
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

An Energy Characterization Framework for
Software-Based Embedded Systems

Lee, Donghoon
Faculty of ISEE, Kyushu Univ.

Ishihara, Tohru
System LSI Research Center, Kyushu Univ.

Muroyama, Masanori
System LSI Research Center, Kyushu Univ.

Yasuura, Hiroto
System LSI Research Center, Kyushu Univ.

他

https://hdl.handle.net/2324/6794497

出版情報：ESTIMedia2006. 1, pp.59-64, 2006-10-26. ESTIMedia
バージョン：
権利関係：

An Energy Characterization Framework for Software-Based
Embedded Systems

Donghoon Lee Tohru Ishihara Masanori Muroyama Hiroto Yasuura Farzan Fallah
Faculty of ISEE, Kyushu Univ. System LSI Research Center, Kyushu Univ. Fujitsu Labs. of America
donghoon@c.csce.kyushu-u.ac.jp {ishihara, muroyama, yasuura}@slrc.kyushu-u.ac.jp farzan@us.fujitsu.com

Abstract— This paper proposes an energy characterization
framework which helps designers in developing a fast and
accurate energy model for a target processor-based system. We
use a linear model for energy estimation and we find the
coefficients of the model using Linear Programming (LP). We use
our approach for estimating the energy consumption of two
commercial microprocessors with their on-chip caches and an off-
chip SDRAM. Experimental results demonstrate that the error of
our technique is on an average 3% and worst case 16% compared
to the gate-level estimation results. Once the model has been
developed, the energy consumption of an application program can
be estimated with the speed of 300,000 instructions per second.

I. INTRODUCTION
The increasing demand for portable devices such as

cellular phones, PDAs and MP3 players makes low power
consumption one of the most important design criteria. In
many embedded applications, systems or sub-systems are
implemented in software running on a dedicated processor.
Therefore, the power consumption depends on the software
being executed. As more and more functions are
implemented in software, it is becoming more important to
optimize software for reducing the energy consumption. The
optimization can be done by modifying the algorithm
implemented in the software or by using compilation
techniques for optimizing the object code.

Although it is possible to estimate the energy
consumption based on the number of instructions executed,
the supply voltage, and the average energy consumption of
the processor per instruction, the accuracy may not be very
good. Better estimation can be achieved if parameters like
the number of cache misses and the number of branch
misses are used in the energy model.

Although in many cases it is sufficient to estimate the
total or average energy consumption, in some cases it is
necessary to know the amount of energy each module in the
design consumes for each program state. A circuit level or a
gate-level simulator may be used for this purpose. However,
it is too time-consuming. Although RT-level simulation is
faster, it is not practical to use it to estimate the energy
consumption of a large application program.

In this paper, we propose a characterization technique
which assists designers in finding a good energy model for a
processor. We use a linear model to estimate the energy
consumption of a processor. Once the energy model is
developed, the energy consumption of software running on
the processor is estimated based on the instruction trace
obtained using a cycle-inaccurate instruction-set simulator

(ISS). Using our method, we can estimate the average
energy consumption quickly and accurately even for short
instruction traces. Note that reducing the worst case
estimation error for short instruction traces is not trivial.

The rest of the paper is organized as follows. In Section 2,
we present related works. Our characterization framework
for generating training benches and finding the coefficients
of the linear equation are presented in Section 3. Section 4
presents experiments and results. The paper concludes in
Section 5.

II. RELATED WORK
The most accurate and fastest approach to find the energy

consumption of software running on a processor is to
measure the power consumption of the actual chip. Tools
like PowerScope [1] and Itsy [2] use computer-controlled
multi-meters or A/D converters to measure energy
consumption. The major drawback of using PowerScope is
that it cannot measure the energy consumption of individual
subsystems (e.g., a memory system) separately. Although
Itsy overcomes this issue, it cannot measure the energy
consumed in a short period of time because the energy
consumption is averaged out over the entire execution time.

