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a b s t r a c t

Differentiation-inducing factor 1 (DIF-1) is a morphogen produced by Dictyostelium discoideum that in-
hibits the proliferation and migration of both D. discoideum and most mammalian cells. Herein, we
assessed the effect of DIF-1 on mitochondria, because DIF-3, which is similar to DIF-1, reportedly localizes
in the mitochondria when added exogenously, however the significance of this localization remains
unclear. Cofilin is an actin depolymerization factor that is activated by dephosphorylation at Ser-3. By
regulating the actin cytoskeleton, cofilin induces mitochondrial fission, the first step in mitophagy. Here,
we report that DIF-1 activates cofilin and induces mitochondrial fission and mitophagy mainly using
human umbilical vein endothelial cells (HUVECs). AMP-activated kinase (AMPK), a downstreammolecule
of DIF-1 signaling, is required for cofilin activation. Pyridoxal phosphatase (PDXP)dknown to directly
dephosphorylate cofilindis also required for the effect of DIF-1 on cofilin, indicating that DIF-1 activates
cofilin through AMPK and PDXP. Cofilin knockdown inhibits mitochondrial fission and decreases mito-
fusin 2 (Mfn2) protein levels, a hallmark of mitophagy. Taken together, these results indicate that cofilin
is required for DIF-1- induced mitochondrial fission and mitophagy.

© 2023 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological
Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
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1. Introduction

Dictyostelium discoideum is an amoebozoan that exists as a
unicellular or multicellular organism. When surrounding food re-
sources are exhausted, unicellular cells differentiate into multicel-
lular fruiting bodies consisting of prestalk and prespore regions.1,2

Differentiation-inducing factor 1 (DIF-1) is a chlorinated polyke-
tide morphogen produced by D. discoideum, which inhibits growth
and migration and promotes prestalk cell differentiation.3 DIF-1
inhibits growth and migration not only in Dictyostelium, but also
in various types of mammalian cells, such as B16BL6, A2058s, LM8,
MCF-7, and 4T1 cells.4e6 This suggests that DIF-1 is an attractive
lead compound for the development of anti-cancer drugs.

To understand how DIF-1 inhibits growth and migration, we
investigated the signal transduction pathways that are activated or
inactivated in response to DIF-1. Previously, we found that the
mTOR/S6-kinase pathway was inhibited by DIF-1, resulting in a
nese Pharmacological Society. This is an open access article under the CC BY license
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decrease in cyclin D1 expression through phosphorylation and
activation of AMP-activated kinase (AMPK).6,7 AMPK functions as
an energy sensor.8 When the AMP/ATP ratio increases, AMP allo-
sterically binds to AMPK, resulting in the phosphorylation and
activation of AMPK. AMPK then phosphorylates and inhibits raptor,
a component of the mechanistic target of rapamycin complex 1
(mTORC1), leading to suppression of protein synthesis and cell
proliferation.

Mitochondria are another downstream target of the AMPK
pathway. When mitochondria are damaged, AMPK is activated due
to the suppression of ATP production and an increase in the AMP/
ATP ratio. AMPK induces mitochondrial fission via phosphorylation
of mitochondrial fission factor.9 Mitochondria are double-
membrane organelles that play an essential role in cellular meta-
bolism through ATP production.10 When mitochondria are
damaged bymitochondrial uncouplers, such as carbonyl cyanide 3-
chlorophenylhydrazone (CCCP), the damaged organelles are sepa-
rated from healthy ones via fission to maintain mitochondrial
quality.11,12 The damaged mitochondria are then removed by
mitophagy, a selective form of mitochondrial degradation in lyso-
somes. Interestingly, DIF-like molecules also function as mito-
chondrial uncouplers and decrease the ATP/AMP ratio.13

Cofilin-1 (hereafter referred to as cofilin) is an actin depoly-
merization factor that is activated by dephosphorylation at Ser-3 by
pyridoxal phosphatase (PDXP) or slingshot 1e3. Cofilin induces
mitochondrial fission by regulating the actin cytoskeleton.14

DIF-3 is structurally related to DIF-1 and is localized in the
mitochondria.15 DIF-3 induces mitochondrial fission in
HM44 cells13; however, the molecular mechanisms underlying this
induction of mitochondrial fission remain elusive. Hence, in the
present study, we evaluated whether DIF-1 induces mitochondrial
fission, and assessed the associated molecular mechanisms. Taken
together, we identified AMPK, HSP90, PDXP, and cofilin as factors
associated with the signaling pathway underlying DIF-1-induced
mitochondrial fission and mitophagy.

