
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A RECONFIGURABLE FUNCTIONAL UNIT FOR AN
ADAPTIVE DYNAMIC EXTENSIBLE PROCESSOR

Noori, Hamid
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Mehdipour, Farhad
Computer Engineering and Information Technology Department, Amirkabir University of Technology

Murakami, Kazuaki
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Inoue, Koji
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

他

https://hdl.handle.net/2324/6794494

出版情報：Proc. of 2006 International Conference on Field Programmable Logic and Applications
(FPL 2006), pp.781-784, 2006-08. International Conference on Field Programmable Logic and
Applications
バージョン：
権利関係：

A RECONFIGURABLE FUNCTIONAL UNIT FOR AN ADAPTIVE DYNAMIC

EXTENSIBLE PROCESSOR

Hamid Noori
*
, Farhad Mehdipour

†
, Kazuaki Murakami

*
, Koji Inoue

*
and Morteza SahebZamani

†

*
Department of Informatics, Graduate School of

Information Science and Electrical

Engineering, Kyushu University, 6-1 Kasuga-

koen, Kasuga, Fukuoka, Japan

 noori@c.csce.kyushu-u.ac.jp,

{murakami,inoue}@i.kyushu-u.ac.jp

†
Computer Engineering and Information

Technology Department, Amirkabir University

of Technology, #424 Hafez Ave., Tehran, Iran

{mehdipur,szamani}@aut.ac.ir

ABSTRACT

This paper presents a reconfigurable functional unit (RFU)

for an adaptive dynamic extensible processor. The

processor can tune its extended instructions to the target

applications, after chip-fabrication. The custom instructions

(CIs) are generated deploying the hot basic blocks during

the training mode. In the normal mode, CIs are executed on

the RFU. A quantitative approach was used for designing

the RFU. The RFU is a matrix of functional units with 8

inputs and 6 outputs. Performance is enhanced up to 1.25

using the proposed RFU for 22 applications of Mibench.

This processor needs no extra opcodes for CIs, new

compiler, source code modification and recompilation.

1. INTRODUCTION

One method for providing enhanced performance is

application-specific instruction set extension. In this

method, the critical portions of an application’s dataflow

graph (DFG) can be accelerated by mapping them to

custom functional units. Instruction set extension improves

performance and also maintains a degree of system

programmability, which enables them to be utilized with

more flexibility. The main problem with this method is that

there are significant non-recurring engineering costs

associated with their implementation.

In our approach, an Adaptive dynaMic extensiBlE

processoR (AMBER) is presented in which the CIs are

adapted to the target applications and generated after chip-

fabrication, fully transparently and automatically. This

approach reduces the design time and cost drastically. Our

CIs are generated by exploiting the HBBs. An HBB is a

basic block that is executed more than a given threshold.

We propose an RFU to support a wide range of generated

CIs. Our 8-input, 6-output RFU is a coarse grain

accelerator based on a matrix of functional units (FUs). It

is tightly coupled with the base processor. In this method,

there is no need to add extra opcodes for CIs, develop a

new compiler, change the source code and recompile it.

2. RELATED WORK

PRISC[1], Chimaera[2], OneChip[3] and XiRisc[4] are

some instances of tightly coupled integration of a GPP with

fine-grain programmable hardware and ADRES [5] is a

sample system with coarse-grain hardware. All of these

designs require a new programming model, a new compiler,

new opcodes for new instructions, source code modification

or recompilation. In our approach, the user just runs the

applications on the base processor, and then, generation of

custom instructions and handling their execution are done

transparently and automatically.

Adaptive dynamic optimization systems such as

Turboscalar [6], rePlay [7], PARROT [8], and Warp

Processors [9] select frequently executed regions of the

code through dynamic profiling, optimize the selected

regions and cache/rewrite the optimized version for future

occurrences. The execution of the optimized version is

carried on by extra tasks sharing the main processor and/or

by extra hardware. To overcome the overhead of dynamic

optimization, we have defined two modes for the system.

The similar design to ours has been proposed by Clark

[10]. However, we use different methods for profiling and

generating, mapping and handling execution of CIs. Our

RFU is not integrated like other functional units. It shares

the available read/write ports. By applying some

modifications in the routing resources and locations of

inputs, our RFU can handle more CIs.

