
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Supporting A Dynamic Program Signature: An
Intrusion Detection Framework for
Microprcessors

Inoue, Koji
PRESTO, Japan Science and Technology Agency | Department of Informatics, Kyushu University

https://hdl.handle.net/2324/6794501

出版情報：IEEE International Conference on Electronics, Circuits and Systems, pp.160-163,
2006-12. IEEE
バージョン：
権利関係：

Supporting A Dynamic Program Signature:
An Intrusion Detection Framework for Microprocessors

Koji Inoue† §
†Department of Informatics, Kyushu University

6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580 Japan
§PRESTO, Japan Science and Technology Agency,
4-1-8 Honcho Kawaguchi, Saitama 332-0012 Japan

inoue@i.kyushu-u.ac.jp

Abstract—To address computer security issues, a hardware-based
intrusion detection technique is proposed. This uses the dynamic program
execution behavior for authentication. Based on secret key information, an
execution behavior is determined. Next, a secure compiler constructs object
code which generates the predetermined execution behavior at runtime.
During program execution, a secure profiler monitors the execution
behavior. If the profiler cannot detect the expected behavior, it sends an
alarm signal to the microprocessor for terminating program execution.
Since attack code cannot anticipate the execution behavior required,
malicious attacks can be detected and prohibited at the start of program
execution.

I. INTRODUCTION
In modern computer design, system security is a very

important consideration. Malicious programs such as computer
viruses are particularly serious security threats. These attempt to
invade computer systems and perform malicious operations
without users realizing. Computers are widely used in various
forms, such as desktop PCs and mobile devices like cellular
phones. These computer systems deal with a lot of important
information, such as electronic money. Therefore, attention must
be paid not only to computer performance and power
consumption but also to security.

A well known and popular approach to detect malicious
programs is to search for attack code in the disk areas, i.e., virus
scanning. In this approach, a virus definition database (a kind of
black list) is used to find malicious programs. However, one of
the main drawbacks of this static approach is that we cannot
detect unknown attack code. Thus, it is impossible to find new
malicious programs. However, a number of intrusion detection
techniques have been proposed. The basic strategy is as follows:
1) extract characteristics of the authenticated application
program from the source code, and 2) monitor the execution
behavior at runtime. However, this method has limitations in
detecting malicious attacks (as explained in Section II).

In this paper, a novel approach is proposed for detecting
malicious attacks at runtime. Based on secret key information an
execution behavior is determined, e.g., a memory access pattern.
In this process, no characteristics of the target application

program are considered, making the approach application
independent. Next, object code is created which generates the
determined execution behavior at runtime. During program
execution, a secure profiler monitors the execution behavior. If
the expected behavior is not seen, the profiler sends an alarm
signal to the microprocessor for terminating execution of the
current program. In effect, a dedicated execution behavior is
regarded to be a program signature, and it is attempted to insert
this signature into the authenticated program code.

This paper is organized as follows: Section II describes
related work aimed at solving the problem of malicious
programs. In Section III, an approach for generating dynamic
program signatures is proposed, and strength of security is
discussed. In Section IV, the performance/cost overhead of the
approach is evaluated. Finally, Section V concludes this paper.

II. RELATED WORK
To attack vulnerable computer systems, at least two

operations must be performed: the injection of attack code, and
the hijacking of program execution control. A number of
techniques to prevent malicious attacks have been proposed, and
they can be categorized into two approaches: either they close
security holes, or they execute only trusted (or authenticated)
program code.

Some malicious attacks exploit security holes existing in
computer systems. For instance, stack smashing is a well known
technique for executing malicious code. Stack smashing is based
on buffer overflow attacks, caused by writing an excessively
large amount of data into a buffer. Unfortunately, the C
programming language does not automatically perform array
bound checks, thus a return address can be corrupted. This
weakpoint exists mainly in the standard C library, in functions
such as strcpy(). Therefore, many programs are vulnerable to
buffer overflow. By exploiting the buffer overflow vulnerability,
attackers attempt to change the return address value to refer to
the start of a piece of injected malicious code. If these types of
security holes are precisely known, countermeasures can be
designed. For example, reference [8] formulates the detection of

buffer overflows as an integer range analysis problem, in order to
detect the possibility of stack smashing. StackGuard, which is a
patch to gcc, is another static approach for defense against stack
smashing [1]. Other techniques use hardware-based detection of
return address corruption [4][5].

