SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Analyzing the Impact of Data Prefetching on
Chip MultiProcessors

Fukumoto, Naoto
Department of Informatics, Kyushu University

Mihara, Tomonobu
Department of Informatics, Kyushu University

Inoue, Koji
Department of Informatics, Kyushu University

Murakami, Kazuaki
Department of Informatics, Kyushu University

https://hdl.handle. net/2324/6794512

HRI1EER : Asia-Pacific Computer Systems Architecture Conference. 2008, pp.1-8, 2008-08-04.
IEEE
N— 30

FEFIRE{% : (c) 2008 IEEE

KYUSHU UNIVERSITY

Analyzing the Impact of Data Prefetching on Chip MultiProcessors

Naoto Fukumoto Tomonobu Mihara Kaoji Inoue Kazuaki Murakami
Department of Informatics, Kyushu University, Japan
{fukumoto, mihara} @c.csce.kyushu-u.ac.jp {inoue, murakami} @i.kyushu-u.ac.jp

Abstract

Data prefetching is a well known approach to compen-
sating for poor memory performance, and has been em
ployed in commercial processor chips. Although a num-
ber of prefetching techniques have so far been proposed,
in many cases, they have assumed single-core architec-
tures. In Chip MultiProcessor (or CMP) chips, there are
some shared resources such as L2 caches, buses, and so on.
Therefore, the effect of prefetching on CMP should be dif-
ferent from traditional single-core processors.

In this paper, we analyze the effect of prefetching on
CMP performance. This paper first classifies the impact
of prefetches issued during program execution. Then, we
discuss quantitatively the effect of prefetching to memory
performance. The experimental results show that the nega-
tive effect of invalidation of prefetched cache blocksis very
small. In addition, it is observed that the current prefetch
algorithms do not exploit effectively the feature of CMPs,
i.e. cache-to-cache on-chip data transfer.

1 Introduction

Integrating multiple cores into a single chip, or Chip
MultiProcessor (CMP), has emerged as a promising ap-
proach for microprocessor designs. This is because it
achieves high-performance and |ow-power consumption si-
multaneously by means of executing multiple threads with
alow clock frequency. Increasing the number of processor
cores in a chip dramatically improves peak performance.
However, since the shared resources such as 1/0O-pins and
memory buses do not scale with the number of implemented
cores, the memory-wall problem becomes more serious. To
solve thisissue, in CMP designs, it is very important to at-
tempt reducing or hiding off-chip memory-access latency.

Data prefetching is awell known approach to improving
memory performance. By fetching a cache block into an
on-chip cache before it is demanded, we can hide off-chip
access latency. However, we need to consider at least two
negative effects caused by inappropriate prefetches, pollut-

978-1-4244-2683-6/08/$25.00 ©2008 IEEE

ing effective cache capacity and dissipating shared memory
buses, resulting in lower processor performance. Although
anumber of techniques for data prefetching have been pro-
posed, they mainly focus on single-core processors. Of
course, we can expect that the proposed prefetch schemes
for single-core processors work well even in CMPs. How-
ever, the effects of data prefetching on CMPs may differ
from that in single-core processors.

In order to propose more effective data prefetching
schemes for CMPs, in this paper, we analyze the effects
of data prefetching in detail. So far, some researchers have
analyzed the impact of data prefetching on multiprocessor
systems, in which processors are connected by an off-chip
interconnection network. On the other hand, unlike the mul-
tiprocessor systems, CMPs can employ a fast on-chip net-
work. This feature causes other effects of data prefetching
on performance. Consequently, analyzing the behavior of
prefetches on CMPs is worthwhile. The contributions of
this paper are asfollows.

e We propose an extended taxonomy for classifying
prefetches on CMPs. In aprior research, a methodol-
ogy to analyze the effects of data prefetching for multi-
processor systems has been proposed. We extend this
approach to reflect the features of CMPs. Using this
taxonomy, we can evaluate the effects of prefetch more
precisely in CMP architectures.

e We analyze the impact of two prefetching algorithms
quantitatively. All of the issued prefetches during
program execution are classified based on the pro-
posed taxonomy. From the experimental results, it is
observed that the negative effect of invalidations of
prefetched blocks is very small. Enright et a. [3]
have reported that about 80% of prefetched blocks are
invalidated in maximum on multiprocessor systems,
whereas we show that thisratein CMPsis only 1%.

e In addition, from our experimental results, it is ob-
served that the current prefetch algorithms do not ex-
ploit effectively the feature of CMPs, i.e. cache-to-
cache on-chip data transfer. Only 5% of prefetches
contribute to improving the memory performance for

other on-chip cores. Thus, we conclude that it is
strongly required to consider CMP-aware prefetchers.

