
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Cache Power Reduction in Presence of Within-Die
Delay Variation using Spare Ways

Goudarzi, Maziar
Kyushu University

Matsumura, Tadayuki
Kyushu University

Ishihara, Tohru
Kyushu University

https://hdl.handle.net/2324/6794509

出版情報：IEEE Computer Society Annual Symposium on VLSI. 2008, 2008-04-07
バージョン：
権利関係：

Cache Power Reduction in Presence of Within-Die Delay Variation using

Spare Ways

Maziar Goudarzi, Tadayuki Matsumura, Tohru Ishihara

Kyushu University, Fukuoka, Japan

{goudarzi, ishihara}@slrc.kyushu-u.ac.jp matsumura@c.csce.kyushu-u.ac.jp

Abstract

The share of leakage in cache power consumption

increases with technology scaling. Choosing a higher

threshold voltage (Vth) and/or gate-oxide thickness

(Tox) for cache transistors improves leakage, but im-

pacts cell delay. We show that due to uncorrelated

random within-die delay variation, only some (not all)

of cells actually violate the cache delay after the above

change. We propose to add a spare cache way to re-

place delay-violating cache-lines separately in each

cache-set. By SPICE and gate-level simulations in a

commercial 90nm process, we show that choosing

higher Vth, Tox and adding one spare way to a 4-way

16KB cache reduces leakage power by 42%, which

depending on the share of leakage in total cache

power, gives up to 22.59% and 41.37% reduction of

total energy respectively in L1 instruction- and L2 uni-

fied-cache with a negligible delay penalty, but without

sacrificing cache capacity or timing-yield.

1. Introduction

The share of leakage in total power consumption of

cache memories increases considerably with technol-

ogy scaling since dynamic power reduces and static

power increases. The naïve solution is to increase Vth

and/or Tox to exponentially reduce respectively sub-

threshold- and gate-leakage, but this impacts cache

access delay. In addition, within-die variation of ac-

cess-delay of SRAM cells is becoming more severe in

sub-90nm technologies [1], and are predicted to only

rise when further approaching atomic sizes by technol-

ogy scaling [1]. Within-die delay variation means simi-

lar SRAM cells on the same die show different access

delays. The spatially-correlated component of this

variation similarly affects neighboring SRAM cells and

is best compensated by redundant rows/columns, but

the uncorrelated random component randomly affects

cell delays in the chip; empirical study [2] shows the

latter variation is 3.54% for a single logic element

(roughly equivalent to a single SRAM cell) in 90nm

FPGAs. At such variation, if the cache is implemented

with a higher Vth, Tox to reduce leakage, randomly

some of the cells (but not all of them) violate the origi-

nal timing. We propose to use extra cache ways to

compensate for them per cache-set.

Our design- and manufacturing-time optimization

technique, (i) keeps VDD untouched (to avoid its quad-

ratic impact on dynamic power), (ii) optimally chooses

a higher Vth and Tox at cache design time, and (iii) adds

a few extra cache ways enough to compensate for tim-

ing-violating cache lines caused by higher Vth and Tox.

We use analytical formula to ensure that (i) timing-

yield is kept intact (except a negligible delay over-

head), and (ii) each cache-set keeps its original number

of delay-meeting cache-lines assuming Gaussian distri-

bution for the uncorrelated random within-die delay

variation; consequently, cache capacity is also kept

intact (or even increased). The extra cache ways poten-

tially increase dynamic power per access, but simula-

tions of caches implemented using a commercial 90nm

process show that in instruction caches (where most

accesses are sequential) and in L2 caches (where leak-

age dominates total power) the total power can still be

significantly reduced. The additional cache-ways also

imply a wider way-selector multiplexer with negligible

delay overhead of 3.12% in a 4-way 16KB cache.

