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ABSTRACT 

This paper presents a reconfigurable functional unit (RFU) 

for an adaptive dynamic extensible processor. The 

processor can tune its extended instructions to the target 

applications, after chip-fabrication. The custom instructions 

(CIs) are generated deploying the hot basic blocks during 

the training mode. In the normal mode, CIs are executed on 

the RFU. A quantitative approach was used for designing 

the RFU. The RFU is a matrix of functional units with 8 

inputs and 6 outputs. Performance is enhanced up to 1.25 

using the proposed RFU for 22 applications of Mibench. 

This processor needs no extra opcodes for CIs, new 

compiler, source code modification and recompilation. 

1. INTRODUCTION 

One method for providing enhanced performance is 

application-specific instruction set extension. In this 

method, the critical portions of an application’s dataflow 

graph (DFG) can be accelerated by mapping them to 

custom functional units. Instruction set extension improves 

performance and also maintains a degree of system 

programmability, which enables them to be utilized with 

more flexibility. The main problem with this method is that 

there are significant non-recurring engineering costs 

associated with their implementation.  

In our approach, an Adaptive dynaMic extensiBlE 

processoR (AMBER) is presented in which the CIs are 

adapted to the target applications and generated after chip-

fabrication, fully transparently and automatically.  This 

approach reduces the design time and cost drastically. Our 

CIs are generated by exploiting the HBBs. An HBB is a 

basic block that is executed more than a given threshold.  

We propose an RFU to support a wide range of generated 

CIs. Our 8-input, 6-output RFU is a coarse grain 

accelerator based on a matrix of functional units (FUs). It 

is tightly coupled with the base processor. In this method, 

there is no need to add extra opcodes for CIs, develop a 

new compiler, change the source code and recompile it. 

2. RELATED WORK 

PRISC[1], Chimaera[2], OneChip[3] and XiRisc[4] are 

some instances of tightly coupled integration of a GPP with 

fine-grain programmable hardware and ADRES [5] is a 

sample system with coarse-grain hardware. All of these 

designs require a new programming model, a new compiler, 

new opcodes for new instructions, source code modification 

or recompilation. In our approach, the user just runs the 

applications on the base processor, and then, generation of 

custom instructions and handling their execution are done 

transparently and automatically.  

Adaptive dynamic optimization systems such as 

Turboscalar [6], rePlay [7], PARROT [8], and Warp 

Processors [9] select frequently executed regions of the 

code through dynamic profiling, optimize the selected 

regions and cache/rewrite the optimized version for future 

occurrences. The execution of the optimized version is 

carried on by extra tasks sharing the main processor and/or 

by extra hardware. To overcome the overhead of dynamic 

optimization, we have defined two modes for the system. 

The similar design to ours has been proposed by Clark 

[10]. However, we use different methods for profiling and 

generating, mapping and handling execution of CIs. Our 

RFU is not integrated like other functional units. It shares 

the available read/write ports. By applying some 

modifications in the routing resources and locations of 

inputs, our RFU can handle more CIs.  

3. GENERAL OVERVIEW OF AMBER 

ARCHITECTURE 

AMBER has been designed and developed by integrating 

three main components to the base processor, namely 

profiler, RFU and sequencer. The base processor is a 4-

issue in-order RISC processor that supports MIPS 

instruction set.  Profiling of running applications is done 

by the profiler through monitoring the program counter 

(PC) [11]. RFU is a matrix of functional units (FUs) plus a 

configuration memory. Each CI updates the PC after its 



execution finishes, considering original sequence execution, 

so that the processor can continue from the correct address.  

The sequencer mainly determines the microcode 

execution sequence by selecting between the RFU and the 

processor functional unit. It has a table in which the start 

addresses of CIs in the object code are specified. The 

sequencer monitors the PC and compares it to its table 

entries. When it detects that a CI is going to be executed, it 

switches from processor functional unit to the RFU, waits 

for specified clock cycles and lets the RFU finish the 

execution of the CI and then again switches to the processor 

functional unit.  

AMBER has two operational modes: training mode and 

normal mode. In the training mode, applications are run on 

the base processor and profiled. Then, the start addresses 

of HBBs are detected. Using these addresses, HBBs are 

read from the object code. CI generation has been limited 

to one HBB. When these processes are done, the processor 

switches to the normal mode.  