The rest of this paper is organized as follows. Section
2 summarizes the conventional method to analyze effects
of prefetching on multiprocessor system (MPTMT [3]). In
Section 3, we expand MPTMT to include CM P prefetching.
Section 4 analyzes quantitatively the effects of prefetching
on CMP. Section 5 concludes the paper.

2 Prefetch Taxonomy for MultiProcessor s

Enright et al. presented MultiProcessor Prefetch Traf-
fic and Miss Taxonomy (MPTMT) [3], which is an extend
version of uniprocessor Prefetch Traffic and Miss Taxon-
omy (PTMT) [5]. Their motivation is that the conventional
method is not sufficient in multiprocessor systems because
of the lack of consideration for inter-processor effects.

In a multiprocessor system, we need to consider the fol-
lowing events relating to each prefetched block.

e Event 1. The prefetched cache block is referenced by
the local processor.

e Event 2: A processor accesses to a block, which has
evicted from the cache by the prefetched block.

e Event 3: The prefetch causes a downgrade followed
by a subsequent upgrade in a remote processor. |If
this event occurs, the prefetched block is invalidated,
and an additional invalidation request occurs. Figure 1
gives a concrete example, the occurrence of invalida
tion request due to issuing a prefetch. At Time 2, Pro-
cessor0 prefetches ablock from Processorl’s cache, so
that the block isshared. At Time 4, Processorl updates
the shared block, thus Processorl issues a reguest to
invalidate ProcessorQ’'s copy. Note that this invalida-
tion does not take place if ProcessorO has not issued
the prefetch for the shared block.

ProcessorQ Processorl
Time [Instruction| Cache state |Instruction| Cache state [Coherence Traffic
store A Modified |Processor1 write hit
Processor0 issues prefetch
Owned |Processorl copy downgraded
4 store A Modified |Processorl write hit

5 Invalid Processor0 invalidated

prefetch A Shared

Figure 1. Example of Additional Invalidation
Request

In MPTMT, six states of a prefetched block are defined,
and state transitions are performed based on these events
during alifetime of the prefetched block in acache as shown
in Figure 2. These states defined in MPTMT are asfollows.

e Useless: This is the initial state. Until some events
occur, the state maintains to stay in Useless.

MultiProcessor

Harmful/Conflict

Single Processor

Figure 2. State Transition of Prefetched Block
in Multiprocessor

e Useful: This state represents that the prefetched block

has been accessed by the local processor. Therefore,
we can expect a performance improvement. When
Event 1 appears, the state transits from Useless to Use-
ful.

e Usdlesg/Conflict: This state shows that the prefetch

has evicted an effective block from the cache. Con-
sequently, memory performance is degraded due to the
effect of cache pollution. When Event 2 occursin Use-
less, the state moves into Useless/Conflict.

e Useful/Conflict: This is the same as Useless/Conflict

except that the prefetched block has been accessed by
the local processor. Therefore, the negative impact of
cache pollution can be canceled by the prefetching ef-
fect. When Event 1 takes place in Useless/Conflict,
the state transits to Useful/Conflict. However, the state
does not transit from Useful to Useful/Conflict, when
Event 2 occurs in Useful. This is because the cache
pollution occurs in spite of not issuing prefetch, i.e.
this pollution is originally caused by the memory ref-
erence from the local processor.

e Harmful: This state represents that prefetching has

caused an additional invalidation. Since the invalida-
tion process requires a broadcast transaction, traffic on
the shared busisincreased. No performance improve-
ment can be achieved in this case. The state transits
from Useless to Harmful when Event 3 occurs.

e Harmful/Conflict: Thisis the same as Harmful except

that the prefetching has evicted an effective block from
the cache. In addition to an increasein the memory-bus
traffic, the number of cache misses is also increased.
Thisisthe worst case. When Event 2 occurs in Harm-
ful, or when Event 3 appears in Useless/Conflict, the
state moves into Harmful/Conflict.

