
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Exploiting Narrow Bitwidth Operations for Low
Power Embedded Software Design

Yamaguchi, Seiichiro
Department of Computer Science and Communication Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University

Muroyama, Masanori
System LSI Research Center, Kyushu University

Ishihara, Tohru
System LSI Research Center, Kyushu University

Yasuura, Hiroto
Department of Computer Science and Communication Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University | System LSI Research Center, Kyushu
University

https://hdl.handle.net/2324/6794491

出版情報：Proceedings of the Workshop on Synthesis And System Integration of Mixed Infomation
Technologies, pp.51-56, 2006-04. Workshop on Synthesis And System Integration of Mixed
Infomation Technologies
バージョン：
権利関係：

Exploiting Narrow Bitwidth Operations for Low Power Embedded Software Design

Abstract - This paper proposes a low power software design
technique for processor-based embedded systems. A basic idea is
to reduce switching activities in sign extension bits of instruction
operands through shifting the operands. To the best of our
knowledge, this is the first software-level power reduction
technique which exploits narrow bitwidth operations. Our
technique, called shifted operation technique in this paper,
consists of following three steps: 1) shift operands from LSB side
toward MSB side by optimal shift amount, 2) execute instructions
with the shifted operands, and 3) shift back computational results
to original positions. Experimental results exploiting shifted
operation technique show about 10.7% energy reduction of
datapath, and about 5.5% energy reduction of overall processor.

I. Introduction

Short time to market, low cost and low power are important
requirements in embedded system design. Especially, low
power is the most important requirement in portable systems
such as cellular phones and PDAs. In embedded system
design environment, degrees of freedom in hardware are often
very limited, whereas much more freedom is available in
software. In addition to the benefit, software-oriented
optimization is applicable to general purpose processors. In
this paper, we propose a low power software design technique
for processor-based embedded systems.

Processors are implemented by digital CMOS circuits.
There are three major sources of power consumption in digital
CMOS circuits. These sources are switching power,
short-circuit power and leakage power [1]. In particular, the
switching power for charging and discharging of load
capacitance is the most major source of the power
consumption. The switching power is shown as follows:

)1(2 LclkddLsw fVCP ⋅⋅⋅= α
where α denotes the switching activity factor, CL represents
the load capacitance, Vdd is the supply voltage and fclk is the
clock frequency. According to (1), several approaches can
reduce the switching power. In this paper, we focus on
reducing the switching activity factor. Since the short-circuit
power is consumed at the time of transistor switching, the
short-circuit power can be reduced through reducing the
switching activity factor as well. The switching power and the
short-circuit power are called dynamic power, which is our
target to reduce.

To design a low power processor-based embedded
system, we propose a novel low power design technique
exploiting narrow bitwidth operations at software-level. This

is the first software-level power reduction technique. Since
software-level power reduction techniques do not require any
hardware modifications, the techniques can be easily applied
to existing processor-based embedded systems. Therefore, our
technique satisfies the requirements of short time to market
and low cost. Two’s complement representation is typically
chosen to represent numbers since arithmetic operations are
easy to perform in processor systems. One of problems with
two’s complement representation is sign extension. Due to
sign extension, an arithmetic operation for narrow bitwidth
operands requires the dynamic power throughout entire word
length. We reduce the dynamic power consumption due to
sign extension through shifting the narrow bitwidth operands.
Our technique, called shifted operation technique in this paper,
consists of following three steps: 1) shift operands from LSB
side toward MSB side by optimal shift amount, 2) execute
instructions with the shifted operands, and 3) shift back
computational results to original positions. Shifted operation
technique is effective to overall datapath of processor, because
sign extension affects the dynamic power consumption of not
only arithmetic circuits, but also buses, registers and logical
circuits.

In this paper, we present a mechanism of the power
reduction exploiting narrow bitwidth operations. To find
optimal shift amount for each variable of a target application
source code, we formulate shift amount optimization problem.
Shifted operation technique generates low energy source
codes through inserting shift operations to the target
application source code according to the optimal shift amount
for each variable. This paper is organized as follows: Section
II discusses related work and presents our approach. In
Section III, we formulate shift amount optimization problem.
Experimental results are presented in Section IV. Finally,
Section V concludes this paper.

