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Abstract 

The share of leakage in cache power consumption 

increases with technology scaling. Choosing a higher 

threshold voltage (Vth) and/or gate-oxide thickness 

(Tox) for cache transistors improves leakage, but im-

pacts cell delay. We show that due to uncorrelated 

random within-die delay variation, only some (not all) 

of cells actually violate the cache delay after the above 

change. We propose to add a spare cache way to re-

place delay-violating cache-lines separately in each 

cache-set. By SPICE and gate-level simulations in a 

commercial 90nm process, we show that choosing 

higher Vth, Tox and adding one spare way to a 4-way 

16KB cache reduces leakage power by 42%, which 

depending on the share of leakage in total cache 

power, gives up to 22.59% and 41.37% reduction of 

total energy respectively in L1 instruction- and L2 uni-

fied-cache with a negligible delay penalty, but without 

sacrificing cache capacity or timing-yield. 

1. Introduction 

The share of leakage in total power consumption of 

cache memories increases considerably with technol-

ogy scaling since dynamic power reduces and static 

power increases. The naïve solution is to increase Vth 

and/or Tox to exponentially reduce respectively sub-

threshold- and gate-leakage, but this impacts cache 

access delay. In addition, within-die variation of ac-

cess-delay of SRAM cells is becoming more severe in 

sub-90nm technologies  [1], and are predicted to only 

rise when further approaching atomic sizes by technol-

ogy scaling  [1]. Within-die delay variation means simi-

lar SRAM cells on the same die show different access 

delays. The spatially-correlated component of this 

variation similarly affects neighboring SRAM cells and 

is best compensated by redundant rows/columns, but 

the uncorrelated random component randomly affects 

cell delays in the chip; empirical study  [2] shows the 

latter variation is 3.54% for a single logic element 

(roughly equivalent to a single SRAM cell) in 90nm 

FPGAs. At such variation, if the cache is implemented 

with a higher Vth, Tox to reduce leakage, randomly 

some of the cells (but not all of them) violate the origi-

nal timing. We propose to use extra cache ways to 

compensate for them per cache-set. 

Our design- and manufacturing-time optimization 

technique, (i) keeps VDD untouched (to avoid its quad-

ratic impact on dynamic power), (ii) optimally chooses 

a higher Vth and Tox at cache design time, and (iii) adds 

a few extra cache ways enough to compensate for tim-

ing-violating cache lines caused by higher Vth and Tox. 

We use analytical formula to ensure that (i) timing-

yield is kept intact (except a negligible delay over-

head), and (ii) each cache-set keeps its original number 

of delay-meeting cache-lines assuming Gaussian distri-

bution for the uncorrelated random within-die delay 

variation; consequently, cache capacity is also kept 

intact (or even increased). The extra cache ways poten-

tially increase dynamic power per access, but simula-

tions of caches implemented using a commercial 90nm 

process show that in instruction caches (where most 

accesses are sequential) and in L2 caches (where leak-

age dominates total power) the total power can still be 

significantly reduced. The additional cache-ways also 

imply a wider way-selector multiplexer with negligible 

delay overhead of 3.12% in a 4-way 16KB cache. 

2. Related works 

To tolerate slow/faulty cells, programmable address 

decoders  [4] redirect accesses to slow/faulty cache 

lines to other lines in the same cache-set. A simpler 

technique  [5] uses an unused combination of flag bits 

to mark the cache-line as faulty and to avoid storing 

data there. Any such technique can be used in our work 

to mark and avoid using delay-violating lines. 

Ozdemir et. al  [6] propose to turn off delay-violating 

and too leaky cache ways or lines. They also propose to 

allow different parts be accessed at different latencies. 

Although improving chip yield, these affect cache ca-

pacity or speed, but we keep original yield and capacity 

with negligible speed impact. We reduce leakage by 



higher Tox and Vth, not by turning parts off.  

Within-die leakage variation is considered in  [7] to 

extend selective cache ways  [8] by starting from the 

leakiest cache way when disabling those not used by 

the application. We do not reduce leakage by disabling 

parts of cache. Moreover, we operate at a per-cache-set 

basis when replacing slow cache lines with spares. 

ILWM technique. Various techniques reduce cache 

dynamic power  [9]. A well-known one applicable to 

set-associative instruction caches is  [10]; since instruc-

tions mostly execute sequentially, and several instruc-

tions reside in the same cache-line, tag-comparisons 

can be eliminated and only one cache way activated 

unless last executed instruction was either a branch or 

was at the end of a cache-line. We call this Inter-Line 

Way Memorization (ILWM) and use it in experiments. 

3. Our approach 

Motivational Example. The left-hand side of Fig. 1 

shows a 4-way cache implemented with Vth=270mv. 

The enlarged cache-line demonstrates within-die delay 

variation: SRAM cells have different latencies (for 

presentation we show 4 bits per cache line). At the 

right-hand side, Vth is 50mv higher (320mv). Fig. 2 

gives SPICE simulation results of leakage vs. delay of 

standard 6T SRAM cells using a commercial 90nm 

process and shows that delay increases and leakage 

decreases by raising Vth,Tox. Thus, in the right-hand 

side of Fig. 1 cell latency increases (compare the two 

enlarged parts). To compensate for the delay-violating 

cache-lines, one spare way is added to ensure at least 4 

out of 5 cache lines still meet target delay as before. 