In recent years, many instruction-level energy modeling
and analysis techniques have been proposed. The idea of
instruction-level energy modeling by measuring the power
consumption of each instruction while executed in a loop
was introduced in [3-4]. The accuracy of these methods
were improved by accounting for data dependencies, the
effects of instruction and data addresses, register file
addresses, and operand values [5]. The main drawback of
these techniques is that they rely on exhaustive simulation to
find the energy consumption of each instruction and the
inter-instruction effects on the power consumption. The
efficiency of the characterization can be improved by
performing measurements on a limited subset of instructions
and instruction sequences [6-7].

In [8-9], the same average energy is assumed for all
instructions and the average power consumption while
running an application program is calculated using the
operating voltage of the processor and the clock frequency.
In [10], the authors measure average energy consumed in
each pipeline stage of a VLIW processor using a cycle-
accurate simulator (e.g., Trimaran [11]) to improve the
accuracy. The techniques estimate the average energy
consumption over the entire program execution, while many

software-level energy optimization techniques need cycle-
accurate energy estimation. The technique described in [12]
estimates the power consumption of the target processor
cycle-by-cycle. However, this requires calculating the
power consumption of every gate for each instruction which
is very time consuming.

Most of existing energy estimation techniques including
the techniques presented in [3-10][12-20] assume a linear
approximation model for estimating the energy consumption
of software running on a processor. However, none
describes how to decide which parameters to use and how to
calculate the coefficients to accurately estimate the energy
consumption of a processor. In [20], Tan et al. modeled the
software energy consumption using a linear equation and
discussed the parameters required to accurately estimate the
energy consumption. However, they did not provide any
method to find parameters, corresponding coefficients and
test benches required for the accurate energy modeling.

We propose an energy characterization framework which
assists designers to find an accurate linear model for
estimating the energy consumption of a processor-based
embedded system. In our framework, designers can find a
training bench suitable for the energy characterization of the
target embedded system and can optimize the corresponding
coefficients using Linear Programming. We use parameters
which can be extracted through GNU C debugger which is
provided for almost of all types of commercial embedded
processors. Therefore, our approach does not need a cycle-
accurate ISS which is not provided for many types of
embedded processors and is usually more expensive than a
cycle-inaccurate one like a GNU debugger.

III. CHARACTERIZATION FRAMEWORK

A. General Approach
The energy consumption of a processor can be estimated

using the following linear formula,

)1(
0
∑
=

⋅=
N

i

iiestimate PcE

where Pi’s, ci’s and N are the parameters of the model, the
corresponding coefficients and the number of parameters,
respectively. The first step for the modeling is to find Pi’s
required for estimating the energy consumption of the target
processor system. The Pi’s should be parameters whose
values can be easily obtained using a fast simulator like an
ISS. For example, Pi’s can be the number of load and store
instructions executed, the number of cache misses, etc. Once
the required set of parameters is obtained, the next step is to
find a training bench for the energy characterization. This is
the most important step. We discuss this in Section III.C.
The final step is to find the coefficients, ci’s corresponding
to the Pi’s. In Section III.D, we describe an optimization
problem which gives the optimal values of coefficients to
minimize the energy estimation error for a given set of

parameters. The energy consumption Eestimate is then
calculated using Equation (1).

B. Energy Charactarization Flow
Figure 1 shows an overview of our energy

characterization flow. To obtain the reference energy values,
we simulate the processor system at gate-level for a fixed
number of instructions. We refer to this fixed number of
instructions of test sequence as the instruction frame.

Gate-Level
Simulation

Instruction-Set
Simulation

Parameter Extraction

Linear Equation

Linear Programming

Energy Calculation

E'1

P11

= c P111 +c P122 +c P133

, P12, P ...

...
E'2= c P211 +c P222 +c P233 ...

E'n

E1
E2

En = c Pn11 +c Pn22 +c Pn33 ...