These states represent the impact of prefetching on memory
performance. By means of counting the final state, which
represents accumulate prefetch effects, for all prefetched
blocks, we can analyze the effects of prefetching in detail.

In Figure 2, four states of the |eft side exist in both sin-
gle processors and multiprocessors, but two states of the
right side are only for multiprocessors. In multiprocessors,
prefetching effects become increasingly more complex due
to these two states.

3 Prefetch Taxonomy for CMPs

In this section, we extend the state transition diagram ex-
plained in Section 2 in order to reflect the features of CMPs.
Here, we call a processor core which issues a prefetch lo-
cal core. On the other hand, other processor cores in the
CMP are referred to as remote cores. One of the advantages
of CMPs is that we can exploit the efficiency of cache-to-
cache data transfers. Even if the local core does not refer
the prefetched block, it may be accessed by remote cores.
In this case, the issued prefetch helps not the local core but
the remote core, because access latency on cache-to-cache
data transfers is much smaller than that on off-chip mem-
ory accesses. Therefore, in CMPs, we need to consider the
following new event relating to a prefetched block.

e Event 4: The prefetched block loaded from lower level
memory is referenced by aremote core.

Moreover, the following two states are defined in addition
to the six statesin multiprocessors, as shown in Figure 3.

e UselessRemote: This state shows that the prefetched
block has been accessed by a remote core before it is
required by the local core. Therefore, the benefit of
prefetching is provided not to the local core but to the
remote core. When Event 4 occursin Useless, the state
transits to Useless’'Remote.

e Useless/Conflict/Remote: This is the same as Use-
|less’/Remote except that the prefetching has evicted an
effective block from the cache. Although the prefetch-
ing helps the remote core, the memory performance
for thelocal coreisdegraded dueto the effect of cache
pollution. When Event 4 occursin Useless/Conflict, or
when Event 2 takes place in Useless/Remote, the state
transit to Useless/Conflict/Remote.

In Table 1, we summarize the impact of prefetching on
the three negative events relating to the memory perfor-
mance. Local L1 Miss Counts are the number of L1 cache
misses on the local core, and Remote L1 Miss Counts are
that on remote cores. Shared Bus Access Counts represent
the total number of bus-access events caused by original
memory accesses, block prefetchings, and invalidations.

Figure 3. State Transition of a Prefetched
block in CMP

Table 1. Impact of a Prefetch on local L1 Miss,
Remote L1 Miss, Bus Access

Local Remote Shared Bus

State L1Miss | L1Miss | AccessCounts

Counts Counts | (Data/Address)
Useless +0 +0 +1/+1
Useless/Remote +0 —1 +1/+1
Useful —1 +0 +0/+0
Harmful +0 +0 +1/+2
Useless/Conflict +1 +0 +2/+2
Useless/Conflict/Remote +1 -1 +2/+2
Useful/Conflict +0 +0 +1/+1
Harmful/Conflict +1 +0 +2/+3

The states including Useful decrease the number of local
L1 cache misses, while the states having Conflict show an
opposite feature. On the other hand, the prefetched block
relating to Remote state decreases misses of remote L1
caches. For the traffic on the shared bus, only the state Use-
ful does not give any negative effects. From these observa-
tions, we can understand that exploiting the Useless/Remote
and Useless/Conflict/Remote statesis a key for CMPs.

4 Data Prefetching Analysison CMPs
4.1 Simulation Methodology

In order to support the prefetching analysis proposed in
Section 3, we have modified M5 CMP simulation tools [2].
The CMP model evaluated in this paper is presented in Fig-
ure 4. Table 2 lists the configuration parameters used. We
completely executed six benchmark programs sel ected from
SPLASHZ2[6] with the input parameters listed in Table 3.
For other parameters, we used default values. Our system
sets the number of threadsto be equal to the number of pro-
CESSOr Cores.

