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Abstract—To address computer security issues, a hardware-based 
intrusion detection technique is proposed. This uses the dynamic program 
execution behavior for authentication. Based on secret key information, an 
execution behavior is determined. Next, a secure compiler constructs object 
code which generates the predetermined execution behavior at runtime. 
During program execution, a secure profiler monitors the execution 
behavior. If the profiler cannot detect the expected behavior, it sends an 
alarm signal to the microprocessor for terminating program execution. 
Since attack code cannot anticipate the execution behavior required, 
malicious attacks can be detected and prohibited at the start of program 
execution. 

I. INTRODUCTION 
In modern computer design, system security is a very 

important consideration. Malicious programs such as computer 
viruses are particularly serious security threats. These attempt to 
invade computer systems and perform malicious operations 
without users realizing. Computers are widely used in various 
forms, such as desktop PCs and mobile devices like cellular 
phones. These computer systems deal with a lot of important 
information, such as electronic money. Therefore, attention must 
be paid not only to computer performance and power 
consumption but also to security.   

A well known and popular approach to detect malicious 
programs is to search for attack code in the disk areas, i.e., virus 
scanning. In this approach, a virus definition database (a kind of 
black list) is used to find malicious programs. However, one of 
the main drawbacks of this static approach is that we cannot 
detect unknown attack code. Thus, it is impossible to find new 
malicious programs. However, a number of intrusion detection 
techniques have been proposed. The basic strategy is as follows: 
1) extract characteristics of the authenticated application 
program from the source code, and 2) monitor the execution 
behavior at runtime. However, this method has limitations in 
detecting malicious attacks (as explained in Section II).  

In this paper, a novel approach is proposed for detecting 
malicious attacks at runtime. Based on secret key information an 
execution behavior is determined, e.g., a memory access pattern. 
In this process, no characteristics of the target application 

program are considered, making the approach application 
independent. Next, object code is created which generates the 
determined execution behavior at runtime. During program 
execution, a secure profiler monitors the execution behavior. If 
the expected behavior is not seen, the profiler sends an alarm 
signal to the microprocessor for terminating execution of the 
current program. In effect, a dedicated execution behavior is 
regarded to be a program signature, and it is attempted to insert 
this signature into the authenticated program code.  

This paper is organized as follows: Section II describes 
related work aimed at solving the problem of malicious 
programs. In Section III, an approach for generating dynamic 
program signatures is proposed, and strength of security is 
discussed. In Section IV, the performance/cost overhead of the 
approach is evaluated. Finally, Section V concludes this paper.  

II. RELATED WORK 
To attack vulnerable computer systems, at least two 

operations must be performed: the injection of attack code, and 
the hijacking of program execution control. A number of 
techniques to prevent malicious attacks have been proposed, and 
they can be categorized into two approaches: either they close 
security holes, or they execute only trusted (or authenticated) 
program code.   

Some malicious attacks exploit security holes existing in 
computer systems. For instance, stack smashing is a well known 
technique for executing malicious code. Stack smashing is based 
on buffer overflow attacks, caused by writing an excessively 
large amount of data into a buffer. Unfortunately, the C 
programming language does not automatically perform array 
bound checks, thus a return address can be corrupted. This 
weakpoint exists mainly in the standard C library, in functions 
such as strcpy(). Therefore, many programs are vulnerable to 
buffer overflow. By exploiting the buffer overflow vulnerability, 
attackers attempt to change the return address value to refer to 
the start of a piece of injected malicious code. If these types of 
security holes are precisely known, countermeasures can be 
designed. For example, reference [8] formulates the detection of 



buffer overflows as an integer range analysis problem, in order to 
detect the possibility of stack smashing. StackGuard, which is a 
patch to gcc, is another static approach for defense against stack 
smashing [1]. Other techniques use hardware-based detection of 
return address corruption [4][5].  

