
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Multiple Clustered Core Processors

Sato, Toshinori
Kyushu University

Chiyonobu, Akihiro
Kyushu Institute of Technology

https://hdl.handle.net/2324/6794489

出版情報：Proc. of 13th Workshop on Synthesis and System Integration of Mixed Information
Technologies, pp.262-267, 2006-03. 13th Workshop on Synthesis and System Integration of Mixed
Information Technologies
バージョン：
権利関係：

Multiple Clustered Core Processors

 Toshinori Sato Akihiro Chiyonobu
 Kyushu University Kyushu Institute of Technology
toshinori.sato@computer.org chiyo@mickey.ai.kyutech.ac.jp

Abstract
This paper proposes multiple clustered core

processors as a solution that attains both low power
consumption and easy programming facility.
Considering the current trend of increasing power
consumption and temperature, a lot of CPU venders
have shipped or announced to ship multiple core
processors. Especially, recent studies on
heterogeneous multiple core processors show that they
are more efficient in energy utilization than
homogeneous ones. However, they request
programmers to consider complex task scheduling
since the size of every task always has to match the
performance of core where it is allocated. Multiple
clustered core processors relieve them from such a
tedious job. Simulation results show that a multiple
clustered core processor consumes slightly more
power than a heterogeneous multiple core processor.
However, in a case, the heterogeneous multiple core
processor cannot solve a severe task scheduling
problem, while the multiple clustered core processor
can.

1. Introduction
Multiple core (MultiCore) processors are a

promising solution that achieves high performance
with low power consumption. This is because
processor performance is proportional to the square
root of its area, while its power consumption is
proportional to the area. Thus, from the power
consumption view, a MultiCore processor with a lot of
small cores is a good solution. However, due to the
difficulty in aggregating parallelism from some kinds
of programs, it is difficult to achieve requested
performance using the homogeneous many-core
processor. Based on the considerations, heterogeneous
MultiCore processors are proposed [7, 12, 16]. The
heterogeneous MultiCore processor consists of several
cores with different scales in chip area and
performance. When a task requires high performance
but it does not have large parallelism in it, a large core
serves. When the other task also requires high
performance and it has large parallelism, multiple
small cores serve. And high performance is not

required, a small core is utilized. The efficient use of
different kinds of cores satisfies requested performance
with low power consumption.

One of the problems of the heterogeneous
MultiCore processors is the difficulty in programming.
Programmers always have to concern where every task
should be allocated. Small tasks should be allocated to
small cores, while large tasks have to be allocated to
large ones. This is a tedious job. Hence, from the
programming view, a homogeneous MultiCore
processor is a good solution. In order to achieve the
two requirements: low power consumption and easy
programming, we propose multiple clustered core
processors.

The multiple clustered core processor is a
homogeneous MultiCore processor. However, it
consists of multiple clustered cores. The core is based
on the clustered microarchitecture [5]. We exploit the
clustered microarchitecture to realize heterogeneity on
the homogeneous MultiCore processor. In order to
attain the goal, we propose cluster gating. When high
performance is not required, some clusters are gated
off. Using the cluster gating, only a small number of
clusters in the core are active so that requested
performance of the associated task is satisfied. If the
cluster gating is efficiently managed, programs which
are implemented considering homogeneous MultiCore
processors benefit from the virtually heterogeneous
MultiCore processor. That makes programming easy.

This paper is organized as follows. Section 2
reviews related work. Section 3 proposes multiple
clustered core processors as a solution for high
performance and low power. Section 4 presents
evaluation results. Finally, Section 5 concludes.

2. Related Work
The current trend of increasing power consumption

prefers MultiCore processors as a solution to achieve
both high performance and low power, and actually
some commercial MultiCore processors are emerging
[8, 9, 11, 13]. Since processor performance is
proportional to the square root of its area while its
power consumption is proportional to the area,
homogeneous many-core processors are a good

Figure 1. Different types of MultiCore processors

solution for power efficiency. However, due to the
difficulty in aggregating parallelism from some kinds
of programs, it is difficult to achieve requested
performance using homogeneous MultiCore processors,
and thus currently heterogeneous ones are proposed [7,
12, 16] as a solution of this problem.

The clustered microarchitecture is a solution to solve
the wire delay problem, and there are a lot of studies [5,
10, 14]. A large processor core is divided into multiple
clusters. Each cluster is so small that it mitigates wire
delay problem. General purpose processors are
designed to achieve the best performance on any kinds
of application programs, and thus there are much more
processor resources than most programs require. Thus,
it is desirable that processor resources are turned on
and off on demands of applications. Pipeline balancing
[1] is such a technique, which reduces issue width
when a program phase does not require the full issue
width. This is possible by turning off some or all
pipelines in one cluster, but it always keeps all register
files turned on. Dynamic cluster resizing [6] is another
technique that adapts the number of instruction queues
in each cluster while maintains the total number of
clusters. Dynamically tunable clustered design [2]
enables to turn off entire clusters when communication
overheads prefer smaller number of clusters.