2. Related works

To tolerate slow/faulty cells, programmable address

decoders [4] redirect accesses to slow/faulty cache

lines to other lines in the same cache-set. A simpler

technique [5] uses an unused combination of flag bits

to mark the cache-line as faulty and to avoid storing

data there. Any such technique can be used in our work

to mark and avoid using delay-violating lines.

Ozdemir et. al [6] propose to turn off delay-violating

and too leaky cache ways or lines. They also propose to

allow different parts be accessed at different latencies.

Although improving chip yield, these affect cache ca-

pacity or speed, but we keep original yield and capacity

with negligible speed impact. We reduce leakage by

higher Tox and Vth, not by turning parts off.

Within-die leakage variation is considered in [7] to

extend selective cache ways [8] by starting from the

leakiest cache way when disabling those not used by

the application. We do not reduce leakage by disabling

parts of cache. Moreover, we operate at a per-cache-set

basis when replacing slow cache lines with spares.

ILWM technique. Various techniques reduce cache

dynamic power [9]. A well-known one applicable to

set-associative instruction caches is [10]; since instruc-

tions mostly execute sequentially, and several instruc-

tions reside in the same cache-line, tag-comparisons

can be eliminated and only one cache way activated

unless last executed instruction was either a branch or

was at the end of a cache-line. We call this Inter-Line

Way Memorization (ILWM) and use it in experiments.

3. Our approach

Motivational Example. The left-hand side of Fig. 1

shows a 4-way cache implemented with Vth=270mv.

The enlarged cache-line demonstrates within-die delay

variation: SRAM cells have different latencies (for

presentation we show 4 bits per cache line). At the

right-hand side, Vth is 50mv higher (320mv). Fig. 2

gives SPICE simulation results of leakage vs. delay of

standard 6T SRAM cells using a commercial 90nm

process and shows that delay increases and leakage

decreases by raising Vth,Tox. Thus, in the right-hand

side of Fig. 1 cell latency increases (compare the two

enlarged parts). To compensate for the delay-violating

cache-lines, one spare way is added to ensure at least 4

out of 5 cache lines still meet target delay as before.

Thus, the cell-array latency is kept at the original 642ps

(way-selector delay increases; not shown for simplic-

ity) and the cache capacity also remains intact. The

choice of higher Vth reduces leakage by 42% including

all 5 cache ways (Section 5 and Table I). For practical-

ity we do not turn off slow cache lines; they are invali-

dated and locked by software at boot time as [5].

Our Approach. Fig. 3 outlines our proposal. Our

technique determines number of extra cache-ways and

the manufacturing options of Tox and Vth for SRAM

transistors. Original cache organization (size, line-size,

and number of ways) along with process characteristics

(mean and standard-deviation of SRAM cell delay as

well as leakage-delay curves of cells at various Vth and

Tox values) are input to the optimization program.

Cache organization is modified according to the results

while the chosen Tox and Vth are handed over to the

manufacturer for chip fabrication. The produced chips

are then tested offline to detect and mark cache lines

containing slow SRAM cells. If such slow lines per

cache-set exceed number of spare ways, the chip is

considered faulty and contributes to yield loss. If prac-

tical, such slow lines should be turned off but we

merely rely on marking them at boot-time after their

location is read from an agreed-upon non-volatile stor-

age. Marking of slow cache lines can be done in soft-

ware by clearing their valid bit and setting their lock bit

 [3] [5]. Finally, at runtime the cache works as ever

without noticing and without using slow lines.

639 590 625 610

Cells latencies due to within-

die variation (Vth=270mv)

649 600 635 620

Cache line

Delay-violating line or cell

Cells latencies at

Vth=320mv

Spare cache way

Fig. 1. One spare way is added to a 4-way cache to let choose 50mv

higher Vth without impacting neither cell-array latency nor capacity.

Vth=270mv

Cell-array latency =642ps

Normalized leakage = 1

Vth=320mv

Cell-array latency =642ps

Normalized leakage = 0.58

Fig.3. Big picture of our proposed approach.