3. GENERAL OVERVIEW OF AMBER

ARCHITECTURE

AMBER has been designed and developed by integrating

three main components to the base processor, namely

profiler, RFU and sequencer. The base processor is a 4-

issue in-order RISC processor that supports MIPS

instruction set. Profiling of running applications is done

by the profiler through monitoring the program counter

(PC) [11]. RFU is a matrix of functional units (FUs) plus a

configuration memory. Each CI updates the PC after its

execution finishes, considering original sequence execution,

so that the processor can continue from the correct address.

The sequencer mainly determines the microcode

execution sequence by selecting between the RFU and the

processor functional unit. It has a table in which the start

addresses of CIs in the object code are specified. The

sequencer monitors the PC and compares it to its table

entries. When it detects that a CI is going to be executed, it

switches from processor functional unit to the RFU, waits

for specified clock cycles and lets the RFU finish the

execution of the CI and then again switches to the processor

functional unit.

AMBER has two operational modes: training mode and

normal mode. In the training mode, applications are run on

the base processor and profiled. Then, the start addresses

of HBBs are detected. Using these addresses, HBBs are

read from the object code. CI generation has been limited

to one HBB. When these processes are done, the processor

switches to the normal mode.

In the normal mode, using the RFU, its configuration

data, sequencer and its table, the CIs are executed on the

RFU. For more details on AMBER, refer to [11].

4. RFU ARCHITECTURE: A QUANTITATIVE

APPROACH

4.1. Tool Flow for Quantitative Approach

We followed a quantitative approach by applying the flow

in Fig. 2 for designing RFU, using 22 applications of

Mibench [12]. Simplescalar [13] was utilized as our

simulator. The simulator was modified to generate a trace

of taken branches and jumps as an input for the profiler for

detecting start addresses of HBBs [11]. For each HBB start

address, its corresponding basic block is read from the

object code. Then DFG is generated for each HBB and

passed to the CI generator tool. The mapping tool receives

the optimized CIs and maps them on RFU.

Our CI generator, mapping tool and RFU were developed

in two phases. In the first phase, we assumed some primary

constraints for both CIs and RFU. CIs were generated and

mapped on RFU considering these constraints. We

concluded a proper architecture for RFU, by analyzing the

feedbacks resulted from mapping. After finalizing the RFU,

an integrated temporal partitioning and mapping framework

was developed for generating CIs. The details of the

framework are out of the scope of this paper.

Primary constraints for generating CIs are: a) supporting

only fixed-point instructions excluding multiply, divide and

load and b) including at most one store and at most one

control instructions. As the primary constrains for the RFU,

a matrix of FUs which can support only fixed-point

instructions of the base processor was assumed without any

limitations on the number of inputs, outputs (I/O) and FUs.

The output of each FU was supposed to be used by the

neighbors in the same row and by all other FUs in the lower

level rows.

Fig. 1. Tool Flow

Our CI generator receives the DFG of each HBB as an

input and then looks for the longest sequence of instructions

that can be executed on the RFU. After checking the flow

dependence and anti-dependence, more instructions are

added to the head and tail of the detected instruction

sequence by moving executable instructions in the object

code. Executable instructions are those instructions that can

be executed by the RFU. For those parts of the object code

where instructions are moved, the object code is rewritten,

if these conditions are met.

 Mapping is the appropriate positioning of DFG nodes

on FUs. Assigning instructions of CI or DFG nodes to FUs

is done based on the priority of nodes. The nodes assigned

lower value of ASAP (As Soon As Possible) have to be

executed earlier. ASAP represents the execution order of

nodes according to their dependencies. After calculating

ASAP of each node, mapping of nodes is done, starting

with lower level nodes to higher level nodes.

4.2. Proposed Architectures for RFU

In this paper, mapping rate is defined as the percentage of

generated CIs that can be mapped on the RFU for 22

applications of Mibench. We have considered the execution

frequency of CIs for measuring the mapping rate as well.

All 22 applications were executed till completion. Because

execution time varies for each application, for a fair

comparison, a weight was assumed for each so that the

production of execution time and weight is equal for all.

 To determine the proper numbers for RFU inputs and

outputs, we mapped our generated CIs on the RFU without

considering any constraints. The curves in Fig. 3 show the

mapping rate for different numbers of inputs and outputs.

