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Abstract. Extensible processors allow customization for an application by 
extending the core instruction set architecture. Extracting appropriate custom 
instructions is an important phase for implementing an application on an 
extensible processor with a reconfigurable functional unit. Custom instructions 
(CIs) usually are extracted from critical portions of applications. This paper 
presents approaches for CI generation with respect to the RFU constraints to 
improve speedup of the extensible processor. First, our proposed RFU 
architecture for an adaptive dynamic extensible processor called AMBER is 
described. Then, an integrated temporal partitioning and mapping framework is 
presented to partition and map the CIs on the RFU. In this framework, a mapping 
aware temporal partitioning algorithm is used to generate CIs which are 
mappable on the RFU. Temporal partitioning iterates and modifies partitions 
incrementally to generate CIs. In addition, a mapping algorithm is presented 
which supports CIs with critical path length more than the RFU depth. 

1   Introduction 

Synthesis of application-specific instruction-set processors (ASIPs) has been an 
important design methodology for system-on-chip processors in the last decade. 
ASIPs have more potential to meet the high-performance demands of embedded 
applications, compared to general purpose processors (GPPs) but the synthesis of 
ASIPs traditionally involved the generation of a complete instruction set architecture 
for the targeted application. On the other hand, GPPs are very flexible but may not 
offer the necessary performance.  

Another method for providing enhanced performance is application-specific 
instruction set extension. An important feature of this design method is extending an 
existing processor core with units specialized for a given domain, rather than 
designing a custom processor completely. By creating application-specific extensions 
to an instruction set, the critical portions of an application’s dataflow graph (DFG) 
can be accelerated by using custom functional units. The nodes of these DFGs are the 
instructions of critical potion of applications and the edges of DFGs represent the 
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dependency between instructions. In our method, custom instruction is a sequence of 
instructions that are extracted from hot basic blocks (HBBs). HBBs are basic blocks 
which are executed more than a predefined number of times and a basic block is a 
sequence of instructions that terminates by a control instruction.  

Using an extensible processor with a reconfigurable functional unit proposes 
favorable tradeoff between efficiency and flexibility, while keeping design turnaround 
times much shorter. The reconfigurable part of an extensible processor executes 
critical portions of an application to gain better performance. It can be coarse grain or 
fine grain. The former, demands for less configuration memory. Also mapping of 
instructions on it is easier. The latter is more flexible but it is slower comparing with 
the coarse grain one. 

Extracting CIs from applications is an important stage in accelerating application 
execution. Some generated CIs cannot be mapped to reconfigurable hardware because 
some RFU constraints, like physical constraints, cannot be considered at this stage. 
We call this kind of CIs rejected CIs. Two different strategies are used for rejected 
CIs. In the first case, rejected CIs are run on the base line processor, and so, this offers 
no speedup. As the second strategy, we suggest using approaches to recover and 
execute rejected CIs on the RFU rather than the base processor. To achieve this goal, 
two approaches are proposed. In the first approach, a CI generation tool is used to 
regenerate the CIs from HBBs according to the RFU constraints. As another 
approach, we propose a novel framework for generating CIs. This framework 
generates CIs in such a way that they can be executed on the RFU. Besides, it 
partitions rejected CIs to multiple mappable CIs. We utilize the same well-known 
temporal partitioning concept for this purpose.  

In Section 2, we highlight some related work. The RFU architecture is described in 
Section 3. Section 4 discusses the design flow proposed for generating CIs. In Section 5, 
experimental results are presented and finally, Section 6 concludes the paper. 

2   Related Works 

Identifying optimal set of custom instruction to improve the computational efficiency 
of applications has received a lot of attention recently. PRISC [13] and Chimaera [17] 
provide compilation tools that attempt to automatically generate mappings for the 
reconfigurable logic. Custom instructions tend to be relatively small, due in part to the 
difficulty of the matching problem and the size of the programmable fabric available. 
DISC [16] is another system that requires CIs to be identified and programmed 
manually. The main focus of DISC is in the management of the loading of custom 
instructions.  