One of the drawbacks of approaches which close security
holes is that they cannot deal with unknown security holes. The
program recognition approach, on the other hand, does not have
this problem. With this method, only authenticated programs are
executed, based on a “white list”. When an application program
is executed, the computer system checks whether or not the
program can be trusted. In order to achieve secure execution in
this way, a number of intrusion detection system (IDS)
techniques have been proposed [3][7]. These first extract the
characteristics of the target (or trusted) program, for example the
sequence of system calls. Then, the computer system monitors
the execution of the program in order to confirm whether or not
its behavior follows the extracted characteristics. However, an
attacker can create malicious code which follows the
characteristics of the trusted program. In this case, the malicious
code will not be detected. Another straightforward way of
authenticating program execution is to encrypt the program code
with a secret key. Encrypting program code was originally
introduced to help protect against software piracy, however it
can also be exploited in execution authentication [2][6][9].
However, since all of the object code must be decrypted at
runtime, this may cause significant performance degradation.

III. INSERTING PROGRAM SIGNATURES FOR DYNAMIC
EXECUTION AUTHENTICATION

A. Main Concept
In a secure computing environment, we believe that dynamic

program authentication should be supported in order to prohibit
the execution of malicious code. As explained in Section II, the
rules-based approach allows malicious code to run on the
microprocessor if it satisfies the rules. This kind of attack code
can be constructed if the attacker has the same source or object

code. On the other hand, although encrypting the trusted
program code with a secret key may be efficient, the negative
impact on processor performance is serious. In recent secure
microprocessor designs, a large, safe on-chip cache is assumed.
In this case, decryption of object code is required only when a
block of data fills the cache. With this scenario, we can
effectively nullify the negative impact on performance. However,
in embedded processors which usually do not have large on-chip
caches, the delay due to decryption greatly affects memory
performance. Moreover, in multi-core processors, it is difficult to
ensure that on-chip memories are secure, since they are shared
by other processor cores. If a processor core is infected by a
virus, this may attack the other cores.

To improve on conventional approaches, we propose an
application independent methodology for runtime program
authentication. Figure 1 shows the framework for our secure
computing environment. In our approach, when the program
source code is compiled, we insert a signature which consists of
a sequence of execution events, e.g., memory access operations.
This means that when the trusted program is executed, we see a
precise predefined execution behavior. Of course, to ensure
integrity of the approach, the compiler and the original source
code need to be secure. A profiler monitors the events at runtime,
and checks whether or not the execution follows the expected
behavior. An implemented example is described in the next
section

B. Implementing A Dynamic Program Signature Based On
Memory Accesses
There are many aspects of execution behavior which can be

considered candidates for generating a dynamic program
signature. In this section, we discuss an example implementation
which focuses on memory accesses. Here, we define a dedicated
memory access pattern as a dynamic program signature. Namely,

Application
ProgramSecret Key

Secure Compiler
(Insert program signatures)

Application
Program
(Object)Processor

Profiler

Application
ProgramSecret Key

Secure Compiler
(Insert program signatures)

Application
Program
(Object)Processor

Profiler

Figure1: Secure Computing Environment Framework

Basic
Block

A special instruction to
generate a dynamic signature

Standardized
Basic Block

original

Basic
Block

A special instruction to
generate a dynamic signature

Standardized
Basic Block

original

Figure2: Basic Block Standardization

the execution of the authenticated program causes a memory
access at every Nth instruction, the access address of which is the
same as the secret key value. If the bit width of the secret key is
larger than that of the memory address to be generated, we can
use a hash function (i.e., a transformation) which takes an input
and returns a string of fixed size. In this scenario, our secure
computing environment works as follows:

• The compiler generates object code to create the
dynamic program signature. Generally, execution
behavior depends heavily on input data, thus it is
usually difficult to anticipate execution behavior at
compile time. To get around this, we make all the basic
blocks the same size, as shown in Figure 2. Thus, all the
basic blocks contain the same number of instructions.
We insert one memory access instruction (load or store),
the access address of which is set to the value of the
secret key, into each basic block with the same offset.
Therefore, regardless of branch results, a memory
access for the dynamic signature always takes place at
every Nth instruction. Note that the number N becomes
“the size of a basic block – 1”.