13 Pn1, Pn2, P ...n3

Netlist

EnE1

 Library Training Bench

Figure 1. Overview of Energy Characterization

The width is the same for all instruction frames as shown in
Figure 2. Since we perform gate-level simulation and
calculate the energy consumption values for all instruction
frames, this step is time-consuming. However, it needs to be
done only once for the characterization.

0.0

0.5

1.0

1.5

En
er

gy
 C

on
su

m
pt

io
n

[J
]

Executed Frames

Instruction Frame

Figure 2. An Example of Instruction Frame

We, next, obtain an instruction trace for each application
program using an instruction-set simulator. The traces are
divided into small segments corresponding to instruction
frames. Pi’s should be parameters that can be easily
extracted from instruction traces. For example, Pi’s can be
the number of multiply instructions executed within an
instruction frame, the number of cache misses within an
instruction frame, etc. For a set of Pi’s, we find coefficients
which minimize Σ|Eestimate(i)−Egate-level(i)|, where Egate-level(i)
and Eestimate(i) are the energy consumption values obtained
by gate-level simulation and Equation (1) for the i-th
instruction frame, respectively.

C. Motivational Example and Our Approach
As we mentioned in Section III.A, a selection of training

bench is the most important task. Figure 3 shows a
motivational example. Both left and right of the Figure 3
show energy estimation results for JPEG encoder and
MPEG2 encoder run on a target processor system.

ISS-based Estimation Results (μJ)

Characerized by
“compress”

Characerized by
our training bench

Averate error = 2%
Maximum error = 16%

Averate error = 67%
Maximum error > 1000%

G
at

e-
le

ve
l E

si
m

at
io

n
R

es
ul

ts
 (μ

J)

ISS-based Estimation Results (μJ)

G
at

e-
le

ve
l E

si
m

at
io

n
R

es
ul

ts
 (μ

J)

0 40 80 120 160 200
0

40

80

120

160

200

0 40 80 120 160 200
0

40

80

120

160

200

Figure 3. An Impact of Training Bench

For the results of the left figure, we used “compress”, a file
compression program, as a training bench and executed
500,000 instructions of gate-level simulation for the energy
characterization. Through the characterization, we obtained
a linear equation for estimating the energy consumption of a
target processor system. Then we compared the estimated
energy consumption values with the gate-level energy
consumption results. As one can see, the energy estimation
error is huge. The error is on an average 67% and more than
1000% for the worst case. There are two major reasons of
the huge estimation error as follows.
1. Standard deviations of some parameter values are too

small. For example, the numbers of cache misses are
constant for all instruction frames.

2. Some parameters are strongly correlated to each other.
For example, the numbers of cache misses and the
numbers of branch misses have similar trends in an
entire training bench.

If we carefully generate the training bench, the accuracy of
the energy estimation can be improved drastically. The right
of the Figure 3 shows estimation results of our approach.
Only the difference between left and right results in Figure 3
is the training bench. We generate the training bench
considering the standard deviations of every parameter
values and correlation factors between any two parameters
as criteria for generating the training bench. As a result, the
estimation error of our approach is on an average 2% and
16% even for the worst case.

Figure 4 shows the flow of our approach for generating
the training bench. We start from a template of training
bench which consists of subroutines which execute power-
hungry instructions like a multiply instruction repeatedly
and produce many cache misses, many read-after-write
hazards, and other pipeline stalls. We calculate parameter
values using ISS. This process takes a few seconds. Then
we evaluate the standard deviations of every parameter
values and correlation factors of any two parameters. If

standard deviations of some parameter values are lower than
a specific value or the correlation factors of some
parameters are higher than a specific value, we modify the
initial training bench so that the standard deviations and the
correlation factors are improved. This process is repeated
until those two criteria are satisfied.

Training Bench Generation

Standard Deviations

Instruction Trace

Satisfied?