II. Related Work and Our Approach

A. Previous Work

There are several approaches for reducing the switching
activities in sign extension bits. Using other number
representation is one of the approaches. Sign-magnitude
representation in which only one bit is allocated for the sign
and the rest for the magnitude [2]. Significance compression is
also effective through appending two or three extra bits to
represent significant bytes [3]. Reduced two’s-complement

Seiichiro Yamaguchi† Masanori Muroyama‡ Tohru Ishihara‡ Hiroto Yasuura†‡

† Department of Computer Science and Communication Engineering,
Graduate School of Information Science and Electrical Engineering, Kyushu University

6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580 JAPAN
{seiichiro, yasuura}@c.csce.kyushu-u.ac.jp

‡ System LSI Research Center, Kyushu University
3-8-33 Momochihama, Sawara-ku, Fukuoka-shi, Fukuoka 814-0001 JAPAN

{muroyama, ishihara}@slrc.kyushu-u.ac.jp

representation generates a representation dynamically
according to a magnitude of number [4]. In addition, low
power adder operating which considers narrow bitwidth
operands dynamically is proposed in [5], and several bus
coding techniques are discussed in [6], [7], [8]. Brooks et al.
showed that over half of integer operation executions require
16-bits or less across SPECint95 benchmarks [9]. We also
exploit this fact for low power embedded software design.

These techniques mentioned above need some hardware
modifications. On the other hand, shifted operation technique
does not need any hardware modifications. Therefore, shifted
operation technique can be applied to existing
processor-based embedded systems.

B. Motivational Example

To illustrate a key point of shifted operation technique, we
introduce a motivational example by using 32-bits Ripple
Carry Adder (RCA). In Fig. 1, two input operands, x(t) and
y(t), represented by two’s complement are added where x(t-1)
and y(t-1) are previous input operands. Since the dynamic
power of RCA originates from the switching activities of two
input operands changing from x(t-1) and y(t-1) to x(t) and y(t),
four input operands have to be considered. Significant bits of
all the operands are only 8-bits. Rectangles indicate significant
bits of the operands. The MSB in significant bits is the sign bit.
Remaining upper 24-bits are sign extension bits for
conventional operation. Meanwhile, lower 24-bits are all ‘0’
for shifted operation because the operands are shifted from
LSB side toward MSB side firstly. A large number of the
switching activities due to sign extension are generated when
conventional operation is executed. On the other hand, there is
no switching activity due to sign extension when shifted
operation is applied.

We compared the dynamic power consumptions at
gate-level by using Cadence NC-Verilog to count the
switching activities of all nets, and using Synopsys Power
Compiler to estimate the dynamic power consumptions. A
process technology we used is Hitachi CMOS 0.18μm
standard cell library. Supply voltage is 2.5V and clock
frequency to RCA is 10MHz. In this case, the dynamic power
consumptions of RCA are 61.3μW for conventional operation
and 12.0μW for shifted operation. The dynamic power
consumption is reduced 80.4% through applying shift
operation technique. Note that we ignored overheads to shift
operands. Of course, we consider the overheads and discuss
their reduction in the following subsection.

C. Our Approach

This subsection presents an overview of our approach.
Previous subsection introduced the power reduction
mechanism of shifted operation technique. However, there is a
huge issue on the overheads due to shift operations. There is
no guarantee that narrow bitwidth operations are always
executed on datapath. In other words, not all operands can be
shifted. Another point to notice is that operational bitwidth for
each instruction may be difference each other. We cannot
insert shift operations for each instruction because of the

