa11004494	11	22,902,061
Mk183	NIAS_Os_aa07001881	7	19,448,188	Mk255	NIAS_Os_aa11004535	11	24,050,290
Mk184	NIAS_Os_aa07002123	7	20,485,611	Mk256	NIAS_Os_aa11004652	11	24,778,955
Mk185	NIAS_Os_aa07002833	7	21,476,529	Mk257	NIAS_Os_aa11005083	11	25,456,528
Mk186	NIAS_Os_aa07004070	7	23,408,558	Mk258	NIAS_Os_aa11005455	11	25,754,577
Mk187	NIAS_Os_aa07005154	7	23,897,779	Mk259	NIAS_Os_aa11006712	11	26,298,510
Mk188	NIAS_Os_aa07005205	7	24,372,658	Mk260	NIAS_Os_aa11007380	11	28,042,026
Mk189	NIAS_Os_aa07005234	7	24,806,873	Mk261	NIAS_Os_aa11007953	11	28,251,660
Mk190	NIAS_Os_aa07006696	7	25,842,928	Mk262	NIAS_Os_aa12000015	12	2,091,263
Mk191	NIAS_Os_aa07007162	7	27,301,089	Mk263	NIAS_Os_aa12000019	12	2,442,856
Mk192	NIAS_Os_aa07007461	7	27,710,942	Mk264	NIAS_Os_aa12000000 NIAS_Os_aa12000100	12	2,837,321
Mk193	NIAS_Os_aa07007493	7	28,145,394	Mk265	NIAS_Os_aa12000100 NIAS_Os_aa12001361	12	4,432,378
Mk194	NIAS_Os_aa07007512	7	28,953,150	Mk266	NIAS_Os_aa12001740	12	5,123,887
Mk195	NIAS_Os_aa07007512 NIAS_Os_aa07007522	7	29,724,834	Mk267	NIAS_Os_aa12001740 NIAS_Os_aa12001794	12	5,528,490
Mk196	NIAS_Os_aa07007554	7	30,021,987	Mk268	NIAS_Os_aa12001794 NIAS_Os_aa12002375	12	6,212,403
Mk197	NIAS_Os_aa08000002	8	172,474	Mk269		12	6,759,198
Mk198	NIAS_Os_ac08000002 NIAS_Os_ac08000095	8	3,334,435	Mk270	NIAS_Os_aa12002973 NIAS_Os_aa12004168	12	6,759,198 7,306,761
	NIAS_OS_ac08000095 NIAS_OS_aa08001066						
Mk199 Mk200	NIAS_Os_aa08001000 NIAS_Os_aa08001334	8 8	5,648,692 8,023,300	Mk271 Mk272	NIAS_Os_aa12004213 NIAS_Os_aa12004255	12 12	7,986,190 8,402,485
Mk200 Mk201	NIAS_Os_aa08001334 NIAS_Os_aa08001338		8,442,466	Mk273	NIAS_Os_aa12004405	12	8,402,485 9,771,738
Mk201 Mk202	NIAS_Os_aa08001560	8 8	8,838,173	Mk274	NIAS_Os_aa12004405 NIAS_Os_aa12004429	12	
	NIAS_Os_aa08001638				NIAS_Os_aa12004429 NIAS_Os_aa12004430		10,798,350
Mk203		8	9,237,171 10,335,140	Mk275	NIAS_Os_aa12004430 NIAS_Os_aa12004439	12 12	11,037,889
Mk204	NIAS_Os_aa08002627	8	10,335,140	Mk276 Mk277		12 12	11,771,031
Mk205	NIAS_Os_aa08002710	8			NIAS_Os_aa12004460		12,333,911
Mk206	NIAS_Os_aa08002774	8	12,108,262	Mk278	NIAS_Os_aa12004471	12	13,085,252
Mk207	NIAS_Os_aa08002815	8	12,536,246	Mk279	NIAS_Os_aa12004494	12	14,476,268
Mk208	NIAS_Os_aa08002874	8	13,145,021	Mk280	NIAS_Os_aa12004528	12	15,029,125
Mk209	NIAS_Os_aa08002899	8	13,648,707	Mk281	NIAS_Os_aa12004614	12	15,815,263
Mk210	NIAS_Os_aa08002979	8	14,354,648	Mk282	NIAS_Os_aa12004637	12	16,842,118
Mk211	NIAS_Os_aa08004016	8	14,874,393	Mk283	NIAS_Os_aa12004649	12	17,627,663
Mk212	NIAS_Os_ac08000582	8	16,038,090	Mk284	NIAS_Os_aa12005155	12	23,864,601
Mk213	NIAS_Os_aa08005445	8	17,903,867	Mk285	NIAS_Os_aa12005164	12	24,591,137
Mk214	NIAS_Os_aa08006226	8	21,226,060	Mk286	NIAS_Os_aa12005168	12	24,759,985
Mk215	NIAS_Os_aa08006250	8	21,821,034	Mk287	NIAS_Os_aa12005291	12	26,294,072
Mk216	NIAS_Os_ab08000934	8	24,927,823				