No

Yes
Correlation Factors

Linear Equation

Minimize

Find optimal coefficients which minimize

|E |estimate EΣ gate_level

energy estimation error for a given set of
parameters using Linear Programming

Gate-Level Simulation ISS

Figure 4. Training Bench Generation

D. Linear Equation Generation
We formulate an optimization problem which gives the

optimal values of coefficients for minimizing the energy
estimation error for a given set of parameters. The variables
used in the problem formulation are defined as follows:

i, j: Indices of Instruction frame and parameter, respectively.
N, M: The number of parameters and instruction frames,
respectively
Ei: The energy value for the ith frame estimated using gate-
level simulation
E’i: The energy value for the ith frame obtained using
Equation (1)
Yi: The absolute error value |E’i – Ei |
Pij: The parameter extracted from the instruction trace
corresponding to the ith frame
cj: Coefficient whose value has to be determined

The problem can be formally defined as follows:
“For given sets of Ei’s and Pij’s, find a set of coefficients cj’s
which minimize the total error, Ytotal ”.

)1,...,0 ,1,...,0(0 , , ,

)1,...,0(

0

0

−=−=≥

−=≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅≤−

=

∑

∑

=

=

NjMiYEPc

MiYEPcYSubject to

YYMinimize

iiijj

ii

m

j
ijji

M

i

itotal

IV. EXPERIMENTS AND RESULTS

A. Target System
We target a system which consists of a CPU core, on-chip

cache memories, and SDRAM as an off-chip main memory
as shown in Figure 5.

I-CacheCPU
core D-Cache

 SDRAM
(Micron’s DDR2)

Processor Main Memory

Figure 5. A Target System Model

For the off-chip main memory, we assumed a Micron’s
SDRAM. We used an M32R-II processor and an SH3-DSP
processor as CPU cores as follows.

 M32R-II processor
A 32-bit RISC microprocessor with 5-stage pipeline
developped by Renesas Technology Corporation. It has
8KB 2-way set associative caches, a 32KB SRAM, and
a 16-entry TLB on the chip.

 SH3-DSP processor
A 32-bit RISC microprocessor developped by Renesas
Technology Corporation. It has a digital signal
processor core, a 32KB 4-way set associative cache, a
128KB SRAM, and a 18KB SRAM on the chip.

We synthesized the above two processors using 0.18μm
CMOS standard cell library and SRAM module library.

B. Benchmark Programs

TABLE I. DESCRIPTION OF BENCHMARK PROGRAMS

 Program Description
JPEG JPEG encoder version 6b
MPEG2 MPEG2 encoder version 1.2
compress File compression program
FFT Fast Fourier Transform
DCT Discrete Cosine Transform

In our experiment, we used five benchmark programs

shown in Table I. We compiled each benchmark program
with two different optimization options. Each benchmark
program was simulated 1,000,000 instructions for
evaluating our approach. Each instruction frame was 5,000
instructions long and there were total of 200 instruction
frames.

C. Detailed Characterization Flow
Figure 6 shows the details of the proposed framework.

First, we generate the Switching Activity Interchange
Format (SAIF) file through gate-level simulation using NC-
VerilogTM from Cadence design systems. The SAIF file has
the information about the values of the signals that change

during simulation. Then, the energy consumption, Ei, is
calculated for the ith instruction frame using DesignPowerTM,
a gate-level power calculation tool from SYNOPSYS. The
average energy consumption per access for the instruction
cache and the data cache are calculated using library data
sheets. We used the Micron System Power Calculator [21]
for calculating the energy consumption of SDRAM.
Similarly, we generate an instruction trace using GNU
debuggers for M32R-II and SH3-DSP processors. Note that
the many of ISSs used in the GNU debugger is cycle-
inaccurate. We divide the instruction trace into small sub-
traces each of which corresponding to an instruction frame
and calculate the value of each parameter for each
instruction frame. Finally, the optimal set of coefficients is
found using CPLEXTM, a Linear Programming solver form
ILOG. The set of coefficients found minimizes the sum of
estimation errors (i.e.,Σ|Ei-Ei’|). After finding the optimal
values of coefficients, we can use the linear equation to
estimate the energy consumption for any instruction trace.