2. Materials and methods

2.1. Reagents and antibodies

The following reagents were employed throughout this study.
Compound C (Selleck Chemicals, Houston, TX, USA), metformin
(Wako-Fujifilm, Osaka, Japan), and Immobilon Forte HRP substrate
(Millipore, Burlington, MA, USA). DIF-1 was synthesized as
Table 1
Nucleotide sequences used in this study.

Nucleotide sequences used to knockdown human cofilin-1
human cofilin #1
human cofilin #2
Nucleotide sequences used to knockdown PDXP
mouse PDXP
human PDXP
Primers used to construct pcDNA3 HSP90-HA
HSP90 HA F
HSP90 HA R
Primers used to construct pmVenus N1 COXⅣ
COXⅣ-Venus F
COXⅣ-Venus R
Primers used to construct pCX4 puro cofilinWT-Flag
cofilinWT-Flag F
cofilinWT-Flag R
Primers used for introducing point mutations into cofilin
cofilinS3A-Flag F
cofilinS3A-Flag R
cofilinS3D-Flag F
cofilinS3D-Flag R

40
previously described.16 Additionally, the following primary anti-
bodies were applied: anti-GAPDH (1:1000, cat. no. ab8245, Abcam,
Cambridge, UK), anti-Mfn2 (1:1000, cat. no. 12186-1-AP, Proteintech,
Rosemont, IL, USA), anti-Tim23 (1:1000, cat. no. 11123-1-AP, Pro-
teintech), anti-Tom20 (1:1000, cat. no. 11802-1-AP, Proteintech),
anti-cofilin (1:1000, #5175, Cell Signaling Technology (CST), Beverly,
MA, USA), anti-p-cofilin (Ser3, 1:1000, #3313, CST), anti-AMPK
(1:1000, #5831, CST), anti-p-AMPK (Thr172, 1:1000, #2535, CST),
anti-PDXP (1:1000, #4686, CST), anti-Ezrin/Radixin/Moesin (1:1000,
#3142, CST), anti-Phospho-Ezrin (Thr567)/Radixin (Thr564)/Moesin
(Thr558) (1:1000, #3726, CST), anti-talin (1:1000, #4021, CST), anti-
p-talin (Ser425, 1:1000, #13589, CST), anti-VASP (Ser157, 1:1000,
#3111, CST), anti-p-VASP (Ser239, 1:1000, #3114, CST), anti-VASP
(1:1000, #3132, CST), anti-COXIV (1:250, #4850, CST), and anti-HA
antibody (1:1000, cat. no. M180-3, MBL, Tokyo, Japan). The second-
ary antibodies comprised HRP-labeled anti-mouse (1:2000, #7076,
CST) and anti-rabbit (1:2000, #7074, CST) IgG antibodies.

2.2. siRNAs

siRNAs targeting human cofilin (sicofilin #1) and control siRNA
duplexes were purchased from Sigma-Aldrich (St. Louis, MO, USA).
siRNAs targeting human cofilin (sicofilin #2), mouse PDXP, and
human PDXP were purchased from Nippon Gene (Tokyo, Japan).
The nucleotide sequences used for siRNAs are listed in Table 1.

2.3. Plasmids

The HSP90-HA expression vector was constructed by intro-
ducing the heat shock protein 90 (HSP90) fragment, amplified by
PCR from cDNA derived from human umbilical vein endothelial
cells (HUVECs, Lonza, Walkersville, MD, USA), into the BamHI and
EcoRI sites of pcDNA3-HA C.

The COXIV-Venus expression vector was constructed by intro-
ducing the COXⅣ fragment, amplified by PCR from pMitophagy
Keima-Red mPark2 (MBL, Tokyo, Japan), which encodes COXⅣ, into
the BamHI and EcoRI sites of pmVenus-N1. The cofilin WT-Flag
expression vector was constructed by introducing the cofilin frag-
ment, amplified by PCR from vector IRAL025O22 (RIKEN BRC
through the National Bio-Resource Project of the MEXT/AMED,
Japan), which encodes human cofilin-1, into the BamHI and EcoRI
sites of pCX4 puro Flag. Two cofilin mutant expression vectors that
mimic either the dephosphorylated (cofilin S3A, constitutively
active) or phosphorylated (cofilin S3D, dominant-negative) form
GGAGAGCAAGAAGGAGGAU
AGCAUGAAUUGCAAGCAAA