According to the results, eight and six are good

candidates for the number of inputs and outputs,

respectively. To find the appropriate number for FUs, we

similarly measured the mapping rate for various numbers of

Profiler Base Processor

Detecting Start
Addr of HBBs

Reading HBBs
from Obj Code

Custom
Instruction
Generator

Optimization
(Constant

Propagation)

Simplescalar
(PISA

Configuratio
n)

Input: 22
Applications of

Mibench

Generating DFG
for HBBs

Updating
DFG

Results are

used for

designing

RFU

Mapping CIs on
the RFU

FUs. The measurement was done for two cases. Once it was

done for CIs that meet our I/O constraints obtained from

last experiments, and in the second case, we did not assume

any limitation. The two graphs in Fig. 4 show that 16 is a

good candidate.

Input/Output No. Analysis

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Input/Output No.

M
a
p
p
in
g
 r
a
te

Mapping rate for Input No.

Mapping rate for Output No.
Fig. 2. Mapping rate for different numbers of I/O

We continued similar procedure to specify the width and

depth of RFU. Experimental results specify that 6 and 5 are

appropriate for width and depth, respectively. By adding the

width and depth constraints to previous constraints, the

mapping rate will reduce from 94.74% to 93.51%.

Measuring the mapping rate for different numbers of FUs

in each row shows that 6, 4, 3, 2 and 1 for first to fifth rows,

respectively, are proper candidates. By adding these new

constraints, the mapping rate reaches to 92.28%. However,

in this architecture, we have assumed that the inputs of the

RFU can be accessed by any FU directly and there are

direct connections from the output of each row to the input

of other lower rows. Moreover, each FU can have inputs

(outputs) from (to) the left and right FUs.

FU Analysis

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Number of FUs in RFU

M
a
p
p
in
g
 r
a
te
e

No constraints

Considering Input/Output constraints

Fig. 3. Mapping rate for different numbers of FUs

 To make the architecture more realistic, we assumed

that all inputs are applied only to the first row. We also

limited the number of connections. The outputs of each row

can be used only by all FUs in the subsequent row. All

connections to and from neighboring FUs were deleted. In

this architecture, for transferring input data to rows below

the first row, or transferring the output of one row to the

input of FUs in a non-subsequent row, move instructions

should be inserted on the intermediate FUs. With these

limitations, the mapping rate decreases to 77.53%.

To improve the mapping rate, we examined many

different configurations and structures. According to the

mapping rate results, we reached to the following

architecture depicted in Fig. 5.

Fig. 4. Optimized RFU architecture

In this architecture, to facilitate data accessing for FUs

and reduce the inserted move instructions (which occupy

FUs), four other longer connections were added to the base

connections. Base connections connect the output of each

row to the inputs of subsequent rows. These four longer

connections connects row 1 to rows 3, 4 and 5 and row 2 to

row 4. We also distributed the input ports among rows. 7, 2,

2, 2, 1 are the number of inputs for the first to fifth rows,

respectively that can facilitate access to inputs directly for

all rows. The number of inputs for the RFU is 8 and these

14 inputs are generated by replicating the main 8 inputs. In

the third and fourth rows, three uni-directional connections

to the neighboring FUs, were added to support CIs with

critical path longer than 5.

Table 1. Number of required functions in each row

Experiments show that each FU of RFU does not need to

support all the operations. We defined three types of

operations: logical operations (type 1), add/sub/compare

(type 2) and shift operations (type 3). Distribution and the

number of operation of each type for each row are given in

Table 1. Considering all the constraints for the second

proposed architecture, the mapping rate increases to

90.48% which is almost 13% better than that for the first

architecture. Each configuration needs 308 bits for control

signals and 204 bits for immediate values.

5. INTEGRATING RFU AND BASE PROCESSOR

Fig. 6 depicts how the RFU is connected to the base

processor. The I/O ports of the processor functional units

Row No. Type 1 Type 2 Type 3

1 2 6 4

2 3 3 2

3 1 3 2

4 1 2 1

5 1 1 0

96.58

96.37

94.74

99.48

have been shared by the RFU. In a conventional processor,

the signals for reading registers are generated by the decode

stage. In this design, two signals control reading the register

file, one comes from decode stage and the other from

configuration bits. Fig. 6 shows four outputs for RFU

whereas we had mentioned that RFU had 6 outputs. To

support RFU with six outputs without adding write port to

the register file, we added two registers to the RFU. When

the custom instruction has more than four outputs, extra

write values are registered. Four of them are written in one

cycle and the remaining ones in the next cycle.