Research in reconfigurable computing is often more in line with our goal. 
Researches in reconfigurable computing investigate the identification of application 
sections that are mapped to a reconfigurable fabric. Most of CI extraction methods 
attempt to identify patterns within a basic block. In [7] the authors combine template 
matching and generation based on the occurrence of patterns which usually led to 
small templates. Template matching is done based on graph isomorphism. Methods 
presented in [5], [8] impose further constraints by allowing multiple input-single 
output patterns. Arnold et al. [1] avoids the exponentially increasing of these patterns 



 An Integrated Temporal Partitioning and Mapping Framework 221 

by using an iterative technique that detects 2-operator patterns, replace their 
occurrences in DFG and repeats the process. Atasu et al. [2] search a full binary tree 
and decides at each step whether or not to include a particular instruction in a pattern. 
The potential exponential search space is pruned based on input/output constraints. 
They attempt to find maximal subgraphs of application data flow graph, but it does 
not take into account the underlying structure of the execution hardware. Clark et al. 
[4] search possibly good patterns by starting with small patterns and expanding them 
considering the input, output and convexity constraints [18].  

The general goal of this work is presenting methods for CI generation, specifically 
for recovering the rejected CIs. We propose approaches for generating CIs for 
AMBER, an adaptive dynamic extensible processor presented in [11]. AMBER uses a 
coarse grain reconfigurable functional unit with fixed resources. Some of the generated 
CIs might be rejected because of violating RFU constraints. Rejection of CIs decreases 
the speedup. We do not use any pruning algorithm for making smaller CIs from 
rejected CIs because obviously by using bigger CIs more speedup can be obtained. Our 
main contribution is in using an RFU architecture-aware temporal partitioning 
algorithm, which iteratively attempts to partition and generate appropriate CIs. These 
CIs are maximal subgraphs extracted from data flow graph of non-mappable CI.  

For this purpose, we use an integrated temporal partitioning and mapping frame-
work. The idea behind temporal partitioning is that functions that are too large to fit 
on a programmable hardware can be partitioned into several modules which are then 
successively downloaded into the hardware in accordance with a predefined schedule 
[6]. Different algorithms have been presented for temporal partitioning. Bobda [3] 
proposed two methods to solve temporal partitioning problem. The first one was an 
enhancement of the well-known list vector space. The second method uses a spectral 
placement to position the modules in a three-dimensional vector space. Karthikeya et 
al. [6] proposed algorithms for temporal partitioning and scheduling of large designs 
on area constrained reconfigurable hardware. SPARCS [12] is an integrated 
partitioning and synthesis framework, which has a temporal partitioning tool to 
temporally divide and schedule the DFGs on a reconfigurable system. Tanougust et 
al. [15] attempted to find the minimum area while meeting timing constraints during 
temporal partitioning. In [14], Spillane and Owen focused on finding a sequence of 
conditions for activating an appropriate component at a particular time and optimizing 
successive configurations to achieve the desired trade-offs among reconfiguration 
time, operation speed and area.  

In [9], a new design flow was proposed for the compilation of data flow graphs for 
a reconfigurable system. This design flow consists of temporal partitioning and 
physical design phases with a feedback loop. In this paper, we propose a modified 
version of this design flow for generating appropriate CIs as a general methodology 
and use is specifically for AMBER RFU.  This framework attempts to take 
advantages of the basic design flow to generate CIs and improve target extensible 
processor speedup.  

3   RFU Architecture 

In [11] an adaptive extensible processor (AMBER) was presented which has the 
capability of tuning its extended instructions to the running application. For this 
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extensible processor, a coarse grain reconfigurable functional unit (RFU) was 
designed which is an array of functional units (FUs). FUs support all fixed point 
instructions of the base line processor except multiplication, division and load. A 
quantitative approach [4] was used to determine the number of inputs, outputs, nodes, 
routing resources and other architectural specifications. Twenty-two applications of 
Mibench [19] were used to provide quantitative analysis. Also, a mapping tool was 
developed to map CIs on the RFU. The details of RFU design and its integration with 
the base processor is out of the scope of this paper, therefore, for completeness we 
only describe the specification of the final architecture. 

 

Fig. 1. Block diagram of RFU designed for AMBER. 

According to the obtained results, eight inputs, six outputs and 16 FUs brought 
about a reasonable CI rejection rate (about 10%). Rejection rate represents the 
percentage of CIs that can not be mapped on the RFU according to its defined 
constraints. In addition, a proper topology for RFU connections was achieved based 
on the quantitative analysis (Fig. 1). In the proposed architecture, there are left to right 
connections in the 4th row and right to left connections in the 3rd row. Outputs of 
FUs in each row are fully connected to inputs of FUs in subsequent row. In addition, 
there are extra vertical connections, as in Fig. 1, between non-subsequent rows to 
keep the CI rejection rate low.  

