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Abstract— This paper proposes an energy characterization 
framework which helps designers in developing a fast and 
accurate energy model for a target processor-based system. We 
use a linear model for energy estimation and we find the 
coefficients of the model using Linear Programming (LP). We use 
our approach for estimating the energy consumption of two 
commercial microprocessors with their on-chip caches and an off-
chip SDRAM. Experimental results demonstrate that the error of 
our technique is on an average 3% and worst case 16% compared 
to the gate-level estimation results. Once the model has been 
developed, the energy consumption of an application program can 
be estimated with the speed of 300,000 instructions per second. 

I. INTRODUCTION 
The increasing demand for portable devices such as 

cellular phones, PDAs and MP3 players makes low power 
consumption one of the most important design criteria. In 
many embedded applications, systems or sub-systems are 
implemented in software running on a dedicated processor. 
Therefore, the power consumption depends on the software 
being executed. As more and more functions are 
implemented in software, it is becoming more important to 
optimize software for reducing the energy consumption. The 
optimization can be done by modifying the algorithm 
implemented in the software or by using compilation 
techniques for optimizing the object code. 

Although it is possible to estimate the energy 
consumption based on the number of instructions executed, 
the supply voltage, and the average energy consumption of 
the processor per instruction, the accuracy may not be very 
good. Better estimation can be achieved if parameters like 
the number of cache misses and the number of branch 
misses are used in the energy model. 

Although in many cases it is sufficient to estimate the 
total or average energy consumption, in some cases it is 
necessary to know the amount of energy each module in the 
design consumes for each program state. A circuit level or a 
gate-level simulator may be used for this purpose. However, 
it is too time-consuming. Although RT-level simulation is 
faster, it is not practical to use it to estimate the energy 
consumption of a large application program. 

In this paper, we propose a characterization technique 
which assists designers in finding a good energy model for a 
processor. We use a linear model to estimate the energy 
consumption of a processor. Once the energy model is 
developed, the energy consumption of software running on 
the processor is estimated based on the instruction trace 
obtained using a cycle-inaccurate instruction-set simulator 

(ISS). Using our method, we can estimate the average 
energy consumption quickly and accurately even for short 
instruction traces. Note that reducing the worst case 
estimation error for short instruction traces is not trivial. 

The rest of the paper is organized as follows. In Section 2, 
we present related works. Our characterization framework 
for generating training benches and finding the coefficients 
of the linear equation are presented in Section 3. Section 4 
presents experiments and results. The paper concludes in 
Section 5. 

 

II. RELATED WORK 
The most accurate and fastest approach to find the energy 

consumption of software running on a processor is to 
measure the power consumption of the actual chip. Tools 
like PowerScope [1] and Itsy [2] use computer-controlled 
multi-meters or A/D converters to measure energy 
consumption. The major drawback of using PowerScope is 
that it cannot measure the energy consumption of individual 
subsystems (e.g., a memory system) separately. Although 
Itsy overcomes this issue, it cannot measure the energy 
consumed in a short period of time because the energy 
consumption is averaged out over the entire execution time. 

In recent years, many instruction-level energy modeling 
and analysis techniques have been proposed. The idea of 
instruction-level energy modeling by measuring the power 
consumption of each instruction while executed in a loop 
was introduced in [3-4]. The accuracy of these methods 
were improved by accounting for data dependencies, the 
effects of instruction and data addresses, register file 
addresses, and operand values [5]. The main drawback of 
these techniques is that they rely on exhaustive simulation to 
find the energy consumption of each instruction and the 
inter-instruction effects on the power consumption. The 
efficiency of the characterization can be improved by 
performing measurements on a limited subset of instructions 
and instruction sequences [6-7]. 

In [8-9], the same average energy is assumed for all 
instructions and the average power consumption while 
running an application program is calculated using the 
operating voltage of the processor and the clock frequency. 
In [10], the authors measure average energy consumed in 
each pipeline stage of a VLIW processor using a cycle-
accurate simulator (e.g., Trimaran [11]) to improve the 
accuracy. The techniques estimate the average energy 
consumption over the entire program execution, while many 



software-level energy optimization techniques need cycle-
accurate energy estimation. The technique described in [12] 
estimates the power consumption of the target processor 
cycle-by-cycle. However, this requires calculating the 
power consumption of every gate for each instruction which 
is very time consuming. 

Most of existing energy estimation techniques including 
the techniques presented in [3-10][12-20] assume a linear 
approximation model for estimating the energy consumption 
of software running on a processor. However, none 
describes how to decide which parameters to use and how to 
calculate the coefficients to accurately estimate the energy 
consumption of a processor. In [20], Tan et al. modeled the 
software energy consumption using a linear equation and 
discussed the parameters required to accurately estimate the 
energy consumption. However, they did not provide any 
method to find parameters, corresponding coefficients and 
test benches required for the accurate energy modeling. 

