
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

An Integrated Temporal Partitioning and Mapping
Framework for Handling Custom Instructions on a
Reconfigurable Functional Unit

Mehdipour, Farhad
Computer and IT Engineering Department, Amirkabir University of Technology

Noori, Hamid
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Saheb Zamani, Morteza
Computer and IT Engineering Department, Amirkabir University of Technology

Murakami, Kazuaki
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

他

https://hdl.handle.net/2324/6794496

出版情報：Proc. of 11th Asia-Pacific Conference (ACSAC 2006), pp.219-230, 2006-09. Springer
バージョン：
権利関係：

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 219 – 230, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Integrated Temporal Partitioning and Mapping
Framework for Handling Custom Instructions on a

Reconfigurable Functional Unit

Farhad Mehdipour1, Hamid Noori2, Morteza Saheb Zamani1, Kazuaki Murakami2,
Mehdi Sedighi1, and Koji Inoue2

1 Computer and IT Engineering Department, Amirkabir University of Technology, Tehran, Iran
{mehdipur, szamani, msedighi}@ce.aut.ac.ir

2 Department of Informatics, Graduate School of Information Science and Electrical
Engineering, Kyushu University, Japan
noori@c.csce.kyushu-u.ac.jp,

{murakami, inoue}@i.kyushu-u.ac.jp

Abstract. Extensible processors allow customization for an application by
extending the core instruction set architecture. Extracting appropriate custom
instructions is an important phase for implementing an application on an
extensible processor with a reconfigurable functional unit. Custom instructions
(CIs) usually are extracted from critical portions of applications. This paper
presents approaches for CI generation with respect to the RFU constraints to
improve speedup of the extensible processor. First, our proposed RFU
architecture for an adaptive dynamic extensible processor called AMBER is
described. Then, an integrated temporal partitioning and mapping framework is
presented to partition and map the CIs on the RFU. In this framework, a mapping
aware temporal partitioning algorithm is used to generate CIs which are
mappable on the RFU. Temporal partitioning iterates and modifies partitions
incrementally to generate CIs. In addition, a mapping algorithm is presented
which supports CIs with critical path length more than the RFU depth.

1 Introduction

Synthesis of application-specific instruction-set processors (ASIPs) has been an
important design methodology for system-on-chip processors in the last decade.
ASIPs have more potential to meet the high-performance demands of embedded
applications, compared to general purpose processors (GPPs) but the synthesis of
ASIPs traditionally involved the generation of a complete instruction set architecture
for the targeted application. On the other hand, GPPs are very flexible but may not
offer the necessary performance.

Another method for providing enhanced performance is application-specific
instruction set extension. An important feature of this design method is extending an
existing processor core with units specialized for a given domain, rather than
designing a custom processor completely. By creating application-specific extensions
to an instruction set, the critical portions of an application’s dataflow graph (DFG)
can be accelerated by using custom functional units. The nodes of these DFGs are the
instructions of critical potion of applications and the edges of DFGs represent the

220 F. Mehdipour et al.

dependency between instructions. In our method, custom instruction is a sequence of
instructions that are extracted from hot basic blocks (HBBs). HBBs are basic blocks
which are executed more than a predefined number of times and a basic block is a
sequence of instructions that terminates by a control instruction.

Using an extensible processor with a reconfigurable functional unit proposes
favorable tradeoff between efficiency and flexibility, while keeping design turnaround
times much shorter. The reconfigurable part of an extensible processor executes
critical portions of an application to gain better performance. It can be coarse grain or
fine grain. The former, demands for less configuration memory. Also mapping of
instructions on it is easier. The latter is more flexible but it is slower comparing with
the coarse grain one.

Extracting CIs from applications is an important stage in accelerating application
execution. Some generated CIs cannot be mapped to reconfigurable hardware because
some RFU constraints, like physical constraints, cannot be considered at this stage.
We call this kind of CIs rejected CIs. Two different strategies are used for rejected
CIs. In the first case, rejected CIs are run on the base line processor, and so, this offers
no speedup. As the second strategy, we suggest using approaches to recover and
execute rejected CIs on the RFU rather than the base processor. To achieve this goal,
two approaches are proposed. In the first approach, a CI generation tool is used to
regenerate the CIs from HBBs according to the RFU constraints. As another
approach, we propose a novel framework for generating CIs. This framework
generates CIs in such a way that they can be executed on the RFU. Besides, it
partitions rejected CIs to multiple mappable CIs. We utilize the same well-known
temporal partitioning concept for this purpose.