4   Integrated Temporal Partitioning and Mapping 

Initial CIs for AMBER can be extracted from hot basic blocks of applications 
according to the algorithm presented in [12]. Two different approaches for generating 
appropriate CIs are used. Appropriate CI set means the set of CIs which satisfy the 
RFU primary constraints and may have the capability of being mapped successfully 
on the RFU. RFU primary constraints are the architectural constraints including the 
number of inputs, outputs and nodes.  We used two different approaches for 
generating CIs. The first CI generation approach (CIGen) considers RFU primary 
constraints for mapping but it cannot consider all of the constraints such as routing 
resources constraints. For considering the physical constraints during CI generation 
physical design process need to be done. Therefore, for rejected CIs, CIGen follows a 
conservative method to generate appropriate CIs.  
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4.1   The Integrated Framework 

Integrated Framework is the second CI generation approach that performs an 
integrated temporal partitioning and mapping process to generate mappable CIs. The 
proposed design flow is shown in Fig. 2. This design flow takes rejected CIs and 
attempts to partition them to appropriate CIs those have the capability of mapping on 
the RFU. Each CI is partitioned into two or more CIs.  

 

Fig. 2. Integrated temporal partitioning and mapping for supporting large CIs. 

Initial temporal partitioning algorithm is done according to [9]. In this stage, RFU 
primary constraints are considered. The generated CIs are accepted and finalized if 
they can be mapped on the RFU. For each partition generated in the previous step, the 
mapping process is done and the generated CI is considered as appropriate if it can be 
mapped on the RFU successfully. Otherwise, an incremental temporal partitioning 
algorithm modifies the partition by moving some of nodes to the subsequent partition. 
In the next step, the mapping process is repeated. This process is done iteratively 
while all partitions are mapped successfully on the RFU. Fig. 3 shows an example of 
a rejected CI which is finally partitioned into two partitions and mapped on the RFU 
successfully. This framework has the following advantages: 

• Reducing the number of rejected CIs: This can affect the overall performance 
by partitioning the rejected CIs to CIs which can be mapped on the RFU. 
• Using a mapping-aware temporal partitioning process: This process attempts 
to prevent the rejection of CIs by modifying CIs according to the feedbacks 
obtained from the mapping process. In fact, only primary constraints of the RFU 
can be considered in the CIGen but it is unaware of such mapping information as 
routing resource constraints. In Integrated Framework, CIs are partitioned in 
such a way that they can be mapped on the RFU. 



224 F. Mehdipour et al. 

4.2   Incremental Temporal Partitioning Algorithm 

In Integrated Framework, an incremental temporal partitioning process is performed 
iteratively until all partitions are mapped on the RFU successfully. Each partition 
which does not satisfy RFU constraints is modified by selecting and moving proper 
nodes to the subsequent partition and then a new iteration starts. An incremental 
temporal partitioning algorithm tries to modify partitions during the iteration process. 
This algorithm chooses the nodes with highest ASAP level first. The ASAP level of 
nodes represents their order to execute according to their dependencies [10]. In other 
words, a parent node should be executed before its descents because of data 
dependencies between them.  

 

Fig. 3. An example of CI generation using the Integrated Framework. 

All nodes in a partition are sorted according to their ASAP level and the node with 
the highest ASAP level is selected and moved to the subsequent partition. In Fig. 3, 
the order in which are selected and moved to the next partition is 15, 13, 11, 9, 14, 12, 
10, 8, 3 and 7. The nodes are moved until all the generated partitions satisfy the RFU 
architectural constraints. 

4.3   Mapping Procedure 

Mapping process in the Integrated Framework is the same as the well-known 
placement problem. Mapping process can be defined as the placement of the DFG 
nodes on a fixed architecture RFU, to determine the appropriate positions for DFG 
nodes on the RFU. Assigning CI instructions or DFG nodes to FUs is done based on 
the priority of the nodes.  