Our evauation studies the performance impact of
two prefetching algorithms; tagged prefetch[4] and stride
prefetch[1]. The former scheme issues d of prefetches for
block address < a + 1,a 4+ 2,---,a + d > when an ac-
cess to the address a misses the cache, or when a processor
core accesses the address a block which has prefetched on

Pr T Processor
Core Core Core Core

L1 Cache L1 Cache L1 Cache L1 Cache

Address Busl

Data Bus

On Chip L2 Cache

o

Figure 4. System Model

Table 2. Simulation Parameters

Processor

The Number of Cores 4

Processor Model Simple In-order Core

On-chip Caches

L1 Instruction Cache 64K B, 2-way, 64B lines, 1 clock cycle
L1 Data Cache 64K B, 2-way, 64B lines, 1 clock cycle
L2 Shared Cache 4MB, 8-way, 64B lines, 12 clock cycles
Coherence Protocol Write invalidate MOESI

Write Policy Write back

Prefetch Mechanism Prefetcher is attached to L1 cache.
Prefetched block from main memory is

loaded into L1 and L2 cache.

network
On-chip bus width 64B
Off-chip bus width 16B

DRAM access latency | 300 clock cycles

ahead. The parameter d is known as the degree of prefetch-
ing, which indicates the number of prefetches issued at a
time. Thelatter scheme monitors memory access patternsto
detect constant-stride array accesses originating from loop
structures. This scheme attempts to detect a constant stride
value for successive memory accesses. |If a memory-access
seguence accesses to < a — 2s,a — s, a >, the prefetcher
detects the value s as a stride. Then the blocks addressed
by < a+ s,a+ 2s,---,a + ds > are prefetched. The
stride prefetch requires a reference prediction table (RPT)
to memorize the history of memory access addresses. In
this evaluation, we assume a 64-entry direct-mapped RPT.
We use the constant value 5 as the degree of prefetching (d)
for both prefetching agorithms.

4.2 Quantitative Analysis

4.2.1 Breakdown of Prefetches

Figure 5 presents the breakdown of prefetches based
on our taxonomy proposed in Section 3. The y-axis is
the breakdown of prefetches and the x-axis is the name
of benchmark programs. Two bars represent the tagged
prefetch and the stride prefetch from left to right.

One of the main features of CMPs is the cache-to-
cache data transfers as explained in Section 3. There-
fore, it is worthwhile to analyze the impact of prefetches
which are categorized into UselessRemote or Use-
less/Conflict/Remote. For the stride prefetch agorithm,

Table 3. The Input Parameters of Benchmarks

[Benchmark | Input Parameter |
Barnes 8k particles
FMM 16k particles

LU(contig) 512 x 512matrix
Radix 256K keys
Raytrace teapot.env
Water (spatial) 512 molecules

DHarmful/ Conflict

®Harmful

HUseless/ Conflict/R
emote

Blseless/Conflict

Blseless/Remote

Blseless

Blseful/Conflict

Breakdown of Prefetches

Blseful

A
A
b b
s |
s |
s |
S
s ||
S s
S o
| o
s i
s oo
N g
s | o
e e
o s |
e |
e s
fa ey
e |
e |
s |
s |
s |
s |
A N
S
s s
S o
| o
s i
s | o |
=i
s o
e |
o s |
| s
Eal

— R

Barnes FMM LU Radix Raytrace Water
T=Tagged Prefetch S = Stride Prefetch

Figure 5. Classification of Prefetches Using
Our Taxonomy

the remote-access advantage does not appear for al of the
benchmark programs. Although this effect can be seen for
the tagged prefetch algorithm, its impact on the processor
performance is very small. Actualy, only 5% of the is-
sued prefetches have the state of Useless’Remote or Use-
less/Conflict/Remote. Namely, these prefetch algorithms
developed for single-core microprocessors do not exploit
the feature of CMPs. These results suggest that we should
develop CMP-aware prefetching algorithms.

Another discussion point is the negative impact of inval-
idation of prefetched blocks, i.e. the state of Harmful and
Harmful/Conflict. From Figure 5, we can understand that
amost al prefetches do not transit to these states. Conse-
guently, in CMPs, this negative impact is negligible. The
reason is discussed in Section 4.2.3.