Shifted operation

01110011 00 ... 00
10010101 00 ... 00

X

32-bits RCA

10110110 00 ... 00
01000101 00 ... 00t-1

t

Y

X+Y

00101001 00 ... 00
11011010 00 ... 00

All ‘0’
24-bits8-bits

t-1
t

Conventional operation

00 ... 00 01110011
11 ... 11 10010101

X

32-bits RCA

11 ... 11 10110110
00 ... 00 01000101t-1

t

Y

X+Y

00 ... 00 00101001
11 ... 11 11011010

Sign Extension
24-bits 8-bits

Sign Extension
24-bits 8-bits

t-1
t

Sign Extension
24-bits 8-bits

All ‘0’
24-bits8-bits

All ‘0’
24-bits8-bits

Shifted operation

01110011 00 ... 00
10010101 00 ... 00

X

32-bits RCA

10110110 00 ... 00
01000101 00 ... 00t-1

t

Y

X+Y

00101001 00 ... 00
11011010 00 ... 00

All ‘0’
24-bits8-bits

t-1
t

Conventional operation

00 ... 00 01110011
11 ... 11 10010101

X

32-bits RCA

11 ... 11 10110110
00 ... 00 01000101t-1

t

Y

X+Y

00 ... 00 00101001
11 ... 11 11011010

Sign Extension
24-bits 8-bits

Sign Extension
24-bits 8-bits

t-1
t

Sign Extension
24-bits 8-bits

All ‘0’
24-bits8-bits

All ‘0’
24-bits8-bits

Fig. 1. Motivational Example by using 32-bits Ripple Carry Adder.

overheads. It is clear that the overheads dramatically increase
if we insert shift operations before and after every instruction.
To keep down the overheads, we shift each variable of a target
application source code only once according to the operational
bitwidth. Since the dynamic power consumption strongly
depends on the operational bitwidth and the overheads, it is
necessary to find optimal shift amount for each variable. We
should consider additional time/power overheads due to shift
operations. Shifted operation technique reduces energy
consumption which is a product of average power
consumption and execution time. Fig. 2 shows the overview of
our approach, and details of the overview are as follows:

Given data [abbr.]:
・ C source code of target application [Target-C]
・ Chip or HDL code of target processor [IP]
・ Target process technology [Process]
・ Training data for instruction trace [Data1]
・ Training data for energy characterization [Data2]

Given tools [abbr.]
・ Compiler for the target processor [Compiler]
・ Instruction set simulator for the target processor [ISS]
・ Energy estimation tools [Tool]

Procedure prototype [abbr.] (in1, ...) - out1 [abbr.], ...:
・ Compile [Compile] (Target-C, Compiler)

- Assembler source code of the target application [Asm]
- Object code of the target application [Obj]

・ Variable size analysis [VSA] (Target-C)
- Effective bitwidth for each variable [EB]

・ Operand size analysis [OSA] (Asm, EB)
- Minimum operational bitwidth for each instruction
 [MOB]

・ Instruction trace [Trace] (Obj, Data1, ISS)
- Trace data [T-Data]

・ Energy characterization [EC] (IP, Process, Data2, Tool)
- Energy consumption model for each circuit module
 [EM]

・ Shift amount analysis for each variable [SAA]
 (EB, MOB, T-Data, EM)

- Optimal shift amount for each variable [OSA]
・ Code Optimization [Optimization] (Target-C/Asm, OSA)

- Optimized C/assembler source code
 [Optimized-C/-Asm]

SAA

Optimization

Optimized-Asm

Compile

Compiler

VSA

OSA

Optimized-C

EC

Data2IP

Tool

EM

Trace

Data1 ISS Obj

T-Data

OSA

EB

MOB

Target-C*

Asm**

Asm**Target-C*

Process

SAA

Optimization

Optimized-Asm

Compile

Compiler

VSA

OSA

Optimized-C

EC

Data2IP

Tool

EM

Trace

Data1 ISS Obj

T-Data

OSA

EB

MOB

Target-C*Target-C*

Asm**Asm**

Asm**Asm**Target-C*Target-C*

Process

Fig. 2. Overview of our approach to generate a low energy
C/assembler source code.

Output [abbr.]:
・ Optimized C/assembler source code [Optimized-C/-Asm]

Four parameters are needed to find the optimal shift amount
for each variable: effective bitwidth for each variable,
minimum operational bitwidth for each instruction, trace data
and energy consumption model for each circuit module.