 $^{^{\}scriptscriptstyle 1}\textsc{Position}$ in rice pseudomolecule build 4.

Table 4. Theoretical allele frequencies of T65 and Hinohikari in bulked DNA

		T65 allele frequency			Hinohi			
Mutant type	Bulk	Completely linked Linked $(r=0)$		Independent $(r=0.5)$	Completely linked $(r=0)$	Linked	Independent $(r=0.5)$	Total
Sporophytic	$N_{\rm spo}$	2/3	2/3-r/3	0.5	1/3	r/3+1/3	0.5	1
	$S_{\rm spo}$	0	1-r	0.5	1	r	0.5	1
Gametophytic	N_{ga}	0	r	0.5	1	1-r	0.5	1
	S_{ga}	0.5	0.5	0.5	0.5	0.5	0.5	1

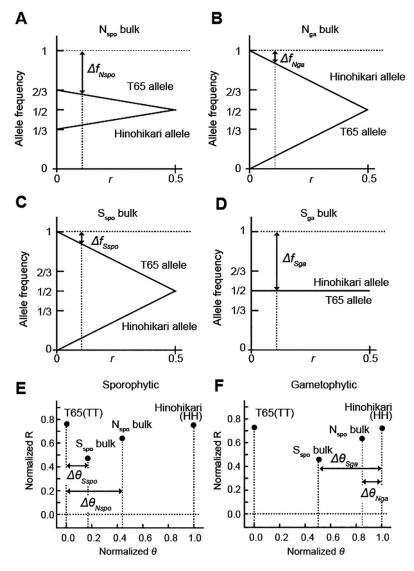


Fig. 3. Definition of genetic parameters in this study. (A–D) Theoretical allele frequency on recombination fraction (r) between the causal gene and marker loci. The bulked DNA from normal (fertile) segregants in F_2 populations in SPS and GPS mutants were designated N_{spo} and N_{ga} whereas the bulked DNA from sterile segregants in F_2 populations in SPS and GPS mutants were designated S_{spo} and S_{ga} , respectively. The deviation of T65 allele frequency from 1 in the N_{spo} and S_{spo} bulks $[\Delta f_{Nspo}$ (A) and Δf_{Sspo} (B)] and Hinohikari allele frequency from 1 in the N_{ga} and S_{ga} bulks $[\Delta f_{Nspo}$ (C) and Δf_{Sspo} (D)] were defined. Note that Δf_{Ngo} and Δf_{Sspo} is 0 when the SNP marker of interest is completely linked to the causal locus r=0. (E–F) Differences of θ values of the N_{spo} bulk and the S_{spo} bulk from T65 as $\Delta \theta_{Nspo}$ and $\Delta \theta_{Sspo}$ (E), and difference of θ values of the N_{ga} bulk and the S_{ga} bulk from Hinohikari as $\Delta \theta_{Nga}$ and $\Delta \theta_{Sga}$ (F).

regants analysis of sporophytic pollen sterility, Δf_{Nspo} is 1/3 in the N_{spo} bulk (Fig. 3A), and Δf_{Sspo} is zero in the S_{spo} bulk (Fig. 3B). Whereas, Δf_{Nspo} and Δf_{Sspo} at SNP marker independently assorted to the gene (r=0.5) are 0.5 (Fig. 3A, B). Similarly, Δf_{Nga} in the N_{ga} bulk is zero at r=0 (Fig. 3C). In contrast, Δf_{Sga} in the S_{ga} bulk is 0.5 at r=0.5 (Fig. 3D). In the standardized polar coordinates plot, we defined differences of θ values of the N_{spo} bulk and the S_{spo} bulk from T65 as $\Delta \theta_{Nspo}$ and $\Delta \theta_{Sspo}$ (Fig. 3E), and difference of θ values of the N_{ga} bulk and the S_{ga} bulk from Hinohikari as $\Delta \theta_{Nga}$ and $\Delta \theta_{Sga}$ (Fig. 3F). Since $\Delta \theta_{Nspo}$, $\Delta \theta_{Sspo}$, $\Delta \theta_{Nga}$, and $\Delta \theta_{Sga}$ were proportional to Δf_{Nspo} , Δf_{Sspo} , Δf_{Nspo} , and Δf_{Sga} , we assumed that $\Delta \theta_{Sspo}$ and $\Delta \theta_{Nga}$ are closed to zero at r=0.