We calculated slack of nodes [10] to determine their priority for partitioning. 
Slack of each node represents its criticality. For example, slack equal to 0 means that 
it is on the critical path of DFG and should be scheduled with the highest priority. On 
the other hand, for the nodes with the same criticality, ASAP level of them determines 
their mapping order. Therefore, in the first step, ASAP, ALAP1 and slack values of 
                                                           
1   As Late As Possible. 
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each node in DFG are determined [9, 10]. Assigning a position for each selected node 
starts by determining an appropriate row for that node. Row number is set to the last 
row if the selected node is on a critical path with the length more than or equal to 
RFU depth. Otherwise, row number is selected according to slack and ALAP of the 
selected node and the number of un-occupied cells available in the RFU rows.  

For the nodes which do not belong to any critical path with length more than the 
RFU depth, their starting row is set to ALAP- slack -1. This means that we reserve 
FUs of lower rows for the nodes belong to critical path. For this purpose, we prevent 
the occupation of FUs in the lower RFU rows by the nodes which do not belong to 
critical paths. Therefore, spiral shaped mapping of nodes is being possible for long 
length critical paths. After determining the row number, an appropriate column is 
determined for the selected node. Column number is determined according to the 
minimum connection length criterion. All non-occupied cells of the RFU in the 
determined row are checked to find an FU which gives the minimum connection 
length between the selected node and its dependent nodes positioned on the RFU.  

For each row, a maximum capacity is considered to prohibit gathering many nodes 
in a row. Capacity of rows is determined with respect to longest critical path and the 
number of critical paths in the DFG. Row number is decreased and a new attempt 
starts if there is not any cell to assign the selected node. The pseudo code of the 
mapping algorithm is as follows:  

Mapping Algorithm: 

- Determine ASAP level of each node in the input DFG, 

- Determine ALAP level of each node in the DFG, 

- Calculate slack for each node in the DFG. 

for s= 0 to Maximum slack value 

 - Create List of Nodes with slack equal to s 

     for all nodes in the list 

- Determine appropriate position for the selected 
node from the list 

- if the number of nodes mapped on the RFU is equal 
to the DFG node number then mapping process is 
terminated successfully 

Determine appropriate position for a selected node: 

if ALAP- slack >= RFUDepth 

 StartRow= RFUDepth; 

else 

   StartRow= ALAP- slack - 1; 

for Row= StartRow to 0 

-if there is un-occupied column in the selected row 
and the selected row has sufficient capacity, select 
a column with minimum connection length. 
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Referring to the RFU architecture in Fig. 1 and its routing resources, though the 
RFU depth is equal to 5, our mapping algorithm can map CIs whose critical path 
length are at most equal to 8. In Fig. 3, corresponding DFG of the first partition has a 
critical path longer than the RFU depth, and so it takes advantage of a spiral shaped 
mapping. This kind of mapping results in effective usage of routing resources 
(horizontal connections of the third and forth rows) and FUs.  

5   Experimental Results 

SimpleScalar tool set (PISA configuration)[20] and 22 applications of Mibench [19] 
were used for doing experiments. The base line processor of AMBER was MIPS324K 
with five stage pipeline, 32KB L1 data cache (1 clock cycle latency); 32KB L1 
instruction cache (1 clock cycle latency) and 1MB unified L2 cache (6 clock cycle 
latency). RFU was implemented using Synopsys tools with Hitachi 0.18µm library. 
The RFU area size is 1.15mm2.. It was assumed that the RFU has a variable latency 
based on the length of the longest critical path. Regarding base processor frequency 
(166MHz) and RFU delay, CIs with critical path length less than or equal to 5 take 1 
clock cycle and CIs including critical path length more than 5 take 2 clock cycles for 
execution on the RFU. 

Initial CIs were generated according to the method proposed in [11]. Experiments 
showed that the CI rejection rate with respect to RFU architectural constraints was 
about 10%. In 9 of the 22 applications, there was not any rejected CI, which means that 
 

Table 1. Mibench Applications, their CI rejection rates and maximum and minimum length of Cis 

App. 
No. 