• During the execution of the authenticated program, the
hardware profiler monitors memory access events. Also,
it checks the number of instructions executed. In out-of-
order high-end microprocessors, we need to monitor
either the fetched instructions or the committed ones. If
the profiler detects the correct dedicated memory access
behavior, this means that the microprocessor is
executing the authenticated program. Otherwise,
execution control may have been hijacked by malicious
code. In this case, the hardware profiler sends an alarm
to the microprocessor to terminate execution of the
current program.

C. Security Strength
In this section, we qualitatively evaluate the strength of

security for the proposed method. In our approach, there are two
monitoring criteria for authenticating the program execution: one
is the memory access address of the key instructions, and the
other is their execution interval. The former depends on the
secret key and the latter is dictated via an option on code
compilation. Thus there are at least two scenarios in which
attackers can hijack the program execution.

If attackers can monitor the execution behavior of the
authenticated program, they may create malicious code which
has the same signature. This is because the memory access
address generated by the key instructions and the interval of their
execution can be determined easily. However, attackers cannot
usually observe the execution behavior from outside the
computer system. Furthermore, after each program execution,
the original source code can be recompiled in order to insert a
new signature, i.e., a different secret key and key instruction
interval pairing. This strategy makes it extremely difficult to
generate malicious code with the correct signature.

The second way in which attackers can break through the
intrusion detection mechanism is via interval monitoring. If the
size of the attack code is less than the standardized basic block
size, the execution of the attack code cannot be detected.
However, a small size can be chosen for the basic blocks, for
instance five instructions. This means that the attack code has to
be less than five instructions, and satisfying this condition is
extremely hard for attackers.

Another drawback of our framework is that currently it does
not support signatures for dynamic libraries. In our framework,
each program can have a unique signature in order to improve
security strength. However, since a dynamic library is shared by
many programs, we cannot ensure the consistency of the
dynamic program signature. This issue can be resolved by using
a special signature for the libraries. In this case, the profiler
needs to distinguish between the execution of user code and the
execution of dynamic libraries.

IV. QUANTITATIVE EVALUATION

A. Experimental Set-Up
We developed a code translation tool which standardizes the

basic block size and inserts a dynamic signature into the
translated code. We also extended the SimpleScalar tool set [10]
to support the profiler which monitors the memory access
behavior. The SPEC95 benchmark program, 129.compress, was
used for the simulation [11]. We assume an in-order embedded
microprocessor, such as the StrongARM.

In this section, we measure the object code size and the
program execution time with various basic block sizes. In order
to statically control the execution behavior, as explained in
Section III, our approach makes the basic blocks all the same
size. If the basic block is initially too small, NOP instructions are
inserted. If a small size is chosen for the basic block
standardization, the total number of basic blocks in the full
program code is increased. In this case, although the total
number of NOP instructions needing to be inserted for basic
block standardization tends to be reduced, the number of key

0

1

2

3

4

5

6

7

30 25 20 15 10 5
Basic-Block Size (#Inst.)

N
or

m
al

iz
ed

 C
od

e
si

ze

Load for Key
Nop
Original Code

0

1

2

3

4

5

6

7

30 25 20 15 10 5
Basic-Block Size (#Inst.)

N
or

m
al

iz
ed

 C
od

e
si

ze

Load for Key
Nop
Original Code

Load for Key
Nop
Original Code

Figure 3: Code size overhead

instructions inserted is increased. This affects both the total code
size and the program execution time.

B. Code Size Overhead
Figure 3 shows the code size and its breakdown when we

vary the basic block size from 5 to 30 instructions. All results are
normalized to the code size of the original object code. “Load for
Key” refers to the memory access instruction which generates a
dynamic signature. From the figure, we see that the code size is
proportional to the standardized basic block size. This is because
originally the average basic block size is around five instructions.
This means that in almost all the cases we need to insert NOP
instructions into each basic block. On the other hand, the
increase in the number of key instructions is very small. The
optimum basic block size is five instructions, and the code size
increase is about 76.6%.