Thus, the cell-array latency is kept at the original 642ps 

(way-selector delay increases; not shown for simplic-

ity) and the cache capacity also remains intact. The 

choice of higher Vth reduces leakage by 42% including 

all 5 cache ways (Section 5 and Table I). For practical-

ity we do not turn off slow cache lines; they are invali-

dated and locked by software at boot time as  [5]. 

Our Approach. Fig. 3 outlines our proposal. Our 

technique determines number of extra cache-ways and 

the manufacturing options of Tox and Vth for SRAM 

transistors. Original cache organization (size, line-size, 

and number of ways) along with process characteristics 

(mean and standard-deviation of SRAM cell delay as 

well as leakage-delay curves of cells at various Vth and 

Tox values) are input to the optimization program. 

Cache organization is modified according to the results 

while the chosen Tox and Vth are handed over to the 

manufacturer for chip fabrication. The produced chips 

are then tested offline to detect and mark cache lines 

containing slow SRAM cells. If such slow lines per 

cache-set exceed number of spare ways, the chip is 

considered faulty and contributes to yield loss. If prac-

tical, such slow lines should be turned off but we 

merely rely on marking them at boot-time after their 

location is read from an agreed-upon non-volatile stor-

age. Marking of slow cache lines can be done in soft-

ware by clearing their valid bit and setting their lock bit 

 [3] [5]. Finally, at runtime the cache works as ever 

without noticing and without using slow lines. 
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Fig. 1. One spare way is added to a 4-way cache to let choose 50mv 

higher Vth without impacting neither cell-array latency nor capacity. 
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Fig.3. Big picture of our proposed approach.  
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Fig.2. Mean leakage power vs. mean access-delay of a single 

SRAM cell when raising Vth and Tox (from left to right) in a com-

mercial 90nm process in presence of 5% delay variation. 



4. Problem formulation and algorithm 

Using the following notations, we define the problem: 

µd: original mean delay of SRAM cells. 

σd: original standard deviation of delay of SRAM cells. 

D: target delay of the cache. 

N:  number of additional cache ways. 

Y:  original timing-yield of the cache. 

Ycell: timing-yield of a single SRAM cell. 

w:  original number of ways in the cache. 

b:  number of bits per cache line (including tag bits). 

s:  number of cache-sets. 

L:  leakage power of the cache. 

Vth: optimal value for Vth of cache SRAM transistors. 

Tox:  optimal value for Tox of cache SRAM transistors. 

Problem: “For a given process technology (µd, σd), 

cache organization (w, b, and s), and timing-yield (Y), 

minimize the leakage  power of cache (L) by setting 

Vth, Tox, and N such that target delay, D , is kept un-

changed (ignoring delay penalty of way-selector mul-

tiplexer that is measured and considered separately).” 

Algorithm. The following algorithm takes the cache 

organization and process technology as input and pro-

vides the best choice of Vth, Tox, and N if successful. 
Algorithm 1: OptimizeCacheDesign() 

Inputs: (σd,µd: process tech. characteristics), 
        (w,b,s: original cache configuration), 
        (Y:     Target timing-yield of cache) 
Output: set of (N, Vth, Tox) triples. 

1 set answers_set = empty_set 
2 compute D based on Y, σd, µd. 
3 compute L (leakage power) of original cache. 
4 for N=1 to w/2 do 
4.1 compute new µd in presence of N extra  
  cache-ways such that D and Y are kept intact. 
4.2 compute Vth and Tox corresponding to new µd 
4.3 compute L’ (leakage power) of new cache 
4.4 if L’<L then add (N,Vth,Tox) to answers_set 

Below we show the relation between N and the 

nominal Vth and Tox of SRAM transistors. The algo-

rithm simply assumes various values for N up to 

roughly 50% area overhead (line 4), computes the cor-

responding Vth and Tox (lines 4.1 and 4.2), and then 

checks whether they sufficiently reduce the leakage so 

that the static power of the cache with the extra way(s) 

is less than before or not (lines 4.3 and 4.4).  

Uncorrelated random within-die delay variation can 

be modeled by Gaussian distribution  [3]. Thus, prob-

ability Ycell that a SRAM cell delay is less than target-

delay D, is given by the area below probability density 

function (PDF) of Gaussian distribution up to D: 
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where f(x) is the PDF of Gaussian distribution. Now the 

original yield of the entire cache, Y, is: 
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In line 2 of the algorithm, D is computed using Eq. 1 

and 2 for the given µd, σd, and Y. Leakage-delay curves 

(Fig.2) are used to compute the cache total leakage in 

line 3 (and also later in line 4.3). In line 4.1, we nu-

merically compute new µd using Eq. 1 and 3. Transis-

tors in spare cache-ways also contribute to leakage, and 

hence, if their overhead is too high, leakage may not be 

improved. Thus, if leakage decreases (line 4.4), the 

corresponding new Vth and Tox are reported. These new 

Vth and Tox (line 4.2) are available from SPICE simula-

tions done to produce leakage-delay curves (Vth and Tox 

values are not shown in Fig.2, but are recorded when 

running SPICE simulations for generating Fig.2). 

