
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

REDEFIS : A System with a Redefinable
Instruction Set Processor

Goulart Ferreira, Victor M.
Fukuoka Laboratory for Emerging & Enabling Technology of SoC (FLEETS)

Gauthier, Lovic
Fukuoka Laboratory for Emerging & Enabling Technology of SoC (FLEETS)

Kando, Takayuki
Fukuoka Laboratory for Emerging & Enabling Technology of SoC (FLEETS)

Matsuo, Takuma
Tokyo Electron Limited

他

https://hdl.handle.net/2324/6794511

出版情報：Proceedings of the annual symposium on Integrated circuits and systems design. 19,
pp.14-19, 2006-08
バージョン：
権利関係：



REDEFIS — A System with a Redefinable Instruction Set Processor 
Victor M. GOULART FERREIRA†, Lovic GAUTHIER†, Takayuki KANDO†, 
Takuma MATSUO‡, Toshihiko HASHINAGA§, and Kazuaki MURAKAMI§ 

† Fukuoka Laboratory for Emerging & Enabling Technology of SoC (FLEETS) 
‡ Institute of Systems & Information Technologies/KYUSHU (ISIT) 

§ Department of Informatics, Kyushu University 
Fukuoka, Japan 

E-mail: redefis@fleets.jp 
 

ABSTRACT 
The growing complexity and production cost of processor-based 
systems have imposed big constraints in SoC design of new 
systems. GPPs and ASICs are unable to fit the tight performance or 
power constraints, or too complex to design in short TAT/TTM. 
REDEFIS is a HW/SW design platform for high level, efficient 
implementation of ASIPs/engines for SoC systems. It is composed 
of a reconfigurable instruction-set processor, capable to redefine its 
ISA according to the user application written in high level C 
language, and a set of design tools (an ISA Generator and a 
retargetable compiler). These processors can be used as flexible 
engines in embedded MPSoC systems, where its ISA is fully 
customized and design is done at high level C (no HDL writing is 
necessary). In this paper we present the Redefis design platform and 
an implementation of our dynamically reconfigurable ISA processor 
(codename Vulcan). Our results demonstrate the effectiveness of the 
system for encryption and bitwise applications. 

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Other Architecture Styles - 
adaptable architectures. C.3 [Special-purpose and Application-
based Systems]: Real-time and Embedded Systems. 

General Terms 
Design, Performance. 

Keywords 
Dynamically reconfigurable processor, ISA customization, high 
performance, low power, SoC. 

1. INTRODUCTION 
Convergence within consumer electronics like mobile phones with 
digital cameras, media players and security embedded features 
require great processing power with energy efficiency which 
general-purpose processors (GPP) can hardly deliver. The ever 
increasing demand for high performance, feature-rich products have 
been driving the industry and research communities to develop 
design platforms which permit to develop more efficient custom 
logic solutions in a short time frame. The tighter TAT and TTM 
constraints for a whole ASIC design solution are not affordable 
either due to its complexity and cost. Instead of designing a new 
ASIC from scratch, ASIPs and reconfigurable computing (RC) 

systems are becoming very attractive solutions with a plethora of 
systems based on (re-)configurable processors / engines with tools 
support from compilers up to the OS. Some commercial systems 
include Altera’s NIOS II [3], IPFlex’s DAPDNA2 [4], PACT XPP 
dynamically reconfigurable processor array [5], Tensilica’s Xtensa 
processors [6], Stretch processors [7], Toshiba’s MeP processor [8], 
NEC’s Dynamically Reconfigurable Processor (DRP) [9], Elixent’s 
(RAP - Reconfigurable Algorithm Processing) [10], Morpho 
Technologies’ MS2 [11], and others. 
In this research we focus on systems with the flexibility and 
application suitability of extensible or (re-)configurable ASIPs 
which we call Redefinable Instruction Set (REDEFIS) platform 
[1]. The REDEFIS is a HW/SW design platform for high level, high 
performance, and fast implementation of ASIPs. According to the 
intrinsic characteristics of an application the development tools 
automatically identify and completely redefine a new ISA 
(Instruction Set Architecture) to better fit the target application. 
Compared to other approaches based of reconfigurable 
fabrics/processors, the Redefis project targets processors where the 
ISA is fully redefinable and not extended. Redefis also proposes a 
design flow based on standard C programs (no HDL writing is 
necessary). 
The Redefis platform is composed of a reconfigurable instruction-
set processor and a set of software design tools. These processors 
can be used as flexible engines in embedded MPSoC systems. 
The remainder of this paper is organized as follows: Section 2 
presents and overview of the Redefis system, followed by a more 
detailed description of the reconfigurable processor (Vulcan) in 
Section 3. The experiment framework, evaluation and experimental 
results of the architecture are presented in Section 4. Final 
discussions and conclusions are given in Sections 5 and 6. 