Next, we consider the effectiveness of prefetches for
local-cache accesses, i.e. the prefetches categorized into
Useful or Useless states. For the stride prefetch algo-
rithm, 80% of prefetches belong to the Useful state except
for FMM. On the other hand, the tagged scheme issues
many Useless prefetches which make negative impacts on
a bus traffic and power consumption. The reason why the
tagged approach does not work well comes from the lack of
prefetching accuracy. In the tagged approach, a prefetch is
issued not only on a cache miss but also when a prefetched
block isreferenced. This strategy tendsto increase the num-
ber of prefetches. Consequently, if address prediction accu-
racy isnot so high, prefetches having the state Usel ess takes
place frequently.

MOLZ

MBS

NN

WSBCC

BHCCL2

O HCCRLL

Awveraze Memory Access Time (Clock Cycles)
o

HZCL!

Fhabd Radix ater

Barnes

Raytrace

Figure 6. Average Memory Access Time

4.2.2 AverageMemory Access Time

Although we have discussed the category of prefetches
in Section 4.2.1, it is still not clear how much they affect
to the memory performance. In order to clarify this point,
in this section, we quantitatively analyze the impacts of
prefetches on average memory access time (or AMAT). In
our CMP model depicted in Figure 4, AMAT can be repre-
sented as follows.

AMAT = HCCp1+ MRy, X
{(1 — MRLlR) X (SBCC+HCCL1) +
MR1g X ((HCCLQ + SBCC) +

MRyps x (MBCC + MCps))} (€]

e HCCpy: L1 cachehit time
e MR;i: Loca L1 cache missrate

e SBCC': Average shared bus access time (between L1
and L2 cache)

o MR1r: Missrate of remote L1 caches; i.e. the rate
that remote L1 caches do not have the demanded data
when local L1 cache miss occurs.

e HCCps: L2 cachehit time
o MRj5: L2 cache missrate

e M BCC: Average off-chip bus access time (between
L2 cache and main memory)

e MCpo: Main memory accesstime

Figure 6 shows average memory access time to be calcu-
lated based on above equation. The y-axisis AMAT and the
x-axis is the benchmark programs. The base in this figure
represents the model which does not support any hardware

prefetches. HCCL1, HCCRL1, HCCL2, SBCC, MBSS and
MCL2 represent the average access time spent in the L1
cache, remote L1 caches, the L2 cache, the shared bus, the
memory bus and main memory, respectively. These items
are calculated by following expressions. Rest of termsin-
cluding MRy, and M Ry, are obtained from simulation
results.

o HCCRLl:MRL1 X (1 — MRLIR) X HCCLl

HCCLZZMRLl X MRLIR X HCCLQ

SBCC=M R, x SBCC

MBSS:MRLl X MRLlR X MRL2 x MBCC

MCL2=MRp1 x MRp1r X MRr2 x MClpa

Average memory access time is improved due to reducing
the accesstime of main memory and L2 cache for almost al
benchmark programs. In particular, in the benchmark pro-
grams that have large proportion of Useful prefetches such
as LU, average L2 cache access time (HCCL2) is dramati-
caly reduced. On the other hand, in the benchmarks hav-
ing many Useless/Conflict prefetches such as Radix with
tagged prefetch, prefetches increase L2 cache access time.
This performance degradation is not observedin Barnesand
FMM since the case of evicting effective prefetched blocks
is considered as Useless/Conflict or Useful/Conflict.

Another interesting observation is the effect of memory
bus accesses. As explained in Table 1, al of the prefetch
states except for Useful require extra bus traffics. In mul-
tiprocessor systems, it is one of the most important factors
to consider the efficiency of prefetches. However, unlike
the multiprocessor systems, this negative impact is trivia
on CMPs. This comes from the fact that the cost to per-
form on-chip bus transactions is much smaller than that for
off-chip bus accesses, i.e. we can exploit high on-chip bus
bandwidth. Actualy, although 70% of tagged prefetches
(in average) have non-Useful states as showed in Figure 5,
the effects of SBCC on AMAT is negligible. Off-chip bus
accesses also have little influence on AMAT due to a small
number of L2 cache misses per instruction.