In Section 2, we highlight some related work. The RFU architecture is described in
Section 3. Section 4 discusses the design flow proposed for generating CIs. In Section 5,
experimental results are presented and finally, Section 6 concludes the paper.

2 Related Works

Identifying optimal set of custom instruction to improve the computational efficiency
of applications has received a lot of attention recently. PRISC [13] and Chimaera [17]
provide compilation tools that attempt to automatically generate mappings for the
reconfigurable logic. Custom instructions tend to be relatively small, due in part to the
difficulty of the matching problem and the size of the programmable fabric available.
DISC [16] is another system that requires CIs to be identified and programmed
manually. The main focus of DISC is in the management of the loading of custom
instructions.

Research in reconfigurable computing is often more in line with our goal.
Researches in reconfigurable computing investigate the identification of application
sections that are mapped to a reconfigurable fabric. Most of CI extraction methods
attempt to identify patterns within a basic block. In [7] the authors combine template
matching and generation based on the occurrence of patterns which usually led to
small templates. Template matching is done based on graph isomorphism. Methods
presented in [5], [8] impose further constraints by allowing multiple input-single
output patterns. Arnold et al. [1] avoids the exponentially increasing of these patterns

 An Integrated Temporal Partitioning and Mapping Framework 221

by using an iterative technique that detects 2-operator patterns, replace their
occurrences in DFG and repeats the process. Atasu et al. [2] search a full binary tree
and decides at each step whether or not to include a particular instruction in a pattern.
The potential exponential search space is pruned based on input/output constraints.
They attempt to find maximal subgraphs of application data flow graph, but it does
not take into account the underlying structure of the execution hardware. Clark et al.
[4] search possibly good patterns by starting with small patterns and expanding them
considering the input, output and convexity constraints [18].

The general goal of this work is presenting methods for CI generation, specifically
for recovering the rejected CIs. We propose approaches for generating CIs for
AMBER, an adaptive dynamic extensible processor presented in [11]. AMBER uses a
coarse grain reconfigurable functional unit with fixed resources. Some of the generated
CIs might be rejected because of violating RFU constraints. Rejection of CIs decreases
the speedup. We do not use any pruning algorithm for making smaller CIs from
rejected CIs because obviously by using bigger CIs more speedup can be obtained. Our
main contribution is in using an RFU architecture-aware temporal partitioning
algorithm, which iteratively attempts to partition and generate appropriate CIs. These
CIs are maximal subgraphs extracted from data flow graph of non-mappable CI.

For this purpose, we use an integrated temporal partitioning and mapping frame-
work. The idea behind temporal partitioning is that functions that are too large to fit
on a programmable hardware can be partitioned into several modules which are then
successively downloaded into the hardware in accordance with a predefined schedule
[6]. Different algorithms have been presented for temporal partitioning. Bobda [3]
proposed two methods to solve temporal partitioning problem. The first one was an
enhancement of the well-known list vector space. The second method uses a spectral
placement to position the modules in a three-dimensional vector space. Karthikeya et
al. [6] proposed algorithms for temporal partitioning and scheduling of large designs
on area constrained reconfigurable hardware. SPARCS [12] is an integrated
partitioning and synthesis framework, which has a temporal partitioning tool to
temporally divide and schedule the DFGs on a reconfigurable system. Tanougust et
al. [15] attempted to find the minimum area while meeting timing constraints during
temporal partitioning. In [14], Spillane and Owen focused on finding a sequence of
conditions for activating an appropriate component at a particular time and optimizing
successive configurations to achieve the desired trade-offs among reconfiguration
time, operation speed and area.