First of all, we compile C source code of a target
application, and find the effective bitwidth for each variable
by variable size analysis. After that, the minimum operational
bitwidth for each instruction is found by operand size analysis.
We define the effective bitwidth as a smallest bitwidth which
can hold both maximum and minimum values of variable or
operand, and the minimum operational bitwidth as the largest
effective bitwidth of instruction operands. In many cases,
some bits of variables are never used during execution of the
target application program. For example, if an integer type
variable x of which value is in [-500, 500], between -500 and
500, then the effective bitwidth of x is 10-bits, because 10-bits
are enough to hold any value in [-500, 500]. There are two
approaches to analyze the effective bitwidth [10]. One is static
analysis, and the other is simulation-based dynamic analysis.
In shifted operation technique, variable size analysis and
operand size analysis apply the static analysis. Next, to obtain
the trace data, we simulate the object code with the training
data by using instruction set simulator. Energy
characterization estimates the average dynamic power
consumptions for each circuit modules by using power
estimation tools. Then, we calculate products of the average
dynamic power consumptions and the execution times as the
energy consumption model for each circuit module.

After obtaining these four parameters, we find the
optimal shift amount for each variable by shift amount
analysis. Shift amount analysis, which is the main procedure
of shifted operation technique, is to solve shift amount

optimization problem formulated in the next section. Finally,
low energy C/assembler source codes are generated through
inserting shift operations to original C/assembler source code
according to the optimal shift amount for each variable.

III. Problem Description

A. Notation

We define notations used in formulation of shift amount
optimization problem.

・ M: Number of target circuit modules, such as adders,

multipliers, logic units, latches and buses.

・ Nm: Number of instructions which appeared in the object

code and can be executed on circuit module m. Instruction
is identified by its memory address.

・ Pm,i: Number of instructions which can be executed on

circuit module m immediately before instruction i.

・ W: Datapath width of the target processor.

・ Em,i,i’,w,w’: Energy consumption model of circuit module m

when operational bitwidth of instruction i is w-bits and
operational bitwidth of instruction i’ is w’-bits
immediately before instruction i. Note that the Em,i,i’,w,w’
can be modeled by following parameters:
- Type of circuit module m on which instruction i and i’

are executed.
- Operational bitwidth of instruction i (w-bits).
- Operational bitwidth of instruction i’ (w’-bits).
- Effective bitwidths for each operand of instruction i.
- Effective bitwidths for each operand of instruction i’.

・ Xm,i,i’: Number of executions for instruction i executed on

circuit module m immediately after instruction i’.

・ Bi: Minimum operational bitwidth which guarantees

instruction i to be executed without sacrificing any
computational precisions.

・ vm,i,i’,w,w’: 0-1 integer variable to be determined. The

variable is set to 1 if instruction i is executed on circuit
module m with w-bits and instruction i’ is executed with
w’-bits immediately before instruction i. Otherwise it is set
to 0.

B. ILP Formulation

Shift amount optimization problem is formulated as follows:

Objective function to be minimized:

)2(
1 1 1' 1 1'

',,',,',,',,',,

,

L∑∑∑∑∑
= = = = =

⋅⋅
M

m

N

i

P

i

W

w

W

w
wwiimiimwwiim

m im

vXE

Subject to:

For each i and i’)3(1
1 1'

',,',, L=∑∑
= =

W

w

W

w
wwiimv

where i’ denotes an instruction executed on circuit module m
immediately before instruction i. Note that a number of i’s can
be more than one.

For each i and i’)4(
1 1'

',,',, Li
W

w

W

w

wwiim Bvw ≥⋅∑∑
= =

where i’ denotes an instruction executed on circuit module m
immediately before instruction i. Note that a number of i’s can
be more than one.

For each i and i’

)5(''
1' 1''

'',','',',

1 1'

',,',, L∑∑∑∑
= == =

⋅=⋅
W

w

W

w

wwiim

W

w

W

w

wwiim vwvw

where i’ denotes an instruction executed on circuit module m
immediately before instruction i. Note that a number of i’s can
be more than one.