3. Multiple Clustered Core Processors
MultiCore processors are a promising solution that

ach ieves h igh per formance with low power
consumption. Figure 1 shows different types of
MultiCore processors. Figure 1a is a uniprocessor.
Figures 1b and 1d are homogeneous MultiCore
processors, while Figure 1c is a heterogeneous one. As
you can see, the heterogeneous MultiCore processor
consists of several cores with different scales in area
and performance. When a task requires high
performance but it does not have large parallelism in it,
a large core serves. When the other task also requires
high performance but it has large parallelism in it, it is
better in energy efficiency that multiple small cores

serve. When high performance is not required by
another task, a small core is utilized. The efficient use
of different kinds of cores satisfies requested
performance with low power consumption. From the
view of energy efficiency, heterogeneous MultiCore
processors consisting of cores with different scales are
a good solution.

3.1. Issues in heterogeneous MultiCores
One of the problems of the heterogeneous

MultiCore processors is the difficulty in programming.
Programmers always have to concern where every task
should be allocated. Small tasks should be allocated to
small cores, while large tasks have to be allocated to
large cores. This is a tedious job. For example, imagine
that there are two large tasks. We have a large core and
a lot of small cores. A single small core does not have
enough performance. There are two possible solutions.
One is allocating both tasks to the large core, and they
are serially executed. The other is dividing one of the
tasks into several small tasks so that each of them
matches small core’s performance. Then, all tasks, the
large task and small ones, are executed in parallel. In
order to determine which solution a programmer
selects, he or she has to check which one is better in
performance and in energy efficiency. This is very
time consuming work. Imagine there are a lot of tasks
with different sizes. There are too many possible
solutions for a programmer to select one in a practical
time.

Therefore, from the view of easy programming, a
homogeneous MultiCore processor consisting of large
cores is a good solution. However, as you can easily
guess, they are less power efficient. In order to achieve
the two requirements: low power consumption and
easy programming, we propose multiple clustered core
processors.

The multiple clustered core processor is a
homogeneous MultiCore processor. The difference
from the conventional homogeneous MultiCore
processor is that it consists of multiple clustered cores

Large core

Medium core

Medium core

Medium core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core Clusterd core

Clusterd core

(a) Single (b) Dual (c) Triple (d) Quad (e) Clusterd

Large core

Medium core

Medium core

Medium core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core Clusterd core

Clusterd core

Large core

Medium core

Medium core

Medium core

Medium core

Medium core

Small
core

Small
core

Medium core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core Clusterd core

Clusterd core

Clusterd core

Clusterd core

(a) Single (b) Dual (c) Triple (d) Quad (e) Clusterd

Figure 2. Cluster gating

rather than monolithic cores. The core is based on the
clustered microarchitecture [5]. HP alpha 21264 [10] is
an example of the clustered microprocessors. Figure 1e
shows a multiple clustered core processor. It has two
homogeneous clustered cores, each of which has two
clusters.

3.2. Cluster gating
We exploit the clustered microarchitecture to

realize heterogeneity on the homogeneous MultiCore
processor. What we require is the heterogeneity in
power and performance rather than that in structures.
In order to attain the goal, we propose cluster gating.
Figure 2 explains how the cluster gating works. This is
a dual core processor consisting of two dual cluster
cores. Figure 2a shows a homogeneous dual core
processor consisting of large cores. When high
performance is not required, some clusters are turned
off, as shown in Figure 2b. The black box means that
the cluster is turned off. Using the cluster gating, only
a small number of clusters in the core are active so that
requested performance of the allocated task is satisfied.
Now, we have a heterogeneous dual core processor.
Figure 2c shows a dual core processor consisting of
small cores, in both of which one of the clusters is
turned off. The difference between the cluster gating
and dynamically tunable clustered design [2] is in the
considerations of task size.

Considering the requested performance, one of the
clusters becomes inactive. If the cluster gating is
efficiently managed, programs which are implemented
considering homogeneous MultiCore processors
benefit from the virtually heterogeneous MultiCore
processor. That makes programming easy, because we
do not have to concern what kind of cores are available
when we consider task allocation. We can always get a
desirable scaled core. There are some options to realize
the cluster gating. One is hardware-based. A dedicated
hardware block in a core observes the characteristics of
a task, which is allocated to the core, and determines

how many clusters are turned on in order to match
performance required by the task. The other is
software-based. Special instructions that turn on or off
clusters are prepared. Programmers or compilers insert
the instruction in each task. Practically, it is better that
programmers do not have to determine how many
cores are allocated to the task. They only have to
declare performance the task requires, in other words
the task size and the deadline time. One method to
realize this is using some kind of annotations or
functions like API. Compilers translate them into the
special instructions that denote the number of active
cores. Compatibility and transparency between
different MultiCore processors is provided in source
codes. The other is that the special instructions denote
only required performance and hardware determines
the number of active clusters. In this case, the
compatibility and transparency is provided in binaries.
Considering the use in embedded applications, we
think the software-based method is practical.