For simple detection of candidate markers linked to the gene, we defined a common logarithm of $\Delta\theta$ for the normal bulk to the sterile bulk (*CLT*) for sporophytic pollen sterility and gametophytic pollen sterility as follows.

$$CLT_{spo} = \log_{10}(\Delta\theta_{Nspo}/\Delta\theta_{Sspo})$$
 (1)

$$CLT_{ga} = \log_{10}(\Delta\theta_{Sga}/\Delta\theta_{Nga})$$
 (2)

When r is 0.5, CLT_{spo} and CLT_{ga} values should show zero because $\Delta f_{Nspo} = \Delta f_{Sspo} = \Delta f_{Nga} = \Delta f_{Sga} = 0.5$ and $\Delta \theta_{Nspo} / \Delta \theta_{Sspo}$ and $\Delta\theta_{Saa}$ / $\Delta\theta_{Naa}$ is expected to be 1. Meanwhile, when r gets close to 0, CLT_{spo} and CLT_{ga} value approach positive infinity. For practical implementation, the maximum values of CLT_{spo} and CLT_{ga} were limited to 15. Using the 287 bimorphic markers between T65 and Hinohikari, we plot CLT_{spo} and CLT_{ga} on chromosomal order (Fig. 4). In sps2, CLT_{sm} showed the highest peak score at the SNP marker Mk240 (Fig. 4A). In the control bulked sample (C bulk), peak at Mk240 was not observed (Fig. 4E). Similarly, we selected candidate markers, Mk139 and Mk140 for SPS3, Mk99, Mk193, and Mk251 for SPS4, and Mk83 and Mk97 for SPS7. The bulked segregants analysis of GPS1 suggested that Mk94 and Mk126 were possibly involved in pollen semi-sterility (Fig. 4). We detected candidate markers Mk81 for GPS3, Mk116, Mk153, Mk212, and Mk271 for GPS9, and Mk192 for GPS10, respectively.

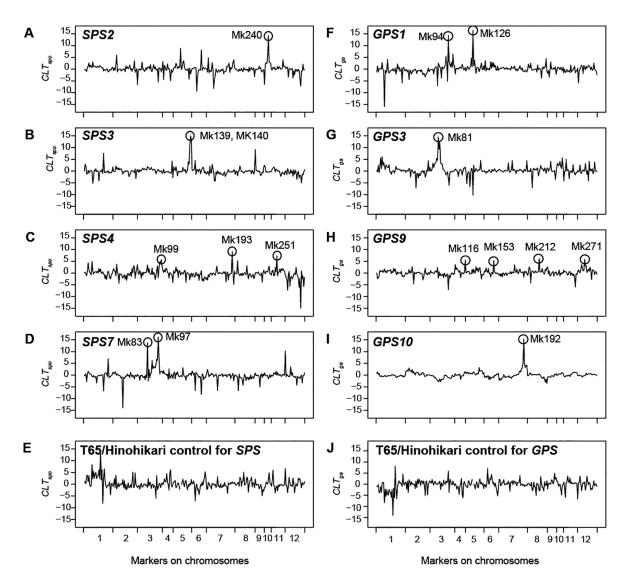


Fig. 4. CLT_{spo} for the SPS mutants and CLT_{ga} plots for the GPS mutants on the twelve chromosome in rice. The candidate peaks are marked in circles.