For each i and j

)6(
1 1'

',,',,

1 1'

',,',, L∑∑∑∑
= == =

⋅=⋅
W

z

W

z

zzjjm

W

w

W

w

wwiim vzvw

where j denotes an instruction which shares at least one
variable with instruction i. Note that a number of js can be
more than one.

The first constraint (3) indicates that only one operational
bitwidth should be assigned to each instruction. The second
constraint (4) means that operational bitwidth for instruction i
must be greater than or equal to the minimum operational
bitwidth which guarantees instruction i to be executed without
sacrificing any computational precisions. The third constraint
(5) indicates that operational bitwidth w’ determined by
vm,i,i’,w,w’ and that determined by vm,i’,i’’,w’,w’’ should be
consistent. The last one (6) means that operational bitwidths of
instructions which use a same variable as its operand should
be equal to each other. Shift amount optimization problem can
be formally defined as follows:

“For given Pm,i, Em,i,i’,w,w’, Xm,i,i’ and Bi, find a set of vm,i,i’,w,w’
which minimizes the objective function (2) under constraints
of (3), (4), (5) and (6).”

Clearly shift amount optimization problem defined above
is an integer linear programming (ILP) problem. Therefore,
complexity of the problem depends on a polynomial of the
number of variables to be determined (M×N2×W2) and the
number of constraints (M×N2). Here N denotes the number of
instructions in the object code. Shift amount optimization
problem cannot be solved within a practical time if M, N and
W are large numbers. Our idea for reducing the complexity of
the problem is to reduce N and W. Operational bitwidth for
each instruction can be any integer values between 0 to W.
However, if we limit the shift amount into predefined values,
the complexity can be reduced. For example, if we limit the
shift amount into multiples of 4, the problem size can be

quartered. Since N is the number of instructions in the object
code, N can be decreased by reducing the target code size. For
example, we can reduce N by applying our technique to
frequently executed functions only. If the complexity is still
high, then we need to come up with new heuristic algorithm.

IV. Experiments and Results

A. Experimental Framework

To evaluate the effectiveness of shifted operation technique,
we experiment under following conditions:

Given data:
・ Target-C: C source code of 16-points moving average filter
・ IP: HDL code of M32R-II processor core
 (32-bits RISC processor of Renesas Technology)
・ Process: Hitachi CMOS 0.18μm standard cell library
・ Data1: Sign wave (# of samples: 4096, 1 sample: 16-bits)
・ Data2: Random data

Given tools:
・ Compiler: m32r-linux-gcc
・ ISS: m32r-linux-run
・ Tool: Cadence NC-Verilog, Synopsys Design Compiler

and Synopsys Power Compiler

Other conditions, supply voltage is 2.5V and clock frequency
to M32R-II processor core is 10MHz. Fig. 3 shows the
architecture of 16-points moving average filter we used as
Target-C.

We use an optimization option “-O3” when we compile
the C source codes. Energy characterization estimates the
average dynamic power consumptions for each circuit module
with synthesized HDL code of processor core by using
Synopsys Design Compiler to synthesize the HDL code, and
using Cadence NC-Verilog to count the switching activities of
all net, and using Synopsys Power Compiler to estimate the
average power consumptions. We insert shift operations to
original source codes by hand according to the results of shift
amount optimization problem which is the optimal shift
amount for each variable.

After inserting shift operations, we compile the
optimized C source code with an optimization option “-O3”,
and assemble the optimized assembler source code with no
options. In the first case, there is a possibility that the original
object code and the optimized one are different. In the latter
case, those object codes are always same except shift
operations inserted by shifted operation technique. This means
that the shifted operation technique at assembler source-level
has execution cycle overheads absolutely. These three object
codes are simulated on the synthesized HDL code of processor
core to estimate the average dynamic power consumptions,
and to obtain the execution times.