Fig. 5. Integrating RFU with base processor

6. PERFORMANCE EVALUATION

Simplescalar was used as our simulator framework. As for

the base processor, we assumed a 4-issue in-order RISC

processor supporting MIPS instruction set with 32KB L1

data cache (1 cycle hit), 32KB L1 instruction cache (1

cycle hit), 1MB unified L2 cache (6 cycle hit), 64 RUU

size and 64 fetch queue size. We assumed a variable delay

for our RFU which depends on the length of the critical

path after mapping a CI on the RFU. For the first row, we

supposed that it took one clock cycle and for the other

rows 0.5 clock cycle. The delay of RFU for a given CI is

calculated as:

RFU delay =   0.5 *) 1 -ath_lengthcritical_p (1+

1

1.05

1.1

1.15

1.2

1.25

ba
si
cm

at
h

bi
tc
ou

nt
s

qs
or
t

su
sa

n

cj
pe

g

dj
pe

g

la
m
e

di
jk
st
ra

pa
tri
ci
a

st
rin

gs
ea

rc
h

bl
ow

fis
h

rij
nd

ae
l

sh
a

ad
pc

m

fft

gs
m

A
ve

ra
ge

Fig. 6. Speedup obtained for some Mibench App.

7. CONCLUSIONS

Using a quantitative approach, we proposed an RFU for an

adaptive dynamic extensible processor. The RFU has 8

inputs and six outputs with 16 FUs. By adding few longer

connections between rows and facilitating the input access

we could improve the mapping rate by 13%. The

performance improvement was up to 25% and the average

speedup was 1.10.

8. ACKNOWLEDGEMENTS

This research was supported in part by the Grant-in-Aid for

Creative Basic Research, 14GS0218, and for

Encouragement of Young Scientists (A), 17680005.

9. REFERENCES

[1] R. Razdan, and M. Smith, “A high-performance

microarchitecture with hardware-programmable functional

units,” in Proc. MICRO-27, Nov. 1994, pp. 172–180.

[2] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaera

reconfigurable functional unit,” in Proc. IEEE Symp. FPGAs

for Custom Computing Machines, Apr. 1997, pp. 87–96.

[3] J. E. Carrillo, and P. Chow, “The effect of reconfigurable

units in superscalar processors,” in Proc.of the 2001

ACM/SIGDA FPGA, 2002, pp. 141–150,.

[4] A. Lodi, et al., “A VLIW Processor with Reconfigurable

Instruction Set for Embedded Applications,” IEEE Journal

of Solid-State Circuits, vol. 38, no. 11, pp. 1876–1886, 2003.

[5] B. Mei, S. Vernalde, D. Verkest, and R. Lauwereinsg,

“Design Methodolody for a Tightly Coupled

VLIW/Reconfigurable Matrix Architecture: A Case Study,”

in Proc. Design, Automation and Test in Europe, 2004, pp.

1224-1229.

[6] B. Black, and J. P. Shen, “Turboscalar: A High Frequency

High IPC Microarchitecture”, in Proc. ISCA-27, 2000.

[7] S. Patel, and S. Lumetta, “rePlay: A Hardware Framework

for Dynamic Optimization”, IEEE Transaction on

Computers, vol. 50. no. 6, pp. 590-608, 2001.

[8] R. Rosner, Y. Almog, M. Moffie, N. Schwartz, and A.

Mendelson, “Power Awarness through Selective

Dynamically Optimized Traces”, in Proc. ISCA-31, 2004,

pp. 162-175.

[9] http://www.cs.ucr.edu/~vahid/warp/

[10] N. Clark, et al., “Application-Specific Processing on a

General-Purpose Core via Transparent Instruction Set

Customization”, in Proc. MICRO-37, 2004, pp. 30-40.

[11] H. Noori, et al., “A General Overview of an Adaptive

Dynamic Extensible Procesor”, in Proc. Workshop oon

Introspective Architecture, 2006.

[12] www.eecs.umich.edu/mibench

[13] www.Simplescalar.com

DEC/EXE Pipeline Registers

FU1 FU2 FU3 FU4 RFU

Reg
0

……………………………………………………
………….

Reg31

Config Memory

From decode stage

Sequencer

Sequencer

EXE/MEM Pipeline Registers