It should be noted that the tagged prefetch scheme
achieves higher performance compared to the stride ap-
proach in spite of the lower ratio of Useful prefetches,
i.e. the stride prefetch scheme has high ratios for Useful
prefetches but its AMAT is large. This is because the total
number of prefetchesissued during each program execution
is not the same. As showed in Table 4, the tagged prefetch
scheme aggressively issues prefetch operations. Therefore,
the number of Useful prefetches (not the ratio) of the tagged
prefetch scheme is larger than that of the stride approach,
resulting in higher memory performance.

Table 4. The Number of Issued Prefetches per

Thousand Memory Accesses
[Benchmark [Stride Counts | tagged Counts

Barnes 0.14 33
FMM 15 31
LU(contig) 3.7 6.5
Radix 8.7 157
Raytrace 1.6 31
Water(spatial) 0.05 4.7

4.2.3 Comparison with Multiprocessors

Enright et al. evaluated the effects of data prefetching
on multiprocessor systems based on MPTMT explained in
Section 2[3]. Althoughitisnot easy to directly compare our
analysisresultswith those reported in [3], in this section, we
discuss the difference for prefetch effects on shared cache
CMPs and multi-processor systems.

We have found that a large difference for the percentage
of Harmful and Harmful/Conflict even if the same bench-
mark program (Barnes) and the similar prefetch mechanism
(Sequential prefetching) are assumed. For the multiproces-
sor system analyzed in paper [3], the amount of prefetches
categorized into Harmful and Harmful/Conflict ranges be-
tween 3% and 80% (in average 23%). In contrast, for the
CMP platform discussed in this paper, that valueisonly 1%
or less (in average 0.1%).

The reason comes from the difference of the cache size
where the prefetched blocks are loaded. Figure 7 shows the
percentage of invalidated prefetch blocks on the CMP plat-
form. In thisfigure, we can see that the rate of invalidation
decreases if we employ the smaller size of cache. Thisis
because prefetched blocks can easily be evicted from the
small L1 cache, so that the possibility to be invalidated is
reduced. Contrary, if we have alarger cache, the percentage
of the invalidations increases. In many multiprocessor sys-
tems, as assumed in Enright’s work, prefetched blocks are
loaded into the L2 cache, and the coherence actions take
place at this level. On the other hand, in CMPs having a
share L2 cache, the targets of coherence actions are the L1
caches. Therefore, we conclude that the unnecessary inval-
idations of prefetched blocks are not a serious problem in
CMPs, whereas they largely affect the performance of mul-
tiprocessor systems.

4.3 Sensitivity Analysis

4.3.1 Impact of the Number of Processor Cores

One of the most important design alternativesin CMPs
is the number of processor cores. In this section, we dis-
cuss the sensitivity of prefetch effects to the number of
cores. We assume that the evaluated CMP configuration
consists of two, four, or eight processor cores. We use
the same problem size for the execution of each benchmark

E128KB E256KB O512kB EM1MB

40%

20%

10% ——

0% . =-.;I—I_J:_ _E I
PR Ly

Radix Raytrace Water

Invalidate Rate
(o)
[asi)
=

Barnes

Figure 7. Invalidation of Prefetched Blocks

program, and henceforth focus on the tagged prefetch algo-
rithm which has achieved higher performance as showed in
Section 4.2.2. Figure 8 shows the breakdown of prefetches
for each CMP configuration.

Generally, increasing the number of cores makes total
L1 cache capacity large because each core employs private
caches. This side effect takes at least the following three
characteristics.

e Reducing capacity cache misses: If we assume that
the problem size of the target application program is
a fixed value, the working set size for each processor
core becomes small. Therefore, this positive effect im-
proves the total cache missrate.

e Increasing remote-cache hits. Sincethetotal cache ca-
pacity becomes larger, the opportunity to take remote-
cache hits is increased, reducing the total number of
off-chip accesses.

e Increasing cache block invalidations: The number of
cache blocks to be kept in coherent isincreased. Asa
result, the block invalidation counts will be increased.
This negative effect may worsen the bandwidth pres-
sure.