3.3. Other applications
Multiple clustered core processors have a good

characteristic in temperature awareness. By
alternatively gating some of the clusters of the core
during certain periods of time, power is reduced to
cool down the core. This is called cluster hopping [4].
Figure 3 shows how the cluster hopping works. The
black box means that the cluster is turned off.

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

Figure 3. Cluster hopping

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

(a) Dual large cores (b) Heterogeneous cores (c) Dual small cores

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

(a) Dual large cores (b) Heterogeneous cores (c) Dual small cores

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

(a) Dual large cores (b) Heterogeneous cores (c) Dual small cores

Similarly, by alternatively gating some of the cores
of the processor during certain periods of time, power
is reduced to cool down the chip. This is called core
hopping. The core hopping resembles PE rotation [15]
and Figure 4 shows how it works. The black box
means that the core is turned off.

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

IQ

RF

FU FU FU

IQ

RF

FU FU FU

I$

D$

Decode

Br
Pred

Figure 4. Core hopping

Another good characteristic of multiple clustered
core processors is in dependability. One of the simple
implementations for realizing dependability is to
redundantly execute single program. Time redundancy
or space redundancy can be utilized. MultiCore
processors are very suitable for space redundancy. In
order to check errorless, a single task is redundantly
executed on multiple cores. When two outcomes for
the single task (or every instruction in the task) do not
match, an error is detected. Furthermore, multiple
clustered core processors can change the dependability
levels according to the importance of the current task.
If the task is critical, it is duplicated and redundantly
executed across multiple cores. If it is less critical,
every instruction in the task is duplicated and
redundantly executed across multiple clusters. In the
latter case, some errors can not be detected, since some
blocks in each core are not duplicated.

These are very interesting research topics, which we
are currently investing.

4. Evaluations
4.1. Methodology

In order to evaluate the energy efficiency of the
multiple clustered core processors, we perform a
simulation study. We compare the energy consumed
by the processors in Figure 1. First, we determine each
core's configuration as shown in Table 1.

Table 1. Number of functional units

Second, based on the study in [3], the areas of the
cores are estimated as shown in Table 2. Thus, the
processors (a) to (e) in Figure 1 are 226.1mm2,
237.8mm2, 248.1mm2, 258.4mm2, and 201.6mm2,
respectively.

Table 2. Area estimations (mm2)

Surprisingly, the multiple clustered core processor
is the smallest, while it has larger number of functional
units than the dual core processor (Figure 1b) does.
This is due to the complexity effective design in the
clustered core. The complexity of instruction queue
(IQ) is O(N2) – O(N3) [14], where N is the issue width.
The area in OOO exec of the clustered core is smaller
than that of the medium core while the total number of
the issue width is larger in the former than in the latter.
This is because the issue width is limited inside each
cluster in the clustered core. The complexity of
operand bypassing is O(N2) [14], where N is the issue
width, and thus the area in routing of the clustered core
is smaller than that of the medium core.

Next, we estimate each core's performance.
Following the study in [16], we determine that the
large core's performance is 2400M instructions per
second (IPS). The performance of the rest cores are
determined based on the Pollack's rule [16]. Table 3
summarizes core performance. It is assumed that
power consumed by each core is proportional to its
area.

Table 3. Performance assumptions (IPS)

And last, we assume tasks executed on the
processors. Following the study in [16] again, we use a
task mix shown in the left side of Table 4. We call it
Task Mix #1. Each task is randomly generated every
1000 clock cycles. When 100 tasks are executed, a

simulation is finished. As you can see later, some
processors can not satisfy the worst case execution
time (WCET) listed in Table 4. Hence, we use another
task mix by relaxing some WCET. We call it Task Mix
#2.

Table 4. Task mixes

4.2. Results
Simulation results are presented in Figure 5. We

show total energy consumption. Energy consumed by
each MultiCore processor is normalized by that
consumed by the uniprocessor (a in Figure 5). In the
case of Task Mix #1, the triple core (c in Figure 5) and
quad core (d in Figure 5) processors can not satisfy the
WCET. This means the small core does not have
enough performance. When we compare the multiple
clustered core processor (e in Figure 5) with the dual
core processor (b in Figure 5), the multiple clustered
core processor consumes less energy than the dual core
processor. When some WCET is relaxed, all
processors satisfy the constraints. In the case of Task
Mix #2, the triple core and the quad core processors
consume less power than the multiple clustered core
processor. However, the difference is smaller than that
between the dual core processor and the multiple
clustered core processor. From these observations, the
multiple clustered core processor is a good solution to
attain high performance and low power, under the
requirements of easy programmability.