ACCGGUCCUUGAACUUAAU
CACCUCUCCUUUACAAAGA

TACCGAGCTCGGATCCGCCACCATGCCTGAGGAAGTGCAC
GATATCTGCAGAATTCATCGACTTCTTCCATGCGA

CTCAAGCTTCGAATTCGCCACCATGCTGAGCCTGCGCCAG
GGCGACCGGTGGATCCCACCTGGAACTGCACAGA

CTAGACTGCCGGATCGGAAACATGGCCTCCGGT
CCTTGTAGTCGAATTCCAAAGGCTTGCCCTCCA

GGAAACATGGCCGCCGGTGTGGCTGTCTCTGATG
GACAGCCACACCGGCGGCCATGTTTCCGATCCG
GGAAACATGGCCGACGGTGTGGCTGTCTCTGATG
GACAGCCACACCGTCGGCCATGTTTCCGATCCG
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were constructed by introducing point mutations into cofilin WT-
Flag. The primers used are listed in Table 1.

The pcDNA3 mito-SRAI was provided by RIKEN BRC through the
National Bio-Resource Project of the MEXT/AMED, Japan.17

2.4. Cell culture

HEK293T, MCF-7, and 4T1 cells, as well as SV40-transformed
murine endothelial cell lines (SVECs) were cultured in Dulbecco's
Modified Eagle Medium (Sigma-Aldrich) supplemented with 10%
fetal bovine serum (FBS, Nichirei, Tokyo, Japan), 100 U/mL penicillin
G (Meiji, Tokyo, Japan), and 100 mg/mL streptomycin (Meiji).
HUVECs were cultured in Endothelial Cell Growth Medium 2 Kit
(Takara, Shiga, Japan) at 37 �C in a 5% CO2 atmosphere.

2.5. Transfection, RNA interference, and western blotting

Cells were seeded in 35-mm dishes (1 � 105 cells/dish). After
24 h, transient transfection of cDNA was performed using Viafect
(Promega, Madison, WI, USA). The siRNA transfection was per-
formed using Lipofectamine RNAiMAX (Invitrogen). After 24 h, the
Fig. 1. DIF-1 induces mitochondrial fission in HUVECs. (A) Fluorescence images (upper), mor
4T1 cells. Cells were stained with an anti-COXIV antibody (green) and DAPI (blue). Bar, 20
mitochondria in HUVECs stimulated with DIF-1. Cells were stimulated with DIF-1 (30 mM)
20 mm.
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cells were lysed with 2 � SDS sample buffer (0.125 M Tris-HCl pH
6.8, 20% glycerol, 4% SDS, 10% 2-mercaptoethanol, 0.015% bromo-
phenol blue), sonicated, and boiled. SDS-PAGE and wet transfer to
polyvinylidene fluoride membranes were performed as previously
described.18 Membranes were blocked using PVDF blocking reagent
(TOYOBO, Osaka, Japan) and incubated with primary antibodies
diluted with Can Get Signal (TOYOBO) at 4 �C overnight. Mem-
branes were washed with TBS-T using SNAP i.d.® 1.0 (Millipore)
and incubated with HRP-labeled secondary antibodies diluted with
TBS-T at room temperature for 30 min. Protein band images were
obtained using Immobilon Forte and ImageQuant LAS 4010 (GE
Healthcare, Chicago, IL, USA) or Amersham ImageQuant 800 (GE
Healthcare). ImageJ software (NIH, Bethesda, MD, USA) was used to
analyze the detected protein bands.