B. Experimental Results

The result of variable size analysis for 16-points moving
average filter is tabulated in TABLE I. Since the bitwidth of

Z-1Z-1 Z-1

[] []∑
=

−=
15

0k
kninnsum

[]2−nin []14−nin []15−nin[]nin

[] [] 4>>= nsumnout

shift

[]1−nin

∑

Z-1Z-1 Z-1

[] []∑
=

−=
15

0k
kninnsum

[]2−nin []14−nin []15−nin[]nin

[] [] 4>>= nsumnout

shift

[]1−nin

∑

Fig. 3. Architecture of 16-points moving average filter.

TABLE I
Result of Variable Size Analysis for 16-points Moving Average Filter

Variable
Name

Effective
Bitwidth

Variable
Name

Effective
Bitwidth

in[n] 16 in[n-9] 16
in[n-1] 16 in[n-10] 16
in[n-2] 16 in[n-11] 16
in[n-3] 16 in[n-12] 16
in[n-4] 16 in[n-13] 16
in[n-5] 16 in[n-14] 16
in[n-6] 16 in[n-15] 16
in[n-7] 16 sum[n] 20
in[n-8] 16 out[n] 16

input data is 16-bits, the effective bitwidth of all the variables
except sum[n] are 16-bits. However, we cannot shift the
variables by 16-bits, because the minimum operational
bitwidth is defined as the largest effective bitwidth of
instruction operands.

Fig. 4 shows power estimation results of 32-bits RCA for
shifted operation technique while changing the operational
bitwidth at t and t-1, respectively. Assume that the effective
bitwidths of input operands are equal to each other, and equal
to the operational bitwidth. Therefore, if the operational
bitwidth is 8-bits, then lower 24-bits of the operands are all ‘0’.
Fig. 3 shows that the average dynamic power consumption is
roughly proportional to the larger operational bitwidth either
at t or t-1.

We find that the optimal shift amount for all the operands
are 12-bits through solving shift amount optimization problem.
Additional time overheads due to shift operations are shown in
TABLE II. The number of execution cycles increases only
1.2% in assembler source-level optimization. On the other
hand, the number of execution cycles decrease 3.4% in C
source-level optimization. We have to discuss about reasons of
the results. This is our future work.

TABLE III shows both cases can reduce power/energy
consumption of datapath even if assembler source-level
optimization increased the number of execution cycles. The
results show about 7.6%/4.9% power reduction and about
10.7%/3.7% energy reduction for shifted operation technique
at C/assembler source-level optimization. In addition to the

1
32 1

32

0

10

20

30

40

50

Po
w

er
 C

on
su

m
pt

io
n

[μ
W

]

Operational bitwidth at t-1

Operational
bitwidth at t

0-10 10-20 20-30 30-40 40-50

Fig. 4. Power estimation results of 32-bits RCA for shifted operation
technique.

TABLE II
Number of Execution Cycles and Instructions

Object Code Execution Cycles Instructions
Original 289,246 204,844
Optimized-C 279,520 (-3.4%) 204,843 (0.0%)
Optimized-Asm 292,833 (1.2%) 208,940 (2.0%)

TABLE III
Power/Energy Estimation Results of Datapath

Object Code Module Power [mW] Energy [mJ]
Registers 12.09 349.7
Buses 4.73 136.8
ALU 4.71 136.2
Shifter 0.52 15.1

Original

Total 22.05 637.9
Registers 11.43 (-5.5%) 319.4 (-8.7%)
Buses 4.17 (-11.9%) 116.5 (-14.8%)
ALU 4.01 (-14.9%) 111.9 (-17.8%)
Shifter 0.78 (48.6%) 21.7 (43.6%)

Optimized-C

Total 20.39 (-7.6%) 569.6 (-10.7%)
Registers 11.49 (-5.0%) 336.5 (-3.8%)
Buses 4.51 (-4.8%) 132.0 (-3.6%)
ALU 4.21 (-10.6%) 123.3 (-9.5%)
Shifter 0.76 (45.9%) 22.3 (47.7%)

Optimized-Asm

Total 20.97 (-4.9%) 614.1 (-3.7%)

TABLE IV
Power/Energy Estimation Results of Overall Processor Core

Object Code Power [mW] Energy [J]
 Original 76.65 2.22
 Optimized-C 74.99 (-2.2%) 2.10 (-5.5%)
 Optimized-Asm 74.56 (-2.7%) 2.18 (-1.5%)

effectiveness, TABLE IV shows about 2.2%/2.7% power
reduction and about 5.5%/1.5% energy reduction of overall
processor.