5. Conclusions
In this paper, we proposed multiple clustered core

processors. They solve the problem of programming
difficulties. According to the task size that is allocated
to a core, the core resizes the number of clusters. Thus,
programmers do not have to concern task allocation
problems. Preliminary evaluations showed that the
dual clustered core processor is as energy efficient as
the heterogeneous MultiCore processor. In addition,
the dual clustered core processor solved the severe task
scheduling problem that the heterogeneous MultiCore
processor could not.

Figure 5: Normalized energy consumption

One of the future studies regarding multiple
clustered core processors is more detailed evaluation
using commercially distributed application programs.
It might unveil some problems on implementing
multiple clustered core processors. The other is
investigating algorithms for activity migration both
between clusters and between cores. It improves
temperature-awareness of multiple clustered core
processors. We are also interested in dependable issues.
Exploiting redundancy found in MultiCore processors
will be a complexity- and cost-effective solution for
dependability.

Acknowledgements
This work is partially supported by Grants-in-Aid

for Scientific Research #16300019 and #176549 from
Japan Society for the Promotion of Science.

References
[1] R. I. Bahar and S. Manne, Power and Energy

Reduction via Pipeline Balancing, 28th

International Symposium on Computer
Architecture, 2001.

[2] R. Balasubramonian, S. Dwarkadas, and D.H.
Albonesi, Dynamically Managing the
Communication-Parallelism Trade-off in Future
Clustered Processors, 30th International
Symposium on Computer Architecture, 2003.

[3] J. Burns and J.-L. Gaudiot, Area and System
Clock Effects on SMT/CMP Throughput, IEEE
Transactions on Computers, Vol.54, No.2, 2005.

[4] P. Chaparro, J. Gonzalez, and A. Gonzalez,
Thermal-Aware Clustered Microarchitectures,
22nd International Conference on Computer
Design, 2004.

[5] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic,
The Multicluster Architecture: Reducing Cycle
Time Through Partitioning, 30th International
Symposium on Microarchitecture, 1997.

[6] J. Gonzalez and A. Gonzalez, Dynamic Cluster
Resizing, 21st International Conference on
Computer Design, 2003.

[7] M. Hagiwara, I. Minematsu, T. Yamashita, Y.
Komatsu, T. Fujimoto, T. Tsukada, and K.
Ishibashi, A Low-Power Processor Based on
Symmetric Multi-CPU Architecture for SoCs, 8th

IEEE Symposium on Low-Power and High-Speed
Chips, 2005.

[8] P. Hofstee, Power Efficient Processor
Architecture and the Cell Processor, 11th

International Symposium on High-Performance
Computer Architecture, 2005.

[9] R. Kalla, B. Sinharoy, and J. M. Tendler, IBM
POWER5 Chip: A Dual-Core Multithreded
Processor, IEEE Micro, Vol.24, No.2, 2004.

[10] R. E. Kessler, The Alpha 21264 Microprocessor,
IEEE Micro, Vol.19, No.2, 1999.

[11] P. Kongetira, K. Aingaran, and K. Olukotun,
Niagara: A 32-Way Multithreded SPARC
Processor, IEEE Micro, Vol.25, No.2, 2005.

[12] R. Kumar, K. Farkas, N. P. Jouppi, P.
Ranganathan, and D. M. Tullsen, Single-ISA
Heterogeneous Multi-core Architectures: the
Potential for Processor Power Reduction, 36th

International Symposium on Microarchitecture,
2003.

[13] C. McNairy and R. Bhatia, Montecito: A Dual-
Core, Dual-Threaded Itanium Processor, IEEE
Micro, Vol.25, No.2, 2005.

[14] S. Palacharla, N. P. Jouppi, and J. E. Smith,
Complexity-Effective Superscalar Processors, 24th

International Symposium on Computer
Architecture, 1997.

[15] H. Sato and T. Sato, A Preliminary Evaluation on
Energy Efficiency of a Temperature-aware
Multicore-processor, 2nd Workshop on
Temperature Aware Computer Systems, 2005.

[16] Y. Takatsukasa, K. Kobayashi, and H. Onodera,
Dynamic Voltage and Frequency Scaling
Technologies for Heterogeneous Multi-Processor
Architecture in Future Nanometer Technologies,
12th Workshop on Synthesis and System
Integration of Mixed Information Technologies,
2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [594.992 841.890]
>> setpagedevice