NC-Verilog
Simulator

Instruction-Set
Simulator

Parameter Extractor

Linear Programming

SAIF & Trace Divider

Power Calculator

SAIF1

E'1

P11

= c P111 +c P122 +c P133

, P12, P ...

...
E'2= c P211 +c P222 +c P233 ...

E'n

E1
E2

En = c Pn11 +c Pn22 +c Pn33 ...

13 Pn1, Pn2, P ...n3

Instruction Frame1
SAIF n

Instruction Frame n

Switching Activity Interchange
Foramet (SAIF)

Instruction Trace

Verilog
Netlist

EnE1

Cell
Library

Training Bench

Trace1
Instruction Frame 1

Trace n
Instruction Frame n

Figure 6. Detailed Characterization Flow

D. Characterization Results

TABLE II. CPU-TIME FOR CHARACTERIZATION (MINUTES)

Target Processor M32R-II SH3-DSP
Gate-Level Simulation 127 328

Power Calculation 32 41
Instruction-Set Simulation < 1 < 1

LP Solver < 1 < 1
Total CPU Time 160 370

TABLE III. RESULTS FOR M32R-II PROCESSOR Table II shows the characterization results. The
characterizations for M32R-II and SH3-DSP took 160
minutes and 370 minutes, respectively. Although this step is
time-consuming, it needs to be done only once for a target
processor system. We start with a set of predetermined
parameters which include 82 parameters and select some of
them for a given microprocessor. We generate the training
bench so that the standard deviations of every
predetermined parameter values are greater than 100 and
every correlation factors between any two parameters are
less than 0.5. The generated training benches are simulated
475,000 instructions and 140,000 instructions for M32R-II
and SH3-DSP processors, respectively. If the value of the
parameter multiplied by its corresponding coefficient is very
small compared to the other values, the parameter will not
be used due to its weak impact on the energy estimation. In
addition to this, several parameters are merged into a single
parameter if corresponding coefficient values are very close
to each other. As a result, we chose 30 and 19 parameters
for M32R-II and SH3-DSP processors, respectively. The
parameters include the following:

 Average
Error

Maximum
Error

Standard Deviation
of Error Percentage

JPEG 2.70 % 10.32% 2.76
JPEG_O 6.09 % 16.46% 6.17
MPEG2 1.54 % 3.97% 0.94

MPEG2_O 1.78 % 5.15% 0.96
compress 5.00% 6.41% 1.19

compress_O 4.35% 7.18% 0.93
FFT 1.55% 6.87% 0.92

FFT_O 1.45% 5.59% 0.89
DCT 1.42% 8.58% 0.72

DCT_O 1.47% 8.07% 0.69
Total 2.74% 16.46% 2.82

TABLE IV. RESULTS FOR SH3-DSP PROCESSOR

 Average
Error

Maximum
Error

Standard Deviation
of Error Percentage

JPEG 3.17 % 11.89% 3.11
JPEG_O 6.33 % 10.02% 2.79
MPEG2 1.32 % 3.41% 0.98

MPEG2_O 1.31 % 5.63% 0.97
compress 5.73% 10.84% 1.37

compress_O 1.73% 15.15% 1.27
FFT 1.27% 3.26% 0.76

FFT_O 1.15% 4.75% 0.88
DCT 1.12% 2.20% 0.46

DCT_O 1.51% 3.04% 0.52
Total 2.47% 15.15% 2.45

• The number of the following classes of instructions
executed: 1) multiply, 2) divide, 3) multiply-add, 4) the
other arithmetic operations, 5) logic, 6) shift, 7) register
transfer, 8) load, and 9) store operations.

