
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Preliminary Performance Evaluation of an
Adaptive Dynamic Extensible Processor for
Embedded Applications

Noori, Hamid
Department of Informatics, GraduateSchool of Information Science and Electrical Engineering,
Kyushu University

Murakami, Kazuaki
Department of Informatics, GraduateSchool of Information Science and Electrical Engineering,
Kyushu University

https://hdl.handle.net/2324/6794490

出版情報：Proceedings of the 2006 ACM Symposium on Applied Computing, pp.937-938, 2006-04. ACM
Symposium on Applied Computing
バージョン：
権利関係：

Preliminary Performance Evaluation of an Adaptive

Dynamic Extensible Processor for Embedded Applications
Hamid Noori

Department of Informatics, Graduate
School of Information Science and

Electrical Engineering, Kyushu University
6-1 Kasuga-koen, Kasuga, Fukuoka

816-8580 Japan
+81-92-583-7620

noori@c.csce.kyushu-u.ac.jp

Kazuaki Murakami
Department of Informatics, Graduate
School of Information Science and

Electrical Engineering, Kyushu University
6-1 Kasuga-koen, Kasuga, Fukuoka

816-8580 Japan
+81-92-583-7620

murakami@i.kyushu-u.ac.jp

ABSTRACT

In this research we investigate an approach for adaptive dynamic

instruction set extension, tuning processors to specific

applications after fabrication.

Categories and Subject Descriptors

C.1.3 [Processor Architectures]: Other architecture styles –

adaptable architectures.

General Terms

Performance, Design, Experimentation.

Keywords

Adaptive Dynamic Processor, Instruction Set Extension, Online

Profiling, Hot basic Block, Custom Instruction.

1. INTRODUCTION
This research describes an approach for adaptive dynamic

instruction set extension, tuning processors to specific

applications. The processor has two modes: training mode and

normal mode. New instructions are detected and added after

production at a preliminary mode (training mode). In this

methodology there is no need to a new compiler and extra

opcodes for extended instructions. The application-specific

custom instructions are extracted from the frequently executed

parts of the code (hot basic blocks) at training mode. The custom

instructions are executed on a reconfigurable coarse grain

accelerator at normal mode. Hot basic blocks are detected by a

simple hardware (profiler) which monitors the Program Counter

(PC) of the processor.

2. GENERAL OVERVIEW OF THE

ARCHITECTURE
By Adaptive we mean that the processor can tune itself to the

running applications. And we claim it is Dynamic, because

instruction set extension is done after production and even at run-

time in the gap between two consecutive executions of the

application (e.g. printers, cell phone and etc).

The processor has been designed and developed by modifying a

general single-issue, in-order RISC processor. There are three

main units that have been augmented to the base processor: a

profiler, a coarse grain reconfigurable accelerator and an arbiter.

The processor has two modes: training mode and normal mode. In

training mode using the profiler the processor learns about

application-specific custom instructions and then generates the

proper and necessary configuration data. The processor tries to

find hot basic blocks (HBBs) and then looks for the custom

instructions in these critical regions. In the normal mode, it can

still keep on learning but it can not generate new configuration. It

just uses the configured architecture for running the application

including the execution of custom instructions on the accelerator.

The reconfigurable coarse grain accelerator is a matrix of ALUs.

We assume that each ALU of the accelerator can support all fixed-

point instructions of the baseline processor except multiplication,

division and load. It has also been presumed that at most one store

and one control instruction can be executed by the accelerator.

The accelerator does not support floating-point instructions. The

outputs of ALUs in each row are fully connected just to the inputs

of the ALUs in the subsequent row. The inputs of accelerator are

directly connected to the outputs of the registers of the register file,

so it does not need to read the registers from register file. This

technique has also been used in Chimaera[1]. The accelerator has

a two-level configuration memory: a multi-context memory and a

cache. Multi-context memory can keep several (four or eight)

contexts. Switching between different contexts is very fast

(usually takes several cycles). The configuration of custom

instructions which are most probable to be executed in near future

are kept in the multi-context memory and the rest are saved in the

cache. The required configurations are loaded from multi-context

memory to the cache using a direct memory access controller

(DMAC).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’06, April, 23-27, 2006, Dijon, France.

Copyright 2006 ACM 1-59593-108-2/06/0004…$5.00.

937

The role of the arbiter is that to select between the accelerator and

the processor functional unit outputs. The arbiter has a table in

which the start addresses of dataflow subgraphs, which are going

to be executed as custom instructions on the accelerator, are

specified. By comparing the PC and the contents of the table, the

arbiter can predict which custom instruction will be executed at

what time. It can also determine when to load new configuration

from cache to multi-context memory and when to switch between

different contexts of the multi-context memory. It has been

assumed that custom instructions will take multi cycles to be

executed on the accelerator. The accelerator has been supposed to

have variable delay according to the number of rows which is

needed by the mapped custom instruction.