We propose an energy characterization framework which 
assists designers to find an accurate linear model for 
estimating the energy consumption of a processor-based 
embedded system. In our framework, designers can find a 
training bench suitable for the energy characterization of the 
target embedded system and can optimize the corresponding 
coefficients using Linear Programming. We use parameters 
which can be extracted through GNU C debugger which is 
provided for almost of all types of commercial embedded 
processors. Therefore, our approach does not need a cycle-
accurate ISS which is not provided for many types of 
embedded processors and is usually more expensive than a 
cycle-inaccurate one like a GNU debugger. 

III. CHARACTERIZATION FRAMEWORK 

A. General Approach 
The energy consumption of a processor can be estimated 

using the following linear formula, 
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where Pi’s, ci’s and N are the parameters of the model, the 
corresponding coefficients and the number of parameters, 
respectively. The first step for the modeling is to find Pi’s 
required for estimating the energy consumption of the target 
processor system. The Pi’s should be parameters whose 
values can be easily obtained using a fast simulator like an 
ISS. For example, Pi’s can be the number of load and store 
instructions executed, the number of cache misses, etc. Once 
the required set of parameters is obtained, the next step is to 
find a training bench for the energy characterization. This is 
the most important step. We discuss this in Section III.C. 
The final step is to find the coefficients, ci’s corresponding 
to the Pi’s. In Section III.D, we describe an optimization 
problem which gives the optimal values of coefficients to 
minimize the energy estimation error for a given set of 

parameters. The energy consumption Eestimate is then 
calculated using Equation (1).  

B. Energy Charactarization Flow 
Figure 1 shows an overview of our energy 

characterization flow. To obtain the reference energy values, 
we simulate the processor system at gate-level for a fixed 
number of instructions. We refer to this fixed number of 
instructions of test sequence as the instruction frame. 
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Figure 1.  Overview of Energy Characterization 

The width is the same for all instruction frames as shown in 
Figure 2. Since we perform gate-level simulation and 
calculate the energy consumption values for all instruction 
frames, this step is time-consuming. However, it needs to be 
done only once for the characterization. 
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Figure 2.  An Example of Instruction Frame 

We, next, obtain an instruction trace for each application 
program using an instruction-set simulator. The traces are 
divided into small segments corresponding to instruction 
frames. Pi’s should be parameters that can be easily 
extracted from instruction traces. For example, Pi’s can be 
the number of multiply instructions executed within an 
instruction frame, the number of cache misses within an 
instruction frame, etc.  For a set of Pi’s, we find coefficients 
which minimize Σ|Eestimate(i)−Egate-level(i)|, where Egate-level(i) 
and Eestimate(i) are the energy consumption values obtained 
by gate-level simulation and Equation (1) for the i-th 
instruction frame, respectively.  



C. Motivational Example and Our Approach 
As we mentioned in Section III.A, a selection of training 

bench is the most important task. Figure 3 shows a 
motivational example. Both left and right of the Figure 3 
show energy estimation results for JPEG encoder and 
MPEG2 encoder run on a target processor system.  
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Figure 3.  An Impact of Training Bench 

For the results of the left figure, we  used “compress”, a file 
compression program, as a training bench and executed 
500,000 instructions of gate-level simulation for the energy 
characterization. Through the characterization, we obtained 
a linear equation for estimating the energy consumption of a 
target processor system. Then we compared the estimated 
energy consumption values with the gate-level energy 
consumption results. As one can see, the energy estimation 
error is huge. The error is on an average 67% and more than 
1000% for the worst case. There are two major reasons of 
the huge estimation error as follows. 
1. Standard deviations of some parameter values are too 

small. For example, the numbers of cache misses are 
constant for all instruction frames.  

2. Some parameters are strongly correlated to each other. 
For example, the numbers of cache misses and the 
numbers of branch misses have similar trends in an 
entire training bench. 

If we carefully generate the training bench, the accuracy of 
the energy estimation can be improved drastically. The right 
of the Figure 3 shows estimation results of our approach. 
Only the difference between left and right results in Figure 3 
is the training bench. We generate the training bench 
considering the standard deviations of every parameter 
values and correlation factors between any two parameters 
as criteria for generating the training bench. As a result, the 
estimation error of our approach is on an average 2% and 
16% even for the worst case.  