Confirmation of candidate peaks by linkage mapping

132

To confirm genomic region around the candidate markers was involved in pollen sterility, linkage analysis was performed using PCR-based markers, SSR, STS, CAPS, and dCAPS markers. dCAPS and CAPS markers used in the linkage mapping were newly developed by converting SNP markers of the Beadsarray. genetic analysis for SPS2 using F_2 population (n=95), SPS2 was mapped between QSTS237 and RM5304 on chromosome 10 with map distances of 32.1 cM and 13.2 cM, respectively (Fig. 5A). SPS3 was determined to be co-segregated with Mk138CAPS and located between Mk137dCAPS and QSTS154 on chromosome 5 at a map distance of 11.0 cM and 2.3 cM (Fig. 5B). SPS4 was co-segregated with marker RM1350 and linked to Mk97dCAPS on chromosome 3 at a map distance of 16.3 cM (Fig. 5C). And SPS7 was located between Mk97dCAPS and RM1350 on chromosome 3 at a map distance of 2.9 cM and 21.3 cM, respectively (Fig. 5D). For gametophytic pollen sterility, GPS1 was linked to marker Mk97dCAPS with a map distance of 23.8 cM (Fig. 5E). GPS3 was also located between markers Mk82dCAPS and Mk83dCAPS on chromosome 3 at a map distance of 0.5 cM and 5.0 cM, respectively (Fig. 5F). Linkage analysis showed that GPS9 linked to the marker QSTS134 on chromosome 4 at map distance of 17.5 cM (Fig. 5G). GPS10 was located between markers RM5847 and RM1364 at a map distance of 11.3 cM and 6.1 cM (Fig. 5H).

DISCUSSION

Biological studies using mutants has been a widely accepted approach to clarify genomic architectures and physiological and biochemical pathway in the functional genomics era (Sikora et al., 2011; Adamski et al., 2020). To understand gene function associated with male gametogenesis, mutant resources play an important role in rice as a model crop species for monocotyledon. For gene cloning of gamma-ray or heavy-ion beam irradiated mutants in rice, developing of segregating population derived from an inter-subspecific hybridization between so-called japonica and indica cultivars is widely used in a variety of analyses such as coarse linkage mapping and high-resolution mapping (Hanzawa et al., 2013). However, genetic analysis for pollen sterile mutants should include some considerations. First, pollen sterility controlled by hybrid pollen sterility genes caused by japonica and indica cross confuses phenotyping of pollen sterility governed by mutations. To avoid this matter, the selection of a more appropriate crossing parent, which shows a more polymorphic rate but less hybrid pollen sterility, is important for mapping and cloning mutant genes conferring sporophytic and gametophytic pollen sterility. So far, many hybrid pollen sterility genes have been found in *japonica* and *indica*, whereas more genetically related cross combinations between intrasubspecific combinations appear less frequently in hybrid sterility in pollen and embryo sac.

Recent SNP-based high-density and high-through-

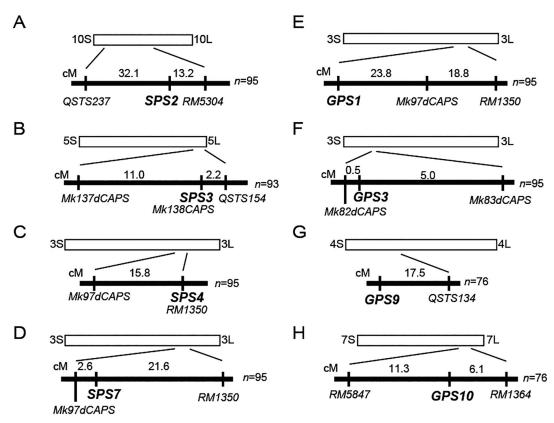


Fig. 5. Linkage mapping of the sporophytic pollen sterile mutants (SPS) and the gametophytic pollen sterile mutant (GPS). (A) SPS2. (B) SPS3. (C) SPS4. (D) SPS7. (E) GPS1. (F) GPS3. (G) GPS9. (H) GPS10.

put genotyping systems increased the availabilities of relatively rare SNPs scattered on the rice genome (McCouch et al., 2010; Thomson et al. 2012). A genotyping-by-sequencing (GBS) and genotype imputation with a hidden Markov model (HMM) approach are powerful in investigating genome-wide genotypes in biparental crosses (Fragoso et al., 2016; Furuta et al., 2017). However, GBS does not enable to capture the sufficient numbers of polymorphisms, especially on cross combination of the parents with less frequent polymorphisms due to shallow short-read coverage by stochastic sequencing at vast numbers of restriction sites. On the other hand, the SNP genotypes at the genomic region of interest can be rationally designed in Illumina infinium assay and would be suitable for the cross combination with less polymorphism rate, such as Japanese rice (Nagasaki et al., 2010).