Let us look at UselessRemote state and Use-
less/Conflict/Remote state which represent the feature of
CMPs, i.e. cache-to-cache block transfer. The rate of Use-
less’Remote state and Useless/Conflict/Remote state de-
pends on the benchmark program. For instance, FMM and
Radix, we see that the total ratio of these states tend to
increase with the number of cores. This is because the
second characteristic explained above, i.e. the increase in
the remote-cache hits, appears clearly. On the other hand,
for Water, the number of prefetches taking the advantage
of cache-to-cache block transfer is reduced when the num-
ber of cores is increased. The reason is the reduction of
working-set size as explained above. Since a number of
memory accesses can be satisfied by the local L1 cache, the
opportunity for accessing to remote L 1 caches is decreased.

|
‘ Barnes FIMM ‘ Lu

itoresécoresgcores;cores :CDFEE—iED’EE—;CDFESECDFES:CDFEEICDFEE—EEDFES |cores ECDFES:CDFEEICDFEE—;EDY&S |cores cores
| | | | | | | | | | | | | | | | | |

mHarmful/Conflict

| Harmful

0 Useless/Conflict/Remote
D Useless/Cenflict

B Useless/Remote

R Useless

7] Useful/Conflict

= Useful

‘ Radix ‘ Raytrace ‘ Water

Figure 8. Breakdown of Prefetches with Tagged Prefetch versus the Number of Cores.

To summarize , these state isintricately changed with com-
bination of the working set size and hardware configura-
tions.

Next, we focus on Harmful and Harmful/Conflict
prefetches. The rate of these prefetches is increased in all
benchmark programs with increasing the number of proces-
sor cores, which result is caused by third characteristic as
explained above. Thisresult isless-visible due to tiny pro-
portion of these prefetches in al benchmark programs ex-
cept for Radix. However, in many number of cores system,
invalidation of prefetched blocks effects may cause serious
performance degradation.

4.3.2 Impact of L1 Cache Size

In our prefetch analysis, results strongly depend on how
long each prefetched block residesin the cache. This means
that the ability of the cache memory affects the efficiency
of prefetches. One of the most important parameters for
cache designs is the capacity (or cache size). L2 cache
size change may make a bigger impacts on performance,
but CMPs and single processors are similar in terms of ef-
fects of L2 cache size change because cache-to-cache data
transfer or invalidation of prefetched blocks do not occur in
the L2 cache. Consequently, in this section, the impact of
the L1 cache size on the efficiency of hardware prefetches
isdiscussed. Figure 9 presents the breakdown of prefetches
with the varying L1 cache size from 32KB to 128KB.

We discuss the prefetches having the state Use-
less’Remote, which is a representative feature of CMPs.
Generally, the time period in which prefetched block stays
in the cache becomes longer with the increase in the cache
capacity. Varying L1 cache size has a large impact on the
lifetime of prefetched blocks. We can consider that increas-
ing the cache size produces at least the following three ef-
fects.

e The opportunity to transit from the state Use-

less’'Remote to Useful isincreased dueto the increased
possibility to access to the prefetched blocks in the
cache. In this case, both of the local and remote cores
can take the contribution of the prefetch. Barnes and
LU take this effects.

e The number of state transitions from Useless’Remote
to Useless/Conflict/Remote is increased or decreased.
Thisis caused by two factors. Theincreasing factor is
that the possibility for taking the conflict eventsis also
increased if prefetched blocks stay in the cache longer.
This phenomenon is observed in Water from 64KB to
128K B. Another factor isoccurring less conflict events
by decreasing the rate of effective blocks to account
for all cache blocks. This phenomenon is observed in
Water from 32KB to 64K B.

e The number of prefetches which transits from Useless
to Useless’/Remote is increased or decreased. It de-
pends on the balance between two factors: increas-
ing factor or decreasing factor. First, as sum of the
L1 caches capacity is larger, a processor core has
more chances to access prefetched blocks in remote
L1 caches. Second, since the hit rate of own L1 cache
is improved, the opportunity of accesses to other L1
caches is decreased. These both effects can be seenin
Water.