5. Experimental results 

We designed SRAM cells using SPICE transistor 

models of a real 90nm process technology (undisclosed 

due to NDA) with 1V supply voltage and implemented 

other cache circuitry using Synopsys Design Compiler 

synthesis tool and a 90nm standard cell library. Leak-

age and dynamic power and delay were obtained by 

SPICE simulations for SRAM cells, and by Synopsys 

tools for cache periphery. SRAM cells dominate cache 

leakage and also cache area. Thus, we focus on varia-

tion in delay of SRAM cells since cache periphery oc-

cupies a small area and can be properly sized to mini-

mize variation. In the rest of this paper, “cache leak-

age” means “SRAM cells leakage”. Monte Carlo simu-

lation was used at various delay variations to obtain 

leakage-delay curves for SRAM cells (Fig.2) with their 

corresponding Vth and Tox (not shown in Fig.2).  

Results and overheads. Results obtained on 16KB, 

4-way cache with 256 data and 20 tag bits per line are 

given in Table I; we save more when targeting a higher 

yield as well as at higher delay variation. Algorithm 

execution time is just a fraction of second on a Xeon 

3.80GHz processor with 2MB of cache and 3.5GB of 

memory, but it took a week to run all SPICE simula-

tions on the same machine to obtain the tables (see 

Fig.2) used in steps 3 and 4.3 of the algorithm; but it 

doesn’t matter since this is a one-off task. 

Table I. Obtained leakage reduction on a 16KB 4-way cache 

Cache leakage power (µW) Saving (%) Delay 

variation 

Target 

Yield ORG N=1 N=2 N=1 N=2 

90% 76.16 69.18 72.99 9.16 4.16 

95% 80.03 70.70 74.85 11.65 6.47 3% 

99% 90.80 76.73 78.34 15.50 13.72 

90% 552.4 350.58 319.90 36.54 42.09 

95% 616.2 376.26 336.81 38.94 45.34 5% 

99% 752.1 438.98 377.04 41.63 49.87 

Table II gives resulting changes of static power at 



3% and 5% delay variation, dynamic energy per access, 

and also delay of cache (negative value shows an im-

provement); target timing-yield is 99%. By way-

scaling, delay increases due to widened way-selector 

which also increases dynamic power (further increased 

by more tag-comparisons caused by extra ways except 

for single-way accesses, enabled by ILWM  [10]).  

Table II. Change of static power (99% timing-yield), dynamic en-

ergy, and delay of 16KB 4-way cache after applying our technique. 

Change (%) 
 

1 extra way 2 extra ways 

3% delay variation -15.50 -13.72 Leakage 

Power 5% delay variation -41.63 -49.87 

Hit (Single-way access) 7.74 15.47 

Hit (Full-way access) 24.89 49.78 

Dynamic 

Energy per 

access Miss 15.10 30.20 

Total cache access delay 3.12 5.67 

Total power reduction. We tradeoff dynamic- for 

static-power, and hence, final outcome depends on the 

share of them in total power.  We analyzed the ratio of 

static to dynamic power in an embedded processor, 

M32R-II, when running a number of benchmarks. The 

processor runs at 200MHz and has separate L1 instruc-

tion and data caches: a 16KB 4-way set-associative 

cache with 32-byte lines for instructions and the same 

organization but 16-byte cache-lines for data. It is also 

equipped with a 16KB unified L2 cache with the same 

organization as the L1 instruction-cache. We used four 

applications from MiBench and compiled them once 

with no compiler option and once with ‘-O3’ full-

optimization option. HDL model of the processor was 

simulated for 1 million instructions of each benchmark 

to gather number of clock cycles and cache access sta-

tistics (i.e. number of hits, misses, and also single-way 

accesses and full-way accesses for the instruction 

cache). (Reports omitted for lack of space.) Fig.4 

shows breakdown of L1 instruction-cache energy con-

sumption assuming 5% delay variation and 99% target 

timing-yield; the bars are respectively original cache, 

cache with one extra way (N=1), and cache with two 

extra ways (N=2). The results include ILWM  [10].  
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Fig.4. Total energy in L1 Instruction-cache. 

In data cache, due to smaller size (and hence less 

leakage) and inapplicability of ILWM (since accesses 

are mostly not sequential), our technique is not as use-

ful and in some cases even marginally increases total 

power by up to 1.10% (diagram omitted for space). 

Leakage energy comprises a bigger part in L2 caches 

since such caches are less frequently accessed. Thus, 

our technique is more effective here (Fig.5).  
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Fig.5. Total energy in L2 unified cache. 

6. Summary and conclusion 

We reduced cache leakage by using higher Vth and 

Tox while adding extra cache ways; the former reduces 

leakage while the latter compensates for the resulting 

delay-violating cache lines. Total power reduction de-

pends on the balance of static to dynamic power, but 

we showed over 40% reduction in a 16KB L2 cache. 
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