3. HOT BASIC BLOCK DETECTION
A basic block is a sequence of instructions that terminates in a

control instruction. HBBs are basic blocks that are executed more

than a specified threshold. The custom instructions are extracted

using these hot basic blocks. Start address of hot basic blocks are

determined by the profiler monitoring the program counter (PC).

In each cycle, the profiler compares the current value and the

previous value of PC. If the difference of these two values is

greater than the instruction length, it reveals that a taken branch or

jump has occurred. The profiler has a table. For each entry of the

table there is a counter. When the difference of current PC and

previous PC is greater than one instruction length, the profiler

table is checked. If the target address (current PC) is in the table,

the corresponding counter is incremented, otherwise current PC is

added as a new entry and the corresponding counter is initialized

to one. This method can not detect those HBBs that follow mostly

not taken branches. To solve this issue we made following

changes to software routines.

In the new algorithm after detecting the start addresses of the

HBBs and generating the table similar to the previous method, the

hot basic blocks are read from the object code. Control

instructions terminate reading HBBs. For each HBB, its last

instruction which is a control instruction is checked. If the last

instruction is branch, the branch target address is detected and

saved. The counter of the current HBB and the start address of not

taken part are also saved. This counter shows that how many

times this branch has been executed. Because jump instructions

are always taken, they can be detected by looking into the table.

Therefore we have to check just the branch instructions to see

which direction of branch (taken, not taken or both) is hot.

After saving these values for detected HBBs in the new list, all

branch target addresses (BTAs) of the new list, are checked to see

if they are in the HBB list or not. If the BTA is in the current HBB

list, then it is ignored. Otherwise the BTAs of the new list are

searched in the profiler table. If the BTA of the new list can be

found in the profiler table, then the counter of the profiler table is

subtracted from the corresponding counter of the BTA of the new

list. The counter of the profiler table shows how many times the

branch is taken and the counter of the new list shows how many

times the branch instruction of the HBB is executed.

By comparing the result of subtraction to the threshold value it

can be distinguished if the not taken direction is hot or not. If it is

hot, the not taken start address is added to the HBB list as a new

HBB otherwise it is ignored. If the BTA of the new list can not be

found in the profiler table, it means that this branch is always not

taken which means that the not taken part is hot. In this case, the

not taken start address is added to the HBB list as a new HBB.

This process is executed again for every new HBB and continues

until no new HBB is found.

The maximum number of detected basic blocks for utilized

applications of Mibench[2] is 2149. This number also shows the

required entry for profiler table. By using replacement policies

which replace low frequent basic block’s start addresses with

higher frequent ones in the profiler table, smaller profiler table is

needed. For the applications we used for evaluation, the maximum

number of basic blocks that are executed more than 512 (this

number is much smaller than floor threshold for detecting hot

basic blocks) is 459. Therefore a profiler table with 512 entries

seems enough and suitable for our HBB detector.

4. PRELIMINARY PERFORMANCE

EVALUATION
To do a preliminary performance evaluation of the architecture,

the dataflow graph (DFG) is generated for each detected hot basic

block. Custom instructions are extracted from the DFGs. Each

custom instruction can have at most one control instruction

(branch or jump) and one store instruction. The custom

instruction can not contain multiply, divide, floating-point or load

instructions.

Simplescalar[3] tool set (PISA configuration) and Mibench

benchmark have been used for the experimental setup. The sim-

safe tool of Simplescalar was modified to generate the sequence of

PCs of the committed instructions. The output of the modified

sim-safe is applied to our tool, in which PCs are monitored and

the profiler table is created. Using the profiler table, the start

addresses of hot basic blocks are detected. The hot basic blocks

are read from the object code. After reading hot basic blocks from

object code and generating the DFG, the custom instructions are

determined and mapped on the accelerator. To be able to make

larger custom instructions, sometimes it is necessary to move the

unsupported instructions up or down. Although this change does

not modify the logic of the application, a new object code should

be generated.

At the current state the number of inputs, number of outputs and

width and depth of the accelerator have assumed to be infinite.

The accelerator has been supposed to have a variable delay.

Because only the first and last row of accelerator need to read and

write to register file, it has been presumed that the first row of the

accelerator takes one clock cycle and the other rows take 0.5 clock

cycle for execution. The result shows speedup ranges from 7.8%

to 52% for the examined applications comparing the baseline

processor.

5. REFERENCES
[1] Ye, Z. A., Moshovos A., Hauck S., and Banerjee P. Chimaera:

a high-performance architecture with tightly-coupled

reconfigurable functional unit. In the proceeding of 27th

International Symposium of Computer Architecture (ISCA),

2000, pages 225-235.

[2] http://www.eecs.umich.edu/mibench/

[3] http://www.simplescalar.com/

938

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