2. REDEFIS SYSTEM PLATFORM 
The Redefis design tool chain is used both to compile an input C 
program (the “application” written in high level C) and to produce 
an ISA specifically optimized for this given input application. The 
object code for this application will use instructions of the ISA and 
the processor will reconfigure itself in order to execute each specific 
CI (Custom Instruction). The general overview of the system can be 
seen in Figure 1(a). 
Figure 1(b) shows the design flow of the Redefis platform. The 
input is a program in high level C, and the output is both the binary 
object code of the program and the newly defined ISA as 
configuration bit-streams generated from the mapping of the CI’s 
into Vulcan’s Reconfigurable Data Path – RDP (explained later). 
The design tool chain is composed of: 

• ISAGen [2]: gets an input C program and outputs the HW 
description of the ISA, “ISA unmapped” in Figure 1(b), and a 
C program (“ISA-C program”) referencing this new ISA. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
SBCCI'06, August 28–September 1, 2006, Minas Gerais, Brazil. 
Copyright 2006 ACM 1-59593-479-0/06/0008...$5.00. 

14



• Place & Route tool: places and routes each CI of the ISA 
onto the RDP of the Vulcan processor. 

• Retargetable Compiler: compiles the ISA-C program to 
Vulcan assembly. 

• Assembler/Linker: generates the object code (based on the 
instruction format of Figure 3) and appends to it the ISA 
configuration data. 

An important part in the tool chain of the system is the ISAGen 
(Instruction Set Architecture Generator) [2]. ISAGen will 
decompose the input C program, analyze it and produce a number of 
CI’s based on its DFG which will compose the computation CI’s of 
the new ISA. It will also preprocess the C program to reflect the 
generated set of instructions before going into the retargetable 
compiler. This compiler will generate the rest of the ISA composed 
of CI’s for flow control specifically optimized for this application. 
The retargetable compiler compiles the resulting C program into the 
target (re-)configurable processor’s object code, which can be 
ASIPs (Application-Specific Instruction Set Processors); Multi-
Processor SoC or Vulcan, a dynamically reconfigurable instruction-
set processor. 
The description of the internals of ISAGen and the retargetable 
compiler is out of scope of this paper. Here we focus on the 
architecture and implementation of Vulcan, a processor capable to 
redefine and execute different ISA’s specific to each application. 
Vulcan details are going to be presented in the next section. 

3. REDEFINABLE ISA PROCESSOR 
Vulcan is one implementation of a dynamically reconfigurable 
processor in the Redefis Project, where the ISA is fully redefinable 
(at compile time) and the execution of its instructions is made by 
reconfiguring the processor data-path for every custom instruction 
according to program execution flow. 
3.1 Outline of Vulcan Processor 
Vulcan executes the application by configuring its data-path over 
and over according to program execution flow. Throughout the 
program execution the RDP changes its “function” in order to 
execute a given instruction. Execution “step” refers to the 
processing of reconfiguration of the RDP and the computation of the 
configured instruction altogether, which involves the amount of time 
it takes to perform these tasks; each step’s number of cycles can 
vary according to the complexity of the CI. 
 