V. Conclusions

We have proposed a novel low power software design
technique, called shifted operation technique, exploiting
narrow bitwidth operations for processor-based embedded
systems. Shifted operation technique consists of following
three steps: 1) shift operands from LSB side toward MSB side
by optimal shift amount, 2) execute instructions with the
shifted operands, and 3) shift back computational results to
original positions. We also have presented shift amount
optimization problem as a 0-1 integer linear programming
problem. Experimental results exploiting shifted operation
technique have shown about 10.7% energy reduction of
datapath and about 5.5% energy reduction of overall processor.
Our future work are as follows:
・ To define an algorithm to solve shift amount optimization

problem
・ To discuss reasons of the energy reduction
・ To experiment by using other benchmarks and other

processors

Acknowledgements

This work has been supported in part by the Grant-in-Aid for
Creative Scientific Research No. 14GS0218 and the grant of
Fukuoka project in the Cooperative Link of Unique Science
and Technology for Economy Revitalization (CLUSTER) of
the Ministry of Education, Culture, Sports, Science and
Technology (MEXT). This work is supported by Core
Research for Evolutional Science and Technology (CREST) of
Japan Science and Technology Corporation (JST). This work
is supported by VLSI Design and Education Center (VDEC),
The University of Tokyo with the collaboration of Renesas
Technology, Hitachi, Ltd, Cadence Design Systems, Inc. and
Synopsys, Inc. We are grateful for their support.

References

[1] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI

Design - A System Perspective - Second Edition,
Addison-Wesley, 1993.

[2] A. P. Chandrakasan and R. W. Brodersen, “Minimizing Power
Consumption in Digital CMOS Circuits,” in Proceedings of the
IEEE, vol. 83, no. 4, pp.498-523, April 1995.

[3] R. Canal, A. González and J. E. Smith, “Very Low Power
Pipelines using Significance Compression,” in Proceedings of
the 33rd International Symposium on Microarchitecture,
pp.181-190, 2000.

[4] Z. Yu, M.-L. Yu, K. Azadet and A. N. Willson., Jr. “The Use of
Reduced Two’s-Complement Representation in Low-Power DSP
Design,” in Proceedings of IEEE International Symposium on
Circuit and Systems, vol. 1, pp.I-77-I-80, May 2002.

[5] O. T.-C. Chen, R. R.-B. Sheen and S. Wang, “A Low-Power
Adder Operating on Effective Dynamic Data Ranges,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 10,
no. 4, August 2002.

[6] M. R. Stan and W. P. Burleson, “Bus-Invert Coding for Low
Power I/O,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 3, no. 1, pp.49-58, March 1995.

[7] M. Muroyama, A. Hyodo, T. Okuma and H. Yasuura, “A Power
Reduction Scheme for Data Buses by Dynamic Detection,”
IEICE Transactions on Electronics, vol. E87-C, no. 4, April
2004.

[8] M. Saneei, A. A.-Kusha and Z. Navabi, “Sign Bit Reduction
Encoding for Low Power Applications,” in Proceedings of the
42nd Design Automation Conference, pp.214-217, June 2005.

[9] D. Brooks and M. Martonosi, “Dynamically Exploiting Narrow
Width Operands to Improve Processor Power and Performance,”
in Proceedings of the 5th International Symposium on High
Performance Computer Architecture, pp.13-22, January 1999.

[10] H. Yamashita, H. Yasuura, F. N. Eko, and Y. Cao, “Variable Size
Analysis and Validation of Computation Quality,” in
Proceedings of High-Level Design Validation and Test Workshop,
pp.95-100, November 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