Next, we focus on the prefetch state Use
less/Conflict/Remote. As explained above, some prefetches
transit from Useless/Remote to Useless/Conflict/Remote.
In addition, we see the two effects by considering
the same reasons of the above discussion. First, the
possibility for transiting from Useless/Conflict to Use-
less/Conflict/Remote is increased or decreased with
the increase in the cache size. Second, the number of
prefetches which transits to Useful/Conflict is increased,
and the performance improvement can be expected for both

100%

90% |

BO% 1

0% —fooed
60% |-
50% -
20% +
30%
20% +
10%

P I <o O 72T = <2 O <2 O 72 B = O 2 B 22

I Y B , i]
SZKB‘E‘IKBElZBKB 32KB|E4KBi128KB 32KB|E4KBJZBKE{SZKB B64KB 12BKEB 32KB EﬂKﬂiZLZBKBSZKB;EXIKBillBK
Barnes FMM LU Radix Raytrace Water

M Harmful/Conflict
| Harmful
O Useless/Conflict/Remote

® Useless/Conflict

B Useless/Remote
H Useless

F Useful/Conflict

S N e v v B = N v

B Useful

Figure 9. Breakdown of Prefetches with Tagged Prefetch. Varying L1 Cache Size from 32KB to 128KB.

local and remote cores.

We also discuss briefly the impact of the cache size for
other prefetches. In al benchmarks, as the L1 cache size
becomes larger, the percentage of Useful prefetchesis in-
creased, and the percentage of Useless prefetches is de-
creased due to longer lifetime of prefetched blocks. On the
other hand, the rate of Useless/Conflict prefetches increases
or decreases with respect to the benchmarks. In LU, Use-
less/Conflict state is dramatically reduced. This is caused
by low possibility of evicting effective blocks with a large
cache size. On the other hand, in Barnes and Radix, therate
of Useless/Conflict state isincreased with an increasing the
cache size. The reason for this decrease is high possibility
of conflict events (Event4) due to the long time period of
prefetched blocksin the L1 cache.

5 Conclusions

In this paper, we have proposed an extended taxonomy
for classifying prefetches on CMPs, and have discussed
quantitatively the impact of prefetching on memory perfor-
mance. In our analysis, we have mainly found three key
points. First, the conventional prefetch agorithms, which
are developed for single-core microprocessors, do not ex-
ploit effectively the feature of CMPs. Second, the effects
of prefetching differ vastly between multiprocessors sys-
tems and CMPs having a shared last-level cache. In the
CMPs, the negative effect of invalidation for prefetched
blocks is very smal. Third, cache size to keep coher-
ence between processor cores dramatically affect the im-
pact of data prefetching on memory performance. Since a
larger cache size expands lifetime of prefetched blocks in
the cache, the possibility of references of prefetched blocks
and invalidations of a prefetched blocks and increased.

For future work, we plan to analyze the effects of data
prefetching on execution time and bus contentions in vari-

ous simulation parameters. We also target to develop data
prefetching algorithms to reduce memory access time not
only in alocal processor core but also in remote processor
cores.

Acknowledgments

We thank al members of the System LS| laboratory
of Kyushu University for discussing at technical meetings.
Thiswork has been supported by the Grant-in-Aid for Cre-
ative Scientific Research (KAKENHI) N0.19200004, and
Matsushita Electric Industrial Co. Ltd.

References

[1] J. L. Baer and T. F. Chen. An Effective On-Chip Preloading
Scheme to Reduce Data A ccess Penalty. In Proceedings of the
1991 Conference on Supercomputing, June 1991.

[2] N.L.Binkert, E. G. Halnor, and S. K. Reinhardt. Network-
oriented Full-system Simulation Using M5. In Proceedings
of the Sixth Workshop on Computer Architecture Evaluation
using Commercial Workloads, February 2003.

[3] N. D.Enright Jerger, E. L. Hill, and M. H. Lipasti. Friendly
Fire: Understanding the Effects of Multiprocessor Prefetch-
ing. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, March 2006.

[4] A. J. Smith. Cache Memories. Computing Surveys, Vol.14,
No.3, September 1982.

[5] V. Srinivasan, E. S. Davidson, and G. S. Tyson. A Prefetch
Taxonomy. |EEE Transactions on Computers, Vol.53, No.2,
February 2004.

[6] S.C.Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs. Characterization and Methodologi-
cal Considerations. In Proceedings of the 22nd International
Symposium on Computer Architecture, June 1995.