In [9], a new design flow was proposed for the compilation of data flow graphs for
a reconfigurable system. This design flow consists of temporal partitioning and
physical design phases with a feedback loop. In this paper, we propose a modified
version of this design flow for generating appropriate CIs as a general methodology
and use is specifically for AMBER RFU. This framework attempts to take
advantages of the basic design flow to generate CIs and improve target extensible
processor speedup.

3 RFU Architecture

In [11] an adaptive extensible processor (AMBER) was presented which has the
capability of tuning its extended instructions to the running application. For this

222 F. Mehdipour et al.

extensible processor, a coarse grain reconfigurable functional unit (RFU) was
designed which is an array of functional units (FUs). FUs support all fixed point
instructions of the base line processor except multiplication, division and load. A
quantitative approach [4] was used to determine the number of inputs, outputs, nodes,
routing resources and other architectural specifications. Twenty-two applications of
Mibench [19] were used to provide quantitative analysis. Also, a mapping tool was
developed to map CIs on the RFU. The details of RFU design and its integration with
the base processor is out of the scope of this paper, therefore, for completeness we
only describe the specification of the final architecture.

Fig. 1. Block diagram of RFU designed for AMBER.

According to the obtained results, eight inputs, six outputs and 16 FUs brought
about a reasonable CI rejection rate (about 10%). Rejection rate represents the
percentage of CIs that can not be mapped on the RFU according to its defined
constraints. In addition, a proper topology for RFU connections was achieved based
on the quantitative analysis (Fig. 1). In the proposed architecture, there are left to right
connections in the 4th row and right to left connections in the 3rd row. Outputs of
FUs in each row are fully connected to inputs of FUs in subsequent row. In addition,
there are extra vertical connections, as in Fig. 1, between non-subsequent rows to
keep the CI rejection rate low.

4 Integrated Temporal Partitioning and Mapping

Initial CIs for AMBER can be extracted from hot basic blocks of applications
according to the algorithm presented in [12]. Two different approaches for generating
appropriate CIs are used. Appropriate CI set means the set of CIs which satisfy the
RFU primary constraints and may have the capability of being mapped successfully
on the RFU. RFU primary constraints are the architectural constraints including the
number of inputs, outputs and nodes. We used two different approaches for
generating CIs. The first CI generation approach (CIGen) considers RFU primary
constraints for mapping but it cannot consider all of the constraints such as routing
resources constraints. For considering the physical constraints during CI generation
physical design process need to be done. Therefore, for rejected CIs, CIGen follows a
conservative method to generate appropriate CIs.

 An Integrated Temporal Partitioning and Mapping Framework 223

4.1 The Integrated Framework

Integrated Framework is the second CI generation approach that performs an
integrated temporal partitioning and mapping process to generate mappable CIs. The
proposed design flow is shown in Fig. 2. This design flow takes rejected CIs and
attempts to partition them to appropriate CIs those have the capability of mapping on
the RFU. Each CI is partitioned into two or more CIs.

Fig. 2. Integrated temporal partitioning and mapping for supporting large CIs.

Initial temporal partitioning algorithm is done according to [9]. In this stage, RFU
primary constraints are considered. The generated CIs are accepted and finalized if
they can be mapped on the RFU. For each partition generated in the previous step, the
mapping process is done and the generated CI is considered as appropriate if it can be
mapped on the RFU successfully. Otherwise, an incremental temporal partitioning
algorithm modifies the partition by moving some of nodes to the subsequent partition.
In the next step, the mapping process is repeated. This process is done iteratively
while all partitions are mapped successfully on the RFU. Fig. 3 shows an example of
a rejected CI which is finally partitioned into two partitions and mapped on the RFU
successfully. This framework has the following advantages:

• Reducing the number of rejected CIs: This can affect the overall performance
by partitioning the rejected CIs to CIs which can be mapped on the RFU.
• Using a mapping-aware temporal partitioning process: This process attempts
to prevent the rejection of CIs by modifying CIs according to the feedbacks
obtained from the mapping process. In fact, only primary constraints of the RFU
can be considered in the CIGen but it is unaware of such mapping information as
routing resource constraints. In Integrated Framework, CIs are partitioned in
such a way that they can be mapped on the RFU.