Figure 4 shows the flow of our approach for generating 
the training bench. We start from a template of training 
bench which consists of subroutines which execute power-
hungry instructions like a multiply instruction repeatedly 
and produce many cache misses, many read-after-write 
hazards, and other pipeline stalls. We calculate parameter 
values using ISS. This process takes a few seconds. Then 
we evaluate the standard deviations of every parameter 
values and correlation factors of any two parameters. If 

standard deviations of some parameter values are lower than 
a specific value or the correlation factors of some 
parameters are higher than a specific value, we modify the 
initial training bench so that the standard deviations and the 
correlation factors are improved. This process is repeated 
until those two criteria are satisfied. 
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Figure 4.  Training Bench Generation 

D. Linear Equation Generation 
We formulate an optimization problem which gives the 

optimal values of coefficients for minimizing the energy 
estimation error for a given set of parameters. The variables 
used in the problem formulation are defined as follows: 
 
i, j: Indices of Instruction frame and parameter, respectively. 
N, M: The number of parameters and instruction frames, 
respectively 
Ei: The energy value for the ith frame estimated using gate-
level simulation 
E’i: The energy value for the ith frame obtained using 
Equation (1) 
Yi: The absolute error value |E’i – Ei | 
Pij: The parameter extracted from the instruction trace 
corresponding to the ith frame 
cj: Coefficient whose value has to be determined 
 
The problem can be formally defined as follows: 
“For given sets of Ei’s and Pij’s, find a set of coefficients cj’s 
which minimize the total error, Ytotal ”. 
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IV. EXPERIMENTS AND RESULTS 

A. Target System 
We target a system which consists of a CPU core, on-chip 

cache memories, and SDRAM as an off-chip main memory 
as shown in Figure 5.  
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Figure 5.  A Target System Model 

For the off-chip main memory, we assumed a Micron’s 
SDRAM. We used an M32R-II processor and an SH3-DSP 
processor as CPU cores as follows.  

 M32R-II processor 
A 32-bit RISC microprocessor with 5-stage pipeline 
developped by Renesas Technology Corporation. It has 
8KB 2-way set associative caches, a 32KB SRAM, and 
a 16-entry TLB on the chip.  

 SH3-DSP processor 
A 32-bit RISC microprocessor developped by Renesas 
Technology Corporation. It has a digital signal 
processor core, a 32KB 4-way set associative cache, a 
128KB SRAM, and a 18KB SRAM on the chip. 

We synthesized the above two processors using 0.18μm 
CMOS standard cell library and SRAM module library. 

B. Benchmark Programs 

TABLE I.  DESCRIPTION OF BENCHMARK PROGRAMS 

 Program Description 
JPEG JPEG encoder version 6b 
MPEG2 MPEG2 encoder version 1.2 
compress File compression program 
FFT Fast Fourier Transform 
DCT Discrete Cosine Transform 

 
In our experiment, we used five benchmark programs 

shown in Table I. We compiled each benchmark program 
with two different optimization options. Each benchmark 
program was simulated 1,000,000 instructions for 
evaluating our approach. Each instruction frame was 5,000 
instructions long and there were total of 200 instruction 
frames. 

C. Detailed Characterization Flow 
Figure 6 shows the details of the proposed framework. 

First, we generate the Switching Activity Interchange 
Format (SAIF) file through gate-level simulation using NC-
VerilogTM from Cadence design systems. The SAIF file has 
the information about the values of the signals that change 

during simulation. Then, the energy consumption, Ei, is 
calculated for the ith instruction frame using DesignPowerTM, 
a gate-level power calculation tool from SYNOPSYS. The 
average energy consumption per access for the instruction 
cache and the data cache are calculated using library data 
sheets. We used the Micron System Power Calculator [21] 
for calculating the energy consumption of SDRAM. 
Similarly, we generate an instruction trace using GNU 
debuggers for M32R-II and SH3-DSP processors. Note that 
the many of ISSs used in the GNU debugger is cycle-
inaccurate. We divide the instruction trace into small sub-
traces each of which corresponding to an instruction frame 
and calculate the value of each parameter for each 
instruction frame. Finally, the optimal set of coefficients is 
found using CPLEXTM, a Linear Programming solver form 
ILOG. The set of coefficients found minimizes the sum of 
estimation errors (i.e.,Σ|Ei-Ei’|). After finding the optimal 
values of coefficients, we can use the linear equation to 
estimate the energy consumption for any instruction trace. 
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Figure 6.  Detailed Characterization Flow 

D. Characterization Results 

TABLE II.  CPU-TIME FOR CHARACTERIZATION (MINUTES) 