In the normal mode, using the RFU, its configuration 

data, sequencer and its table, the CIs are executed on the 

RFU. For more details on AMBER, refer to [11].  

4. RFU ARCHITECTURE: A QUANTITATIVE 

APPROACH 

4.1. Tool Flow for Quantitative Approach 

We followed a quantitative approach by applying the flow 

in Fig. 2 for designing RFU, using 22 applications of 

Mibench [12]. Simplescalar [13] was utilized as our 

simulator. The simulator was modified to generate a trace 

of taken branches and jumps as an input for the profiler for 

detecting start addresses of HBBs [11]. For each HBB start 

address, its corresponding basic block is read from the 

object code. Then DFG is generated for each HBB and 

passed to the CI generator tool. The mapping tool receives 

the optimized CIs and maps them on RFU.  

Our CI generator, mapping tool and RFU were developed 

in two phases. In the first phase, we assumed some primary 

constraints for both CIs and RFU. CIs were generated and 

mapped on RFU considering these constraints. We 

concluded a proper architecture for RFU, by analyzing the 

feedbacks resulted from mapping. After finalizing the RFU, 

an integrated temporal partitioning and mapping framework 

was developed for generating CIs. The details of the 

framework are out of the scope of this paper.  

Primary constraints for generating CIs are: a) supporting 

only fixed-point instructions excluding multiply, divide and 

load and b) including at most one store and at most one 

control instructions. As the primary constrains for the RFU, 

a matrix of FUs which can support only fixed-point 

instructions of the base processor was assumed without any 

limitations on the number of inputs, outputs (I/O) and FUs. 

The output of each FU was supposed to be used by the 

neighbors in the same row and by all other FUs in the lower 

level rows. 

 

 
Fig. 1.  Tool Flow 

Our CI generator receives the DFG of each HBB as an 

input and then looks for the longest sequence of instructions 

that can be executed on the RFU. After checking the flow 

dependence and anti-dependence, more instructions are 

added to the head and tail of the detected instruction 

sequence by moving executable instructions in the object 

code. Executable instructions are those instructions that can 

be executed by the RFU. For those parts of the object code 

where instructions are moved, the object code is rewritten, 

if these conditions are met.  

 Mapping is the appropriate positioning of DFG nodes 

on FUs. Assigning instructions of CI or DFG nodes to FUs 

is done based on the priority of nodes. The nodes assigned 

lower value of ASAP (As Soon As Possible) have to be 

executed earlier. ASAP represents the execution order of 

nodes according to their dependencies. After calculating 

ASAP of each node, mapping of nodes is done, starting 

with lower level nodes to higher level nodes.  

4.2. Proposed Architectures for RFU 

In this paper, mapping rate is defined as the percentage of 

generated CIs that can be mapped on the RFU for 22 

applications of Mibench. We have considered the execution 

frequency of CIs for measuring the mapping rate as well. 

All 22 applications were executed till completion. Because 

execution time varies for each application, for a fair 

comparison, a weight was assumed for each so that the 

production of execution time and weight is equal for all. 

 To determine the proper numbers for RFU inputs and 

outputs, we mapped our generated CIs on the RFU without 

considering any constraints. The curves in Fig. 3 show the 

mapping rate for different numbers of inputs and outputs. 

According to the results, eight and six are good 

candidates for the number of inputs and outputs, 

respectively. To find the appropriate number for FUs, we 

similarly measured the mapping rate for various numbers of 
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FUs. The measurement was done for two cases. Once it was 

done for CIs that meet our I/O constraints obtained from 

last experiments, and in the second case, we did not assume 

any limitation. The two graphs in Fig. 4 show that 16 is a 

good candidate.  
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Fig. 2.  Mapping rate for different numbers of I/O 

We continued similar procedure to specify the width and 

depth of RFU. Experimental results specify that 6 and 5 are 

appropriate for width and depth, respectively. By adding the 

width and depth constraints to previous constraints, the 

mapping rate will reduce from 94.74% to 93.51%. 