One of the drawbacks of approaches which close security 
holes is that they cannot deal with unknown security holes. The 
program recognition approach, on the other hand, does not have 
this problem. With this method, only authenticated programs are 
executed, based on a “white list”. When an application program 
is executed, the computer system checks whether or not the 
program can be trusted. In order to achieve secure execution in 
this way, a number of intrusion detection system (IDS) 
techniques have been proposed [3][7]. These first extract the 
characteristics of the target (or trusted) program, for example the 
sequence of system calls. Then, the computer system monitors 
the execution of the program in order to confirm whether or not 
its behavior follows the extracted characteristics. However, an 
attacker can create malicious code which follows the 
characteristics of the trusted program. In this case, the malicious 
code will not be detected. Another straightforward way of 
authenticating program execution is to encrypt the program code 
with a secret key. Encrypting program code was originally 
introduced to help protect against software piracy, however it 
can also be exploited in execution authentication [2][6][9]. 
However, since all of the object code must be decrypted at 
runtime, this may cause significant performance degradation. 

III. INSERTING PROGRAM SIGNATURES FOR DYNAMIC 
EXECUTION AUTHENTICATION 

A. Main Concept 
In a secure computing environment, we believe that dynamic 

program authentication should be supported in order to prohibit 
the execution of malicious code. As explained in Section II, the 
rules-based approach allows malicious code to run on the 
microprocessor if it satisfies the rules. This kind of attack code 
can be constructed if the attacker has the same source or object 

code. On the other hand, although encrypting the trusted 
program code with a secret key may be efficient, the negative 
impact on processor performance is serious. In recent secure 
microprocessor designs, a large, safe on-chip cache is assumed. 
In this case, decryption of object code is required only when a 
block of data fills the cache. With this scenario, we can 
effectively nullify the negative impact on performance. However, 
in embedded processors which usually do not have large on-chip 
caches, the delay due to decryption greatly affects memory 
performance. Moreover, in multi-core processors, it is difficult to 
ensure that on-chip memories are secure, since they are shared 
by other processor cores. If a processor core is infected by a 
virus, this may attack the other cores. 

To improve on conventional approaches, we propose an 
application independent methodology for runtime program 
authentication. Figure 1 shows the framework for our secure 
computing environment. In our approach, when the program 
source code is compiled, we insert a signature which consists of 
a sequence of execution events, e.g., memory access operations. 
This means that when the trusted program is executed, we see a 
precise predefined execution behavior. Of course, to ensure 
integrity of the approach, the compiler and the original source 
code need to be secure. A profiler monitors the events at runtime, 
and checks whether or not the execution follows the expected 
behavior. An implemented example is described in the next 
section 

B. Implementing A Dynamic Program Signature Based On 
Memory Accesses 
There are many aspects of execution behavior which can be 

considered candidates for generating a dynamic program 
signature. In this section, we discuss an example implementation 
which focuses on memory accesses. Here, we define a dedicated 
memory access pattern as a dynamic program signature. Namely, 
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the execution of the authenticated program causes a memory 
access at every Nth instruction, the access address of which is the 
same as the secret key value. If the bit width of the secret key is 
larger than that of the memory address to be generated, we can 
use a hash function (i.e., a transformation) which takes an input 
and returns a string of fixed size. In this scenario, our secure 
computing environment works as follows: 

• The compiler generates object code to create the 
dynamic program signature. Generally, execution 
behavior depends heavily on input data, thus it is 
usually difficult to anticipate execution behavior at 
compile time. To get around this, we make all the basic 
blocks the same size, as shown in Figure 2. Thus, all the 
basic blocks contain the same number of instructions. 
We insert one memory access instruction (load or store), 
the access address of which is set to the value of the 
secret key, into each basic block with the same offset. 
Therefore, regardless of branch results, a memory 
access for the dynamic signature always takes place at 
every Nth instruction. Note that the number N becomes 
“the size of a basic block – 1”. 

• During the execution of the authenticated program, the 
hardware profiler monitors memory access events. Also, 
it checks the number of instructions executed. In out-of-
order high-end microprocessors, we need to monitor 
either the fetched instructions or the committed ones. If 
the profiler detects the correct dedicated memory access 
behavior, this means that the microprocessor is 
executing the authenticated program. Otherwise, 
execution control may have been hijacked by malicious 
code. In this case, the hardware profiler sends an alarm 
to the microprocessor to terminate execution of the 
current program. 

C. Security Strength 
In this section, we qualitatively evaluate the strength of 

security for the proposed method. In our approach, there are two 
monitoring criteria for authenticating the program execution: one 
is the memory access address of the key instructions, and the 
other is their execution interval. The former depends on the 
secret key and the latter is dictated via an option on code 
compilation. Thus there are at least two scenarios in which 
attackers can hijack the program execution. 