2.6. Immunoprecipitation

For the co-immunoprecipitation assay of HSP90 with PDXP,
HEK293T cells were transfected with HA-tagged HSP90 expression
vector. After 24 h, cells were lysedwith lysis buffer (50mM Tris-HCl
pH7.4, 150 mMNaCl, 5 mM EDTA, and 1% Triton X-100). Whole-cell
phology (middle), and length (lower) of the mitochondria in HUVECs, MCF-7 cells, and
mm. (B) Fluorescence images (upper), morphology (middle), and length (lower) of the
for 60 min and stained with anti-COXIV antibody (green) and DAPI (blue). Scale bar,
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extracts were immunoprecipitated using either monoclonal anti-
HA antibody or control mouse IgG antibody coupled to Protein G
Mag Sepharose (Cytiva, Tokyo, Japan) at room temperature for 1 h
on a rotator. After three washes with lysis buffer, bound proteins
were eluted using 2 � SDS sample buffer. The samples were
analyzed using western blotting.
Fig. 2. DIF-1 dephosphorylates cofilin in HUVECs and SVECs. (A) Effect of cofilin knockdow
morphology (right upper), and length (right lower) of mitochondria in HUVECs. Cells were
with DIF-1 (30 mM) for 60 min and stained with anti-COXⅣ antibody (green) and DAPI (blue)
1 in HUVECs. Fluorescence images (left), morphology (right upper), and length (right lower
vector and cofilin expression vectors as indicated. After 24 h, cells were stimulated with DIF
bar, 20 mm. (C) Western blot analysis of HUVECs and SVECs. Cells were stimulated with DIF-1
The results are presented as mean ± SD of three independent experiments.
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2.7. Immunofluorescence microscopy

Cells were grown on glass-bottom dishes, fixed with 4% para-
formaldehyde, permeabilized with 0.2% Triton X-100 in Phosphate-
buffered saline (PBS) for 3 min, blocked with 2% bovine serum al-
bumin (BSA) in PBS for 1 h, incubatedwith primary antibodies in 2%
n on mitochondrial fission induced by DIF-1 in HUVECs. Fluorescence images (left),
transfected with sicofilin or negative control for 24 h. Thereafter, cells were stimulated
. Scale bar, 20 mm. (B) Effect of cofilin mutants on mitochondrial fission induced by DIF-
) of mitochondria in HUVECs. Cells were co-transfected with Venus-COXⅣ expression
-1 (30 mM) for 60 min and stained with anti-Flag antibody (red) and DAPI (blue). Scale
(30 mM) for the indicated time. Blots were stained with antibodies indicated on the left.
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BSA in PBS for 1 h, and then incubatedwith Alexa Fluoreconjugated
secondary antibodies and DAPI for 1 h. Fluorescent images were
acquired using a confocal microscope (LSM700; Zeiss, Oberkochen,
Germany). Mitochondrial morphology was scored as previously
described.19 Briefly, we classified mitochondria into three groups:
tubular, long and higher interconnectivity; intermediate, a mixture
of round and shorter tubulation; and fragmented, predominantly
small and round. The percentage of cells with indicated mito-
chondrial morphology was calculated as a percentage of the total
number of transfected cells counted (n > 10). Mitochondrial lengths
were analyzed using Metamorph software (Molecular Devices,
Sunnyvale, CA, USA). TOLLES/Ypet ratio of mito-SRAI-expressing
HUVECs was calculated and analyzed using ZEN2010Black (Zeiss).
The mitochondrial length and morphology, as well as the ratio of
mito-SRAI (TOLLES/Ypet), were determined as an average of at least
10 independent cells.
Fig. 3. AMPK is the upstream kinase of cofilin in DIF-1 signaling. (A) Western blot analysis
indicated time. Blots were stained with antibodies indicated on the left. The results are pre
HUVECs. Cells were stimulated with DIF-1 (30 mM) for 60 min with or without pretreatment
The results are presented as mean ± SD of three independent experiments. (C) Western blot
CCCP (20 mM) for 6 h. Blots were stained with antibodies indicated on the left. The results
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2.8. Statistical analysis

Quantitative differences among multiple groups were analyzed
by one-way or two-way analysis of variance followed by Tukey's
post hoc test. Differences between the two groups were analyzed
by Student's unpaired t-test using GraphPad Prism 5.0 (GraphPad
Software Inc., San Diego, CA, USA). Values are expressed as
mean ± SD. Statistical significance was set at p < 0.05.