Target Processor M32R-II SH3-DSP 
Gate-Level Simulation 127 328 

Power Calculation 32 41 
Instruction-Set Simulation < 1 < 1 

LP Solver < 1 < 1 
Total CPU Time 160 370 



TABLE III.  RESULTS FOR M32R-II PROCESSOR Table II shows the characterization results. The 
characterizations for M32R-II and SH3-DSP took 160 
minutes and 370 minutes, respectively. Although this step is 
time-consuming, it needs to be done only once for a target 
processor system. We start with a set of predetermined 
parameters which include 82 parameters and select some of 
them for a given microprocessor. We generate the training 
bench so that the standard deviations of every 
predetermined parameter values are greater than 100 and 
every correlation factors between any two parameters are 
less than 0.5. The generated training benches are simulated 
475,000 instructions and 140,000 instructions for M32R-II 
and SH3-DSP processors, respectively. If the value of the 
parameter multiplied by its corresponding coefficient is very 
small compared to the other values, the parameter will not 
be used due to its weak impact on the energy estimation. In 
addition to this, several parameters are merged into a single 
parameter if corresponding coefficient values are very close 
to each other. As a result, we chose 30 and 19 parameters 
for M32R-II and SH3-DSP processors, respectively. The 
parameters include the following: 

 Average 
Error 

Maximum 
Error 

Standard Deviation 
of Error Percentage

JPEG 2.70 % 10.32% 2.76 
JPEG_O 6.09 % 16.46% 6.17 
MPEG2 1.54 % 3.97% 0.94 

MPEG2_O 1.78 % 5.15% 0.96 
compress 5.00% 6.41% 1.19 

compress_O 4.35% 7.18% 0.93 
FFT 1.55% 6.87% 0.92 

FFT_O 1.45% 5.59% 0.89 
DCT 1.42% 8.58% 0.72 

DCT_O 1.47% 8.07% 0.69 
Total 2.74% 16.46% 2.82 

 

TABLE IV.  RESULTS FOR SH3-DSP PROCESSOR 

 Average 
Error 

Maximum 
Error 

Standard Deviation 
of Error Percentage

JPEG 3.17 % 11.89% 3.11 
JPEG_O 6.33 % 10.02% 2.79 
MPEG2 1.32 % 3.41% 0.98 

MPEG2_O 1.31 % 5.63% 0.97 
compress 5.73% 10.84% 1.37 

compress_O 1.73% 15.15% 1.27 
FFT 1.27% 3.26% 0.76 

FFT_O 1.15% 4.75% 0.88 
DCT 1.12% 2.20% 0.46 

DCT_O 1.51% 3.04% 0.52 
Total 2.47% 15.15% 2.45 

• The number of the following classes of instructions 
executed: 1) multiply, 2) divide, 3) multiply-add, 4) the 
other arithmetic operations, 5) logic, 6) shift, 7) register 
transfer, 8) load, and 9) store operations.  

• The number of taken and untaken branches executed. 
• The number of data and instruction cache misses. 
• The number of times the instruction and data caches 

simultaneously miss. 
• The number of times the read-after-write hazard occurs. 
• The numbers of other events which cause a pipeline stall 

occur. 
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Figure 7.  Energy Estimation Results for JPEG Encoder Executed on a M32R-II Processor 
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Figure 8.  Energy Estimation Results for JPEG Encoder Executed on a SH3-DSP Processor 



E. Energy Estimation Results 
Average, maximum, and standard deviation of energy 

estimation errors for M32R-II and SH3-DSP processors are 
shown in Table III and IV, respectively. A suffix of each 
benchmark program “_O” represents that the program is 
compiled with a “-O3” option. The energy estimation error 
of our approach is on an average 2.7% and worst case 
16.5% for M32R-II processor. For SH3-DSP processor, the 
error is on an average 2.5% and worst case 15.2%. The 
accuracy of energy estimation is overall very good. The 
notable point is that the standard deviation of error 
percentage is very small. This shows that our estimation 
results have a similar trend to the gate-level results even 
though absolute errors are not very small in some cases. 

Figure 7 and 8 show the detailed results for JPEG encoder 
which runs on M32R-II and SH3-DSP processors, 
respectively. Horizontal and vertical axes represent 
instruction frame number and energy consumption per 
instruction frame, respectively. The energy consumption 
includes the energy for a CPU core, on-chip caches, and off-
chip SDRAM. As one can see, the estimation errors for 
every instruction frames are very small.   

V. SUMMARY AND CONCLUSIONS 
An energy characterization framework for processor-

based embedded system is proposed. This paper showed a 
guideline of the training bench generation for the accurate 
energy modeling. Experimental results using two 
commercial microprocessors with their on-chip instruction 
and data caches, and an off-chip SDRAM demonstrated that 
the error of our technique is on an average 3% and worst 
case 16% compared to the gate-level estimation results. Our 
energy estimation method works well even with a cycle-
inaccurate simulator like a GNU debugger which is a de 
facto standard of software debugger. Once the model has 
been obtained, the energy consumption can be calculated 
with the speed of 300,000 instructions per second. Our 
future work will be devoted to extending the current 
framework to consider multi-core processor systems. 
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