Measuring the mapping rate for different numbers of FUs 

in each row shows that 6, 4, 3, 2 and 1 for first to fifth rows, 

respectively, are proper candidates. By adding these new 

constraints, the mapping rate reaches to 92.28%. However, 

in this architecture, we have assumed that the inputs of the 

RFU can be accessed by any FU directly and there are 

direct connections from the output of each row to the input 

of other lower rows. Moreover, each FU can have inputs 

(outputs) from (to) the left and right FUs. 
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Fig. 3.  Mapping rate for different numbers of FUs 

 To make the architecture more realistic, we assumed 

that all inputs are applied only to the first row. We also 

limited the number of connections. The outputs of each row 

can be used only by all FUs in the subsequent row. All 

connections to and from neighboring FUs were deleted. In 

this architecture, for transferring input data to rows below 

the first row, or transferring the output of one row to the 

input of FUs in a non-subsequent row, move instructions 

should be inserted on the intermediate FUs. With these 

limitations, the mapping rate decreases to 77.53%. 

To improve the mapping rate, we examined many 

different configurations and structures. According to the 

mapping rate results, we reached to the following 

architecture depicted in Fig. 5. 

 

   
Fig. 4.  Optimized RFU architecture 

In this architecture, to facilitate data accessing for FUs 

and reduce the inserted move instructions (which occupy 

FUs), four other longer connections were added to the base 

connections. Base connections connect the output of each 

row to the inputs of subsequent rows. These four longer 

connections connects row 1 to rows 3, 4 and 5 and row 2 to 

row 4. We also distributed the input ports among rows. 7, 2, 

2, 2, 1 are the number of inputs for the first to fifth rows, 

respectively that can facilitate access to inputs directly for 

all rows. The number of inputs for the RFU is 8 and these 

14 inputs are generated by replicating the main 8 inputs. In 

the third and fourth rows, three uni-directional connections 

to the neighboring FUs, were added to support CIs with 

critical path longer than 5. 

 

Table 1.  Number of required functions in each row 

 

 

 

Experiments show that each FU of RFU does not need to 

support all the operations. We defined three types of 

operations: logical operations (type 1), add/sub/compare 

(type 2) and shift operations (type 3). Distribution and the 

number of operation of each type for each row are given in 

Table 1.  Considering all the constraints for the second 

proposed architecture, the mapping rate increases to 

90.48% which is almost 13% better than that for the first 

architecture. Each configuration needs 308 bits for control 

signals and 204 bits for immediate values. 

5. INTEGRATING RFU AND BASE PROCESSOR 

Fig. 6 depicts how the RFU is connected to the base 

processor. The I/O ports of the processor functional units 

Row No. Type 1 Type 2 Type 3 

1 2 6 4 

2 3 3 2 

3 1 3 2 

4 1 2 1 

5 1 1 0 

96.58 

96.37 

94.74 

99.48 



have been shared by the RFU. In a conventional processor, 

the signals for reading registers are generated by the decode 

stage. In this design, two signals control reading the register 

file, one comes from decode stage and the other from 

configuration bits. Fig. 6 shows four outputs for RFU 

whereas we had mentioned that RFU had 6 outputs. To 

support RFU with six outputs without adding write port to 

the register file, we added two registers to the RFU. When 

the custom instruction has more than four outputs, extra 

write values are registered. Four of them are written in one 

cycle and the remaining ones in the next cycle.  

 

  
Fig. 5.  Integrating RFU with base processor 

6. PERFORMANCE EVALUATION 

Simplescalar was used as our simulator framework. As for 

the base processor, we assumed a 4-issue in-order RISC 

processor supporting MIPS instruction set with 32KB L1 

data cache (1 cycle hit), 32KB L1 instruction cache (1 

cycle hit), 1MB unified L2 cache (6 cycle hit), 64 RUU 

size and 64 fetch queue size. We assumed a variable delay 

for our RFU which depends on the length of the critical 

path after mapping a CI on the RFU. For the first row, we 

supposed that it took one clock cycle and for the other 

rows 0.5 clock cycle. The delay of RFU for a given CI is 

calculated as:  

RFU delay =   0.5 * ) 1 -ath_lengthcritical_p (  1+  
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Fig. 6.  Speedup obtained for some Mibench App. 

7. CONCLUSIONS 

Using a quantitative approach, we proposed an RFU for an 

adaptive dynamic extensible processor. The RFU has 8 

inputs and six outputs with 16 FUs. By adding few longer 

connections between rows and facilitating the input access 

we could improve the mapping rate by 13%.  The 

performance improvement was up to 25% and the average 

speedup was 1.10.  
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