3. Results

3.1. DIF-1 induces mitochondrial fission in HUVECs

To observe mitochondrial fission clearly, we first visualized
mitochondria in HUVECs, MCF-7 cells, and 4T1 cells using an anti-
COXIV antibody. Then mitochondrial morphology and length were
of HUVECs (left) and SVECs (right). Cells were stimulated with DIF-1 (30 mM) for the
sented as mean ± SD of three independent experiments. (B) Western blot analysis of
of compound C (5 mM) for 24 h. Blots were stained with antibodies indicated on the left.
analysis of HUVECs. Cells were stimulated with DIF-1 (30 mM), Metformin (20 mM) or
are presented as mean ± SD of three independent experiments.
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determined. As shown in Fig. 1A, HUVECs showed the highest
percentage of cells with tubular morphology and the lengthiest
mitochondrial network. Therefore, we used HUVECs for subsequent
experiments. Next, we examined the effect of DIF-1 on mitochon-
drial morphology. Similar to DIF-3, DIF-1 decreased the percentage
of cells with tubular morphology and shortened the length of the
mitochondrial network within 1 h (Fig. 1B), indicating that DIF-1
induces mitochondrial fission.

3.2. Cofilin is required for mitochondrial fission by DIF-1

Li et al. (2018) reported that the knockdown of cofilin inhibits
mitochondrial fission by CCCP, while overexpression of wild-type
cofilin promotes mitochondrial fission.14 We assessed whether
cofilin is required for mitochondrial fission induced by DIF-1. As
Fig. 4. PDXP dephosphorylates cofilin in DIF-1 signaling. (A) Western blot analysis of HUVEC
24 h, cells were stimulated with DIF-1 (30 mM) for 60 min and stained with antibodies in
periments. (B) Effect of PDXP knockdown on mitochondrial fission induced by DIF-1 in HUV
mitochondria in HUVECs. Cells were transfected with siPDXP or negative control for 24 h. Th
antibody (green) and DAPI (blue). Scale bar, 20 mm. (C) Effect of DIF-1 on the interaction b
vector. After 24 h, cells were stimulated with DIF-1 (30 mM) for 30 min. Immunoprecipitation
Protein G magnetic beads (left). The ratio of PDXP/HA-HSP90 is presented as mean ± SD o
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shown in Fig. 2A, cofilin knockdown attenuated mitochondrial
fission induced by DIF-1.

We also evaluated the effect of active (S3A) and inactive (S3D)
cofilin mutants on mitochondrial fission induced by DIF-1. As shown
in Fig. 2B, overexpression of cofilin or its mutants alone did not
change the mitochondrial morphology or shorten the mitochondrial
length. Hence, DIF-1 and cofilin together induce a significant change
inmitochondrial morphology and length, but cofilin activation alone
is insufficient to alter these mitochondrial characteristics.

3.3. DIF-1 dephosphorylates cofilin in endothelial cells

We assessed whether DIF-1 dephosphorylates and activates
cofilin.We observed significant cofilin dephosphorylation inHUVECs
and SVECs, a mouse immortalized endothelial cell line (Fig. 2C).
s (left) and SVECs (right). Cells were transfected with siPDXP or negative control. After
dicated on the left. The results are presented as mean ± SD of three independent ex-
ECs. Fluorescence images (left), morphology (right upper), and length (right lower) of
ereafter, cells were treated with DIF-1 (30 mM) for 60 min and stained with anti-COXⅣ
etween HSP90 and PDXP. HEK293T cells were transfected with HSP90-HA expressing
was performed using anti-HA antibody or control mouse IgG antibody conjugated with
f three independent experiments (right).
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3.4. AMPK is the upstream kinase of cofilin in DIF-1 signaling

Next, we sought to identify the upstream molecules involved in
the dephosphorylation and activation of cofilin by DIF-1. We
focused on AMPK as it is activated by DIF-1 in MCF-7 and 4T1 cells6