515 520 525 530 535 540

1.0

2.0

3.0

4.0

SRAM access delay [p sec]

When changing Vth

When changing Tox

S
R
A
M
 l
e
a
k
a
g
e
 p
o
w
e
r
p
e
r
c
e
ll
[n
W
]

Fig.2. Mean leakage power vs. mean access-delay of a single

SRAM cell when raising Vth and Tox (from left to right) in a com-

mercial 90nm process in presence of 5% delay variation.

4. Problem formulation and algorithm

Using the following notations, we define the problem:

µd: original mean delay of SRAM cells.

σd: original standard deviation of delay of SRAM cells.

D: target delay of the cache.

N: number of additional cache ways.

Y: original timing-yield of the cache.

Ycell: timing-yield of a single SRAM cell.

w: original number of ways in the cache.

b: number of bits per cache line (including tag bits).

s: number of cache-sets.

L: leakage power of the cache.

Vth: optimal value for Vth of cache SRAM transistors.

Tox: optimal value for Tox of cache SRAM transistors.

Problem: “For a given process technology (µd, σd),

cache organization (w, b, and s), and timing-yield (Y),

minimize the leakage power of cache (L) by setting

Vth, Tox, and N such that target delay, D , is kept un-

changed (ignoring delay penalty of way-selector mul-

tiplexer that is measured and considered separately).”

Algorithm. The following algorithm takes the cache

organization and process technology as input and pro-

vides the best choice of Vth, Tox, and N if successful.
Algorithm 1: OptimizeCacheDesign()

Inputs: (σd,µd: process tech. characteristics),
 (w,b,s: original cache configuration),
 (Y: Target timing-yield of cache)
Output: set of (N, Vth, Tox) triples.

1 set answers_set = empty_set
2 compute D based on Y, σd, µd.
3 compute L (leakage power) of original cache.
4 for N=1 to w/2 do
4.1 compute new µd in presence of N extra
 cache-ways such that D and Y are kept intact.
4.2 compute Vth and Tox corresponding to new µd
4.3 compute L’ (leakage power) of new cache
4.4 if L’<L then add (N,Vth,Tox) to answers_set

Below we show the relation between N and the

nominal Vth and Tox of SRAM transistors. The algo-

rithm simply assumes various values for N up to

roughly 50% area overhead (line 4), computes the cor-

responding Vth and Tox (lines 4.1 and 4.2), and then

checks whether they sufficiently reduce the leakage so

that the static power of the cache with the extra way(s)

is less than before or not (lines 4.3 and 4.4).

Uncorrelated random within-die delay variation can

be modeled by Gaussian distribution [3]. Thus, prob-

ability Ycell that a SRAM cell delay is less than target-

delay D, is given by the area below probability density

function (PDF) of Gaussian distribution up to D:

2

2

2

)(

2

1
)()(]Pr[d

dx

d

D

cell exfdxxfDxY
σ

µ

πσ

−−

∞−
==≤= ∫ (1)

where f(x) is the PDF of Gaussian distribution. Now the

original yield of the entire cache, Y, is:
swb

cellYY
××= (2)

With N extra ways, each set is still fine as long as it

contains 0 to N slow cache lines. Thus, total yield is:

() ()
s

N

i

ib

cell

iNwb

cell YY
i

Nw
Y 








−××







 +
= ∑

=

−+

0

1 (3)

In line 2 of the algorithm, D is computed using Eq. 1

and 2 for the given µd, σd, and Y. Leakage-delay curves

(Fig.2) are used to compute the cache total leakage in

line 3 (and also later in line 4.3). In line 4.1, we nu-

merically compute new µd using Eq. 1 and 3. Transis-

tors in spare cache-ways also contribute to leakage, and

hence, if their overhead is too high, leakage may not be

improved. Thus, if leakage decreases (line 4.4), the

corresponding new Vth and Tox are reported. These new

Vth and Tox (line 4.2) are available from SPICE simula-

tions done to produce leakage-delay curves (Vth and Tox

values are not shown in Fig.2, but are recorded when

running SPICE simulations for generating Fig.2).