 
Figure 1: (a) Overview of Redefis HW/SW Platform;  

(b) Redefis design tool chain 

Configuration data or bit-stream is equivalent to FPGA systems; in 
Redefis it is used to “reprogram” the reconfigurable module 
(Reconfigurable Data Path – RDP). We call “custom instructions” 
those Vulcan maintains and is capable to execute (there is a total of 
128 CI’s attainable due to its CF_num field (7-bits) in its instruction 
format – see Figure 3). The full set of configurations loaded into the 
configuration memory is the current ISA of the processor (generated 
at compile time). Moreover the user can set up the working cycle 
time for each instruction, i.e., different CI’s can work at different 
cycle times, which is made by dividing the main clock cycle 
(Work_Rate field). 
An overview of Vulcan architecture is presented in Figure 2. 
Vulcan’s computation power and flexibility is due to its RDP 
module which is a reconfigurable network of processing elements 
(PE’s). Additional calculation units are present for more demanding 
arithmetic computations like adders and multipliers (two 16-bit 
each). The controller is responsible for fetching instructions, 
reconfiguring the RDP and handling flow changes (e.g. branching). 
In the processor every “custom instruction” (identified from the 
application’s source code) is associated with one configuration of 
the RDP (CF_Num). A typical execution cycle of Vulcan is 
performed in 3 steps: 

1) The controller fetches a CI and reconfigures the RDP. 
2) The RDP reads the data and passes it to be computed in the 

RDP (for every custom instruction). 
3) The RDP writes back the result of the calculation. 

3.2 Dynamically Reconfigurable Processor 
The Vulcan processor is our first implementation of a family of 
reconfigurable processor architectures under research. In the 
following we explain in more details the architecture and its parts. 
Vulcan’s architecture (Figure 2) is composed of a reconfigurable 
fabric, or reconfigurable data-path structure (RDP), a number of 
register files and memories (configuration memory, program 
memory, data memory), and a very simple in-order control unit 
where instructions are executed sequentially. Explanation of each 
unit follows: 
3.2.1 Controller 
It manages the execution of the entire system such as loading of 
instructions, configuration data and load/store of data in memory. 
Seven index registers of 22bits are installed internally, and it is also 
possible to access the memory by using the value in the index 
register. Moreover, the values in these index registers can connect it 
with the stack. 
3.2.2 Memory System 
The main memory of the system is composed of 32MB of SDRAM 
off-chip; each word is 64-bit long and is used to hold both program 
and data. On-chip, there are two caches (P$ - program cache; D$ - 
data cache) whose sizes are 8 words x 32 sets. 
3.2.3 Instruction Format and Types 
The instruction format of Vulcan is presented in Figure 3. 
Differently from the “normal” processor, every instruction in 
Vulcan specifies a number which references the location where the 
configuration data for each CI can be found and then executed. It is 
possible to specify source and destination operands inside each 
instruction. Moreover there are computation instructions and control 
instructions indicated by Exe_Non field where RDP reconfiguration 
takes place or not accordingly. When a branch occurs the condition 
can be specified (Flow_Param fields) as well as the relative address 
of jump instructions (Rel_Adr field). 

15



Reconfigurable Data Path

Register File

Program
and
Data

Memory

Controller

Index Register
Configuration 
Data Memory

LIFO

Reconfigurable Data Path

Register File

Program
and
Data

Memory

Controller

Index RegisterIndex Register
Configuration 
Data Memory

LIFO

 
Figure 2: Overview of Vulcan Architecture 

dst_
reg

src_
reg

CF_
Num

#Dt_Adr
#Rel_Adr

Flow_
Param

Flow_
Code

In_
Reg2

In_
Reg1

reg_
OP

# ImData
Exe_
Non

Work
_Rate

63..62 61       60..54   53..45  44..36  35..29  28..26   25..23   22..20    19..16       15..0

dst_
reg

src_
reg

CF_
Num

#Dt_Adr
#Rel_Adr

Flow_
Param

Flow_
Code

In_
Reg2

In_
Reg1

reg_
OP

# ImData
Exe_
Non

Work
_Rate dst_

reg
src_
reg

CF_
Num

#Dt_Adr
#Rel_Adr

Flow_
Param

Flow_
Code

In_
Reg2

In_
Reg1

reg_
OP

# ImData
Exe_
Non

Work
_Rate

63..62 61       60..54   53..45  44..36  35..29  28..26   25..23   22..20    19..16       15..0