224 F. Mehdipour et al.

4.2 Incremental Temporal Partitioning Algorithm

In Integrated Framework, an incremental temporal partitioning process is performed
iteratively until all partitions are mapped on the RFU successfully. Each partition
which does not satisfy RFU constraints is modified by selecting and moving proper
nodes to the subsequent partition and then a new iteration starts. An incremental
temporal partitioning algorithm tries to modify partitions during the iteration process.
This algorithm chooses the nodes with highest ASAP level first. The ASAP level of
nodes represents their order to execute according to their dependencies [10]. In other
words, a parent node should be executed before its descents because of data
dependencies between them.

Fig. 3. An example of CI generation using the Integrated Framework.

All nodes in a partition are sorted according to their ASAP level and the node with
the highest ASAP level is selected and moved to the subsequent partition. In Fig. 3,
the order in which are selected and moved to the next partition is 15, 13, 11, 9, 14, 12,
10, 8, 3 and 7. The nodes are moved until all the generated partitions satisfy the RFU
architectural constraints.

4.3 Mapping Procedure

Mapping process in the Integrated Framework is the same as the well-known
placement problem. Mapping process can be defined as the placement of the DFG
nodes on a fixed architecture RFU, to determine the appropriate positions for DFG
nodes on the RFU. Assigning CI instructions or DFG nodes to FUs is done based on
the priority of the nodes.

We calculated slack of nodes [10] to determine their priority for partitioning.
Slack of each node represents its criticality. For example, slack equal to 0 means that
it is on the critical path of DFG and should be scheduled with the highest priority. On
the other hand, for the nodes with the same criticality, ASAP level of them determines
their mapping order. Therefore, in the first step, ASAP, ALAP1 and slack values of

1 As Late As Possible.

 An Integrated Temporal Partitioning and Mapping Framework 225

each node in DFG are determined [9, 10]. Assigning a position for each selected node
starts by determining an appropriate row for that node. Row number is set to the last
row if the selected node is on a critical path with the length more than or equal to
RFU depth. Otherwise, row number is selected according to slack and ALAP of the
selected node and the number of un-occupied cells available in the RFU rows.

For the nodes which do not belong to any critical path with length more than the
RFU depth, their starting row is set to ALAP- slack -1. This means that we reserve
FUs of lower rows for the nodes belong to critical path. For this purpose, we prevent
the occupation of FUs in the lower RFU rows by the nodes which do not belong to
critical paths. Therefore, spiral shaped mapping of nodes is being possible for long
length critical paths. After determining the row number, an appropriate column is
determined for the selected node. Column number is determined according to the
minimum connection length criterion. All non-occupied cells of the RFU in the
determined row are checked to find an FU which gives the minimum connection
length between the selected node and its dependent nodes positioned on the RFU.

For each row, a maximum capacity is considered to prohibit gathering many nodes
in a row. Capacity of rows is determined with respect to longest critical path and the
number of critical paths in the DFG. Row number is decreased and a new attempt
starts if there is not any cell to assign the selected node. The pseudo code of the
mapping algorithm is as follows:

Mapping Algorithm:

- Determine ASAP level of each node in the input DFG,

- Determine ALAP level of each node in the DFG,

- Calculate slack for each node in the DFG.

for s= 0 to Maximum slack value

 - Create List of Nodes with slack equal to s

 for all nodes in the list

- Determine appropriate position for the selected
node from the list

- if the number of nodes mapped on the RFU is equal
to the DFG node number then mapping process is
terminated successfully

Determine appropriate position for a selected node:

if ALAP- slack >= RFUDepth

 StartRow= RFUDepth;

else

 StartRow= ALAP- slack - 1;

for Row= StartRow to 0

-if there is un-occupied column in the selected row
and the selected row has sufficient capacity, select
a column with minimum connection length.

226 F. Mehdipour et al.

Referring to the RFU architecture in Fig. 1 and its routing resources, though the
RFU depth is equal to 5, our mapping algorithm can map CIs whose critical path
length are at most equal to 8. In Fig. 3, corresponding DFG of the first partition has a
critical path longer than the RFU depth, and so it takes advantage of a spiral shaped
mapping. This kind of mapping results in effective usage of routing resources
(horizontal connections of the third and forth rows) and FUs.

