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ABSTRACT 

In this research we investigate an approach for adaptive dynamic 

instruction set extension, tuning processors to specific 

applications after fabrication.   

Categories and Subject Descriptors 

C.1.3 [Processor Architectures]: Other architecture styles – 

adaptable architectures. 

General Terms 

Performance, Design, Experimentation. 

Keywords 

Adaptive Dynamic Processor, Instruction Set Extension, Online 

Profiling, Hot basic Block, Custom Instruction. 

1. INTRODUCTION 
This research describes an approach for adaptive dynamic 

instruction set extension, tuning processors to specific 

applications. The processor has two modes: training mode and 

normal mode. New instructions are detected and added after 

production at a preliminary mode (training mode). In this 

methodology there is no need to a new compiler and extra 

opcodes for extended instructions. The application-specific 

custom instructions are extracted from the frequently executed 

parts of the code (hot basic blocks) at training mode. The custom 

instructions are executed on a reconfigurable coarse grain 

accelerator at normal mode. Hot basic blocks are detected by a 

simple hardware (profiler) which monitors the Program Counter 

(PC) of the processor.  

2. GENERAL OVERVIEW OF THE 

ARCHITECTURE 
By Adaptive we mean that the processor can tune itself to the 

running applications. And we claim it is Dynamic, because 

instruction set extension is done after production and even at run-

time in the gap between two consecutive executions of the 

application (e.g. printers, cell phone and etc). 

The processor has been designed and developed by modifying a 

general single-issue, in-order RISC processor. There are three 

main units that have been augmented to the base processor: a 

profiler, a coarse grain reconfigurable accelerator and an arbiter. 

The processor has two modes: training mode and normal mode. In 

training mode using the profiler the processor learns about 

application-specific custom instructions and then generates the 

proper and necessary configuration data. The processor tries to 

find hot basic blocks (HBBs) and then looks for the custom 

instructions in these critical regions. In the normal mode, it can 

still keep on learning but it can not generate new configuration. It 

just uses the configured architecture for running the application 

including the execution of custom instructions on the accelerator.  

The reconfigurable coarse grain accelerator is a matrix of ALUs. 

We assume that each ALU of the accelerator can support all fixed-

point instructions of the baseline processor except multiplication, 

division and load. It has also been presumed that at most one store 

and one control instruction can be executed by the accelerator. 

The accelerator does not support floating-point instructions. The 

outputs of ALUs in each row are fully connected just to the inputs 

of the ALUs in the subsequent row. The inputs of accelerator are 

directly connected to the outputs of the registers of the register file, 

so it does not need to read the registers from register file. This 

technique has also been used in Chimaera[1]. The accelerator has 

a two-level configuration memory: a multi-context memory and a 

cache. Multi-context memory can keep several (four or eight) 

contexts. Switching between different contexts is very fast 

(usually takes several cycles). The configuration of custom 

instructions which are most probable to be executed in near future 

are kept in the multi-context memory and the rest are saved in the 

cache. The required configurations are loaded from multi-context 

memory to the cache using a direct memory access controller 

(DMAC). 
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The role of the arbiter is that to select between the accelerator and 

the processor functional unit outputs. The arbiter has a table in 

which the start addresses of dataflow subgraphs, which are going 

to be executed as custom instructions on the accelerator, are 

specified. By comparing the PC and the contents of the table, the 

arbiter can predict which custom instruction will be executed at 

what time. It can also determine when to load new configuration 

from cache to multi-context memory and when to switch between 

different contexts of the multi-context memory. It has been 

assumed that custom instructions will take multi cycles to be 

executed on the accelerator.  The accelerator has been supposed to 

have variable delay according to the number of rows which is 

needed by the mapped custom instruction. 

3. HOT BASIC BLOCK DETECTION 
A basic block is a sequence of instructions that terminates in a 

control instruction. HBBs are basic blocks that are executed more 

than a specified threshold. The custom instructions are extracted 

using these hot basic blocks. Start address of hot basic blocks are 

determined by the profiler monitoring the program counter (PC). 