 
Figure 3: Instruction Format of Vulcan 

PE

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

・
・
・

・
・
・

・
・
・

・ ・ ・
・ ・ ・

・ ・ ・
・ ・ ・

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

・
・
・

・
・
・

・
・
・

・ ・ ・
・ ・ ・

・ ・ ・
・ ・ ・

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

 
Figure 4: Reconfigurable Data Path (RDP) structure. 

3.2.4 Configuration Memory 
It is where the configuration data is stored. It can store the 
configuration data of up to 128 custom instructions. The bit-stream 
size for each configuration or CI is about 3.8KB maximum i.e., the 
configuration of the whole RDP, all PE’s and SW’s. 
3.2.5 Register Files 
There are two types of Register Files, one called IFRAM and other 
called SHRAM. The IFRAM is composed of differently addressable 
512 x 256-bit registers. However each bit of these registers can be 
directly attached to different PE’s in the RDP, which might be very 
powerful for bit shuffling (it can be done by just selecting which 
PE’s are going to be used), though most of times it is hard to handle 
it because of the P&R tool complexity. Another RF is the SHRAM 
with 2K x 64-bit registers. The SHRAM registers can also be 
addressed by index registers. 
3.2.6 Reconfigurable Data Path (RDP) 
Figure 4 shows the organization of the PE’s (Programmable 
Elements) and SW (programmable switches) in the RDP. PE’s are 
arranged in 16 rows and 8 columns. Each PE is a 6-to-2 LUT (Look-
Up Table) which can implement an arbitrary logic function of its 
inputs. Every PE is connected by wide buses in vertical and 
horizontal directions; Vertical Lines (VL) and Horizontal Lines 
(HL) respectively. Each switch specifies the connection between VL 

and HL, like if a given signal is to be transferred from HL to VL or 
vice-versa. VL is composed of 8 buses of 64-bits while the HL, 7 
buses of 64-bits, where each bit can be connect to any other bit of a 
different orthogonal bus. The RDP can directly load/store a 64-bit 
data from/to memory at once. 
3.3 Execution Flow 
In this subsection the execution flow of Vulcan is explained. First, 
the controller reads the program from main memory to the cache; if 
it is a computation instruction, the appropriate configuration data is 
loaded from the address of the configuration data memory specified 
in the instruction (the CF_Num field). After the RDP is reconfigured 
the input data is processed. The execution result of each PE is output 
to VL, writing the respective bits in the destination register, and it is 
also possible to hand over data to another instruction as an 
intermediate result. By using these registers efficiently big custom 
instructions can be executed by dividing it into two or more 
instructions. Moreover, if it is a control instruction the program 
counter gets the value dictated by the operation indicated in the 
instruction word. 
This way, shuffling, masking and other expensive bitwise operations 
in GPP can be implemented very efficiently in Vulcan. Due to the 
dynamic execution flow inherent to Vulcan, the RDP has only 128 
PE’s in order to minimize the impact on clock time. 