• The number of taken and untaken branches executed.
• The number of data and instruction cache misses.
• The number of times the instruction and data caches

simultaneously miss.
• The number of times the read-after-write hazard occurs.
• The numbers of other events which cause a pipeline stall

occur.

50

100

150

200

Instruction Frame Number

En
er

gy
C

on
su

m
pt

io
n

[μ
J] Gate Level

Our Approach

Figure 7. Energy Estimation Results for JPEG Encoder Executed on a M32R-II Processor

70

90

110

130

Instruction Frame Number

En
er

gy
 C

on
su

m
pt

io
n

[μ
J] Gate Level

Our Approach

Figure 8. Energy Estimation Results for JPEG Encoder Executed on a SH3-DSP Processor

E. Energy Estimation Results
Average, maximum, and standard deviation of energy

estimation errors for M32R-II and SH3-DSP processors are
shown in Table III and IV, respectively. A suffix of each
benchmark program “_O” represents that the program is
compiled with a “-O3” option. The energy estimation error
of our approach is on an average 2.7% and worst case
16.5% for M32R-II processor. For SH3-DSP processor, the
error is on an average 2.5% and worst case 15.2%. The
accuracy of energy estimation is overall very good. The
notable point is that the standard deviation of error
percentage is very small. This shows that our estimation
results have a similar trend to the gate-level results even
though absolute errors are not very small in some cases.

Figure 7 and 8 show the detailed results for JPEG encoder
which runs on M32R-II and SH3-DSP processors,
respectively. Horizontal and vertical axes represent
instruction frame number and energy consumption per
instruction frame, respectively. The energy consumption
includes the energy for a CPU core, on-chip caches, and off-
chip SDRAM. As one can see, the estimation errors for
every instruction frames are very small.

V. SUMMARY AND CONCLUSIONS
An energy characterization framework for processor-

based embedded system is proposed. This paper showed a
guideline of the training bench generation for the accurate
energy modeling. Experimental results using two
commercial microprocessors with their on-chip instruction
and data caches, and an off-chip SDRAM demonstrated that
the error of our technique is on an average 3% and worst
case 16% compared to the gate-level estimation results. Our
energy estimation method works well even with a cycle-
inaccurate simulator like a GNU debugger which is a de
facto standard of software debugger. Once the model has
been obtained, the energy consumption can be calculated
with the speed of 300,000 instructions per second. Our
future work will be devoted to extending the current
framework to consider multi-core processor systems.

ACKNOWLEDGEMENT
This work is supported by VLSI Design and Education
Center (VDEC), The University of Tokyo with the
collaboration of Renesas Technology, Hitach, Ltd., Cadence
Design Systems, Inc., and Synopsys, Inc. This work is also
supported by Core Research for Evolutional Science and
Technology (CREST) project of Japan Science and
Technology Corporation (JST). We are grateful for their
supports.

REFERENCES
[1] J. Flinn and M. Satyanarayanan, “Powerscope: a Tool for

Profiling the Energy Usage of Mobile Applications”, in Proc.
of the 2nd IEEE workshop on Mobile Computing Systems and
Applications, pp.2-10, February 1999.

[2] W. R. Hamburgen, D. A. Wallach, M. A. Viredaz, L. S.
Brakmo, C. A. Waldspurger, J. F. Bartlett, T. Mann, and K. I.
Farkas, “Itsy: Stretching the Bounds of Mobile Computing”,
IEEE Computer, vol. 34, pp.28-37, April 2001.

[3] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of
Embedded Software: A First Step towards Software Power
Minimization”, in Proc. of ICCAD, pp.384-390, Nov. 1994.

[4] M. T. C. Lee, V. Tiwari, S. Malik and M. Fujita, “Power
Analysis and Low-Power Scheduling Techniques for
Embedded DSP Software”, in Proc. of the ISSS, pp.110-115,
Sept. 1995.