5 Experimental Results

SimpleScalar tool set (PISA configuration)[20] and 22 applications of Mibench [19]
were used for doing experiments. The base line processor of AMBER was MIPS324K
with five stage pipeline, 32KB L1 data cache (1 clock cycle latency); 32KB L1
instruction cache (1 clock cycle latency) and 1MB unified L2 cache (6 clock cycle
latency). RFU was implemented using Synopsys tools with Hitachi 0.18µm library.
The RFU area size is 1.15mm2.. It was assumed that the RFU has a variable latency
based on the length of the longest critical path. Regarding base processor frequency
(166MHz) and RFU delay, CIs with critical path length less than or equal to 5 take 1
clock cycle and CIs including critical path length more than 5 take 2 clock cycles for
execution on the RFU.

Initial CIs were generated according to the method proposed in [11]. Experiments
showed that the CI rejection rate with respect to RFU architectural constraints was
about 10%. In 9 of the 22 applications, there was not any rejected CI, which means that

Table 1. Mibench Applications, their CI rejection rates and maximum and minimum length of Cis

App.
No.

Application
Name

CI Rejection %
(Considering

Execution Freq)

Min. CI
length

Max. CI
length

Min. length of
Rejected CIs

1 adpcm(enc) 0 5 7 -
2 adpcm(dec) 0 5 7 -
3 bitcounts 2.3 4 20 20
4 blowfish 43.2 5 16 15
5 blowfish

(dec) 43.2 5 16 15
6 basicmath 0 3 11 -
7 cjpeg 11.7 5 59 11
8 crc 0 5 5 -
9 dijkstra 0 4 9 -
10 djpeg 28.8 4 48 8
11 fft 3.4 3 16 16
12 fft (inv) 3.4 3 16 16
13 gsm (dec) 2.8 5 14 14
14 gsm (enc) 6.5 4 26 13
15 lame 11.9 3 13 7
16 patricia 0 3 6 -
17 qsort 0 5 7 -
18 rijndael

(enc) 40.6 5 16 10
19 rijndael

(dec) 35.4 5 18 10
20 sha 1.9 5 18 7
21 stringsearch 0 5 9 -
22 susan 0 6 10 -

 An Integrated Temporal Partitioning and Mapping Framework 227

all CIs in these applications were mapped on the RFU successfully. Rejected CIs of
remaining 13 applications are as input of our Integrated Framework. Table 1 shows the
applications, the percentage of rejected CIs considering the RFU constraints and
execution frequency of CIs, minimum and maximum length of initial CIs and
minimum length of rejected CIs. Application names with rejected CIs are shown in
bold face.
 As mentioned in Section 3, for generating appropriate CIs two approaches
including CIGen and Integrated Framework were used. For CIs generated by CIGen,
the mapping process was done and some of them were rejected again at the mapping
stage because of the RFU violation of routing resource constraints. In this method,
CIs were generated using a more conservative approach. Some of the CIs can not be
supported and are rejected. Fig. 4 shows that 10 applications already have CIs which
are non-mappable on RFU. These rejected CIs have to execute on the base line
processor and offer no speedup.

0

10

20

30

40

50

60

70

%
 o

f R
ej

ec
te

d
 C

Is

b
itc

o
u

n
ts

b
lo

w
fis

h

b
lo

w
fis

h
 (d

ec
)

cj
p

eg

d
jp

eg ff
t

ff
t (

in
v)

g
sm

 (d
ec

)

g
sm

 (e
n

c)

la
m

e

Fig. 4. Percentage of rejected CIs generated by CIGen

0
10
20
30
40

50
60
70
80
90

N
o

. o
f P

ar
tit

io
n

s

b
itc

n
ts

b
lo

w
fis

h

b
lo

w
fis

h
 (d

ec
)

cj
p

eg

d
jp

eg ff
t

ff
t (

in
v)

g
sm

 (d
ec

)

g
sm

 (e
n

c)

la
m

e

ri
jn

d
ae

l (
en

c)

ri
jn

d
ae

l (
d

ec
)

sh
a

Initial No. of Partitions Final No. of Partitions

Fig. 5. Initial and final number of partitions generated by the Integrated Framework