4. EXPERIMENTS 
In the remaining sections we are going to evaluate the performance 
and execution flow of Vulcan processors compared to GPP’s and to 
consider how fast and cost effective the Redefis platform can be 
when designing ASIPs. Another objective is to gather information 
about the bottlenecks in the architecture for further improvements as 
we have chosen a “limit situation” of reconfiguration at every “step” 
of execution. 
For the Vulcan processor we have implemented an ISS (Instruction 
Set Simulator), an emulator of the Vulcan processor on an FPGA 
board (Figure 5) and a chip implementation as well (3M gates, 
80MHz@0.11µm). We are using both simulated (PISA simulator of 
Simplescalar tool set [12], Table 1) and the Intel Pentium 4 in order 
to discuss performance and efficiency numbers. 
4.1 Evaluation 
In order to evaluate the Redefis system we have implemented the 
image compression algorithm JPEG, the cryptographic algorithms 
DES, AES, and IDCT (Inverse Discrete Cosine Transform). We 
have adopted these because of their broad use in security and media 
applications. 
In our experiments we have emulated the Vulcan using the hardware 
emulation board (Figure 5). In this board there are two Xilinx 
FPGAs (XC2V8000), where the functionality of the Vulcan 
processor is implemented. In order to implement each application 
we described each PE (Processing Element) and their 
interconnections and used a place and routing tool for Vulcan in 
conjunction with its assembly which describes their custom 
instructions. A 32MB flash card is used as main memory. We now 
describe the implementation of each application. 
4.2 Application Set 
4.2.1 JPEG Image Compression 
JPEG [15] is a broadly used algorithm for image compression used 
in digital photography, medical imaging, internet, remote sensing 
and surveillance, among other applications. We got a freely 
available source code and mapped it into Vulcan. 
 

16



Table 1: Simplescalar parameters 
Instruction issue method OOO (Out-of-order) 
ISA set PISA 
Branch predictor 
Type 
BTB size 

2 levels (bimod, 2K entries) 
512 entries, 4-way 

Inst.Issue/decode width 4 inst/clock cycle (c.c.) 
IFQ size 4 entries 
RUU size 16 entries 
LSQ size 8 entries 
Cache Memory (Size, Latency) 
L1 (Data cache) 
L1 (Instruction cache) 
L2 (Shared cache) 

32KB (4-way, 128 entries), 1 cc 
32KB (1-way, 512 entries), 1 cc 
64KB (4-w., 1024 entries), 6 cc 

Memory bandwidth 8 Bytes 
Num. memory ports 2 
Integer oper. units (# of ALUs, delay, issue latency) 
ALU 
Multiplier 
Divider 

4, 1 c.c., 1 c.c. 
1, 3 c.c., 1 c.c. 
1, 20 c.c., 19 c.c. 

4.2.2 DES Encryption Algorithm 
The Data Encryption Standard (DES) [13] is a cipher (a method for 
encrypting information) selected as an official Federal Information 
Processing Standard (FIPS) for the United States, in 1976. The 
original DES algorithm (Figure 6) was processed and then reduced 
to 6 big “functions” or custom instructions (Figure 7), i.e., the DES 
encryption algorithm could be implemented in Vulcan with an ISA 
of just 6 instructions! 
4.2.3 AES Encryption 
The Advanced Encryption Standard (AES) [14], also known as 
Rijndael, is a block cipher was adopted by National Institute of 
Standards and Technology (NIST) as US FIPS PUB 197 in 
November 2001, after its predecessor, DES, became obsolete. 
AES algorithm can be seen in the execution flow below ( Figure 8). 
Both the key and block sizes can be of 128, 192, and 256 bits. It is a 
conventional encryption algorithm which uses the same key for both 
encryption and decryption. In our experiments we used both key and 
block sizes of 128 bits. In the AES encryption, the plaintext is 
delimited by units of 8 bits (4x4 rows) for input, and then the round 
function will process this unit to obtain the ciphertext. When the key 
is 128 bits the number of rounds is 10. In each round the following 
four computations are done: 

• Add-Round-Key: Exclusive-OR of input and round key 
• Mix-Column, Shift-Row:  Homogeneous transformation like 

bit shift, etc 
• Byte-Sub: a non-linear transformation called S-Box. 

Mix-Column is not done in the tenth iteration of round. Moreover, 
the round key is generated by using the bit shift and the S-Box 
conversion on every round. 
In order to implement it in Vulcan we got the source code (C 
program), analyzed it and generated the CI’s and the assembly code 
of the whole program by hand. We tested the resulting assembly 
program in Vulcan’s ISS. Now, we used the 32-bit PISA OOO – 
out-of-order simulator from the Simplescalar tool set [12] to 
compare the results. In Table 1 one can see the description of the 
parameters used. We used the same program as to the Vulcan 
implementation; in Simplescalar the AES was compiled by gcc-
2.6.3 with optimization option -O2. 