In rice breeding, pollen sterility was applied widely to exploit rice genetic resources. Thermal–sensitive genic male sterility (TGMS), one kind of nuclear male sterility, was used to develop two–line hybrid rice that utilizes the heterosis of $F_{\scriptscriptstyle 1}$ progenies between inbreed varieties. Elucidating the genetic and cytological mechanisms of $F_{\scriptscriptstyle 1}$ pollen sterility is essential to overcome the reproductive barrier, an obstacle in exploiting new genetic resources from other subspecies or wild rice.

AUTHOR CONTRIBUTIONS

A. Yoshimura and Y. Yamagata conceptualized and administrated this study. A. T. Nguyen and Y Yamagata performed the BeadsArray experiment. A. T. Nguyen conducted linkage mapping. The manuscript was originally written by A. T. Nguyen and reviewed and edited by Y. Yamagata. All authors assisted in editing the manuscript and approved the final version.

ACKNOWLEDGEMENT

We sincerely thank Dr. Masahiro Yano and Dr. Taeko Shibaya, QTL Genomics Research Center, National Institute of Agrobiological Sciences in Japan, for their assistance in instructing Illumina® BeadArray system. This work was supported by grants from the Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultual Inovation, QTL–5002) and from the Ministry of Education Culture Sports, Science, and Technology of Japan (Grant–in–Aid for Scientific Research (A) Grant number 248002 and National Bioresource Project (Rice)). This research was partly supported by JST / JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS).

REFERENCES

Adamski, N. M., P. Borrill, J. Brinton, S. A. Harrington, C. Marchal, A. R. Bentley, W. D. Bovill, L. Cattivelli, J. Cockram, B. Contreras-Moreira, B. Ford, S. Ghosh, W. Harwood, K. Hassani-Pak, S. Hayta, L. T. Hickey, K. Kanyuka, J. King, M. Maccaferrri, G. Naamati, C. J. Pozniak, R. H. Ramirez-Gonzalez, C. Sansaloni,

- B. Trevaskis, L. U. Wingen, B. B. Wulff and C. Uauy 2020 A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. *Elife*, **9**: e55646
- Ariizumi, T. and K. Toriyama 2011 Genetic regulation of sporopollenin synthesis and pollen exine development. *Annu. Rev. Plant Biol.*, **62**: 437–460
- Comai, L. and S. Henikoff 2006 TILLING: practical single–nucleotide mutation discovery. *Plant J.*, **45**: 684–694
- Fekih, R., H. Takagi, M. Tamiru, A. Abe, S. Natsume, H. Yaegashi, S. Sharma, S. Sharma, H. Kanzaki, H. Matsumura, H. Saitoh, C. Mitsuoka, H. Utsushi, A. Uemura, E. Kanzaki, S. Kosugi, K. Yoshida, L. Cano, S. Kamoun, R. Terauchi 2013 MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS ONE, 8: e68529
- Fragoso, C. A., C. Heffelfinger, H. Zhao and S. L. Dellaporta 2016 Imputing genotypes in biallelic populations from low–coverage sequence data. *Genetics*, 202: 487–495
- Furuta, T., M. Ashikari, K. K. Jena, K. Doi, S. Reuscher 2017 Adapting genotyping-by-sequencing for rice F₂ populations. G3 (Bethesda), 7: 881-893
- Han, M. J., K. H. Jung, G. Yi, D. Y. Lee and G. An 2006 Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol. 47: 1457–1472
- Hanzawa, E., K. Sasaki, S. Nagai, M. Obara, Y. Fukuta, Y. Uga, A. Miyao, H. Hirochika, A. Higashitani, M. Maekawa, T. Sato 2013 Isolation of a novel mutant gene for soil–surface rooting in rice (Oryza sativa L.). Rice (N Y) 6: 30
- Hirochika, H. 2001 Contribution of the *Tos17* retrotransposon to rice functional genomics. *Curr. Opin. Plant Biol.*, **4**: 118–122
- Jiang, J., Z. Zhang, J. Cao 2013 Pollen wall development: the associated enzymes and metabolic pathways. *Plant Biol.* (Stuttg), 15: 249–263
- Lander, E., P. Green, J. Abrahamson, A. Barlow, M. Daly, S. Lincoln and L. Newburg 1987 MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. *Genomics*, 1: 174–181
- McCouch, S. R., K. Zhao, M. Wright, C-W. Tung, K. Ebana, M. Thomson, A. Reynolds, D. Wang, G. DeClerck, Md. L. Ali, A. McClung, G. Eizenga, C. Bustamante 2010 Development of genome-wide SNP assays for rice. Breed. Sci., 60: 524-535
- McCouch, S. R., L. Teytelman, Y. Xu, K. B. Lobos, K. Clare, M. Walton, B. Fu, R. Maghirang, Z. Li, Y. Xing, Q. Zhang, I. Kono, M. Yano, R. Fjellstrom, G. DeClerck, D. Schneider, S. Cartinhour, D. Ware, L. Stein 2002 Development and mapping of 2240 new SSR markers for rice (*Oryza sativa* L.). *DNA Res.*, 9: 199–207
- McCormick, S. 2004 Control of male gametophyte development. Plant Cell, 16(Suppl): 142–153
- Michelmore, R. W., I. Paran, R. V. Kesseli 1991 Identification of markers linked to disease–resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. *Proc. Natl. Acad.* Sci. U. S. A., 88: 9828–9832
- Moon, S., S. R. Kim, G. Zhao, J. Yi, Y. Yoo, P. Jin, S. W. Lee, K. H. Jung, D. Zhang, G. An 2013 Rice glycosyltransferase1 encodes a glycosyltransferase essential for pollen wall formation. *Plant Physiol.*, **161**: 663–675
- Nagasaki, H., K. Ebana, T. Shibaya, J. Yonemaru, M. Yano 2010 Core single nucleotide polymorphisms – a tool for genetic analysis of the Japanese rice population. *Breed. Sci.*, **60**: 648–655
- Neff, M. M., J. D. Neff, J. Chory, A. E. Pepper 1998 dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in *Arabidopsis thaliana genetics*. Plant J., 14: 387–392
- Osborne, B. I., C. A. Corr, J. P. Prince, R. Hehl, S. D. Tanksley, S. McCormick, B. Baker 1991 Ac transposition from a T–DNA can generate linked and unlinked clusters of insertions in the tomato genome. *Genetics* 129: 833–844
- Schneeberger, K. 2014 Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat. Rev. Genet., 15: 662–676.
- Sikora, P., A. Chawade, M. Larsson, J. Olsson, O. Olsson 2011