228 F. Mehdipour et al.

In the second approach, we used the Integrated Framework to generate appropriate
CIs. Using this approach, which iteratively generates CIs, all CIs were successfully
mapped on the RFU during partitioning process. This is one of the most important
advantages of the proposed design flow. Fig. 5 shows the initial and final number of
partitions (CIs) generated for each application using the Integrated Framework. Initial
number of CIs is the number of partitions generated by the temporal partitioning
algorithm. In addition, the final number of partitions means the number of CIs that are
generated after performing the iterative process to modify and generate appropriate CIs.

Fig. 6 shows the maximum length of the critical path for the generated CIs.
According to the results obtained, for cjpeg, fft, fft(inv), gsm(end) and gsm(dec), the
mapping algorithm took advantage of spiral shape mapping to handle critical paths
with length more than 5.

0

1

2

3

4

5

6

7

8

M
ax

im
u

m
 C

ri
tic

al
 P

at
h

 L
en

g
th

b
itc

n
ts

b
lo

w
fis

h

b
lo

w
fis

h
(d

ec
)

cj
p

eg

d
jp

eg ff
t

ff
t (

in
v)

g
sm

 (d
ec

)

g
sm

 (e
n

c)

la
m

e

ri
jn

d
ae

l
(e

n
c)

ri
jn

d
ae

l
(d

ec
)

sh
a

Fig. 6. Maximum critical path length for CIs generated by the Integrated Framework

1

1.2

1.4

1.6

1.8

2

2.2

2.4

S
p

ee
d

u
p

b
itc

o
u

n
ts

b
lo

w
fis

h

b
lo

w
fis

h
(d

ec
)

cj
p

eg

d
jp

eg ff
t

ff
t (

in
v)

g
sm

 (d
ec

)

g
sm

 (e
n

c)

la
m

e

ri
jn

d
ae

l
(e

n
c)

ri
jn

d
ae

l
(d

ec
)

sh
a

Speedup using integrated framework Speedup using CI generation tool

Fig. 7. Speedup comparison between CIGen and the Integrated Framework

 An Integrated Temporal Partitioning and Mapping Framework 229

Finally, Fig. 7 shows the speedup comparison for CIGen and the Integrated
Framework. The Integrated Framework generated CIs all of which can be mapped
on the RFU, because, temporal partitioning stage is properly aware of the mapping
process result and is iteratively done according to the feedbacks obtained from the
mapping phase. According to Fig. 7, speedup increases using the Integrated
Framework. For lame, CIGen and the Integrated Framework generated similar CIs,
therefore, the Integrated Framework does not offer more improvement for lame in
compared to CIGen.

6 Conclusion

In this paper, an integrated framework was presented to address generating
appropriate custom instructions and mapping them on RFU of an adaptive extensible
processor. First, an RFU was presented for AMBER, a dynamic adaptive extensible
processor. Some CIs of the attempted applications were rejected because of RFU
primary constraints. One method for generating appropriate CIs is applying the RFU
constraints to the CI generation tool and extracting the CIs which meet these
constraints (CIGen). Using CIGen may still cause some generated CIs to be rejected.
This approach does not have the capability of considering constraints such as routing
resource constraints before mapping since it is unaware of the mapping process result.
The Integrated Framework is the second approach which uses a mapping-aware
temporal partitioning algorithm for generating appropriate CIs. In this framework,
each rejected CI is partitioned to smaller partitions and iteratively modified to meet
the RFU constraints. The experimental results showed that for the attempted
benchmarks, the algorithm successfully mapped all CIs on the RFU. Our proposed
mapping algorithm uses spiral shaped paths to cover CIs with critical paths longer
than the RFU depth. Also, the Integrated Framework brought about more speedup
enhancement comparing with CIGen by generating CIs which have less running time
on the RFU.

Acknowledgement

The authors would like to thank System LSI Laboratory of Kyushu University for
providing the necessary facilities and equipments. This work has been supported by
Iran Telecommunication Research Center (ITRC).