 
Figure 5: Vulcan emulation board 

Initial Permutation Create Round Keys

XOR

Inverse Initial
Permutation

Ciphertext(64bit)

Key(56bit)Cleartext(64bit)

F-Function

F-FunctionXOR

Lo
o
p
 i:

1
～
16

Extension/Permutation

XOR

S-BOX

Permutation

F-Function

Cleartext(32bit)

RoundKey(48bit)

Initial Permutation Create Round Keys

XOR

Inverse Initial
Permutation

Ciphertext(64bit)

Key(56bit)Cleartext(64bit)

F-Function

F-FunctionXOR

Lo
o
p
 i:

1
～
16

Extension/Permutation

XOR

S-BOX

Permutation

F-Function

Cleartext(32bit)

RoundKey(48bit)

 
Figure 6: Original DES encryption algorithm 

Function1
or Function2

Key(56bit)Cleartext(64bit)

Function3 Function0

Function4

Function5

Ciphertext(64bit)

Function1
or Function2

Key(56bit)Cleartext(64bit)

Function3 Function0

Function4

Function5

Ciphertext(64bit)  
Figure 7: DES implementation on Vulcan 

 Figure 8: Execution flow of AES 
 

Create round keys Add-Round-Key 

Plain (128 bits)

Key (128 bits)

Byte-Sub 

Shift-Row 

Mix-Column 

Add-Round-Key 

Byte-Sub 

Shift-Row 

Add-Round-Key Encrypted (128 bits) 

Loop 

i:1～9 Round-Key 

i=

i=1~

i=1

(Process to create 
round keys) 

Round Function 

17



4.3 Results 
4.3.1 JPEG 
In Table 2 we show the working frequency of the emulated Vulcan 
(implemented on the FPGA board) and the Pentium 4 processor 
(compiled by GCC [16] with –O2 optimization). For about 1/3800 
of the working frequency, the performance was 260 times worse.  
4.3.2 DES 
The DES program was also compiled with gcc –o2. Although the 
working frequency of Vulcan is about 1/400 the frequency of the 
Pentium 4, we got a throughput 3.8 times bigger. DES involves 
basically bit manipulations which are handled very efficiently by the 
RDP. 
4.3.3 AES 
The implementation of AES encryption algorithm on Vulcan 
required 309 instructions to encrypt the plaintext of one block (128 
bits); the number of instructions in which the scheduling of the key 
was not included, was 79 instructions. There were a total of 38 
different custom instructions. Table 3 shows the number of PE’s 
used to process each custom instruction for the AES encryption 
algorithm. The first round was implemented using only 8 
instructions. Especially, in the plaintext and round-key, the 
Exclusive-OR done at Add-Round-Key used all PE’s for one 
custom instruction. Regarding the S-Box processing, as we need to 
process 128 bits and 124 PE’s are necessary to process 4 bytes, we 
needed 4 different CI’s. In the Shift-row processing (a shift in the 
row direction) we could implement it with one CI, however in the 
column direction (Mix-column) we needed two CI’s. 
In Table 4 one can see the number of executed instructions and the 
number of clock cycles needed to encrypt one block of plaintext in 
AES for Vulcan and Simplescalar’s PISA. Vulcan needed 1/36 of 
the number of executed instructions. Assuming both work at the 
same frequency, AES encryption on Vulcan is about 5.3 times faster 
than the superscalar MIPS. 