Mutagenesis as a tool in plant genetics, functional genomics, and breeding. *Int. J. Plant Genomics.*, **2011**: 314829

- Takagi, H., A. Uemura, H. Yaegashi, M. Tamiru, A. Abe, C. Mitsuoka, H. Utsushi, S. Natsume, H. Kanzaki, H. Matsumura, H. Saitoh, K. Yoshida, L. M. Cano, S. Kamoun, R. Terauchi 2013 MutMap—Gap: whole–genome resequencing of mutant F_2 progeny bulk combined with $de\ novo$ assembly of gap regions identifies the rice blast resistance gene $Pii.\ New\ Phytol.$, 200: 276–283
- Thomson, M. J., K. Zhao, M. Wright, K. L. McNally, J. Rey, C-W.
 Tung, A. Reynolds, B. Scheffler, G. Eizenga, A. McClung, H.
 Kim, A. M. Ismail, M. de Ocampo, C. Mojica, Ma. Y. Reveche, C.
 J. Dilla-Ermita, R. Mauleon, H. Leung, C. Bustamante, S. R.
 McCouch 2011 High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. *Mol. Breed.*, 29: 875–886
- Twell, D. 2011 Male gametogenesis and germline specification in

- flowering plants. Sex Plant Reprod., 24: 149-160
- Twell, D., S. K. Park, T. J. Hawkins, D. Schubert, R. Schmidt, A. Smertenko, P. J. Hussey 2002 MOR1/GEM1 has an essential role in the plant–specific cytokinetic phragmoplast. Nat Cell Biol., 4: 711–714
- Tzfira, T., J. Li, B. Lacroix, V. Citovsky 2004 Agrobacterium T– DNA integration: molecules and models. Trends Genet., 20: 375–383
- Ueda, K., F. Yoshimura, A. Miyao, H. Hirochika, K. Nonomura, H. Wabiko 2013 Collapsed abnormal pollen1 gene encoding the Arabinokinase–like protein is involved in pollen development in rice. Plant Physiol., 162: 858–871
- Yamagata, Y., K. Doi, H. Yasui, A. Yoshimura 2007 Identification of mutants for abnormal pollen development in rice. Breed. Sci., **57**: 331–337