5. Experimental results

We designed SRAM cells using SPICE transistor

models of a real 90nm process technology (undisclosed

due to NDA) with 1V supply voltage and implemented

other cache circuitry using Synopsys Design Compiler

synthesis tool and a 90nm standard cell library. Leak-

age and dynamic power and delay were obtained by

SPICE simulations for SRAM cells, and by Synopsys

tools for cache periphery. SRAM cells dominate cache

leakage and also cache area. Thus, we focus on varia-

tion in delay of SRAM cells since cache periphery oc-

cupies a small area and can be properly sized to mini-

mize variation. In the rest of this paper, “cache leak-

age” means “SRAM cells leakage”. Monte Carlo simu-

lation was used at various delay variations to obtain

leakage-delay curves for SRAM cells (Fig.2) with their

corresponding Vth and Tox (not shown in Fig.2).

Results and overheads. Results obtained on 16KB,

4-way cache with 256 data and 20 tag bits per line are

given in Table I; we save more when targeting a higher

yield as well as at higher delay variation. Algorithm

execution time is just a fraction of second on a Xeon

3.80GHz processor with 2MB of cache and 3.5GB of

memory, but it took a week to run all SPICE simula-

tions on the same machine to obtain the tables (see

Fig.2) used in steps 3 and 4.3 of the algorithm; but it

doesn’t matter since this is a one-off task.

Table I. Obtained leakage reduction on a 16KB 4-way cache

Cache leakage power (µW) Saving (%) Delay

variation

Target

Yield ORG N=1 N=2 N=1 N=2

90% 76.16 69.18 72.99 9.16 4.16

95% 80.03 70.70 74.85 11.65 6.47 3%

99% 90.80 76.73 78.34 15.50 13.72

90% 552.4 350.58 319.90 36.54 42.09

95% 616.2 376.26 336.81 38.94 45.34 5%

99% 752.1 438.98 377.04 41.63 49.87

Table II gives resulting changes of static power at

3% and 5% delay variation, dynamic energy per access,

and also delay of cache (negative value shows an im-

provement); target timing-yield is 99%. By way-

scaling, delay increases due to widened way-selector

which also increases dynamic power (further increased

by more tag-comparisons caused by extra ways except

for single-way accesses, enabled by ILWM [10]).

Table II. Change of static power (99% timing-yield), dynamic en-

ergy, and delay of 16KB 4-way cache after applying our technique.

Change (%)

1 extra way 2 extra ways

3% delay variation -15.50 -13.72 Leakage

Power 5% delay variation -41.63 -49.87

Hit (Single-way access) 7.74 15.47

Hit (Full-way access) 24.89 49.78

Dynamic

Energy per

access Miss 15.10 30.20

Total cache access delay 3.12 5.67

Total power reduction. We tradeoff dynamic- for

static-power, and hence, final outcome depends on the

share of them in total power. We analyzed the ratio of

static to dynamic power in an embedded processor,

M32R-II, when running a number of benchmarks. The

processor runs at 200MHz and has separate L1 instruc-

tion and data caches: a 16KB 4-way set-associative

cache with 32-byte lines for instructions and the same

organization but 16-byte cache-lines for data. It is also

equipped with a 16KB unified L2 cache with the same

organization as the L1 instruction-cache. We used four

applications from MiBench and compiled them once

with no compiler option and once with ‘-O3’ full-

optimization option. HDL model of the processor was

simulated for 1 million instructions of each benchmark

to gather number of clock cycles and cache access sta-

tistics (i.e. number of hits, misses, and also single-way

accesses and full-way accesses for the instruction

cache). (Reports omitted for lack of space.) Fig.4

shows breakdown of L1 instruction-cache energy con-

sumption assuming 5% delay variation and 99% target

timing-yield; the bars are respectively original cache,

cache with one extra way (N=1), and cache with two

extra ways (N=2). The results include ILWM [10].