C. Performance Overhead
Figure 4 shows the program execution time. All the results

are normalized to the performance of a conventional processor.
From the figure, we see that reducing the basic block size
alleviates the negative impact of basic block standardization. In
the best case, where each basic block consists of five instructions,
the performance overhead is only 9.6%. Almost all of the
performance degradation comes from the execution of NOP
instructions. However, we believe that this performance
overhead is tolerable in order to realize secure computing.

V. CONCLUSIONS
In this paper, a dynamic program signature was proposed in

order to prevent the execution of unauthorized code. In the
framework described, the trusted program is translated into
object code which generates a previously determined execution
behavior at runtime. A hardware profiler monitors the behavior
in order to check whether or not the microprocessor is currently
executing an authenticated program. If the profiler detects

unexpected behavior, it sends an alarm signal to the
microprocessor to terminate execution of the program.

The cost and performance overheads incurred by introducing
the dynamic program signature were evaluated. It was observed
that the program code increases in size by 76.6%, and the
performance overhead is 9.6%, compared with a non-secure
conventional microprocessor. It is believed that a microprocessor
must be able to recognize whether or not the current program
execution has been authorized, and the ideas proposed in this
paper make this possible. However, there are still some issues to
be overcome in order to achieve secure computing. First, as
explained in Section III, dynamic libraries must be catered for.
Second, multiprogramming environments must be considered.
For these, when a context switch takes place, the profiler needs
to suspend monitoring of the dynamic program signature.

ACKNOWLEDGMENT
I would like to thank Prof. Shingi Tomita, Prof. Hiroto

Yasuura, and all other members of the PREST “information
infrastructure and applications” research group for discussions at
technical meetings. This research was supported in part by
Grant-in-Aid for Creative Basic Research, 14GS0218, and for
Encouragement of Young Scientists (A), 17680005.

REFERENCES
[1] C.Cowan, C.Pu, D.Maier, H.Hinton, J.Walpole, P.Bakke, S.Beattie,

A.Grier, P.Wagle, and Q.Zhang, “StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks,” Proc. of 7th
USENIX Security Symposium, Jan, 1998.

[2] G. Edward Suh, D. Clarke, B. Gassend, M. van Dijk, and S.
Devadas,"Efficient Memory Integrity Verification and Encryption for
Secure Processors," Int. Symp. on Microarchitecture, pp.339-350, Dec.
2003.

[3] Stephanie Forrest, Steven Hofmeyr, Anil Somayaji, and Thomas Longstaff,
"A Sense of Self for Unix Processes," Proc. of the 1996 IEEE Symposium
on Security and Privacy (S&P), pp.120-128, 1996.

[4] K. Inoue, ``Energy-Security Tradeoff in a Secure Cache Architecture
Against Buffer Overflow Attacks,'' ACM Computer Architecture News,
vol33, no.1, pp.81-89, Mar. 2005.

[5] Ruby B. Lee, David K. Karig, John P. McGregor, and Zhijie Shi,
"Enlisting Hardware Architecture to Thwart Malicious Code Injection," Int.
Conf. on Security in Pervasive Computing, Mar. 2003.

[6] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz, "Architectural Support for Copy and Tamper Resistant
Software," Proc. of the 9th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, Nov. 2000.

[7] D. Wagner and D. Dean, "Intrusion Detection via Static Analysis," IEEE
Symposium on Security and Privacy (S&P01), pp.156-168, May 2001.

[8] D.Wagner, J.S.Foster, E.A.Brewer, and A.Aiken, “A First Step Towards
Automated Detection of Buffer Overrun Vulnerabilities,” Proc. of the
Network and Distributed System Security Symposium, Feb. 2000.

[9] J. Yang, Y. Zhang, and L. Gao, "Fast Secure Processor for Inhibiting
Software Piracy and Tampering," Proc. of the Int. Symp. on
Microarchitecture, pp.351-360, Dec. 2003.

[10] SimpleScalar Tool Sets, http://www.simplescalar.com/.
[11] SPEC(Standard Performance Evaluation Corporation),

http://www.specbench.org

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

25 20 15 10 5
Basic-Block Size (#Inst.)

N
or

m
. E

xe
cu

tio
n

Ti
m

e

Figure 4: Performance overhead

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