and is involved in mitochondrial fission induction and mitophagy
Fig. 5. Cofilin induces mitochondrial fission. (A) Western blot and quantitative analysis of HU
were stimulated with DIF-1 (30 mM) for the indicated time. Blots were stained with antibod
experiments. (B) Fluorescence and ratio (TOLLES/Ypet) images (upper) and quantitative analy
with mito-SRAI expression vector and cofilin expression vectors as indicated. After 24 h, cel
(red), followed by Alexa594 anti mouse IgG antibody. Ratio images were obtained using LS
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in C2C12 cells.20 In addition to HUVECs, we also tested SVECs,
mouse endothelial cells, to confirm whether DIF-1 could induce
cofilin dephosphorylation in cells of other species. As expected,
AMPK was phosphorylated and activated by DIF-1 in HUVECs and
SVECs (Fig. 3A). We then investigated the effect of compound C, an
AMPK inhibitor, on the dephosphorylation of cofilin by DIF-1. As
VECs. Cells were transfected with sicofilin or negative control for 24 h. Thereafter, cells
ies indicated on the left. The results are presented as mean ± SD of three independent
sis of the ratio images (lower) of HUVECs stimulated by DIF-1. Cells were co-transfected
ls were stimulated with DIF-1 (30 mM) for 60 min and stained with anti-Flag antibody
M700 confocal microscopy. Scale bar, 20 mm.
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shown in Fig. 3B, Compound C strongly inhibited DIF-1-induced
dephosphorylation of cofilin and phosphorylation of acetyl CoA
carboxylase (ACC), a major substrate of AMPK, in HUVECs. These
results indicate that AMPK is required for cofilin activation and
mitochondrial fission by DIF-1. CCCP and metformin are well-
known AMPK activators.21,22 Moreover, CCCP and metformin were
reported to induce mitochondrial fission.14,23 Consistently, these
compounds also dephosphorylated cofilin, similar to DIF-1 (Fig. 3C),
indicating that cofilin is a common target of AMPK activators.

3.5. PDXP dephosphorylates cofilin in DIF-1 signaling

Pyridoxal phosphatase (PDXP), also known as chronophin, is activated
by ATP depletion24 and directly dephosphorylates cofilin.25 When PDXP
was knocked down, cofilin dephosphorylation by DIF-1 was inhibited in
bothHUVECsandSVECs (Fig. 4A), indicating thatPDXP is required for cofilin
dephosphorylation induced by DIF-1.

We also evaluated the effect of PDXP knockdown on DIF-1-
induced morphological change of mitochondria. PDXP knock-
down inhibited mitochondrial fission (Fig. 4B), suggesting that DIF-
1 induces mitochondrial fission via PDXP, followed by cofilin
dephosphorylation and activation.

Under normal conditions, PDXP is inactivated by its association
with HSP90.26 Attenuation of the association between PDXP and
HSP90 induces PDXP activation, resulting in cofilin dephosphory-
lation and activation. To verify the attenuation of the association by
DIF-1, a co-immunoprecipitation assay was performed. As shown in
Fig. 4C, the association between endogenous PDXP and HSP90-HA
overexpression was suppressed by DIF-1. These results suggest
that DIF-1 dephosphorylates cofilin by inhibiting the association
between PDXP and HSP90.

3.6. DIF-1 induces mitophagy via cofilin activation

The levels of several mitochondrial proteins, including Mfn2,
Tim23, and Tom20 are reported to be reduced during mitoph-
agy.27,28 To test whether DIF-1 induces mitophagy, we investigated
mitochondrial protein levels including Mfn2, Tim23, and Tom20
before and after DIF-1 treatment. As shown in Fig. 5A, DIF-1
Fig. 6. DIF-1 specifically regulates cofilin among actin regulators. (A) Western blot analysis o
stained with antibodies indicated on the left. The results are presented as mean ± SD of th
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reduced protein levels of Mfn2, Tim23, and Tom20. The decrease
in the levels of Mfn2 and Tom20, but not Tim23, was blocked by
cofilin knockdown. These results also support the notion that DIF-1
induces mitophagy through cofilin activation.

We also tested the effect of DIF-1 onmitophagy usingmito-SRAI,
which is a recently developed mitophagy indicator.17 Mito-SRAI has
a tandem construct coupled with TOLLES and Ypet. After lysosomal
delivery, the complete degradation of Ypet results in the
dequenching of TOLLES, producing a high TOLLES/Ypet ratio.17 DIF-
1 increased the mito-SRAI ratio (TOLLES/Ypet). This implies that
DIF-1 induces mitophagy following mitochondrial fission (Fig. 5B).

We then tested the effect of overexpression of wildtype cofilin and its
active or inactive mutants on mitophagy. As shown in Fig. 5B, the inactive
mutant of cofilin (S3D) inhibited the increase of mito-SRAI ratio that was
induced by DIF-1. Altogether, these data suggest that cofilin activity is
required for mitophagy induction by DIF-1.

3.7. Effects of DIF-1 treatment on phosphorylation of other actin
regulators

Finally, we tested whether DIF-1 regulates other actin regula-
tors, including VASP, ERM, and talin, in addition to cofilin. As shown
in Fig. 6A, a clear change in the phosphorylation status by DIF-1 was
only observed in cofilin. Hence, DIF-1 specifically regulates cofilin
among actin regulators.