References

[1] Arnold, M., Corporaal, H., Designing domain-specific processors. In Proceedings of the
Design, Automation and Test in Europe Conf, 2001, pp. 61-66.

[2] Atasu, K., Pozzi, L., Lenne, P., Automatic application-specific instruction-set extensions
under microarchitectural constraints, 40th Design Automation Conference, 2003.

[3] Bobda, C., Synthesis of dataflow graphs for reconfigurable systems using temporal
partitioning and temporal placement, Ph.D thesis, Faculty of Computer Science,
Electrical Engineering and Mathematics, University of Paderborn, 2003.

230 F. Mehdipour et al.

[4] Clark, N., Kudlur, M., Park, H., Mahlke, S., Flautner, K., Application-specific processing
on a general-purpose core via transparent instruction set customization, In Proceedings of
the 37th annual IEEE/ACM International Symposium on Microarchitecture, 2004.

[5] Halfhill, T.R., MIPS embraces configurable technology, Microprocessor Report, 3 March
2003.

[6] Karthikeya, M., Gajjala, P., Dinesh, B., Temporal partitioning and scheduling data flow
graphs for reconfigurable computer, IEEE Transactions on Computers, vol. 48, no. 6,
1999, pp.579–590.

[7] Kastner, R. Kaplan, A., Ogrenci Memik, S., Bozorgzadeh, E., Instruction generation for
hybrid reconfigurable systems, ACM TODAES, vol. 7, no. 4, 2002, pp. 605-627.

[8] Lee, C., Potkonjak, M., Mangione-Smith, W.H., MediaBench: A tool for evaluating and
synthesizing multimedia and communications systems, In Proceedings of the 30-th
Annual Intl. Symp. On Microarchitecture, 1997, pp 330-335.

[9] Mehdipour, F., Saheb Zamani, M., Sedighi, M., An integrated temporal partitioning and
physical design framework for static compilation of reconfigurable computing system,
International Journal of Microprocessors and Microsystems, Elsevier, vol. 30, no. 1, Feb
2006, pp. 52-62.

[10] Micheli, G.D., Synthesis and optimization of digital circuits, McGraw-Hill, 1994.
[11] Noori, H., Murakami, K., Inoue, K., General overview of an adaptive dynamic extensible

processor architecture, Workshop on Introspective Architecture (WISA’2006) , 2006.
[12] Ouaiss, I., Govindarajan, S., Srinivasan, V., Kaul M., Vemuri R., An integrated

partitioning and synthesis system for dynamically reconfigurable multi-FPGA
architectures, In Proceedings of the Reconfigurable Architecture Workshop, 1998, pp.
31-36.

[13] Razdan, R., Smith, M.D., A high-performance microarchitecture with hardware-
programmable functional units, In Proceedings of the 27th Annual International
Symposium on Microarchitecture, 1994, pp. 172-180.

[14] Spillane, J., Owen, H., Temporal partitioning for partially reconfigurable field
programmable gate arrays, IPPS/SPDP Workshops, 1998, pp. 37-42.

[15] Tanougast, C., Berviller, Y., Brunet, P., Weber, S., Rabah, H., Temporal partitioning
methodology optimizing FPGA resources for dynamically reconfigurable embedded real-
time system, International Journal of Microprocessors and Microsystems, vol. 27, 2003,
pp. 115-130.

[16] Writhlin, M., Hutchings, B., A dynamic instruction set computer, In Proceeding IEEE
Symposium on Field Programmable Custom Computing Machines, IEEE Computer
Society Press, 1995, pp. 99-107.

[17] Ye, Z.A., et al., Chimaera: A high-performance architecture with tightly-coupled
reconfigurable functional unit, In Proceeding of 27th ISCA, 2000, pp. 225-235.

[18] Yu, P., Mitra, T., Characterizing embedded applications for instruction-set extensible
processors, In Proceedings of Design and Automation Conference, 2004, pp. 723- 728.

[19] http://www.eecs.umich.edu/mibench.
[20] http://www.simplescalar.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