[5] N. Chang, K. Kim, and H. G. Lee, “Cycle-Accurate Energy
Consumption Measurement and Analysis: Case Study of
ARM7TDMI”, In Proc. of ISLPED, pp.185-190, Aug. 2000.

[6] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “An
Instruction-level Functionality-based Energy Eestimation
Model for 32-bit Microprocessors,” in Proc. of DAC, pp.346–
351, June 2000.

[7] A. Sama, M. Balakrishnan, and J. F. M. Theeuwen, “Speeding
Up Power Estimation of Embedded Software”, in Proc. of
ISLPED, pp.191-196, Aug. 2000.

[8] T. Sinha, and A. P. Chandrakasan, “JouleTrack – A Web
Based Tool for Software Energy Profiling”, in Proc. of DAC,
pp.220-205, June 2001.

[9] A. Sinha, N. Ickes, A. P. Chandrakasan, “Instruction level and
operating system profiling for energy exposed software”,
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol.11, no.6, pp.1044–1057, Dec. 2003.

[10] M. Sami, D. Sciuto, C. Silvano and V. Zaccaria, “Instruction-
Level Power Estimation for Embedded VLIW Cores” in Proc.
of 8th Int’l Workshop on Hardware/Software Co-design,
pp.34-38, May 2000.

[11] Trimaran: http://www.trimaran.org.
[12] C. T. Hsieh, L. S. Chen, M. Pedram, “Microprocessor Power

Analysis by Labeled Simulation,” in Proc. of the Conference
on DATE, pp.182–189, March 2001.

[13] W. Ye, N. Vijaykrishnan, M. Kandemir and M.J. Irwin, “The
Design and Use of SimplePower: A Cycle-Accurate Energy
Estimation Tool”, Proc. of 37th DAC, pp.340-345, June 2000.

[14] D. Brooks, V. Tiwari, and M. Matonosi, “Wattch: A
Framework for Architectural-Level Power Analysis and
Optimization”, in Proc. of ISCA, pp.83-94, June, 2000.

[15] J. T. Russell and M. F. Jacome, “Software power estimation
and optimization for high performance, 32-bit embedded
processors,” in Proc. of ICCD, pp.328–333, Oct. 1998.

[16] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel, “An
Accurate and Fine Grain Instruction-Level Energy Model
Supporting Software Optimizations”, in Proc. of Int’l
Workshop on Power And Timing Modeling, Optimization and
Simulation, pp.3.2.1-3.2.10, September 2001.

[17] T. Li and L. K. John, “Run-time Modeling and Estimation of
Operating System Power Consumption”, in Proc. of Int’l
Conference on Measurements and Modeling of Computer
Systems, pp.160-171, June 2003.

[18] G. Contreras and M. Martonosi, “Power Reduction for Intel
XScale® Processors Using Performance Monitoring Unit
Events”, in Proc. of ISLPED, pp.221-226, Aug. 2005.

[19] W. L. Bircher, M. Valluri, J. Law, and L. K. John, “Runtime
Identification of Microprocessor Energy Saving
Opportunities”, in Proc. of ISLPED, pp.275-280, Aug. 2005.

[20] T. K. Tan, A. Raghunathan, G. Lakshminarayana, N. K. Jha,
“High-level Software Energy Macro-modeling”, in Proc. of
DAC, pp.605-610, June 2001.

[21] “The Micron System Power Calculator”,
http://www.micron.com/products/dram/syscalc.html

	I. Introduction
	II. Related Work
	III. Characterization Framework
	A. General Approach
	B. Energy Charactarization Flow
	C. Motivational Example and Our Approach
	D. Linear Equation Generation

	IV. Experiments and Results
	A. Target System
	B. Benchmark Programs
	C. Detailed Characterization Flow
	D. Characterization Results
	E. Energy Estimation Results

	V. Summary and Conclusions
	Acknowledgement
	References