In each cycle, the profiler compares the current value and the 

previous value of PC. If the difference of these two values is 

greater than the instruction length, it reveals that a taken branch or 

jump has occurred. The profiler has a table. For each entry of the 

table there is a counter. When the difference of current PC and 

previous PC is greater than one instruction length, the profiler 

table is checked. If the target address (current PC) is in the table, 

the corresponding counter is incremented, otherwise current PC is 

added as a new entry and the corresponding counter is initialized 

to one. This method can not detect those HBBs that follow mostly 

not taken branches. To solve this issue we made following 

changes to software routines. 

In the new algorithm after detecting the start addresses of the 

HBBs and generating the table similar to the previous method, the 

hot basic blocks are read from the object code. Control 

instructions terminate reading HBBs. For each HBB, its last 

instruction which is a control instruction is checked. If the last 

instruction is branch, the branch target address is detected and 

saved. The counter of the current HBB and the start address of not 

taken part are also saved. This counter shows that how many 

times this branch has been executed. Because jump instructions 

are always taken, they can be detected by looking into the table. 

Therefore we have to check just the branch instructions to see 

which direction of branch (taken, not taken or both) is hot. 

After saving these values for detected HBBs in the new list, all 

branch target addresses (BTAs) of the new list, are checked to see 

if they are in the HBB list or not. If the BTA is in the current HBB 

list, then it is ignored. Otherwise the BTAs of the new list are 

searched in the profiler table. If the BTA of the new list can be 

found in the profiler table, then the counter of the profiler table is 

subtracted from the corresponding counter of the BTA of the new 

list. The counter of the profiler table shows how many times the 

branch is taken and the counter of the new list shows how many 

times the branch instruction of the HBB is executed.  

By comparing the result of subtraction to the threshold value it 

can be distinguished if the not taken direction is hot or not. If it is 

hot, the not taken start address is added to the HBB list as a new 

HBB otherwise it is ignored. If the BTA of the new list can not be 

found in the profiler table, it means that this branch is always not 

taken which means that the not taken part is hot. In this case, the 

not taken start address is added to the HBB list as a new HBB. 

This process is executed again for every new HBB and continues 

until no new HBB is found.  

The maximum number of detected basic blocks for utilized 

applications of Mibench[2] is 2149. This number also shows the 

required entry for profiler table. By using replacement policies 

which replace low frequent basic block’s start addresses with 

higher frequent ones in the profiler table, smaller profiler table is 

needed. For the applications we used for evaluation, the maximum 

number of basic blocks that are executed more than 512 (this 

number is much smaller than floor threshold for detecting hot 

basic blocks) is 459. Therefore a profiler table with 512 entries 

seems enough and suitable for our HBB detector. 

4. PRELIMINARY PERFORMANCE 

EVALUATION 
To do a preliminary performance evaluation of the architecture, 

the dataflow graph (DFG) is generated for each detected hot basic 

block. Custom instructions are extracted from the DFGs. Each 

custom instruction can have at most one control instruction 

(branch or jump) and one store instruction. The custom 

instruction can not contain multiply, divide, floating-point or load 

instructions.  

Simplescalar[3] tool set (PISA configuration) and Mibench 

benchmark have been used for the experimental setup. The sim-

safe tool of Simplescalar was modified to generate the sequence of 

PCs of the committed instructions. The output of the modified 

sim-safe is applied to our tool, in which PCs are monitored and 

the profiler table is created. Using the profiler table, the start 

addresses of hot basic blocks are detected. The hot basic blocks 

are read from the object code. After reading hot basic blocks from 

object code and generating the DFG, the custom instructions are 

determined and mapped on the accelerator. To be able to make 

larger custom instructions, sometimes it is necessary to move the 

unsupported instructions up or down. Although this change does 

not modify the logic of the application, a new object code should 

be generated.  

At the current state the number of inputs, number of outputs and 

width and depth of the accelerator have assumed to be infinite. 

The accelerator has been supposed to have a variable delay. 

Because only the first and last row of accelerator need to read and 

write to register file, it has been presumed that the first row of the 

accelerator takes one clock cycle and the other rows take 0.5 clock 

cycle for execution. The result shows speedup ranges from 7.8% 

to 52% for the examined applications comparing the baseline 

processor. 
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