4. Discussion

DIF-1 regulates the phosphorylation of many signaling mole-
cules, including AMPK, S6-kinase, raptor, ACC, ULK1, GSK3b, and
STAT3.6,29 In the present study, DIF-1 dephosphorylated and acti-
vated cofilin via AMPK activation, leading to mitochondrial fission
and mitophagy.

Mitochondrial fission, followed by mitophagy, eliminates
dysfunctional or damaged mitochondria by engulfing mitochon-
dria and degrading into lysosomes. In general, this process is
involved in mitochondrial turnover to keep mitochondrial quality
for maintaining cell homeostasis.9,30 Indeed, dysfunctional
mitophagy has been implicated in several diseases, such as
f HUVECs. Cells were stimulated with DIF-1 (30 mM) for the indicated time. Blots were
ree independent experiments.



Fig. 7. Schematic representation of possible molecular signaling involved in mitochondrial fission induced by DIF-1. Previous studies reported that DIF-1 directly binds to and
damages mitochondria, resulting in a decrease of intracellular ATP/AMP ratio and AMPK activation. In this study, we found that DIF-1 activates cofilin, resulting in mitochondrial
fission and mitophagy. AMPK and PDXP are required for the activation of cofilin. Attenuation of the interaction between PDXP and HSP90 by DIF-1 activates PDXP. Then activated
PDXP dephosphorylates and activates cofilin. Activated cofilin is known to translocated to the mitochondrial fission site and depolymerizes F-actin, leading to the segregation of the
fission complex.
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Alzheimer's disease, cardiomyopathy as well as other cardiac
disorders, and steatohepatitis.31e33

In cancer, mitophagy can positively or negatively regulates cell
homeostasis. For example, enhanced mitophagy contributes to
cisplatin resistance in cancer cells.34 However, excessive mitophagy
reduces total mitochondria and energy production, which leads to
cell death.35 Furthermore, several proteins, such as parkin, BNIP3,
BNIP3L, and p62/SQSTM1, which govern mitophagy, are silenced or
downregulated in human cancer cells.36,37 Notably, the anti-
leukemic effect of DIF-3 is mediated by mitochondrial fission
without caspase-dependent cell death.38 Therefore, mitophagy can
either support cancer cell survival or promote cell death.

AMPK becomes activated when mitochondria are damaged by
mitochondrial toxins, such as rotenone or CCCP.20,39 DIF-1 may also
damage mitochondria, leading to AMPK activation and mitochon-
drial fission.

Previously, we identified mitochondrial malate dehydrogenase
2 (MDH2) as a direct binding protein for DIF-1. MDH2 is a
47
component of the TCA cycle and is involved in ATP production. We
also found that DIF-1 inhibits the enzymatic activity of MDH2
in vitro and reduces cellular ATP levels.40 Hence, inhibition ofMDH2
by DIF-1, followed by ATP depletion, may activate AMPK.

We found that PDXP is required for cofilin dephosphorylation.
Furthermore, DIF-1 attenuated the interaction between PDXP and
HSP90, which is required for PDXP activation. Intriguingly, an in-
crease in the AMP/ATP ratio suppresses the association between
HSP90 and PDXP.24 This strongly suggests that AMPK activation is
involved in the dissociation between HSP90 and PDXP. Moreover,
HSP90 interacts with AMPK and promotes the phosphorylation of
ACC, which is downstream of AMPK.41 Hence, DIF-1 may enhance
the HSP90-AMPK interaction, resulting in inhibition of the HSP90-
PDXP association.

In this study, we focused on the effects of DIF-1 on mitochon-
drial fission specifically in HUVECs as these cells exhibit a clear
mitochondria fiber structure. Althoughwe confirmed DIF-1 induces
mitochondrial fission and mitophagy, subsequent studies with
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different cancer cell lines are required to determine if DIF-1 rep-
resents a potential therapeutic agent for various cancer types.

In conclusion, we identified AMPK, HSP90, PDXP, and cofilin as
new components of the DIF-1 signaling pathway, leading to mito-
chondrial fission and mitophagy (Fig. 7). In this study, we used
HUVECs as these cells exhibit a clear mitochondria fiber structure.
However, further studies are required to determine whether DIF-1
also induce mitochondrial fission and mitophagy in cancer cells,
which may advance the understanding of the anti-tumor effect of
DIF-1.
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