If attackers can monitor the execution behavior of the 
authenticated program, they may create malicious code which 
has the same signature. This is because the memory access 
address generated by the key instructions and the interval of their 
execution can be determined easily. However, attackers cannot 
usually observe the execution behavior from outside the 
computer system. Furthermore, after each program execution, 
the original source code can be recompiled in order to insert a 
new signature, i.e., a different secret key and key instruction 
interval pairing. This strategy makes it extremely difficult to 
generate malicious code with the correct signature.  

The second way in which attackers can break through the 
intrusion detection mechanism is via interval monitoring. If the 
size of the attack code is less than the standardized basic block 
size, the execution of the attack code cannot be detected. 
However, a small size can be chosen for the basic blocks, for 
instance five instructions. This means that the attack code has to 
be less than five instructions, and satisfying this condition is 
extremely hard for attackers.  

Another drawback of our framework is that currently it does 
not support signatures for dynamic libraries. In our framework, 
each program can have a unique signature in order to improve 
security strength. However, since a dynamic library is shared by 
many programs, we cannot ensure the consistency of the 
dynamic program signature. This issue can be resolved by using 
a special signature for the libraries. In this case, the profiler 
needs to distinguish between the execution of user code and the 
execution of dynamic libraries. 

IV. QUANTITATIVE EVALUATION 

A. Experimental Set-Up 
We developed a code translation tool which standardizes the 

basic block size and inserts a dynamic signature into the 
translated code. We also extended the SimpleScalar tool set [10] 
to support the profiler which monitors the memory access 
behavior. The SPEC95 benchmark program, 129.compress, was 
used for the simulation [11]. We assume an in-order embedded 
microprocessor, such as the StrongARM.  

In this section, we measure the object code size and the 
program execution time with various basic block sizes. In order 
to statically control the execution behavior, as explained in 
Section III, our approach makes the basic blocks all the same 
size. If the basic block is initially too small, NOP instructions are 
inserted. If a small size is chosen for the basic block 
standardization, the total number of basic blocks in the full 
program code is increased. In this case, although the total 
number of NOP instructions needing to be inserted for basic 
block standardization tends to be reduced, the number of key 
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instructions inserted is increased. This affects both the total code 
size and the program execution time.  

B. Code Size Overhead 
Figure 3 shows the code size and its breakdown when we 

vary the basic block size from 5 to 30 instructions. All results are 
normalized to the code size of the original object code. “Load for 
Key” refers to the memory access instruction which generates a 
dynamic signature. From the figure, we see that the code size is 
proportional to the standardized basic block size. This is because 
originally the average basic block size is around five instructions. 
This means that in almost all the cases we need to insert NOP 
instructions into each basic block. On the other hand, the 
increase in the number of key instructions is very small. The 
optimum basic block size is five instructions, and the code size 
increase is about 76.6%.  

C. Performance Overhead 
Figure 4 shows the program execution time. All the results 

are normalized to the performance of a conventional processor. 
From the figure, we see that reducing the basic block size 
alleviates the negative impact of basic block standardization. In 
the best case, where each basic block consists of five instructions, 
the performance overhead is only 9.6%. Almost all of the 
performance degradation comes from the execution of NOP 
instructions. However, we believe that this performance 
overhead is tolerable in order to realize secure computing.  

V. CONCLUSIONS 
In this paper, a dynamic program signature was proposed in 

order to prevent the execution of unauthorized code. In the 
framework described, the trusted program is translated into 
object code which generates a previously determined execution 
behavior at runtime. A hardware profiler monitors the behavior 
in order to check whether or not the microprocessor is currently 
executing an authenticated program. If the profiler detects 

unexpected behavior, it sends an alarm signal to the 
microprocessor to terminate execution of the program.  

The cost and performance overheads incurred by introducing 
the dynamic program signature were evaluated. It was observed 
that the program code increases in size by 76.6%, and the 
performance overhead is 9.6%, compared with a non-secure 
conventional microprocessor. It is believed that a microprocessor 
must be able to recognize whether or not the current program 
execution has been authorized, and the ideas proposed in this 
paper make this possible. However, there are still some issues to 
be overcome in order to achieve secure computing. First, as 
explained in Section III, dynamic libraries must be catered for. 
Second, multiprogramming environments must be considered. 
For these, when a context switch takes place, the profiler needs 
to suspend monitoring of the dynamic program signature.  
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