0

2

4

6

8

10

12

14

16

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

JPEG JPEG -

O3

MPEG2 MPEG2

-O3

FFT FFT -

O3

CMPRS CMPRS

-O3

T
o
ta
l
L
1
 I
-C
a
c
h
e
 E
n
e
rg
y
 (
u
J
)

Dynamic Energy Static Energy

22.59%

22.99%

Fig.4. Total energy in L1 Instruction-cache.

In data cache, due to smaller size (and hence less

leakage) and inapplicability of ILWM (since accesses

are mostly not sequential), our technique is not as use-

ful and in some cases even marginally increases total

power by up to 1.10% (diagram omitted for space).

Leakage energy comprises a bigger part in L2 caches

since such caches are less frequently accessed. Thus,

our technique is more effective here (Fig.5).

0

2

4

6

8

10

12

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

O
R
G

N
=
1

N
=
2

JPEG JPEG -

O3

MPEG2 MPEG2

-O3

FFT FFT -

O3

CMPRS CMPRS

-O3

L
2
 U
n
if
ie
d
-C
a
c
h
e
 E
n
e
rg
y
 (
u
J
)

Dynamic Energy Static Energy

41.37%

49.47%

Fig.5. Total energy in L2 unified cache.

6. Summary and conclusion

We reduced cache leakage by using higher Vth and

Tox while adding extra cache ways; the former reduces

leakage while the latter compensates for the resulting

delay-violating cache lines. Total power reduction de-

pends on the balance of static to dynamic power, but

we showed over 40% reduction in a 16KB L2 cache.

Acknowledgments. This work is supported by VDEC, The
University of Tokyo with collaboration of STARC, Panasonic, NEC

Electronics, Renesas Technology, and Toshiba. It is also supported

by CREST project of JST. We are grateful for their support.

7. References

[1] International Technology Roadmap for Semiconductors—

Design, 2006 Update, http://www.itrs.net

[2] P. Sedcole, P.Y.K. Cheung, “Within-die delay variability in

90nm FPGAs and beyond,” Proc. Field-Programmable Technology

(FPT), 2006.

[3] Agarwal, B.C. Paul, H. Mahmoodi, A. Datta and K. Roy, “A

process-tolerant cache architecture for improved yield in nanoscale

technologies,” IEEE Trans. on VLSI, vol. 13, no. 1, pp. 27-38, 2005.

[4] P.P. Shirvani and E.J. McCluskey, “PADded cache: a new

fault-tolerance technique for cache memories,” Proc. IEEE VLSI

Test Symp., pp. 440-445, April 1999.

[5] T. Ishihara, F. Fallah, “A cache-defect-aware code placement

algorithm for improving the performance of processors,” Proc. Int’l

Conference on Computer-Aided Design, pp. 995-1001, 2005.

[6] S. Ozdemir, D. Sinha, G. Memik, J. Adams, H. Zhou, “Yield-

aware cache architectures,” Int’l Symp. on Microarchitecture, 2006.

[7] K. Meng, R. Joseph: “Process variation aware cache leakage

management,” Int’l Symp. Low Power Elec. and Design, 2006.

[8] D. Albonesi, “Selective cache ways: on-demand cache resource

allocation,” Proc. Int’l symp. on Microarchitecture, 1999.

[9] V.G. Moshnyaga, K. Inoue, “Low-Power Cache Design,” in

Low-Power Electronics Design, C. Piguet Eds., CRC Press, 2005.

[10] R. Panwar and D. Rennels, “Reducing the frequency of tag

compares for low-power I-cache design,” Proc. Int’l Symp. Low

Power Electronics and Design, pp. 57-62, 1995.

[11] Y. Tsukamoto, et al., “Worst-case analysis to obtain stable

read/write DC margin of high density 6T-SRAM-array with local Vth

variability,” Proc. Int’l Conf. Computer-Aided Design (ICCAD),

2005.