5. SUMMARY AND DISCUSSIONS 
In this section we discuss the result numbers presented in the 
previous section. Vulcan performed quite well for bitwise apps 
(DES and AES) but not as such for memory or compute intensive 
apps like JPEG. Fine-grain reconfiguration of the RDP (at bit-level) 
and the intrinsic correlation of PE’s and IFRAM register’s bits 
allows operations like bit-shuffling, masking, shifting and so one to 
be done just by specifying which PE’s are going to compute the 
input data. These same operations are the most costly for GPPs. 
Although the use of RDP and IFRAM can be quite efficient when 
programmed “by hand”, using ISAGen and the automatic P&R tool 
to generate a new ISA turned out to limit the actual size of CI’s 
because of its strict communication constraints and the relatively 
scarce routing elements in the RDP. 
Media applications like JPEG are very computing intensive, so the 
small 16-bit Adder and Multipliers in Vulcan are not sufficient to 
meet their timing constraints; also JPEG demands high memory 
bandwidth that was not our first concern when designing Vulcan at 
first (Vulcan actually needs to use the RDP to access the RF and 
memory). These bottlenecks are going to be addressed on the next 
version of the Redefis dynamically reconfigurable processor (under 
development). 
Figure 9 and Figure 10 present the distribution of the most executed 
instructions (classified by their types) for Vulcan and Simplescalar, 
respectively. 
 

Table 2: Results for emulated DES and JPEG (800x640pixels) 

Frequency Throughput 
(Exec Time) Platform 

DES JPEG DES JPEG 
Vulcan 6.25MHz 625KHz 570KB/s 125.37s 

Pentium 4 2.4GHz 2.4GHz 150KB/s 0.48s 

Table 3: Number of PE’s used in each CI for AES. 
CI Executed # of PE’s used 

Add-Round-Key 128 
S-Box1 124 
S-Box2 124 
S-Box3 124 
S-Box4 124 

Shift-Row 64 
Mix-Column1 104 
Mix-Column2 104 

Table 4: Performance numbers of AES (Encryption) 

Processor #  Inst. Executed Exec.Time 
(# of cycles) 

Vulcan 309 1497 
PISA(Superscalar) 11258 7902 

Implementing AES in Simplescalar showed that over 40% of 
executed instructions are Load/Store ones. This is because the 
program used implemented the transformation S-Box and the 
procedure to generate the key by referencing a table in memory; 
also, the program stores the intermediate temporary results in 
memory. In Vulcan the intermediate results are kept in the internal 
registers, so as to the S-Box transformation, where the LUTs in the 
RDP were sufficient to store all data, we just needed 16 Loads and 
Stores to cipher one block of plaintext. 
In Simplescalar the next most frequent instruction type was 
addition. This is due to the loops and indexing of lines and columns. 
In Vulcan as the Round function have been completely unfolded 
there is no increment in loops. The Exclusive-OR logic function in 
Add-Round-Key was used very much. In Vulcan it was possible to 
implement 128 bits Exclusive-OR in just one CI. Simplescalar 
processes the shift operation at byte level, differently from Vulcan 
which for one round, only 1 CI was needed for shift-row and 2 CI 
for Mix-column. In contraposition, move instructions in Vulcan 
counted over 40%. This is due to limitations on the number of inputs 
of the RDP (it is necessary to arrange the input in the same word 
when two or more inputs are necessary). 
Vulcan surpassed Simplescalar when we consider the dynamic 
instruction count. However, for 1/36 of the number of instr. exec., 
the reduction in total number of cycles was just 1/5 compared to 
Simplescalar. This is because the simulated Simplescalar is a 4-way 
OOO processor, while Vulcan is an in-order one. Moreover, the 
design complexity, area, cache predictability problems and power 
characteristics associated with OOO processors usually restrict their 
usage as a solution in embedded or real-time systems. 
In Figure 11 the distribution of execution time according to the 
internal processing of Vulcan, i.e., the phases or steps during the 
execution are presented. We observe that about 50% of the executed 
cycles were spent in IF (Instruction Fetch) phase. Cache missed a lot 
as we have completely unrolled the Round functions and 
consequently lost their temporal locality. Although the size of the 
cache was big enough, its hit rate was only 87.34%. 

18



Lastly, as stated before, datapath reconfiguration occurs at every 
step. The reconfiguration overhead is much bigger than the time to 
execute that same instruction on the RDP. Some ways to solve this 
limitation is to pipeline the execution in the RDP or promote partial 
reconfiguration; or increasing the computation power of each PE 
(like [5] or [9]), however as the reconfigurable fabric becomes more 
coarse-grain we loose programmability and the benefits of low-level 
bit manipulation. 