Application 
Name 

CI Rejection % 
(Considering 

Execution Freq) 

Min. CI 
length 

 

Max. CI 
length 

 

Min. length of 
Rejected CIs 

 
1 adpcm(enc) 0 5 7 - 
2 adpcm(dec) 0 5 7 - 
3 bitcounts 2.3 4 20 20 
4 blowfish 43.2 5 16 15 
5 blowfish 

(dec) 43.2 5 16 15 
6 basicmath 0 3 11 - 
7 cjpeg 11.7 5 59 11 
8 crc 0 5 5 - 
9 dijkstra 0 4 9 - 
10 djpeg 28.8 4 48 8 
11 fft 3.4 3 16 16 
12 fft (inv) 3.4 3 16 16 
13 gsm (dec) 2.8 5 14 14 
14 gsm (enc) 6.5 4 26 13 
15 lame 11.9 3 13 7 
16 patricia 0 3 6 - 
17 qsort 0 5 7 - 
18 rijndael 

(enc) 40.6 5 16 10 
19 rijndael 

(dec) 35.4 5 18 10 
20 sha 1.9 5 18 7 
21 stringsearch 0 5 9 - 
22 susan 0 6 10 -  
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all CIs in these applications were mapped on the RFU successfully. Rejected CIs of 
remaining 13 applications are as input of our Integrated Framework. Table 1 shows the 
applications, the percentage of rejected CIs considering the RFU constraints and 
execution frequency of CIs, minimum and maximum length of initial CIs and 
minimum length of rejected CIs. Application names with rejected CIs are shown in 
bold face. 
    As mentioned in Section 3, for generating appropriate CIs two approaches 
including CIGen and Integrated Framework were used. For CIs generated by CIGen, 
the mapping process was done and some of them were rejected again at the mapping 
stage because of the RFU violation of routing resource constraints. In this method, 
CIs were generated using a more conservative approach. Some of the CIs can not be 
supported and are rejected. Fig. 4 shows that 10 applications already have CIs which 
are non-mappable on RFU. These rejected CIs have to execute on the base line 
processor and offer no speedup.  
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Fig. 4. Percentage of rejected CIs generated by CIGen 
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In the second approach, we used the Integrated Framework to generate appropriate 
CIs. Using this approach, which iteratively generates CIs, all CIs were successfully 
mapped on the RFU during partitioning process. This is one of the most important 
advantages of the proposed design flow. Fig. 5 shows the initial and final number of 
partitions (CIs) generated for each application using the Integrated Framework. Initial 
number of CIs is the number of partitions generated by the temporal partitioning 
algorithm. In addition, the final number of partitions means the number of CIs that are 
generated after performing the iterative process to modify and generate appropriate CIs.  

Fig. 6 shows the maximum length of the critical path for the generated CIs. 
According to the results obtained, for cjpeg, fft, fft(inv), gsm(end) and gsm(dec), the 
mapping algorithm took advantage of spiral shape mapping to handle critical paths 
with length more than 5.  
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Fig. 6. Maximum critical path length for CIs generated by the Integrated Framework 
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Fig. 7. Speedup comparison between CIGen and the Integrated Framework 
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Finally, Fig. 7 shows the speedup comparison for CIGen and the Integrated 
Framework.  The Integrated Framework generated CIs all of which can be mapped 
on the RFU, because, temporal partitioning stage is properly aware of the mapping 
process result and is iteratively done according to the feedbacks obtained from the 
mapping phase. According to Fig. 7, speedup increases using the Integrated 
Framework. For lame, CIGen and the Integrated Framework generated similar CIs, 
therefore, the Integrated Framework does not offer more improvement for lame in 
compared to CIGen. 

6   Conclusion 

In this paper, an integrated framework was presented to address generating 
appropriate custom instructions and mapping them on RFU of an adaptive extensible 
processor. First, an RFU was presented for AMBER, a dynamic adaptive extensible 
processor. Some CIs of the attempted applications were rejected because of RFU 
primary constraints. One method for generating appropriate CIs is applying the RFU 
constraints to the CI generation tool and extracting the CIs which meet these 
constraints (CIGen). Using CIGen may still cause some generated CIs to be rejected. 
This approach does not have the capability of considering constraints such as routing 
resource constraints before mapping since it is unaware of the mapping process result. 
The Integrated Framework is the second approach which uses a mapping-aware 
temporal partitioning algorithm for generating appropriate CIs. In this framework, 
each rejected CI is partitioned to smaller partitions and iteratively modified to meet 
the RFU constraints. The experimental results showed that for the attempted 
benchmarks, the algorithm successfully mapped all CIs on the RFU. Our proposed 
mapping algorithm uses spiral shaped paths to cover CIs with critical paths longer 
than the RFU depth. Also, the Integrated Framework brought about more speedup 
enhancement comparing with CIGen by generating CIs which have less running time 
on the RFU.  
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