6. CONCLUSION AND FUTURE WORKS 
In this paper, we have presented REDEFIS – a HW/SW design 
platform for high level, efficient implementation of ASIPs/engines 
for SoC systems. It is composed of a reconfigurable instruction set 
processor (Vulcan), capable to redefine its ISA according to the user 
application written in high level C language, and a set of design 
tools (an ISA Generator and a retargetable compiler). 
We have mapped some encryption and media applications on 
Vulcan. Our preliminary results showed it performed very well for 
cryptography and other bitwise applications (compared to P4 the 
emulated system was 3.8X faster@1/400 the clock speed for DES). 
We continue to investigate other application niches and different 
topologies for the RDP, in order to meet the specifications to run 
JPEG, for instance. 
We believe the Redefis solution provides a flexible and efficient 
framework (small footprint and power consumption) for easy design 
retrofit (triggered by new standards, on-the-field bug fixing), along 
with low design/production cost and short TAT suited to embedded 
systems and alike.  
Other future works include the comparison of Redefis and an 
application-specific hardware designed from scratch (RTL), 
including design time, chip area, working speed and cost. 
7. ACKNOWLEDGMENTS 
This research was supported by Ministry of Education, Culture, 
Sports, Science and Technology (Japan), by its Knowledge Cluster 
Initiative (Fukuoka area). 
8. REFERENCES 
[1] T. Hashinaga et al. “Vulcan: the first implementation of 

Redefis processor and its design tool chain”, Technical Report 
of IEICE – Subject: Reconfigurable Systems, Dec. 2004 (In 
Japanese). 

[2] M. Shuto et al. “Redefis: a SoC Design Platform”, Technical 
Report of IEICE – Subject: Reconfigurable Systems, Dec. 
2004 (In Japanese). 

[3] Altera Corporation. http://www.altera.com 
[4] IPFlex Inc. http://www.ipflex.com 
[5] PACT Corporation. http://www.pactcorp.com  
[6] Tensilica Inc. Xtensa Configurable Processors. 

http://www.tensilica.com  
[7] Stretch Inc. http://www.stretchinc.com  
[8] MeP – Media Embedded Processor Architecture. 

http://www.mepcore.com/english/index_e.html 
[9] Dynamically  Reconfigurable  Processor    (DRP), NEC    

Electronics.   http://www.necel.com/drp/en/index.html  
[10] Elixent Ltd. http://www.elixent.com/ 
[11] Morpho Technologies Inc. http://www.morphotech.com  
[12] D. Burger and T. M. Austin, “The Simplescalar tool set, 

version 2.0”, University of Wisconsin-Madison Computer 
Sciences Department Technical Report, 1997. 

[13] NIST FIPS PUB 46-3, “Data Encryption Standard 
(DES)”,http://csrc.nits.org/publications/fips/fips46/fips46-3.pdf, 
Oct. 1999. 

[14] NIST FIPS PUB 197, “Advanced Encryption Standard (AES)”, 
http://csrc.nist.gov/publications /fips/fips197/fips-197.pdf , 
Nov. 2001. 

[15] Home page of the JPEG  Committee.http://www.jpeg.org 
[16] GNU Compiler Collection. http://gcc.gnu.org

 

0

20

40

60

80

100

120

140

160

Load Store M ove Shift S-BO X XO R

Instruction Type

N
u
m
be
r 
o
f 
In
st
r.
 E
xe

c
u
te
d

 
Figure 9: Distribution of Inst types executed in Vulcan for 

AES Encryption 

0

500

1000

1500

2000

2500

3000

Jum p Branch Load Store Adder Logical
O p.

Shift Set

Instruction Types

N
u
m
be
r 
o
f 
In
st
 E
xe
c
u
te
d

 
Figure 10: Distribution of Instr. types executed in 

Simplescalar for AES Encryption 

0

100

200

300

400

500

600

700

800

900

IF M EM Reconf Exe

N
u
m
be
r 
o
f 
C
lo
c
ks

 
Figure 11: Distribution of Execution time (number of cycles) 

of AES Encryption on Vulcan 

19



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


